[go: up one dir, main page]

CN112964968B - Test system and method for long-distance submarine high-voltage cable withstand voltage with high-voltage bushing - Google Patents

Test system and method for long-distance submarine high-voltage cable withstand voltage with high-voltage bushing Download PDF

Info

Publication number
CN112964968B
CN112964968B CN202110154910.5A CN202110154910A CN112964968B CN 112964968 B CN112964968 B CN 112964968B CN 202110154910 A CN202110154910 A CN 202110154910A CN 112964968 B CN112964968 B CN 112964968B
Authority
CN
China
Prior art keywords
gis
voltage
onshore
offshore
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110154910.5A
Other languages
Chinese (zh)
Other versions
CN112964968A (en
Inventor
王团结
周国栋
何信林
孟颖琪
张亚夫
王创博
张少鹏
杨志龙
李春丽
杨世强
雷阳
季东旭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Thermal Power Research Institute Co Ltd
Original Assignee
Xian Thermal Power Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Thermal Power Research Institute Co Ltd filed Critical Xian Thermal Power Research Institute Co Ltd
Priority to CN202110154910.5A priority Critical patent/CN112964968B/en
Publication of CN112964968A publication Critical patent/CN112964968A/en
Application granted granted Critical
Publication of CN112964968B publication Critical patent/CN112964968B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • G01R31/1263Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation
    • G01R31/1272Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation of cable, line or wire insulation, e.g. using partial discharge measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/04Housings; Supporting members; Arrangements of terminals
    • G01R1/0408Test fixtures or contact fields; Connectors or connecting adaptors; Test clips; Test sockets
    • G01R1/0416Connectors, terminals

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Relating To Insulation (AREA)

Abstract

本发明公开了一种高压套管进行长距离海底高压电缆耐压的试验系统及方法,包括试验设备单元、陆上GIS设备单元及海上GIS设备单元;陆上GIS设备单元包括高压套管、陆上GIS高压电抗器、第一陆上GIS隔离刀闸、第二陆上GIS隔离刀闸、第三陆上GIS隔离刀闸、第一陆上GIS接地刀闸、第二陆上GIS接地刀闸、第三陆上GIS接地刀闸、陆上GIS高压电抗器、陆上GIS电压互感器及陆上GIS避雷器;海上GIS设备单元包括第一海上GIS隔离刀闸、第二海上GIS隔离刀闸、第三海上GIS隔离刀闸、第四海上GIS隔离刀闸、第一海上GIS接地刀闸、第二海上GIS接地刀闸、第三海上GIS接地刀闸、海上GIS高压电抗器、海上GIS电压互感器及海上GIS避雷器,该系统及方法能够缩短试验时间,节省人力。

Figure 202110154910

The invention discloses a test system and method for carrying out long-distance submarine high-voltage cables with high-voltage bushings, including a test equipment unit, an onshore GIS equipment unit and an offshore GIS equipment unit; the onshore GIS equipment unit includes a high-voltage bushing, a land Upper GIS high voltage reactor, the first onshore GIS isolation switch, the second onshore GIS isolation switch, the third onshore GIS isolation switch, the first onshore GIS grounding switch, the second onshore GIS grounding switch , the third onshore GIS grounding switch, the onshore GIS high-voltage reactor, the onshore GIS voltage transformer and the onshore GIS arrester; the offshore GIS equipment unit includes the first offshore GIS isolation switch, the second offshore GIS isolation switch, The third offshore GIS isolation switch, the fourth offshore GIS isolation switch, the first offshore GIS ground switch, the second offshore GIS ground switch, the third offshore GIS ground switch, offshore GIS high voltage reactor, offshore GIS voltage mutual inductance The system and method can shorten the test time and save manpower.

Figure 202110154910

Description

高压套管进行长距离海底高压电缆耐压的试验系统及方法Test system and method for long-distance submarine high-voltage cable withstand voltage with high-voltage bushing

技术领域technical field

本发明属于电力设备高压试验领域,涉及一种高压套管进行长距离海底高压电缆耐压的试验系统及方法。The invention belongs to the field of high-voltage test of electric power equipment, and relates to a test system and method for a long-distance submarine high-voltage cable with a high-voltage bushing.

背景技术Background technique

我国海上风电正成为全球海上风电发展的新动力,而海上风电对我国能源转型的支撑作用也将越来越显著。海底电缆是海洋风电建设不可或缺的一部分,目前海上风电正在由浅海发展至深海,这就意味着海底电缆的长度会越来越长,耐压试验作为电缆交接试验中的关键一环,研究与探讨这些长距离电缆耐压试验方案以及具体的试验方法变得很有意义。my country's offshore wind power is becoming a new driving force for the development of global offshore wind power, and the supporting role of offshore wind power in my country's energy transformation will become more and more significant. Submarine cables are an indispensable part of offshore wind power construction. At present, offshore wind power is developing from shallow seas to deep seas, which means that the length of submarine cables will become longer and longer. As a key part of the cable handover test, the research It becomes very meaningful to discuss these long-distance cable withstand voltage test schemes and specific test methods.

目前海底高压电缆主要是交联聚乙烯绝缘复合材质电缆,耐压方式根据《GB50150-2016电气设备交接试验标准》中的要求需要进行交流耐压试验。由于高电压、长距离的交联聚乙烯海底电缆的对地电容量很大,因此对耐压试验电源设备要求很高,现场试验难度较大,通常会利用串并联谐振的试验方法对海底电缆进行交流耐压试验。At present, submarine high-voltage cables are mainly XLPE insulated composite cables. The voltage-resistant mode needs to be subjected to AC voltage-resistant tests according to the requirements of the "GB50150-2016 Electrical Equipment Handover Test Standard". Because the high-voltage, long-distance XLPE submarine cable has a large capacitance to ground, it has high requirements on the power supply equipment for the withstand voltage test, and the field test is difficult. Usually, the series-parallel resonance test method is used to test the submarine cable. Carry out an AC withstand voltage test.

随着海底高压电缆长度的增加,线路损耗也会随之增大,同时电容效应也会越来越明显,因此会在海底高压电缆两侧并联高压补偿电抗器以减轻电容效应降低工频过电压,及改善长距离海底高压电缆的电压分布。As the length of the submarine high-voltage cable increases, the line loss will also increase, and the capacitive effect will become more and more obvious. Therefore, high-voltage compensation reactors will be connected in parallel on both sides of the submarine high-voltage cable to reduce the capacitive effect and reduce power frequency overvoltage. , and improve the voltage distribution of long-distance submarine high-voltage cables.

以往在海底电缆交接性试验中需要加装专用高压试验套管,在耐压试验前先将海底电缆GIS间隔气室的SF6气体回收,打开气室,再将海底电缆与GIS母线的连接导杆解除,加装专用高压试验套管后,将海底电缆接头与专用高压试验套管连接,最后重新注入SF6气体,待气体压力正常且微水检测合格后再进行耐压试验,耐压试验完成后再对专用高压试验套管进行拆除及海底电缆GIS间隔气室的恢复。110kV电压等级的专用高压试验套管一般为三相一体,而220kV电压等级的专用高压试验套管为单相,上述加装过程需要重复进行三次,每次试验需要花费大量的时间和人力,而且海底高压电缆在耐压后还需要打开气室进行恢复,存在一定的操作隐患,安全性较差。In the past, it was necessary to install a special high-voltage test sleeve in the handover test of the submarine cable. Before the withstand voltage test, the SF6 gas in the GIS spaced air chamber of the submarine cable was recovered, the air chamber was opened, and then the connecting rod between the submarine cable and the GIS bus was connected. Release, after installing the special high-voltage test sleeve, connect the submarine cable joint with the special high-voltage test sleeve, and finally re-inject SF6 gas. After the gas pressure is normal and the micro-water test is qualified, the pressure test is carried out. After the pressure test is completed Then the special high-voltage test casing is removed and the subsea cable GIS spaced air chamber is restored. The special high-voltage test bushing of 110kV voltage level is generally three-phase integrated, while the special high-voltage test bushing of 220kV voltage level is single-phase. The above installation process needs to be repeated three times, and each test requires a lot of time and manpower, and The submarine high-voltage cable needs to open the gas chamber for recovery after it is under pressure, and there are certain hidden dangers in operation and poor safety.

发明内容SUMMARY OF THE INVENTION

本发明的目的在于克服上述现有技术的缺点,提供了一种高压套管进行长距离海底高压电缆耐压的试验系统及方法,该系统及方法能够缩短试验时间,节省人力,同时安全性较高。The purpose of the present invention is to overcome the shortcomings of the above-mentioned prior art, and to provide a test system and method for carrying out long-distance submarine high-voltage cable withstand voltage by high-voltage bushing, which can shorten the test time, save manpower, and at the same time, the safety is relatively high. high.

为达到上述目的,本发明所述的高压套管进行长距离海底高压电缆耐压的试验系统包括海底高压电缆、试验设备单元、陆上GIS设备单元及海上GIS设备单元;In order to achieve the above object, the high-voltage bushing of the present invention performs a long-distance submarine high-voltage cable withstand voltage test system including a submarine high-voltage cable, a test equipment unit, a land GIS equipment unit and an offshore GIS equipment unit;

陆上GIS设备单元包括高压套管、陆上GIS高压电抗器、第一陆上GIS隔离刀闸、第二陆上GIS隔离刀闸、第三陆上GIS隔离刀闸、第一陆上GIS接地刀闸、第二陆上GIS接地刀闸、第三陆上GIS接地刀闸、陆上GIS高压电抗器、陆上GIS电压互感器及陆上GIS避雷器;The onshore GIS equipment unit includes high-voltage bushing, onshore GIS high-voltage reactor, the first onshore GIS isolation switch, the second onshore GIS isolation switch, the third onshore GIS isolation switch, and the first onshore GIS grounding Switches, the second onshore GIS ground switch, the third onshore GIS ground switch, onshore GIS high-voltage reactors, onshore GIS voltage transformers and onshore GIS arresters;

海上GIS设备单元包括第一海上GIS隔离刀闸、第二海上GIS隔离刀闸、第三海上GIS隔离刀闸、第四海上GIS隔离刀闸、第一海上GIS接地刀闸、第二海上GIS接地刀闸、第三海上GIS接地刀闸、海上GIS高压电抗器、海上GIS电压互感器及海上GIS避雷器;The offshore GIS equipment unit includes the first offshore GIS isolation switch, the second offshore GIS isolation switch, the third offshore GIS isolation switch, the fourth offshore GIS isolation switch, the first offshore GIS grounding switch, and the second offshore GIS grounding switch Knife switch, the third offshore GIS grounding switch, offshore GIS high-voltage reactor, offshore GIS voltage transformer and offshore GIS lightning arrester;

试验设备单元经高压套管与陆上GIS高压电抗器的一端及第一陆上GIS隔离刀闸的一端及第一陆上GIS接地刀闸的一端相连接,接地;第一陆上GIS隔离刀闸的另一端与第三陆上GIS隔离刀闸的一端、第二陆上GIS隔离刀闸的一端、第三陆上GIS接地刀闸的一端、第四陆上GIS隔离刀闸的一端及海底高压电缆的一端相连接;The test equipment unit is connected to one end of the onshore GIS high-voltage reactor, one end of the first onshore GIS isolation switch, and one end of the first onshore GIS grounding switch via the high-voltage bushing, and is grounded; the first onshore GIS isolation switch The other end of the gate is connected to one end of the third onshore GIS isolation gate, one end of the second onshore GIS isolation gate, one end of the third onshore GIS grounding gate, one end of the fourth onshore GIS isolation gate and the seabed One end of the high-voltage cable is connected;

第四陆上GIS隔离刀闸的另一端经陆上GIS电压互感器后接地,第二陆上GIS隔离刀闸的另一端经第二陆上GIS接地刀闸后接地,陆上GIS高压电抗器的另一端、第一陆上GIS接地刀闸的另一端及第三陆上GIS接地刀闸的另一端均接地,第三陆上GIS隔离刀闸的另一端经陆上GIS避雷器后接地;The other end of the fourth onshore GIS isolation switch is grounded after the onshore GIS voltage transformer, the other end of the second onshore GIS isolation switch is grounded after the second onshore GIS grounding switch, and the onshore GIS high-voltage reactor The other end of the first onshore GIS grounding switch and the other end of the third onshore GIS grounding switch are all grounded, and the other end of the third onshore GIS isolation switch is grounded after the onshore GIS arrester;

海底高压电缆的另一端与第三海上GIS隔离刀闸的一端、第四海上GIS隔离刀闸的一端、第一海上GIS隔离刀闸的一端、第二海上GIS隔离刀闸的一端及第三海上GIS接地刀闸的一端相连接,第四海上GIS隔离刀闸的另一端经海上GIS避雷器后接地,第二海上GIS隔离刀闸的另一端经第二海上GIS接地刀闸后接地,第三海上GIS隔离刀闸的另一端经海上GIS电压互感器后接地,第一海上GIS隔离刀闸的另一端分为两路,其中一路经第一海上GIS接地刀闸后接地,另一路经海上GIS高压电抗器后接地。The other end of the submarine high-voltage cable is connected to one end of the third offshore GIS isolation switch, one end of the fourth offshore GIS isolation switch, one end of the first offshore GIS isolation switch, one end of the second offshore GIS isolation switch and the third offshore GIS isolation switch One end of the GIS grounding switch is connected, the other end of the fourth offshore GIS isolation switch is grounded after passing through the marine GIS arrester, the other end of the second offshore GIS isolation switch is grounded after passing through the second offshore GIS grounding switch, and the third offshore GIS grounding switch is grounded. The other end of the GIS isolation switch is grounded after passing through the offshore GIS voltage transformer. The other end of the first offshore GIS isolation switch is divided into two paths, one of which is grounded after the first offshore GIS grounding switch, and the other is grounded through the offshore GIS high voltage Ground after the reactor.

所述试验设备单元包括变频器、试验变压器、谐振电抗器及分压器,其中,变频器经试验变压器、谐振电抗器及分压器后与高压套管相连接。The test equipment unit includes a frequency converter, a test transformer, a resonance reactor and a voltage divider, wherein the frequency converter is connected to the high-voltage bushing after the test transformer, the resonance reactor and the voltage divider.

还包括陆上GIS带电显示器,其中,陆上GIS带电显示器与第三陆上GIS隔离刀闸和第四陆上GIS隔离刀闸的连接节点相连接。It also includes an onshore GIS live display, wherein the onshore GIS live display is connected to the connection node of the third onshore GIS isolation switch and the fourth onshore GIS isolation switch.

还包括海上GIS带电显示器,其中,海上GIS带电显示器与第四海上GIS隔离刀闸和第三海上GIS隔离刀闸的连接节点相连接。It also includes an offshore GIS live display, wherein the offshore GIS live display is connected to the connection node of the fourth offshore GIS isolation switch and the third offshore GIS isolation switch.

一种高压套管进行长距离海底高压电缆耐压的试验方法包括以下步骤:A test method for long-distance submarine high-voltage cables with high-voltage bushings includes the following steps:

1)进行设备的连接及铺设;1) Connect and lay the equipment;

2)进行海底高压电缆的核相及绝缘测试,记录海底高压电缆各相的绝缘电阻值;2) Carry out the nuclear phase and insulation test of the submarine high-voltage cable, and record the insulation resistance value of each phase of the submarine high-voltage cable;

3)断开谐振电抗器的高压侧与高压套管之间的联系,并将谐振电抗器的高压侧接地;3) Disconnect the connection between the high-voltage side of the resonant reactor and the high-voltage bushing, and ground the high-voltage side of the resonant reactor;

4)闭合第一陆上GIS隔离刀闸,断开第二陆上GIS隔离刀闸、第三陆上GIS隔离刀闸及第四陆上GIS隔离刀闸;断开第三陆上GIS接地刀闸,将陆上GIS带电显示器短接;4) Close the first onshore GIS isolation switch, disconnect the second onshore GIS isolation switch, the third onshore GIS isolation switch and the fourth onshore GIS isolation switch; disconnect the third onshore GIS grounding switch gate, short-circuit the onshore GIS live display;

5)闭合第一海上GIS接地刀闸及第二海上GIS接地刀闸,断开第一海上GIS隔离刀闸、第二海上GIS隔离刀闸、第三海上GIS隔离刀闸及第四海上GIS隔离刀闸;断开第三海上GIS接地刀闸,将海上GIS带电显示器短接;5) Close the first offshore GIS grounding switch and the second offshore GIS grounding switch, disconnect the first offshore GIS isolation switch, the second offshore GIS isolation switch, the third offshore GIS isolation switch and the fourth offshore GIS isolation switch Knife switch; disconnect the third offshore GIS grounding switch, and short-circuit the offshore GIS live display;

6)根据海底高压电缆的线缆参数及长度计算海底高压电缆的对地电容,选择谐振电抗器,将变频器、试验变压器及谐振电抗器组合连接,将高压试验接线至高压套管的A相处,高压套管的B相及高压套管的C相接地;6) Calculate the ground capacitance of the submarine high-voltage cable according to the cable parameters and length of the submarine high-voltage cable, select a resonant reactor, connect the frequency converter, the test transformer and the resonant reactor in combination, and connect the high-voltage test wire to phase A of the high-voltage bushing , the phase B of the high-voltage bushing and the phase C of the high-voltage bushing are grounded;

7)将变频器升压至初始电压后保持电压不变,调节频率寻找谐振频率后继续进行升压,当升到1.7U后停止升压,再保持60min,当未发生放电,则缓慢降压,待电压降至零后断开变频器的电源;7) After boosting the inverter to the initial voltage, keep the voltage unchanged, adjust the frequency to find the resonant frequency and continue to boost, stop boosting when it reaches 1.7U, and keep it for another 60min. When no discharge occurs, slowly reduce the voltage , disconnect the power supply of the inverter after the voltage drops to zero;

8)对海底高压电缆的A相进行充分放电,测量海底高压电缆中A相的绝缘电阻值,并将当前测量得到的海底高压电缆中A相的绝缘电阻值与步骤2)中得到的海底高压电缆中A相的绝缘电阻值进行比较,当当前测量得到的海底高压电缆中A相的绝缘电阻值与步骤2)中得到的海底高压电缆中A相的绝缘电阻值之间的差值在预设范围内时,则说明海底高压电缆中的A相耐压合格;然后转至步骤9),否则,则说明海底高压电缆中的A相存在耐压故障;8) Fully discharge the A-phase of the submarine high-voltage cable, measure the insulation resistance value of the A-phase in the submarine high-voltage cable, and compare the current measured insulation resistance value of the A-phase in the submarine high-voltage cable with the submarine high-voltage obtained in step 2). The insulation resistance value of phase A in the cable is compared. When the difference between the insulation resistance value of phase A in the submarine high-voltage cable obtained by the current measurement and the insulation resistance value of phase A in the submarine high-voltage cable obtained in step 2) is in the preset value. When it is within the set range, it means that the A-phase withstand voltage in the submarine high-voltage cable is qualified; then go to step 9), otherwise, it means that the A-phase in the submarine high-voltage cable has a withstand voltage fault;

9)对于海底高压电缆中B相及海底高压电缆中的C相重复步骤7)及步骤8),完成高压套管6进行长距离海底高压电缆耐压的试验。9) Repeat step 7) and step 8) for phase B in the submarine high-voltage cable and phase C in the submarine high-voltage cable, and complete the high-voltage bushing 6 to carry out the long-distance submarine high-voltage cable withstand voltage test.

步骤1)的具体操作为:The specific operations of step 1) are:

将陆上GIS设备单元及海上GIS设备单元安装完毕,SF6气体注入至正常压力,微水监测合格,海底高压电缆完成铺设及连接。The onshore GIS equipment unit and the offshore GIS equipment unit are installed, SF6 gas is injected to normal pressure, the micro-water monitoring is qualified, and the submarine high-voltage cable is laid and connected.

本发明具有以下有益效果:The present invention has the following beneficial effects:

本发明所述的高压套管进行长距离海底高压电缆耐压的试验系统及方法在具体操作时,利用与陆上GIS与谐振电抗器连接的高压套管替代专有试验套管对高压海底电缆进行耐压试验,只需对部分隔离刀闸及接地刀闸进行操作,即可完成长距离海底高压电缆耐压的试验,可以大大减少试验准备时间,避免试验结束后拆除专有高压试验套管的操作隐患,为海上风电场受电赢得时间,同时节省人力,安全性较高。The test system and method for the long-distance submarine high-voltage cable withstand voltage test system and method for the high-voltage bushing of the present invention use the high-voltage bushing connected with the onshore GIS and the resonant reactor to replace the proprietary test bushing for the high-voltage submarine cable. The withstand voltage test of long-distance submarine high-voltage cables can be completed only by operating part of the isolation switch and grounding switch, which can greatly reduce the test preparation time and avoid the removal of the proprietary high-voltage test casing after the test. It will save time for offshore wind farms to receive electricity, save manpower, and have high safety.

附图说明Description of drawings

图1为本发明的结构示意图;Fig. 1 is the structural representation of the present invention;

图2为本发明的流程图。Figure 2 is a flow chart of the present invention.

其中,1为变频器、2为试验变压器、3为谐振电抗器、4为分压器、5为陆上GIS高压电抗器、6为高压套管、7为陆上GIS带电显示器、8为陆上GIS避雷器、9为陆上GIS电压互感器、10为海上GIS带电显示器、11为海上GIS避雷器、12为海上GIS电压互感器、13为海上GIS高压电抗器、14为海底高压电缆。Among them, 1 is a frequency converter, 2 is a test transformer, 3 is a resonant reactor, 4 is a voltage divider, 5 is an onshore GIS high-voltage reactor, 6 is a high-voltage bushing, 7 is an onshore GIS live display, and 8 is an onshore GIS live display. The upper GIS arrester, 9 is the onshore GIS voltage transformer, 10 is the offshore GIS live display, 11 is the offshore GIS arrester, 12 is the offshore GIS voltage transformer, 13 is the offshore GIS high-voltage reactor, and 14 is the submarine high-voltage cable.

具体实施方式Detailed ways

下面结合附图对本发明做进一步详细描述:Below in conjunction with accompanying drawing, the present invention is described in further detail:

参考图1,本发明所述的高压套管进行长距离海底高压电缆耐压的试验系统包括海底高压电缆14、试验设备单元、陆上GIS设备单元及海上GIS设备单元;陆上GIS设备单元包括高压套管6、陆上GIS高压电抗器5、第一陆上GIS隔离刀闸G1、第二陆上GIS隔离刀闸G2、第三陆上GIS隔离刀闸G3、第一陆上GIS接地刀闸G11、第二陆上GIS接地刀闸G21、第三陆上GIS接地刀闸G22、陆上GIS高压电抗器5、陆上GIS电压互感器9及陆上GIS避雷器8;海上GIS设备单元包括第一海上GIS隔离刀闸G5、第二海上GIS隔离刀闸G6、第三海上GIS隔离刀闸G7、第四海上GIS隔离刀闸G8、第一海上GIS接地刀闸G51、第二海上GIS接地刀闸G61、第三海上GIS接地刀闸G62、海上GIS高压电抗器13、海上GIS电压互感器12及海上GIS避雷器11;With reference to Fig. 1, the test system that the high-voltage bushing of the present invention carries out long-distance submarine high-voltage cable withstand voltage includes submarine high-voltage cable 14, test equipment unit, onshore GIS equipment unit and offshore GIS equipment unit; Onshore GIS equipment unit includes High-voltage bushing 6, onshore GIS high-voltage reactor 5, first onshore GIS isolation switch G1, second onshore GIS isolation switch G2, third onshore GIS isolation switch G3, first onshore GIS grounding switch Gate G11, the second onshore GIS grounding switch G21, the third onshore GIS grounding switch G22, the onshore GIS high-voltage reactor 5, the onshore GIS voltage transformer 9 and the onshore GIS arrester 8; the offshore GIS equipment unit includes The first offshore GIS isolation switch G5, the second offshore GIS isolation switch G6, the third offshore GIS isolation switch G7, the fourth offshore GIS isolation switch G8, the first offshore GIS grounding switch G51, the second offshore GIS grounding switch Knife switch G61, third offshore GIS grounding switch G62, offshore GIS high voltage reactor 13, offshore GIS voltage transformer 12 and offshore GIS arrester 11;

试验设备单元经高压套管6与陆上GIS高压电抗器5的一端及第一陆上GIS隔离刀闸G1的一端及第一陆上GIS接地刀闸G11的一端相连接,接地;第一陆上GIS隔离刀闸G1的另一端与第三陆上GIS隔离刀闸G3的一端、第二陆上GIS隔离刀闸G2的一端、第三陆上GIS接地刀闸G22的一端、第四陆上GIS隔离刀闸G4的一端及海底高压电缆17的一端相连接;The test equipment unit is connected to one end of the onshore GIS high-voltage reactor 5, one end of the first onshore GIS isolation switch G1 and one end of the first onshore GIS grounding switch G11 through the high-voltage bushing 6, and is grounded; The other end of the upper GIS isolation switch G1 is connected to one end of the third onshore GIS isolation switch G3, one end of the second onshore GIS isolation switch G2, one end of the third onshore GIS grounding switch G22, and the fourth onshore GIS isolation switch G22. One end of the GIS isolation knife gate G4 is connected with one end of the submarine high-voltage cable 17;

第四陆上GIS隔离刀闸G4的另一端经陆上GIS电压互感器9后接地,第二陆上GIS隔离刀闸G2的另一端经第二陆上GIS接地刀闸G21后接地,陆上GIS高压电抗器5的另一端、第一陆上GIS接地刀闸G11的另一端及第三陆上GIS接地刀闸G22的另一端均接地,第三陆上GIS隔离刀闸G3的另一端经陆上GIS避雷器8后接地;The other end of the fourth onshore GIS isolation switch G4 is grounded after passing through the onshore GIS voltage transformer 9, and the other end of the second onshore GIS isolation switch G2 is grounded after passing through the second onshore GIS grounding switch G21. The other end of the GIS high-voltage reactor 5, the other end of the first onshore GIS grounding switch G11 and the other end of the third onshore GIS grounding switch G22 are all grounded, and the other end of the third onshore GIS isolation switch G3 is grounded. Ground GIS arrester 8 on land;

海底高压电缆14的另一端与第三海上GIS隔离刀闸G7的一端、第四海上GIS隔离刀闸G8的一端、第一海上GIS隔离刀闸G5的一端、第二海上GIS隔离刀闸G6的一端及第三海上GIS接地刀闸G62的一端相连接,第四海上GIS隔离刀闸G8的另一端经海上GIS避雷器11后接地,第二海上GIS隔离刀闸G6的另一端经第二海上GIS接地刀闸G61后接地,第三海上GIS隔离刀闸G7的另一端经海上GIS电压互感器12后接地,第一海上GIS隔离刀闸G5的另一端分为两路,其中一路经第一海上GIS接地刀闸G51后接地,另一路经海上GIS高压电抗器13后接地。The other end of the submarine high-voltage cable 14 is connected to one end of the third offshore GIS isolation switch G7, one end of the fourth offshore GIS isolation switch G8, one end of the first offshore GIS isolation switch G5, and one end of the second offshore GIS isolation switch G6. One end is connected with one end of the third offshore GIS grounding switch G62, the other end of the fourth offshore GIS isolation switch G8 is grounded after passing through the offshore GIS arrester 11, and the other end of the second offshore GIS isolation switch G6 is grounded through the second offshore GIS The grounding switch G61 is grounded, the other end of the third offshore GIS isolation switch G7 is grounded after passing through the offshore GIS voltage transformer 12, and the other end of the first offshore GIS isolation switch G5 is divided into two paths, one of which passes through the first offshore GIS The GIS grounding switch G51 is then grounded, and the other route is grounded after the offshore GIS high-voltage reactor 13.

所述试验设备单元包括变频器1、试验变压器2、谐振电抗器3及分压器4,其中,变频器1经试验变压器2、谐振电抗器3及分压器4后与高压套管6相连接。The test equipment unit includes a frequency converter 1, a test transformer 2, a resonant reactor 3 and a voltage divider 4, wherein the frequency converter 1 is in phase with the high-voltage bushing 6 after the test transformer 2, the resonance reactor 3 and the voltage divider 4. connect.

本发明还包括陆上GIS带电显示器7,其中,陆上GIS带电显示器7与第三陆上GIS隔离刀闸G3和第四陆上GIS隔离刀闸G4的连接节点相连接。The present invention also includes the onshore GIS live display 7, wherein the onshore GIS live display 7 is connected to the connection node of the third onshore GIS isolation switch G3 and the fourth onshore GIS isolation switch G4.

本发明还包括海上GIS带电显示器10,其中,海上GIS带电显示器10与第四海上GIS隔离刀闸G8和第三海上GIS隔离刀闸G7的连接节点相连接。The present invention also includes the marine GIS live display 10, wherein the marine GIS live display 10 is connected to the connection node of the fourth offshore GIS isolation switch G8 and the third offshore GIS isolation switch G7.

参考图2,本发明所述的高压套管进行长距离海底高压电缆耐压的试验方法包括以下步骤:Referring to Fig. 2, the test method for the long-distance submarine high-voltage cable withstand voltage of the high-voltage bushing of the present invention comprises the following steps:

1)将陆上GIS设备单元及海上GIS设备单元安装完毕,SF6气体注入至正常压力,微水监测合格,海底高压电缆14完成铺设及连接;1) The installation of the onshore GIS equipment unit and the offshore GIS equipment unit is completed, the SF6 gas is injected to the normal pressure, the micro-water monitoring is qualified, and the submarine high-voltage cable 14 is laid and connected;

2)进行海底高压电缆14的核相及绝缘测试,记录海底高压电缆14各相的绝缘电阻值;2) carry out the nuclear phase and insulation test of the submarine high-voltage cable 14, and record the insulation resistance value of each phase of the submarine high-voltage cable 14;

3)断开谐振电抗器3的高压侧与高压套管6之间的联系,并将谐振电抗器3的高压侧接地;3) Disconnect the connection between the high-voltage side of the resonant reactor 3 and the high-voltage bushing 6, and ground the high-voltage side of the resonant reactor 3;

4)闭合第一陆上GIS隔离刀闸G1,断开第二陆上GIS隔离刀闸G2、第三陆上GIS隔离刀闸G3及第四陆上GIS隔离刀闸G4;断开第三陆上GIS接地刀闸G22,将陆上GIS带电显示器7短接;4) Close the first onshore GIS isolation gate G1, disconnect the second onshore GIS isolation gate G2, the third onshore GIS isolation gate G3 and the fourth onshore GIS isolation gate G4; disconnect the third onshore GIS isolation gate G4; Connect the GIS grounding switch G22, and short-circuit the onshore GIS live display 7;

5)闭合第一海上GIS接地刀闸G51及第二海上GIS接地刀闸G61,断开第一海上GIS隔离刀闸G5、第二海上GIS隔离刀闸G6、第三海上GIS隔离刀闸G7及第四海上GIS隔离刀闸G8;断开第三海上GIS接地刀闸G62,将海上GIS带电显示器10短接;5) Close the first offshore GIS grounding switch G51 and the second offshore GIS grounding switch G61, disconnect the first offshore GIS isolation switch G5, the second offshore GIS isolation switch G6, the third offshore GIS isolation switch G7 and The fourth offshore GIS isolation switch G8; disconnect the third offshore GIS grounding switch G62, and short-circuit the offshore GIS live display 10;

6)根据海底高压电缆14的线缆参数及长度计算海底高压电缆14的对地电容,选择谐振电抗器3,将变频器1、试验变压器2及谐振电抗器3组合连接,将高压试验接线至高压套管6的A相处,高压套管6的B相及高压套管6的C相接地;6) Calculate the ground capacitance of the submarine high-voltage cable 14 according to the cable parameters and length of the submarine high-voltage cable 14, select the resonant reactor 3, connect the frequency converter 1, the test transformer 2 and the resonant reactor 3 in combination, and connect the high-voltage test to the Phase A of the high-voltage bushing 6, phase B of the high-voltage bushing 6 and phase C of the high-voltage bushing 6 are grounded;

7)将变频器1升压至初始电压后保持电压不变,调节频率寻找谐振频率后继续进行升压,当升到1.7U后停止升压,再保持60min,当未发生放电,则缓慢降压,待电压降至零后断开变频器1的电源;7) After boosting the inverter 1 to the initial voltage, keep the voltage unchanged, adjust the frequency to find the resonant frequency and continue to boost, stop boosting when it reaches 1.7U, and keep it for another 60min. When no discharge occurs, it will slowly decrease. After the voltage drops to zero, disconnect the power supply of inverter 1;

8)对海底高压电缆14的A相进行充分放电,测量海底高压电缆14中A相的绝缘电阻值,并将当前测量得到的海底高压电缆14中A相的绝缘电阻值与步骤2)中得到的海底高压电缆14中A相的绝缘电阻值进行比较,当当前测量得到的海底高压电缆14中A相的绝缘电阻值与步骤2)中得到的海底高压电缆14中A相的绝缘电阻值之间的差值在预设范围内时,则说明海底高压电缆14中的A相耐压合格;然后转至步骤9),否则,则说明海底高压电缆14中的A相存在耐压故障;8) Fully discharge the A-phase of the submarine high-voltage cable 14, measure the insulation resistance value of the A-phase in the submarine high-voltage cable 14, and obtain the insulation resistance value of the A-phase in the submarine high-voltage cable 14 currently measured and obtained in step 2). The insulation resistance value of phase A in the submarine high-voltage cable 14 is compared, and when the insulation resistance value of phase A in the currently measured submarine high-voltage cable 14 and the insulation resistance value of phase A in the submarine high-voltage cable 14 obtained in step 2) are obtained. When the difference between the two is within the preset range, it means that the A-phase withstand voltage in the submarine high-voltage cable 14 is qualified; then go to step 9), otherwise, the A-phase in the submarine high-voltage cable 14 has a withstand voltage fault;

9)对于海底高压电缆14中B相及海底高压电缆14中的C相重复步骤7)及步骤8),完成高压套管6进行长距离海底高压电缆耐压的试验。9) Repeat steps 7) and 8) for phase B in the submarine high-voltage cable 14 and phase C in the submarine high-voltage cable 14, and complete the high-voltage bushing 6 to carry out the long-distance submarine high-voltage cable withstand voltage test.

当在加压过程中发生发电,则需要对放电海底高压电缆14测试绝缘电阻,根据绝缘电阻值判断海底高压电缆14是否合格,如果绝缘电阻值不合格时,则需要对缺陷进行消除后重新进行上述所有步骤。When power generation occurs during the pressurization process, it is necessary to test the insulation resistance of the discharge submarine high-voltage cable 14, and judge whether the submarine high-voltage cable 14 is qualified according to the insulation resistance value. All steps above.

本发明与现有技术的不同点在于陆上GIS与谐振电抗器3连接的高压套管6和第一陆上GIS隔离刀闸G1及部分母线均需与海底高压电缆14一起进行耐压。根据《DL/T 555气体绝缘封闭开关设备现场耐压及绝缘试验导则》中的要求,高压套管6和第一陆上GIS隔离刀闸G1及部分母线的试验电压值应为出厂试验电压的80%,远远高于海底高压电缆14的1.7倍额定电压的耐压试验值,因此陆上GIS与谐振电抗器3连接的高压套管6完全具备替代专有高压试验套管的试验条件。The difference between the present invention and the prior art is that the high-voltage bushing 6 connecting the onshore GIS and the resonant reactor 3 , the first onshore GIS isolation switch G1 and some busbars all need to withstand voltage together with the submarine high-voltage cable 14 . According to the requirements in "DL/T 555 On-site Withstand Voltage and Insulation Test Guidelines for Gas-insulated Enclosed Switchgear", the test voltage value of high-voltage bushing 6 and the first onshore GIS isolation switch G1 and some busbars should be the factory test voltage 80%, which is much higher than the withstand voltage test value of 1.7 times the rated voltage of the submarine high-voltage cable 14. Therefore, the high-voltage bushing 6 connected with the onshore GIS and the resonant reactor 3 is fully equipped with the test conditions to replace the proprietary high-voltage test bushing. .

综上所述,本发明可以利用陆上GIS与高压电抗器连接的高压套管6替代专有试验套管,只需要通过操作陆上GIS的隔离刀闸及接地刀闸便可以完成试验,不需要加装专有试验套管,大大减少了试验准备时间及成本,而且可以避免拆除专有试验套管中的操作风险,具有很强的可操作性。To sum up, in the present invention, the high-voltage bushing 6 connected with the onshore GIS and the high-voltage reactor can be used to replace the dedicated test bushing, and the test can be completed only by operating the isolation switch and ground switch of the onshore GIS. It is necessary to install a special test casing, which greatly reduces the test preparation time and cost, and can avoid the operation risk of removing the special test casing, which has strong operability.

以上所述,仅是本发明的较佳实施例,并非对本发明作任何限制,凡是根据本发明技术实质对以上实施例所作的任何简单修改、变更以及等效结构变化,均仍属于本发明技术方案的保护范围内。The above are only preferred embodiments of the present invention and do not limit the present invention. Any simple modifications, changes and equivalent structural changes made to the above embodiments according to the technical essence of the present invention still belong to the technology of the present invention. within the scope of the program.

Claims (6)

1.一种高压套管进行长距离海底高压电缆耐压的试验系统,其特征在于,包括海底高压电缆(14)、试验设备单元、陆上GIS设备单元及海上GIS设备单元;1. a high-voltage bushing carries out the test system of long-distance submarine high-voltage cable pressure, it is characterized in that, comprise submarine high-voltage cable (14), test equipment unit, land GIS equipment unit and marine GIS equipment unit; 陆上GIS设备单元包括高压套管(6)、陆上GIS高压电抗器(5)、第一陆上GIS隔离刀闸(G1)、第二陆上GIS隔离刀闸(G2)、第三陆上GIS隔离刀闸(G3)、第一陆上GIS接地刀闸(G11)、第二陆上GIS接地刀闸(G21)、第三陆上GIS接地刀闸(G22)、陆上GIS高压电抗器(5)、陆上GIS电压互感器(9)及陆上GIS避雷器(8);The onshore GIS equipment unit includes a high-voltage bushing (6), an onshore GIS high-voltage reactor (5), a first onshore GIS isolation switch (G1), a second onshore GIS isolation switch (G2), and a third onshore GIS isolation switch (G2). Upper GIS isolation switch (G3), first onshore GIS grounding switch (G11), second onshore GIS grounding switch (G21), third onshore GIS grounding switch (G22), onshore GIS high voltage reactance (5), onshore GIS voltage transformer (9) and onshore GIS arrester (8); 海上GIS设备单元包括第一海上GIS隔离刀闸(G5)、第二海上GIS隔离刀闸(G6)、第三海上GIS隔离刀闸(G7)、第四海上GIS隔离刀闸(G8)、第一海上GIS接地刀闸(G51)、第二海上GIS接地刀闸(G61)、第三海上GIS接地刀闸(G62)、海上GIS高压电抗器(13)、海上GIS电压互感器(12)及海上GIS避雷器(11);The offshore GIS equipment unit includes the first offshore GIS isolation gate (G5), the second offshore GIS isolation gate (G6), the third offshore GIS isolation gate (G7), the fourth offshore GIS isolation gate (G8), and the third offshore GIS isolation gate (G8). One Offshore GIS Grounding Switch (G51), Second Offshore GIS Grounding Switch (G61), Third Offshore GIS Grounding Switch (G62), Offshore GIS High Voltage Reactor (13), Offshore GIS Voltage Transformer (12) and Offshore GIS arrester (11); 试验设备单元经高压套管(6)与陆上GIS高压电抗器(5)的一端及第一陆上GIS隔离刀闸(G1)的一端及第一陆上GIS接地刀闸(G11)的一端相连接,接地;第一陆上GIS隔离刀闸(G1)的另一端与第三陆上GIS隔离刀闸(G3)的一端、第二陆上GIS隔离刀闸(G2)的一端、第三陆上GIS接地刀闸(G22)的一端、第四陆上GIS隔离刀闸(G4)的一端及海底高压电缆(14 )的一端相连接;The test equipment unit passes through the high-voltage bushing (6) and one end of the onshore GIS high-voltage reactor (5), one end of the first onshore GIS isolation switch (G1), and one end of the first onshore GIS grounding switch (G11) The other end of the first onshore GIS isolation switch (G1) is connected to one end of the third onshore GIS isolation switch (G3), one end of the second onshore GIS isolation switch (G2), the third One end of the onshore GIS grounding switch (G22), one end of the fourth onshore GIS isolation switch (G4) and one end of the submarine high-voltage cable (14) are connected; 第四陆上GIS隔离刀闸(G4)的另一端经陆上GIS电压互感器(9)后接地,第二陆上GIS隔离刀闸(G2)的另一端经第二陆上GIS接地刀闸(G21)后接地,陆上GIS高压电抗器(5)的另一端、第一陆上GIS接地刀闸(G11)的另一端及第三陆上GIS接地刀闸(G22)的另一端均接地,第三陆上GIS隔离刀闸(G3)的另一端经陆上GIS避雷器(8)后接地;The other end of the fourth onshore GIS isolation switch (G4) is grounded through the onshore GIS voltage transformer (9), and the other end of the second onshore GIS isolation switch (G2) is grounded through the second onshore GIS grounding switch (G21) after grounding, the other end of the onshore GIS high-voltage reactor (5), the other end of the first onshore GIS grounding switch (G11) and the other end of the third onshore GIS grounding switch (G22) are all grounded , the other end of the third onshore GIS isolation knife gate (G3) is grounded after the onshore GIS arrester (8); 海底高压电缆(14)的另一端与第三海上GIS隔离刀闸(G7)的一端、第四海上GIS隔离刀闸(G8)的一端、第一海上GIS隔离刀闸(G5)的一端、第二海上GIS隔离刀闸(G6)的一端及第三海上GIS接地刀闸(G62)的一端相连接,第四海上GIS隔离刀闸(G8)的另一端经海上GIS避雷器(11)后接地,第二海上GIS隔离刀闸(G6)的另一端经第二海上GIS接地刀闸(G61)后接地,第三海上GIS隔离刀闸(G7)的另一端经海上GIS电压互感器(12)后接地,第一海上GIS隔离刀闸(G5)的另一端分为两路,其中一路经第一海上GIS接地刀闸(G51)后接地,另一路经海上GIS高压电抗器(13)后接地。The other end of the submarine high-voltage cable (14) is connected to one end of the third offshore GIS isolation switch (G7), one end of the fourth offshore GIS isolation switch (G8), one end of the first offshore GIS isolation switch (G5), and one end of the first offshore GIS isolation switch (G5). One end of the second offshore GIS isolation switch (G6) is connected to one end of the third offshore GIS grounding switch (G62), and the other end of the fourth offshore GIS isolation switch (G8) is grounded after the offshore GIS arrester (11). The other end of the second offshore GIS isolation switch (G6) is grounded through the second offshore GIS grounding switch (G61), and the other end of the third offshore GIS isolation switch (G7) is connected to the offshore GIS voltage transformer (12). Grounding, the other end of the first offshore GIS isolation switch (G5) is divided into two paths, one of which is grounded after the first offshore GIS grounding switch (G51), and the other is grounded after the offshore GIS high-voltage reactor (13). 2.根据权利要求1所述的高压套管进行长距离海底高压电缆耐压的试验系统,其特征在于,所述试验设备单元包括变频器(1)、试验变压器(2)、谐振电抗器(3)及分压器(4),其中,变频器(1)经试验变压器(2)、谐振电抗器(3)及分压器(4)后与高压套管(6)相连接。2. high-voltage bushing according to claim 1 carries out the test system of long-distance submarine high-voltage cable withstand voltage, it is characterized in that, described test equipment unit comprises frequency converter (1), test transformer (2), resonant reactor ( 3) and a voltage divider (4), wherein the frequency converter (1) is connected to the high-voltage bushing (6) after the test transformer (2), the resonant reactor (3) and the voltage divider (4). 3.根据权利要求2所述的高压套管进行长距离海底高压电缆耐压的试验系统,其特征在于,还包括陆上GIS带电显示器(7),其中,陆上GIS带电显示器(7)与第三陆上GIS隔离刀闸(G3)和第四陆上GIS隔离刀闸(G4)的连接节点相连接。3. high-voltage bushing according to claim 2 carries out the test system of long-distance submarine high-voltage cable withstand voltage, it is characterized in that, also comprise onshore GIS live display (7), wherein, onshore GIS live display (7) and The third onshore GIS isolation gate (G3) and the connection node of the fourth onshore GIS isolation gate (G4) are connected. 4.根据权利要求3所述的高压套管进行长距离海底高压电缆耐压的试验系统,其特征在于,还包括海上GIS带电显示器(10),其中,海上GIS带电显示器(10)与第四海上GIS隔离刀闸(G8)和第三海上GIS隔离刀闸(G7)的连接节点相连接。4. the high-voltage bushing according to claim 3 carries out the test system of long-distance submarine high-voltage cable withstand voltage, it is characterized in that, also comprises marine GIS live display (10), wherein, marine GIS live display (10) and the fourth The connection node of the offshore GIS isolation switch (G8) and the third offshore GIS isolation switch (G7) is connected. 5.一种高压套管进行长距离海底高压电缆耐压的试验方法,其特征在于,基于权利要求4所述的高压套管进行长距离海底高压电缆耐压的试验系统,包括以下步骤:5. a high-voltage bushing carries out the test method of long-distance submarine high-voltage cable pressure resistance, it is characterized in that, based on the high-voltage bushing described in claim 4, the test system of long-distance submarine high-voltage cable pressure resistance is carried out, comprises the following steps: 1)进行设备的连接及铺设;1) Connect and lay the equipment; 2)进行海底高压电缆(14)的核相及绝缘测试,记录海底高压电缆(14)各相的绝缘电阻值;2) carry out the nuclear phase and insulation test of the submarine high-voltage cable (14), and record the insulation resistance value of each phase of the submarine high-voltage cable (14); 3)断开谐振电抗器(3)的高压侧与高压套管(6)之间的联系,并将谐振电抗器(3)的高压侧接地;3) Disconnect the connection between the high-voltage side of the resonant reactor (3) and the high-voltage bushing (6), and ground the high-voltage side of the resonant reactor (3); 4)闭合第一陆上GIS隔离刀闸(G1),断开第二陆上GIS隔离刀闸(G2)、第三陆上GIS隔离刀闸(G3)及第四陆上GIS隔离刀闸(G4);断开第三陆上GIS接地刀闸(G22),将陆上GIS带电显示器(7)短接;4) Close the first onshore GIS isolation switch (G1), disconnect the second onshore GIS isolation switch (G2), the third onshore GIS isolation switch (G3) and the fourth onshore GIS isolation switch ( G4); disconnect the third onshore GIS grounding switch (G22), and short-circuit the onshore GIS live display (7); 5)闭合第一海上GIS接地刀闸(G51)及第二海上GIS接地刀闸(G61),断开第一海上GIS隔离刀闸(G5)、第二海上GIS隔离刀闸(G6)、第三海上GIS隔离刀闸(G7)及第四海上GIS隔离刀闸(G8);断开第三海上GIS接地刀闸(G62),将海上GIS带电显示器(10)短接;5) Close the first offshore GIS grounding switch (G51) and the second offshore GIS grounding switch (G61), disconnect the first offshore GIS isolation switch (G5), the second offshore GIS isolation switch (G6), The third offshore GIS isolation switch (G7) and the fourth offshore GIS isolation switch (G8); disconnect the third offshore GIS grounding switch (G62), and short-circuit the offshore GIS live display (10); 6)根据海底高压电缆(14)的线缆参数及长度计算海底高压电缆(14)的对地电容,选择谐振电抗器(3),将变频器(1)、试验变压器(2)及谐振电抗器(3)组合连接,将高压试验接线至高压套管(6)的A相处,高压套管(6)的B相及高压套管(6)的C相接地;6) Calculate the ground capacitance of the submarine high-voltage cable (14) according to the cable parameters and length of the submarine high-voltage cable (14), select the resonant reactor (3), and connect the frequency converter (1), the test transformer (2) and the resonant reactance. The high voltage test wire is connected to phase A of the high voltage bushing (6), the phase B of the high voltage bushing (6) and the phase C of the high voltage bushing (6) are grounded; 7)将变频器(1)升压至初始电压后保持电压不变,调节频率寻找谐振频率后继续进行升压,当升到1.7U后停止升压,再保持60min,当未发生放电,则缓慢降压,待电压降至零后断开变频器(1)的电源;7) After boosting the inverter (1) to the initial voltage, keep the voltage unchanged, adjust the frequency to find the resonant frequency and continue boosting. When it reaches 1.7U, stop boosting and keep it for another 60min. When no discharge occurs, then Slowly reduce the voltage, and disconnect the power supply of the inverter (1) after the voltage drops to zero; 8)对海底高压电缆(14)的A相进行充分放电,测量海底高压电缆(14)中A相的绝缘电阻值,并将当前测量得到的海底高压电缆(14)中A相的绝缘电阻值与步骤2)中得到的海底高压电缆(14)中A相的绝缘电阻值进行比较,当当前测量得到的海底高压电缆(14)中A相的绝缘电阻值与步骤2)中得到的海底高压电缆(14)中A相的绝缘电阻值之间的差值在预设范围内时,则说明海底高压电缆(14)中的A相耐压合格;然后转至步骤9),否则,则说明海底高压电缆(14)中的A相存在耐压故障;8) Fully discharge the A-phase of the submarine high-voltage cable (14), measure the insulation resistance value of the A-phase in the submarine high-voltage cable (14), and compare the currently measured insulation resistance value of the A-phase in the submarine high-voltage cable (14). Compare with the insulation resistance value of phase A in the submarine high-voltage cable (14) obtained in step 2). When the difference between the insulation resistance values of phase A in the cable (14) is within the preset range, it means that the withstand voltage of phase A in the submarine high-voltage cable (14) is qualified; then go to step 9), otherwise, it means that There is a withstand voltage fault in phase A in the submarine high-voltage cable (14); 9)对于海底高压电缆(14)中B相及海底高压电缆(14)中的C相重复步骤7)及步骤8),完成高压套管(6)进行长距离海底高压电缆耐压的试验。9) Repeat steps 7) and 8) for phase B in the submarine high-voltage cable (14) and phase C in the submarine high-voltage cable (14), and complete the high-voltage bushing (6) for the long-distance submarine high-voltage cable withstand voltage test. 6.根据权利要求5所述的高压套管进行长距离海底高压电缆耐压的试验方法,其特征在于,步骤1)的具体操作为:6. high-voltage bushing according to claim 5 carries out the test method of long-distance submarine high-voltage cable withstand voltage, it is characterized in that, the concrete operation of step 1) is: 将陆上GIS设备单元及海上GIS设备单元安装完毕,SF6气体注入至正常压力,微水监测合格,海底高压电缆(14)完成铺设及连接。The installation of the onshore GIS equipment unit and the offshore GIS equipment unit is completed, the SF6 gas is injected to the normal pressure, the micro-water monitoring is qualified, and the submarine high-voltage cable (14) is laid and connected.
CN202110154910.5A 2021-02-04 2021-02-04 Test system and method for long-distance submarine high-voltage cable withstand voltage with high-voltage bushing Active CN112964968B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110154910.5A CN112964968B (en) 2021-02-04 2021-02-04 Test system and method for long-distance submarine high-voltage cable withstand voltage with high-voltage bushing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110154910.5A CN112964968B (en) 2021-02-04 2021-02-04 Test system and method for long-distance submarine high-voltage cable withstand voltage with high-voltage bushing

Publications (2)

Publication Number Publication Date
CN112964968A CN112964968A (en) 2021-06-15
CN112964968B true CN112964968B (en) 2022-10-11

Family

ID=76273865

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110154910.5A Active CN112964968B (en) 2021-02-04 2021-02-04 Test system and method for long-distance submarine high-voltage cable withstand voltage with high-voltage bushing

Country Status (1)

Country Link
CN (1) CN112964968B (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010206635A (en) * 2009-03-04 2010-09-16 Fujitsu Telecom Networks Ltd Submarine cable power feeding system
CN106154123A (en) * 2015-04-22 2016-11-23 扬州市鑫源电气有限公司 A kind of distance scene frequency-changing AC pressure test system
CN107179478A (en) * 2017-06-09 2017-09-19 中国南方电网有限责任公司超高压输电公司检修试验中心 A kind of submarine cable parameter detecting system
CN111239568A (en) * 2020-03-10 2020-06-05 张东方 Vehicle-mounted long-distance on-site frequency conversion alternating current voltage withstand test system
CN111598490A (en) * 2020-07-11 2020-08-28 西南石油大学 A method and system for evaluating the state of optoelectronic composite submarine cables based on multi-state quantity fusion
CN111610419A (en) * 2020-06-02 2020-09-01 西安热工研究院有限公司 A method for long-distance submarine cable withstand voltage test using reactive power compensation reactor
CN212111661U (en) * 2020-04-21 2020-12-08 西安热工研究院有限公司 An ultra-long-distance high-voltage submarine cable pressure-resistant system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2713191B1 (en) * 2012-10-01 2019-08-28 Siemens Aktiengesellschaft Subsea cable termination assembly, subsea connector and method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010206635A (en) * 2009-03-04 2010-09-16 Fujitsu Telecom Networks Ltd Submarine cable power feeding system
CN106154123A (en) * 2015-04-22 2016-11-23 扬州市鑫源电气有限公司 A kind of distance scene frequency-changing AC pressure test system
CN107179478A (en) * 2017-06-09 2017-09-19 中国南方电网有限责任公司超高压输电公司检修试验中心 A kind of submarine cable parameter detecting system
CN111239568A (en) * 2020-03-10 2020-06-05 张东方 Vehicle-mounted long-distance on-site frequency conversion alternating current voltage withstand test system
CN212111661U (en) * 2020-04-21 2020-12-08 西安热工研究院有限公司 An ultra-long-distance high-voltage submarine cable pressure-resistant system
CN111610419A (en) * 2020-06-02 2020-09-01 西安热工研究院有限公司 A method for long-distance submarine cable withstand voltage test using reactive power compensation reactor
CN111598490A (en) * 2020-07-11 2020-08-28 西南石油大学 A method and system for evaluating the state of optoelectronic composite submarine cables based on multi-state quantity fusion

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
110 kV长距离海底电缆混联谐振耐压试验研究;杨世强等;《电气应用》;20201130;第39卷(第11期);全文 *
110kV高压电缆现场交流耐压试验方法探究;王趁录;《电力安全技术》;20170415(第04期);全文 *
Transient analysis of the 161-kV Taiwan- PengHu submarine power cable system;Ping-Heng Ho等;《2008 IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century》;20080812;全文 *
海底电缆敷设及检验方法;崔晓明;《中国石油和化工标准与质量》;20130131;第34卷(第1期);全文 *

Also Published As

Publication number Publication date
CN112964968A (en) 2021-06-15

Similar Documents

Publication Publication Date Title
CN104767195A (en) Small reactance value choose method during ultrahigh voltage autotransformer neutral point grounding in small reactance mode
CN111610419B (en) Method for carrying out long-distance submarine cable voltage withstand test by utilizing reactive compensation reactor
CN111123050B (en) Transformer partial discharge test device for transformer and GIS in GIL connection mode
CN202057764U (en) Variable frequency resonance voltage withstand test device
CN112964968B (en) Test system and method for long-distance submarine high-voltage cable withstand voltage with high-voltage bushing
Fu et al. Application Prospects of Flexible Low-Frequency AC Transmission in Offshore Wind Power Integration
CN204129165U (en) A bilateral pressurized partial discharge test device for converters
Astrom et al. Converter stations for 800 kV HVDC
CN111740427B (en) A reactive power compensation configuration method and system for an offshore wind farm access system
CN206235706U (en) A kind of high voltage reactor scene partial discharge and overpressure resistance detecting device
CN111913080A (en) A partial discharge test method for GIL-connected transformers
CN207896531U (en) Extra-high voltage alternating current transformer substation
Linyuan et al. Simulation Research on Transient Overvoltage of Offshore Wind Farm Transmission System by 220kV Long-distance AC Submarine Cable
CN212111661U (en) An ultra-long-distance high-voltage submarine cable pressure-resistant system
CN105425005A (en) Substitution device of manufacturing-plant high-voltage electromagnetic voltage transformer and method thereof
CN211554215U (en) Fault suppression system for common-frequency and same-phase voltage withstand test of three-phase common-cylinder GIS equipment
CN115389873A (en) On-site partial discharge test device for extra-high voltage parallel reactor and application method thereof
CN104682224B (en) A kind of quick mobile distribution integrated apparatus
CN209217728U (en) A Line Leading Structure of 750kV Series Compensation Distribution Device
CN202649386U (en) Alternating-current multi-circuit line corona characteristic test system
CN202094512U (en) Mechanism enabling medium pressure side of main transformer to be uninterruptible in overhaul
CN108802578B (en) Full-voltage optimized withstand voltage test method for 550kV tank-type circuit breaker
CN110658434A (en) Fault suppression system for common-frequency and same-phase voltage withstand test of three-phase common-cylinder GIS equipment
HaoLiang et al. Reactive Power Configuration Scheme of Offshore Wind Power Transmission System by 220UVAC Submarine Cable
Wang et al. Overvoltage and restriction of 1000kV long-distance transmission lines in weak system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant