[go: up one dir, main page]

CN112961814A - Construction method of escherichia coli engineering bacteria preferring to efficiently secrete acetic acid and FFA by utilizing xylose - Google Patents

Construction method of escherichia coli engineering bacteria preferring to efficiently secrete acetic acid and FFA by utilizing xylose Download PDF

Info

Publication number
CN112961814A
CN112961814A CN202011442400.XA CN202011442400A CN112961814A CN 112961814 A CN112961814 A CN 112961814A CN 202011442400 A CN202011442400 A CN 202011442400A CN 112961814 A CN112961814 A CN 112961814A
Authority
CN
China
Prior art keywords
gene
fragment
envr
ptsg
atpfh
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011442400.XA
Other languages
Chinese (zh)
Inventor
贾晓强
刘亚茹
杨松源
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN202011442400.XA priority Critical patent/CN112961814A/en
Publication of CN112961814A publication Critical patent/CN112961814A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/24Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
    • C07K14/245Escherichia (G)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/54Acetic acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6409Fatty acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/03Carbon-oxygen lyases (4.2) acting on phosphates (4.2.3)
    • C12Y402/030126-Pyruvoyltetrahydropterin synthase (4.2.3.12)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Mycology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention relates to a construction method of escherichia coli engineering bacteria which prefers to efficiently secrete acetic acid and FFA by utilizing xylose; coli MG1655 by knocking out ptsG and manZ genes in it to slowly metabolize glucose while preferentially utilizing xylose. Coli MG1655 promotes acetate synthesis by knocking out atpFH, a key gene in the process of oxidizing phosphate. Coli MG1655 knock-out envR gene promotes e.coli to secrete FFA extracellularly. The gene knockout engineering bacteria can synthesize six FFAs (fringe-like enzymes) including n-hexanoic acid, n-heptanoic acid, n-octanoic acid, n-nonanoic acid, n-decanoic acid, n-dodecanoic acid and the like by utilizing xylose, can synthesize 5.5g/L of acetic acid and 0.91g/L of extracellular FFA by taking 20g/L of xylose as a single carbon source in an M9 culture medium, and has obviously improved yield compared with the wild E.coli MG 1655.

Description

Construction method of escherichia coli engineering bacteria preferring to efficiently secrete acetic acid and FFA by utilizing xylose
Technical Field
The invention relates to a construction method of escherichia coli engineering bacteria preferring to efficiently secrete acetic acid and FFA by utilizing xylose, belonging to the field of genetic engineering research.
Background
With the development of society, the problems of energy demand, resource crisis, food shortage and the like are increasingly highlighted, and people are prompted to search for novel energy resources. One third of the land area on earth is covered by plants, forming a large amount of lignocellulosic resources. Lignocellulose mainly comprises cellulose, hemicellulose and lignin, wherein the hemicellulose accounts for about 20-35% of the total amount of the lignocellulose, and the hydrolysate of the lignocellulose is mainly xylose, so that the xylose becomes the second most carbohydrate substance which is only second to glucose in nature. On the basis of the increasingly deep research on the hydrolysis of hemicellulose, xylose is more and more widely applied to agriculture, industry and even scientific research.
Coli (e.coli) is one of the model strains that have been widely studied at present, and its gene background is clear, genetic modification means are abundant, and it should be widely applied to various biological studies. Optimization of recombinant strains for the production of valuable compounds is a major goal of genetic engineering. To this end, various strategies have been devised to construct recombinant strains, including increasing the supply of metabolic precursors, deleting negative regulators, overexpression of positive regulators, and removing precursor consumption and product degradation pathways. Acetic acid is a very promising source of carbon and has been considered as one of the substrates that is expected to reduce the cost of PHA production. Free Fatty Acids (FFA) are free fatty acids that are synthesized by microorganisms under the catalysis of thioesterases (thioesterases) using the fatty acid synthesis pathway intermediary metabolite Acyl-ACP as a substrate. In recent decades, rational metabolic engineering has been widely used to improve the synthesis of FFA and its precursors, but no report has been found on the construction of engineering strains that prefer to produce acetate and FFA with high yield by xylose.
Disclosure of Invention
The invention provides a construction method of escherichia coli engineering bacteria which prefers to efficiently secrete acetic acid and FFA by utilizing xylose.
The invention can slowly metabolize glucose and preferentially utilize xylose by knocking out ptsG and manZ genes in E.coli MG 1655. Coli MG1655 promotes acetate synthesis by knocking out atpFH, a key gene in the process of oxidizing phosphate. The effect of knocking out ptsG and manZ genes on e.coli MG1655 glucose and xylose utilization was verified. Coli MG1655 by knocking out envR gene to promote FFA secretion from escherichia coli to the extracellular. Finally obtaining engineering bacteria EC delta p-m-a-e with four knocked-out genes, and carrying out FFA and acetic acid production tests.
The specific technology of the invention is as follows:
a construction method of escherichia coli engineering bacteria preferring to efficiently secrete acetic acid and FFA by utilizing xylose; coli MG1655 by knocking out ptsG and manZ genes in it to slowly metabolize glucose while preferentially utilizing xylose; promoting acetic acid synthesis by knocking out atpFH (atpFH) key gene in the process of oxidizing phosphoric acid by E.coli MG 1655; promoting escherichia coli to secrete FFA to the outside of cells by knocking out envR gene of E.coli MG 1655; the method comprises the following specific steps:
(1) knocking out ptsG gene from E.coli MG1655 to obtain bacterial strain EC delta p;
(2) knocking out manZ gene from strain EC delta p to obtain strain EC delta p-m;
(3) knocking out atpFH genes from the strain EC delta p-m to obtain a strain EC delta p-m-a;
(4) knocking out envR genes from the strain EC delta p-m-a to obtain a strain EC delta p-m-a-e;
the nucleotide sequence of the ptsG gene in the step (1) is shown as SEQ ID No.1, the nucleotide sequence of the manZ gene in the step (2) is shown as SEQ ID No.2, the nucleotide sequence of the atpFH gene in the step (3) is shown as SEQ ID No.3, and the nucleotide sequence of the envR gene in the step (4) is shown as SEQ ID No. 4.
The gene knockout experiment is a genome traceless operation technology based on lambda-red and I-SceI, and the specific knockout steps are as follows (shown in figure 1):
1) the step (1) of knocking out the ptsG gene from the E.coli MG1655 takes the E.coli MG1655 strain genome as a template, and a ptsG-Af/ptsG-Ar primer and a ptsG-Bf/ptsG-Br primer are utilized to respectively amplify a homologous arm fragment A and a homologous arm fragment B of the upper and lower reaches of the ptsG gene. Using pTKS/CS plasmid as template, primers ptsG-tetf1/ptsG-tetr1 and ptsG-tetf2/ptsG-tetr2 were used to amplify tet1, the upstream fragment and tet2, respectively, of the tetracycline resistance gene. And then using the fragment A, tet1 as a template, using a primer ptsG-Af/ptsG-tetr1 to perform overlap extension PCR to amplify a fragment A-tet1, similarly using the fragments tet2 and B as templates, using a primer ptsG-tetf2/ptsG-Br to perform overlap extension PCR to amplify a fragment tet2-B, finally performing overlap extension PCR again, using A-tet1 and tet2-B as amplification templates, and using ptsG-Af/ptsG-Br as primers to amplify a knock-out fragment A-t-B. The gene knockout principle is shown in fig. 2, and a knockout fragment A-t-B is transferred into E.coli MG1655 by an electric shock transformation method, and a ptsG gene knockout strain E.coli delta p is obtained after two times of screening.
The ptsG gene knockout primer sequence in the step 1) is as follows:
ptsG-Af:TGGCTGTGTTGAAAGGTGTTGCCG
ptsG-Ar:TATCCCTAAGCACAATGCCTCTATTTAGTTAACGTTCTG
ptsG-Bf:AGGGTAATCAGAACGTTAACTAAATAGAGGCATTGTGCTAAAAACGAACAAATGGCAGAG
ptsG-Br:GTCTGCAAGGCGCTCAAGACG
ptsG-tetf1:CAGAACGTTAACTAAATAGAGGCATTGTGCTTAGGGATAACAGGGTAATATTTAC
ptsG-tetr1:GGTAAAGCGATCCCACCACCAGCC
ptsG-tetf2:GCGTGAAGTGGTTCGGTT
ptsG-tetr2:TCGTTTTTAGCACAATGCCTCTATTTAGTTAACGTTCTGATTACCCTGTTATCCCTAC
2) and (2) knocking out the manZ gene from the strain EC delta p, wherein the genome of the E.coli MG1655 strain is used as a template, and primers manZ-Af/manZ-Ar and manZ-Bf/manZ-Br are used for respectively amplifying a manZ gene upstream and downstream homology arm fragment A and a manZ gene downstream and homology arm fragment B. Using pTKS/CS plasmid as template, primers manZ-tetf1/manZ-tetr1 and manZ-tetf2/manZ-tetr2 were used to amplify tet1, which is an upstream fragment of tetracycline resistance gene, and tet2, which is a downstream fragment. And then using the fragment A, tet1 as a template, performing overlap extension PCR by using a primer manZ-Af/manZ-tetr1 to amplify a fragment A-tet1, similarly using the fragments tet2 and B as templates, performing overlap extension PCR by using a primer manZ-tetf2/manZ-Br to amplify a fragment tet2-B, and finally performing overlap extension PCR again, using A-tet1 and tet2-B as amplification templates, and using manZ-Af/manZ-Br as primers to amplify a knock-out fragment A-t-B. The gene knockout principle is shown in figure 2, a knockout fragment A-t-B is transferred into the strain E.coli delta p obtained in the step 1) by an electric shock transformation method, and the manZ gene knockout strain E.coli delta p-m is obtained after two times of screening.
The sequence of the manZ gene knockout primer in the step 2) is as follows:
manZ-Af:TGCAAGCCTTCATCTTCATGG
manZ-Ar:TATCCCTA AGCACAATGCCTCTATTTAGTTAACGTTCTG
manZ-Bf:AGGGTAATCAGAACGTTAACTAAATAGAGGCATTGTGCTAAAAACGAACAAATGGCAGAG
manZ-Br:GTCTGCAAGGCGCTCAAGACG
manZ-tetf1:CAGAACGTTAACTAAATAGAGGCATTGTGCTTAGGGATAACAGGGTAATATTTAC
manZ-tetr1:GGTAAAGCGATCCCACCACCAGCC
manZ-tetf2:GCGTGAAGTGGTTCGGTT
manZ-tetr2:CAACAGTCTTCGCTCACCTGTTAGTCCAGTTCGATTACCCTGTTATCCCTAC
3) and (3) knocking out the atpFH gene from the strain EC delta p-m, wherein the gene group of the E.coli MG1655 strain is used as a template, and primers atpFH-Af/atpFH-Ar and atpFH-Bf/atpFH-Br are used for respectively amplifying an upstream and downstream homologous arm fragment A and a downstream homologous arm fragment B of the atpFH gene. Using pTKS/CS plasmid as a template, the tetracycline resistance gene tet upstream fragment tet1 and downstream fragment tet2 were amplified using primers atpFH-tetf1/atpFH-tetr1 and atpFH-tetf2/atpFH-tetr2, respectively. And then using the fragment A, tet1 as a template, performing overlap extension PCR by using a primer atpFH-Af/atpFH-tetr1 to amplify a fragment A-tet1, similarly using the fragments tet2 and B as templates, using a primer atpFH-tetf2/atpFH-Br to perform overlap extension PCR to amplify a fragment tet2-B, and finally performing overlap extension PCR again, using A-tet1 and tet2-B as amplification templates, and using atpFH-Af/atpFH-Br as primers to amplify a knock-out fragment A-t-B. The gene knockout principle is shown in fig. 2, and the knockout fragment A-t-B is transferred into E.coli delta p-m obtained in the step 8 by an electric shock transformation method, and an atpFH gene knockout strain E.coli delta p-m-a is obtained after two times of screening.
The atpFH gene knockout primer sequence in the step 3) is as follows:
atpFH-Af:TGCAAGCCTTCATCTTCATGG
atpFH-Ar:TATCCCTAAGCACAATGCCTCTATTTAGTTAACGTTCTG
atpFH-Bf:AGGGTAATCAGAACGTTAACTAAATAGAGGCATTGTGCTAAAAACGAACAAATGGCAGAG
atpFH-Br:GTCTGCAAGGCGCTCAAGACG
atpFH-Tetf1:CAGAACGTTAACTAAATAGAGGCATTGTGCTTAGGGATAACAGGGTAATATTAC
atpFH-Tetr1:GGTAAAGCGATCCCACCAGCC
atpFH-Tetf2:GCGTGAAGTGGTTCGGTT
atpFH-Tetr2:TCGTTTTTAGCACAATGCCTCTATTTAGTTAACGTTCTGATTACCCTGTTATCCCTAC
4) and (4) knocking out the envR gene from the strain EC delta p-m-a by taking the genome of the E.coli MG1655 strain as a template, and respectively amplifying an envR gene upstream and downstream homologous arm fragment A and an envR gene downstream and homologous arm fragment B by using primers envR-Af/envR-Ar and envR-Bf/envR-Br. By using pTKS/CS plasmid as a template, primers envR-tetf1/envR-tetr1 and envR-tetf2/envR-tetr2 are used for amplifying a tet1 upstream fragment and a tet2 downstream fragment of the tetracycline resistance gene tet respectively. And then using the fragment A, tet1 as a template, using a primer envR-Af/envR-tetr1 to perform overlap extension PCR to amplify a fragment A-tet1, similarly using the fragments tet2 and B as templates, using a primer envR-tetf2/envR-Br to perform overlap extension PCR to amplify a fragment tet2-B, finally performing overlap extension PCR again, using A-tet1 and tet2-B as amplification templates, using envR-Af/envR-Br as primers, and amplifying a knock-out fragment A-t-B. The gene knockout principle is shown in fig. 2, and a knockout fragment A-t-B is transferred into E.coli delta p-m-a obtained in the step 10 by an electric shock transformation method, and an envR gene knockout strain E.coli delta p-m-a-e is obtained after two times of screening.
The envR gene knockout primer sequence in the step 4) is as follows:
envR-Af:TGCAAGCCTTCATCTTCATGG
envR-Ar:TATCCCTAAGCACAATGCCTCTATTTAGTTAACGTTCTG
envR-Bf:AGGGTAATCAGAACGTTAACTAAATAGAGGCATTGTGCTAAAAACGAACAAATGGCAGAG
envR-Br:GTCTGCAAGGCGCTCAAGACG
envR-tetf1:CAGAACGTTAACTAAATAGAGGCATTGTGCTTAGGGATAACAGGGTAATATTTAC
envR-tetr1:GGTAAAGCGATCCCACCACCAGCC
envR-tetf2:GCGTGAAGTGGTTCGGTT
envR-tetr2:TCGTTTTTAGCACAATGCCTCTATTTAGTTAACGTTCTGATTACCCTGTTATCCCTAC
the nucleotide sequence of the pTKS/CS plasmid in the steps 1) -4) is shown as SEQ ID No.5, the nucleotide sequence of the tetracycline resistance gene tet is shown as SEQ ID No.6, the nucleotide sequence of the upstream fragment tet1 is shown as SEQ ID No.7, and the nucleotide sequence of the downstream fragment tet2 gene is shown as SEQ ID No. 8. The nucleotide sequence of pKTred plasmid is shown as SEQ ID No. 9.
The invention is characterized in that the E.coli MG1655 can preferentially utilize xylose to secrete acetic acid and FFA efficiently under the condition that glucose and xylose exist simultaneously. The sugar utilization capacity of the E.coli MG1655 is regulated by knocking out ptsG and manZ genes of the E.coli MG1655, when the strain EC delta p-m takes glucose as a single carbon source, almost no glucose is consumed after 48h of culture, xylose is preferentially consumed rapidly when a mixed carbon source of glucose and xylose exists, and glucose is slowly metabolized when xylose is consumed until the glucose is consumed, so that knocking out the ptsG and manZ genes of the E.coli MG1655 can enable the glucose to be slowly metabolized by preferentially utilizing xylose when glucose and xylose coexist. The atpFH and envR genes of E.coli MG1655 are knocked out to promote the synthesis capacity of acetic acid and extracellular FFA, the gene knockout engineering bacteria can synthesize six FFAs including n-hexanoic acid, n-heptanoic acid, n-octanoic acid, n-nonanoic acid, n-decanoic acid, n-dodecanoic acid and the like by utilizing xylose, 5.5g/L of acetic acid and 0.91g/L of extracellular FFA can be synthesized by taking 20g/L of xylose as a single carbon source in an M9 culture medium, and the yield is obviously improved compared with that of a wild E.coli MG 1655.
The invention is characterized in that the E.coli MG1655 can improve the acetic acid and FFA secretion capacity while preferring to utilize xylose under the condition of simultaneously existing glucose and xylose.
Drawings
FIG. 1 shows the principle of preparing target gene fragments in gene knock-out;
FIG. 2 shows the principle of the target gene recombination process in gene knock-out;
FIG. 3 shows the sugar utilization of the engineering bacteria EC Δ p-m, Glu is the sugar concentration when glucose is used as a sole carbon source, Xyl is the sugar concentration when xylose is used as a sole carbon source, Mix-Glu is the glucose concentration when a mixed carbon source, and Mix-Xyl is the xylose concentration when a mixed carbon source is used;
FIG. 4 shows the growth of engineering bacteria EC Δ p-m;
FIG. 5 species of engineering bacteria EC Δ p-m-a-e extracellular FFA;
FIG. 6 comparison of the yield of the engineering bacteria EC delta p-m-a-e with the yield of the wild bacteria acetic acid and FFA.
Detailed Description
The original strain Escherichia coli MG1655 is a gift provided by professor of Chentao at Tianjin university, and reagents involved in the embodiments of the present invention are all commercially available products and can be purchased commercially, if no special description is provided. The invention is explained in further detail below with reference to the drawings:
1. culture medium formula and solution formula
LB medium (g/L): 10.0 parts of peptone, 10.0 parts of NaCl, 5.0 parts of yeast extract powder and 7.0-7.2 parts of pH.
M9 mineral salts medium (g/L): na (Na)2HPO4·7H2O 12.8,KH2PO4 3,NH4Cl 2,NaCl 0.5,MgSO40.24, 1mL/L of trace element solution and pH 7.0. The carbon source is added after the conversion of glucose and/or xylose according to the required amount.
Glucose and xylose mother liquor: accurately weighing 100g of glucose and xylose, respectively dissolving in a blue-capped bottle containing 200mL of distilled water (final concentration of sugar is 500g/L), sterilizing with high pressure steam at 115 deg.C for 30min, cooling, and storing at 4 deg.C.
2. Coli electrotransformation competent cells
1) Picking single colony on solid plate culture medium by using a pipettor, inoculating the single colony in a 35mL test tube loaded with 5mL LB culture medium, and culturing at 37 ℃ and 220rpm overnight;
2) 1mL of overnight-cultured bacteria were aspiratedThe solution was inoculated into 250mL Erlenmeyer flask containing 100mL of LB liquid medium and cultured to OD600Is between 0.4 and 0.6;
3) placing the shake flask on ice, standing for 10min, pouring the bacterial liquid into a precooled 50mL centrifuge tube, and centrifuging for 5min at 6500rpm and 4 ℃;
4) the supernatant was decanted off and 30mL of precooled ddH was added2O, blowing and sucking the resuspended thalli;
5) reuse of the precooled ddH, as in step 4 above2Washing with O and 10% glycerol solution once respectively, and pouring off the supernatant;
6) 2mL of pre-cooled 10% glycerol solution was added to the centrifuge tube, and the resuspended cells were aspirated and dispensed into 100. mu.L/tube and stored at-80 ℃ for later use.
Electrotransformation of E.coli
1) Taking 1 tube of Escherichia coli competent cells, and standing on ice for 10min to melt;
2) adding DNA sample (plasmid or enzyme linked product, DNA amount less than 100ng) into competent cell, and mixing;
3) adding competent cells pre-mixed with DNA into a pre-cooled electric shock cup, and wiping off condensed water on the surface;
4) putting the electric shock cup into an electric rotating instrument, adjusting the PULSE voltage to 1800V, and pressing a PULSE button on the electric rotating instrument;
5) after sounding, taking out the electric shock cup, and adding 1mL of LB culture medium;
6) transferring the bacterial liquid from the electric rotating cup to a 1.5mL centrifuge tube, and culturing for 1h in a shaking table at 37 ℃;
7) centrifuging the bacterial liquid at the room temperature of 4200rpm for 2min, sucking out about 0.9mL of supernatant, resuspending the thalli by using the residual culture solution, and coating the thalli on an LB solid culture medium plate containing corresponding antibiotics;
8) the plate is inverted, and cultured in an incubator at 37 ℃ for 12-16h until colonies grow.
4. Preparation of E.coli recombinant competent cells
1) Introducing the recombinant helper plasmid pTKRed into e.coli according to the method of step 3;
2) colonies into which the recombinant helper plasmid pTKRed had been transferred were picked from the plate using a pipette and transferred into 1 35mL tube containing 5mL of LB medium (spectinomycin resistance). Culturing at 30 deg.C and 220rpm for 14-16 h;
3) 1mL of the suspension was aspirated from the overnight-cultured tube, and inoculated into a 500mL Erlenmeyer flask containing 100mL of LB liquid medium (2mM IPTG, 10g/L glucose, 100. mu.g/mL spectinomycin), and the cells were cultured to OD600Is between 0.4 and 0.6;
4) the method of step 3 was used to prepare the electrically transformed cells.
E.coli electrotransformation and screening of positive clones
1) Performing electric transformation by using the electric transformation cells prepared in the step 4 according to the steps 1) to 6) in the step 3;
2) centrifuging at 4200rpm at room temperature for 2min, aspirating about 0.9mL of supernatant, resuspending the cells with the remaining culture medium, plating on LB solid medium plate (2mM IPTG, 20. mu.g/L tetracycline, 100. mu.g/L spectinomycin);
3) carrying out inverted culture on the plate, and culturing at 30 ℃ for 12-16h to grow a bacterial colony;
4) colonies that had successfully integrated were screened by colony PCR from the plates on which the clones grew.
6. Popping tetracycline resistance and deletion pKTRed plasmid
1) Validated positive colonies were picked from the plates and cultured overnight in 5mL tubes of LB liquid medium (2mM IPTG, 0.2% arabinose, 100. mu.g/L spectinomycin);
2) streaking the overnight-cultured bacterial liquid in LB solid medium (2mM IPTG, 0.2% arabinose, 100. mu.g/L spectinomycin);
3) screening colonies which have successfully popped up tetracycline genes from the plate on which the clone grows out by colony PCR;
4) the strain which successfully ejects the tetracycline gene is cultured at 42 ℃, deletion pKTRed plasmid is carried out, and the strain is verified by a medium with spectinomycin resistance.
The present invention will be further described with reference to the following examples.
Example 1 construction of an engineered Escherichia coli that prefers efficient secretion of acetic acid and FFA Using xylose
1. Knock-out of ptsG Gene from E.coli MG1655
The amplification principle of the ptsG gene knock-out fragment is shown in FIG. 1, and the primers used are shown in Table 1. And (3) respectively amplifying a segment A and a segment B of the upstream and downstream homologous arms of the ptsG gene by using a primer ptsG-Af/ptsG-Ar and a primer ptsG-Bf/ptsG-Br by using the E.coli MG1655 strain genome as a template. Using pTKS/CS plasmid as template, primers ptsG-tetf1/ptsG-tetr1 and ptsG-tetf2/ptsG-tetr2 were used to amplify tet1, the upstream fragment and tet2, respectively, of the tetracycline resistance gene. And then using the fragment A, tet1 as a template, using a primer ptsG-Af/ptsG-tetr1 to perform overlap extension PCR to amplify a fragment A-tet1, similarly using the fragments tet2 and B as templates, using a primer ptsG-tetf2/ptsG-Br to perform overlap extension PCR to amplify a fragment tet2-B, finally performing overlap extension PCR again, using A-tet1 and tet2-B as amplification templates, and using ptsG-Af/ptsG-Br as primers to amplify a knock-out fragment A-t-B. The gene knockout principle is shown in fig. 2, and a knockout fragment A-t-B is transferred into E.coli MG1655 by an electric shock transformation method, and a ptsG gene knockout strain E.coli delta p is obtained after two times of screening.
TABLE 1 ptsG Gene knockout primers
Figure BDA0002822861260000081
2. Knockout of manZ Gene from Strain EC Δ p
The amplification principle of the manZ knock-out fragment is shown in FIG. 1, and the primers used are shown in Table 2. Taking E.coli MG1655 strain genome as template, amplifying manZ-Af/manZ-Ar and manZ-Bf/manZ-Br to obtain manZ gene upstream and downstream homologous arm fragment A and fragment B respectively. Using pTKS/CS plasmid as template, primers manZ-tetf1/manZ-tetr1 and manZ-tetf2/manZ-tetr2 were used to amplify tet1, which is an upstream fragment of tetracycline resistance gene, and tet2, which is a downstream fragment. And then using the fragment A, tet1 as a template, performing overlap extension PCR by using a primer manZ-Af/manZ-tetr1 to amplify a fragment A-tet1, similarly using the fragments tet2 and B as templates, performing overlap extension PCR by using a primer manZ-tetf2/manZ-Br to amplify a fragment tet2-B, and finally performing overlap extension PCR again, using A-tet1 and tet2-B as amplification templates, and using manZ-Af/manZ-Br as primers to amplify a knock-out fragment A-t-B. The gene knockout principle is shown in figure 2, and a knockout fragment A-t-B is transferred into the strain E.coli delta p obtained in the step 7 by an electric shock transformation method, and the manZ gene knockout strain E.coli delta p-m is obtained after two times of screening.
TABLE 2 manZ Gene knockout primers
Figure BDA0002822861260000082
Figure BDA0002822861260000091
3. Knockout of atpFH Gene from Strain EC Δ p-m
The amplification principle of the atpFH gene knockout fragment is shown in FIG. 1, and the primers used are shown in Table 3. Coli MG1655 strain genome as template, atpFH-Af/atpFH-Ar and atpFH-Bf/atpFH-Br were used to amplify atpFH gene upstream and downstream homologous arm fragment A and fragment B, respectively. Using pTKS/CS plasmid as a template, the tetracycline resistance gene tet upstream fragment tet1 and downstream fragment tet2 were amplified using primers atpFH-tetf1/atpFH-tetr1 and atpFH-tetf2/atpFH-tetr2, respectively. And then using the fragment A, tet1 as a template, performing overlap extension PCR by using a primer atpFH-Af/atpFH-tetr1 to amplify a fragment A-tet1, similarly using the fragments tet2 and B as templates, using a primer atpFH-tetf2/atpFH-Br to perform overlap extension PCR to amplify a fragment tet2-B, and finally performing overlap extension PCR again, using A-tet1 and tet2-B as amplification templates, and using atpFH-Af/atpFH-Br as primers to amplify a knock-out fragment A-t-B. The gene knockout principle is shown in fig. 2, and the knockout fragment A-t-B is transferred into E.coli delta p-m obtained in the step 8 by an electric shock transformation method, and an atpFH gene knockout strain E.coli delta p-m-a is obtained after two times of screening.
TABLE 3 atpFH Gene knockout primers
Figure BDA0002822861260000092
4. Knock-out envR gene from strain EC delta p-m-a
The amplification principle of the envR gene knockout fragment is shown in FIG. 1, and the primers used are shown in Table 4. Taking E.coli MG1655 strain genome as template, and amplifying envR-Af/envR-Ar and envR-Bf/envR-Br with primers envR-Af/envR-Br to obtain envR gene upstream and downstream homologous arm fragment A and fragment B respectively. By using pTKS/CS plasmid as a template, primers envR-tetf1/envR-tetr1 and envR-tetf2/envR-tetr2 are used for amplifying a tet1 upstream fragment and a tet2 downstream fragment of the tetracycline resistance gene tet respectively. And then using the fragment A, tet1 as a template, using a primer envR-Af/envR-tetr1 to perform overlap extension PCR to amplify a fragment A-tet1, similarly using the fragments tet2 and B as templates, using a primer envR-tetf2/envR-Br to perform overlap extension PCR to amplify a fragment tet2-B, finally performing overlap extension PCR again, using A-tet1 and tet2-B as amplification templates, using envR-Af/envR-Br as primers, and amplifying a knock-out fragment A-t-B. The gene knockout principle is shown in fig. 2, and a knockout fragment A-t-B is transferred into E.coli delta p-m-a obtained in the step 10 by an electric shock transformation method, and an envR gene knockout strain E.coli delta p-m-a-e is obtained after two times of screening.
TABLE 4 envR Gene knockout primers
Figure BDA0002822861260000101
Example 2 detection of glucose and xylose utilization by engineering bacteria EC Δ p-m
The engineering strain EC delta p-m obtained in example 1 with ptsG and manZ genes knocked out is cultured, and under the aseptic condition, a single colony of EC delta p-m on a solid culture medium is selected and inoculated in 5mL of LB culture medium, and cultured for 12h at 30 ℃ and 220rpm to obtain a seed culture solution. Inoculating the seed culture solution into a conical flask containing 50mL of M9 culture medium according to 1%, adding a certain amount of glucose or xylose mother liquor into the culture medium according to requirements to prepare a culture medium with glucose as a unique carbon source (20g/L), xylose as a unique carbon source (20g/L) and mixed sugar as carbon sources (10 g/L of glucose and 10g/L of xylose), and culturing at 30 ℃ and 220 rpm. The results are shown in FIGS. 3 and 4. When the strain is cultured by taking glucose as a single carbon source, the concentration of the glucose is slowly reduced in the culture process, a small amount of glucose is consumed after 48 hours, and meanwhile, the biomass is only slightly accumulated, which shows that the glucose metabolism capability of the engineering bacteria is greatly inhibited. When the strain is cultured by taking xylose as a single carbon source, the strain can consume xylose more rapidly, and biomass is accumulated rapidly, which indicates that the strain still has stronger xylose consumption capacity. When the strain was cultured with a mixed carbon source of glucose and xylose, xylose was rapidly consumed during the culture, while glucose was hardly consumed, and only when the xylose concentration was low, it began to be slowly consumed. The above results indicate that simultaneous knock-out of ptsG and manZ genes in e.coli MG1655 can promote its preferential xylose utilization and slow glucose metabolism in the presence of both glucose and xylose.
Example 3 FFA production test of engineering bacteria EC Δ p-m-a-e
The engineering bacteria EC delta p-m-a-e with ptsG, manZ, atpFH and envR genes knocked out and obtained in the final transformation in the embodiment 1 are cultured and tested. Under the aseptic condition, a single colony of EC delta p-m-a-e on a solid culture medium is selected and inoculated in 5mL of LB culture medium, and the culture is carried out for 12h at 30 ℃ and 220rpm to obtain a seed culture solution. Inoculating 1% of the seed culture solution into a conical flask containing 50mL of M9 culture medium, culturing for 60h under aerobic conditions of 30 ℃ and 220rpm, centrifuging the fermentation broth in a centrifuge tube at 12,000rpm for 10min, sucking 2mL of supernatant into the centrifuge tube, adding 200 μ L of acetic acid and 150mg of undecanoic acid as an internal standard, adding 2mL of n-hexane: chloroform (4: 1, v/v) extraction, evaporation of the organic layer to near dryness, dissolution with 1mL chloroform methanol sulfuric acid (10: 8.5: 1.5), sealing, and water bath at 100 deg.C for 1h to methyl-esterify the fatty acid. After methyl esterification, cooling to room temperature, adding 500 μ L of distilled water, shaking, mixing, filtering the organic phase with 0.22 μm filter membrane, and placing the filtrate in a clean centrifuge tube for sample injection. As a result of analyzing the extracellular fatty acid composition using a gas chromatograph, as shown in fig. 5, main components were n-hexanoic acid, n-heptanoic acid, n-octanoic acid, n-nonanoic acid, n-decanoic acid, and n-dodecanoic acid, and these FFAs were all utilized by p.putida to synthesize mcl-PHA. As shown in FIG. 6, compared with wild bacteria, the extracellular FFA yield of the engineering bacteria EC delta p-M-a-e is obviously improved, and when the engineering bacteria EC delta p-M-a-e are cultured for 60 hours in an M9 culture medium under the condition that 20g/L of xylose is a single carbon source, the wild E.coli MG1655 can synthesize 0.62g/L of FFA, and the EC delta p-M-a-e can synthesize 0.91g/L of FFA. It can be seen that the ability of e.coli MG1655 to synthesize acetate and extracellular FFA using xylose was improved by knocking out the envR gene.
EXAMPLE 4 acetic acid production test of engineering bacteria EC Δ p-m-a-e
The engineering bacteria EC delta p-m-a-e with ptsG, manZ, atpFH and envR genes knocked out and obtained in the final transformation in the embodiment 1 are cultured and tested. Under the aseptic condition, a single colony of EC delta p-m-a-e on a solid culture medium is selected and inoculated in 5mL of LB culture medium, and the culture is carried out for 12h at 30 ℃ and 220rpm to obtain a seed culture solution. Inoculating 1% of seed culture solution into a conical flask containing 50mL of M9 culture medium, culturing at 30 ℃ and 220rpm for 60h under the condition that 20g/L of xylose is used as a single carbon source, sucking 2mL of fermentation liquor, placing the fermentation liquor into a centrifuge tube, centrifuging at 12000rpm for 10min, taking supernate, filtering by using a 0.22-micron filter membrane, and measuring the concentration of acetic acid in the fermentation liquor by using a high performance liquid chromatograph, as shown in figure 6, compared with wild bacteria, the extracellular acetic acid yield of the engineering bacteria EC delta p-M-a-e is obviously improved, and in M9 culture medium, under the condition that 20g/L of xylose is used as a single carbon source, culturing for 60h, wild E.coli MG1655 can synthesize 2.4g/L of acetic acid, and EC delta p-M-a-e can synthesize 5.5g/L of FFA. It can be seen that the ability of e.coli MG1655 to synthesize acetate from xylose was improved by knocking out the atpFH gene.
While the methods and techniques of the present invention have been described in terms of preferred embodiments, it will be apparent to those of ordinary skill in the art that variations and/or modifications of the methods and techniques described herein may be made without departing from the spirit and scope of the invention. It is expressly intended that all such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope and content of the invention.
Sequence listing
<110> Tianjin university
<120> construction method of escherichia coli engineering bacteria preferring to efficiently secrete acetic acid and FFA by utilizing xylose
<160> 9
<170> SIPOSequenceListing 1.0
<210> 1
<211> 1434
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 1
atgtttaaga atgcatttgc taacctgcaa aaggtcggta aatcgctgat gctgccggta 60
tccgtactgc ctatcgcagg tattctgctg ggcgtcggtt ccgcgaattt cagctggctg 120
cccgccgttg tatcgcatgt tatggcagaa gcaggcggtt ccgtctttgc aaacatgcca 180
ctgatttttg cgatcggtgt cgccctcggc tttaccaata acgatggcgt atccgcgctg 240
gccgcagttg ttgcctatgg catcatggtt aaaaccatgg ccgtggttgc gccactggta 300
ctgcatttac ctgctgaaga aatcgcctct aaacacctgg cggatactgg cgtactcgga 360
gggattatct ccggtgcgat cgcagcgtac atgtttaacc gtttctaccg tattaagctg 420
cctgagtatc ttggcttctt tgccggtaaa cgctttgtgc cgatcatttc tggcctggct 480
gccatcttta ctggcgttgt gctgtccttc atttggccgc cgattggttc tgcaatccag 540
accttctctc agtgggctgc ttaccagaac ccggtagttg cgtttggcat ttacggtttc 600
atcgaacgtt gcctggtacc gtttggtctg caccacatct ggaacgtacc tttccagatg 660
cagattggtg aatacaccaa cgcagcaggt caggttttcc acggcgacat tccgcgttat 720
atggcgggtg acccgactgc gggtaaactg tctggtggct tcctgttcaa aatgtacggt 780
ctgccagctg ccgcaattgc tatctggcac tctgctaaac cagaaaaccg cgcgaaagtg 840
ggcggtatta tgatctccgc ggcgctgacc tcgttcctga ccggtatcac cgagccgatc 900
gagttctcct tcatgttcgt tgcgccgatc ctgtacatca tccacgcgat tctggcaggc 960
ctggcattcc caatctgtat tcttctgggg atgcgtgacg gtacgtcgtt ctcgcacggt 1020
ctgatcgact tcatcgttct gtctggtaac agcagcaaac tgtggctgtt cccgatcgtc 1080
ggtatcggtt atgcgattgt ttactacacc atcttccgcg tgctgattaa agcactggat 1140
ctgaaaacgc cgggtcgtga agacgcgact gaagatgcaa aagcgacagg taccagcgaa 1200
atggcaccgg ctctggttgc tgcatttggt ggtaaagaaa acattactaa cctcgacgca 1260
tgtattaccc gtctgcgcgt cagcgttgct gatgtgtcta aagtggatca ggccggcctg 1320
aagaaactgg gcgcagcggg cgtagtggtt gctggttctg gtgttcaggc gattttcggt 1380
actaaatccg ataacctgaa aaccgagatg gatgagtaca tccgtaacca ctaa 1434
<210> 2
<211> 852
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 2
atggttgata caactcaaac taccaccgag aaaaaactca ctcaaagtga tattcgtggc 60
gtcttcctgc gttctaacct cttccagggt tcatggaact tcgaacgtat gcaggcactg 120
ggtttctgct tctctatggt accggcaatt cgtcgcctct accctgagaa caacgaagct 180
cgtaaacaag ctattcgccg tcacctggag ttctttaaca cccagccgtt cgtggctgcg 240
ccgattctcg gcgtaaccct ggcgctggaa gaacagcgtg ctaatggcgc agagatcgac 300
gacggtgcta tcaacggtat caaagtcggt ttgatggggc cactggctgg tgtaggcgac 360
ccgatcttct ggggaaccgt acgtccggta tttgcagcac tgggtgccgg tatcgcgatg 420
agcggcagcc tgttaggtcc gctgctgttc ttcatcctgt ttaacctggt gcgtctggca 480
acccgttact acggcgtagc gtatggttac tccaaaggta tcgatatcgt taaagatatg 540
ggtggtggct tcctgcaaaa actgacggaa ggggcgtcta tcctcggcct gtttgtcatg 600
ggggcattgg ttaacaagtg gacacatgtc aacatcccgc tggttgtctc tcgcattact 660
gaccagacgg gcaaagaaca cgttactact gtccagacta ttctggacca gttaatgcca 720
ggcctggtac cactgctgct gacctttgct tgtatgtggc tactgcgcaa aaaagttaac 780
ccgctgtgga tcatcgttgg cttcttcgtc atcggtatcg ctggttacgc ttgcggcctg 840
ctgggactgt aa 852
<210> 3
<211> 602
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 3
ccaatggagc cgccgtttgc ggtcgtacag gacggtcgca agatgtgaaa ccacaagctg 60
ccgtttcagt tttcgacgaa accgcatccc cgctcgatgg cattatttaa gtctgtagtc 120
ggggagggag gaatgtcaag tcgctgttca aataggtgct acagcgacaa tcgtcgaagt 180
aggtgccttg caagctacta gaagagccgc ggtcgttgtc ggtcctatcg ttgaacgaat 240
gcgtcgagaa gtgcccgtgc aaatgcgagc cgaagttaaa ggcggacgcg gacccggtgc 300
taaaatcatg caaggacaag acggagtcga aagcgaagca ggtcttagac gctcgccgca 360
aacaagcgga cgagctacta atggacccga aggcgaaagc gaaaaaagtc gaccagccag 420
cgcgaccgga aacgttccag ttccaggaat acacgagcaa gacgccttcg ttccggcagt 480
cgttaaagaa aaactgcaaa aagctaccga cggtaattac cgccggtatg catgaagtac 540
gtcttgtctt gcttgtcctg tttgcgctac cggaccggct cctaacaacg caattctaag 600
tg 602
<210> 4
<211> 663
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 4
ttacatgaca cttaattcat tcgtttgatg aattaatttc gttatgtttt catctggcat 60
gaacattctt aatacgttat cgaccagagc gggggcttgt ttataaagat cataacccgc 120
catattcatt aaccagtttt gaacaattcc gctgaaggca ccatcaataa taatcatcac 180
aacatctaaa tcgaggttat ttgctacaca accttgttgc tgacacgcct gcaatacttc 240
gcggagagtc tgcggattaa agcccatctt ttcgcgtatc actccctcgg ccagcatctc 300
atcattaaat tcacatttgt gatataagat tttcagcaac gcctgctggc ggggaatttt 360
ggcaatatat tgcaagccga caatcaattt ttcacgcaat tgttgaaacg ggtcatgctc 420
taatccagcc gtcaagtgtt cctggattaa ctcccgcaat gaaggctgtt gcaaccacat 480
ctcattaaac agttgagtct tgttttcgaa gtgccagtag atagcgccac gcgtaacgtt 540
agcggcgtcg gcaatgtcgt tgagcgtcgt cttgcttacg ccatgctgcg caaactgggc 600
gatggcagtt tcaatcagtt cttgccgggt cttcagagct tcggctttgg ttctttttgc 660
cat 663
<210> 5
<211> 3251
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 5
tacggcccca aggtccaaac ggtgataggg ataacagggt aatatttacg ttgacaccac 60
ctttcgcgta tggcatgata gcgcccggaa gagagtcaat tcagggtggt gaatatgaat 120
agttcgacaa agatcgcatt ggtaattacg ttactcgatg ccatggggat tggccttatc 180
atgccagtct tgccaacgtt attacgtgaa tttattgctt cggaagatat cgctaaccac 240
tttggcgtat tgcttgcact ttatgcgtta atgcaggtta tctttgctcc ttggcttgga 300
aaaatgtctg accgatttgg tcggcgccca gtgctgttgt tgtcattaat aggcgcatcg 360
ctggattact tattgctggc tttttcaagt gcgctttgga tgctgtattt aggccgtttg 420
ctttcaggga tcacaggagc tactggggct gtcgcggcat cggtcattgc cgataccacc 480
tcagcttctc aacgcgtgaa gtggttcggt tggttagggg caagttttgg gcttggttta 540
atagcggggc ctattattgg tggttttgca ggagagattt caccgcatag tccctttttt 600
atcgctgcgt tgctaaatat tgtcactttc cttgtggtta tgttttggtt ccgtgaaacc 660
aaaaatacac gtgataatac agataccgaa gtaggggttg agacgcaatc aaattcggtg 720
tacatcactt tatttaaaac gatgcccatt ttgttgatta tttatttttc agcgcaattg 780
ataggccaaa ttcccgcaac ggtgtgggtg ctatttaccg aaaatcgttt tggatggaat 840
agcatgatgg ttggcttttc attagcgggt cttggtcttt tacactcagt attccaagcc 900
tttgtggcag gaagaatagc cactaaatgg ggcgaaaaaa cggcagtact gctcgaattt 960
attgcagata gtagtgcatt tgccttttta gcgtttatat ctgaaggttg gttagatttc 1020
cctgttttaa ttttattggc tggtggtggg atcgctttac ctgcattaca gggagtgatg 1080
tctatccaaa caaagagtca tgagcaaggt gctttacagg gattattggt gagccttacc 1140
aatgcaaccg gtgttattgg cccattactg tttactgtta tttataatca ttcactacca 1200
atttgggatg gctggatttg gattattggt ttagcgtttt actgtattat tatcctgcta 1260
tcaatgacct tcatgttgac ccctcaagct caggggagta aacaggagac aagtgcttag 1320
tagggataac agggtaatga tggcgcctca tccctgaagc caaggcatca aataaaacga 1380
aaggctcagt cgaaagactg ggcctttcgt tttatctgtt gtttgtcggt gaacgctctc 1440
ctgagtagga caaatccgcc gccctagacc taggggatat attccgcttc ctcgctcact 1500
gactcgctac gctcggtcgt tcgactgcgg cgagcggaaa tggcttacga acggggcgga 1560
gatttcctgg aagatgccag gaagatactt aacagggaag tgagagggcc gcggcaaagc 1620
cgtttttcca taggctccgc ccccctgaca agcatcacga aatctgacgc tcaaatcagt 1680
ggtggcgaaa cccgacagga ctataaagat accaggcgtt tccccctggc ggctccctcg 1740
tgcgctctcc tgttcctgcc tttcggttta ccggtgtcat tccgctgtta tggccgcgtt 1800
tgtctcattc cacgcctgac actcagttcc gggtaggcag ttcgctccaa gctggactgt 1860
atgcacgaac cccccgttca gtccgaccgc tgcgccttat ccggtaacta tcgtcttgag 1920
tccaacccgg aaagacatgc aaaagcacca ctggcagcag ccactggtaa ttgatttaga 1980
ggagttagtc ttgaagtcat gcgccggtta aggctaaact gaaaggacaa gttttggtga 2040
ctgcgctcct ccaagccagt tacctcggtt caaagagttg gtagctcaga gaaccttcga 2100
aaaaccgccc tgcaaggcgg ttttttcgtt ttcagagcaa gagattacgc gcagaccaaa 2160
acgatctcaa gaagatcatc ttattaatca gataaaatat ttctagattt cagtgcaatt 2220
tatctcttca aatgtagcac ctgaagtcag ccccatacga tataagttgt tactagtgct 2280
tggattctca ccaataaaaa acgcccggcg gcaaccgagc gttctgaaca aatccagatg 2340
gagttctgag gtcattactg gatctatcaa caggagtcca agcgagctcg atatcaaatt 2400
acgccccgcc ctgccactca tcgcagtact gttgtaattc attaagcatt ctgccgacat 2460
ggaagccatc acagacggca tgatgaacct gaatcgccag cggcatcagc accttgtcgc 2520
cttgcgtata atatttgccc atggtgaaaa cgggggcgaa gaagttgtcc atattggcca 2580
cgtttaaatc aaaactggtg aaactcaccc agggattggc tgagacgaaa aacatattct 2640
caataaaccc tttagggaaa taggccaggt tttcaccgta acacgccaca tcttgcgaat 2700
atatgtgtag aaactgccgg aaatcgtcgt ggtattcact ccagagcgat gaaaacgttt 2760
cagtttgctc atggaaaacg gtgtaacaag ggtgaacact atcccatatc accagctcac 2820
cgtctttcat tgccatacgg aattccggat gagcattcat caggcgggca agaatgtgaa 2880
taaaggccgg ataaaacttg tgcttatttt tctttacggt ctttaaaaag gccgtaatat 2940
ccagctgaac ggtctggtta taggtacatt gagcaactga ctgaaatgcc tcaaaatgtt 3000
ctttacgatg ccattgggat atatcaacgg tggtatatcc agtgattttt ttctccattt 3060
tagcttcctt agctcctgaa aatctcgata actcaaaaaa tacgcccggt agtgatctta 3120
tttcattatg gtgaaagttg gaacctctta cgtgccgatc aacgtctcat tttcgccaga 3180
tatcgacgtc taagaaacca ttattatcat gacattaacc tataaaaata ggcgtatcac 3240
gaggcccttt c 3251
<210> 6
<211> 1209
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 6
atgaatagtt cgacaaagat cgcattggta attacgttac tcgatgccat ggggattggc 60
cttatcatgc cagtcttgcc aacgttatta cgtgaattta ttgcttcgga agatatcgct 120
aaccactttg gcgtattgct tgcactttat gcgttaatgc aggttatctt tgctccttgg 180
cttggaaaaa tgtctgaccg atttggtcgg cgcccagtgc tgttgttgtc attaataggc 240
gcatcgctgg attacttatt gctggctttt tcaagtgcgc tttggatgct gtatttaggc 300
cgtttgcttt cagggatcac aggagctact ggggctgtcg cggcatcggt cattgccgat 360
accacctcag cttctcaacg cgtgaagtgg ttcggttggt taggggcaag ttttgggctt 420
ggtttaatag cggggcctat tattggtggt tttgcaggag agatttcacc gcatagtccc 480
ttttttatcg ctgcgttgct aaatattgtc actttccttg tggttatgtt ttggttccgt 540
gaaaccaaaa atacacgtga taatacagat accgaagtag gggttgagac gcaatcaaat 600
tcggtgtaca tcactttatt taaaacgatg cccattttgt tgattattta tttttcagcg 660
caattgatag gccaaattcc cgcaacggtg tgggtgctat ttaccgaaaa tcgttttgga 720
tggaatagca tgatggttgg cttttcatta gcgggtcttg gtcttttaca ctcagtattc 780
caagcctttg tggcaggaag aatagccact aaatggggcg aaaaaacggc agtactgctc 840
gaatttattg cagatagtag tgcatttgcc tttttagcgt ttatatctga aggttggtta 900
gatttccctg ttttaatttt attggctggt ggtgggatcg ctttacctgc attacaggga 960
gtgatgtcta tccaaacaaa gagtcatgag caaggtgctt tacagggatt attggtgagc 1020
cttaccaatg caaccggtgt tattggccca ttactgttta ctgttattta taatcattca 1080
ctaccaattt gggatggctg gatttggatt attggtttag cgttttactg tattattatc 1140
ctgctatcaa tgaccttcat gttgacccct caagctcagg ggagtaaaca ggagacaagt 1200
gcttagtag 1209
<210> 7
<211> 1036
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 7
tagggataac agggtaatat ttacgttgac accacctttc gcgtatggca tgatagcgcc 60
cggaagagag tcaattcagg gtggtgaata tgaatagttc gacaaagatc gcattggtaa 120
ttacgttact cgatgccatg gggattggcc ttatcatgcc agtcttgcca acgttattac 180
gtgaatttat tgcttcggaa gatatcgcta accactttgg cgtattgctt gcactttatg 240
cgttaatgca ggttatcttt gctccttggc ttggaaaaat gtctgaccga tttggtcggc 300
gcccagtgct gttgttgtca ttaataggcg catcgctgga ttacttattg ctggcttttt 360
caagtgcgct ttggatgctg tatttaggcc gtttgctttc agggatcaca ggagctactg 420
gggctgtcgc ggcatcggtc attgccgata ccacctcagc ttctcaacgc gtgaagtggt 480
tcggttggtt aggggcaagt tttgggcttg gtttaatagc ggggcctatt attggtggtt 540
ttgcaggaga gatttcaccg catagtccct tttttatcgc tgcgttgcta aatattgtca 600
ctttccttgt ggttatgttt tggttccgtg aaaccaaaaa tacacgtgat aatacagata 660
ccgaagtagg ggttgagacg caatcaaatt cggtgtacat cactttattt aaaacgatgc 720
ccattttgtt gattatttat ttttcagcgc aattgatagg ccaaattccc gcaacggtgt 780
gggtgctatt taccgaaaat cgttttggat ggaatagcat gatggttggc ttttcattag 840
cgggtcttgg tcttttacac tcagtattcc aagcctttgt ggcaggaaga atagccacta 900
aatggggcga aaaaacggca gtactgctcg aatttattgc agatagtagt gcatttgcct 960
ttttagcgtt tatatctgaa ggttggttag atttccctgt tttaatttta ttggctggtg 1020
gtgggatcgc tttacc 1036
<210> 8
<211> 845
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 8
gcgtgaagtg gttcggttgg ttaggggcaa gttttgggct tggtttaata gcggggccta 60
ttattggtgg ttttgcagga gagatttcac cgcatagtcc cttttttatc gctgcgttgc 120
taaatattgt cactttcctt gtggttatgt tttggttccg tgaaaccaaa aatacacgtg 180
ataatacaga taccgaagta ggggttgaga cgcaatcaaa ttcggtgtac atcactttat 240
ttaaaacgat gcccattttg ttgattattt atttttcagc gcaattgata ggccaaattc 300
ccgcaacggt gtgggtgcta tttaccgaaa atcgttttgg atggaatagc atgatggttg 360
gcttttcatt agcgggtctt ggtcttttac actcagtatt ccaagccttt gtggcaggaa 420
gaatagccac taaatggggc gaaaaaacgg cagtactgct cgaatttatt gcagatagta 480
gtgcatttgc ctttttagcg tttatatctg aaggttggtt agatttccct gttttaattt 540
tattggctgg tggtgggatc gctttacctg cattacaggg agtgatgtct atccaaacaa 600
agagtcatga gcaaggtgct ttacagggat tattggtgag ccttaccaat gcaaccggtg 660
ttattggccc attactgttt actgttattt ataatcattc actaccaatt tgggatggct 720
ggatttggat tattggttta gcgttttact gtattattat cctgctatca atgaccttca 780
tgttgacccc tcaagctcag gggagtaaac aggagacaag tgcttagtag ggataacagg 840
gtaat 845
<210> 9
<211> 10726
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 9
ctgctcgcgc aggctgggtg ccaagctctc gggtaacatc aaggcccgat ccttggagcc 60
cttgccctcc cgcacgatga tcgtgccgtg atcgaaatcc agatccttga cccgcagttg 120
caaaccctca ctgatccgca tgcttatgac aacttgacgg ctacatcatt cactttttct 180
tcacaaccgg cacggaactc gctcgggctg gccccggtgc attttttaaa tacccgcgag 240
aaatagagtt gatcgtcaaa accaacattg cgaccgacgg tggcgatagg catccgggtg 300
gtgctcaaaa gcagcttcgc ctggctgata cgttggtcct cgcgccagct taagacgcta 360
atccctaact gctggcggaa aagatgtgac agacgcgacg gcgacaagca aacatgctgt 420
gcgacgctgg cgatatcaaa attgctgtct gccaggtgat cgctgatgta ctgacaagcc 480
tcgcgtaccc gattatccat cggtggatgg agcgactcgt taatcgcttc catgcgccgc 540
agtaacaatt gctcaagcag atttatcgcc agcagctccg aatagcgccc ttccccttgc 600
ccggcgttaa tgatttgccc aaacaggtcg ctgaaatgcg gctggtgcgc ttcatccggg 660
cgaaagaacc ccgtattggc aaatattgac ggccagttaa gccattcatg ccagtaggcg 720
cgcggacgaa agtaaaccca ctggtgatac cattcgcgag cctccggatg acgaccgtag 780
tgatgaatct ctcctggcgg gaacagcaaa atatcacccg gtcggcaaac aaattctcgt 840
ccctgatttt tcaccacccc ctgaccgcga atggtgagat tgagaatata acctttcatt 900
cccagcggtc ggtcgataaa aaaatcgaga taaccgttgg cctcaatcgg cgttaaaccc 960
gccaccagat gggcattaaa cgagtatccc ggcagcaggg gatcattttg cgcttcagcc 1020
atacttttca tactcccgcc attcagagaa gaaaccaatt gtccatattg catcagacat 1080
tgccgtcact gcgtctttta ctggctcttc tcgctaacca aaccggtaac cccgcttatt 1140
aaaagcattc tgtaacaaag cgggaccaaa gccatgacaa aaacgcgtaa caaaagtgtc 1200
tataatcacg gcagaaaagt ccacattgat tatttgcacg gcgtcacact ttgctatgcc 1260
atagcatttt tatccataag attagcggat cctacctgac gctttttatc gcaactctct 1320
actgtttctc catacccgtt tttttgggaa ttcgagctct aaggaggtta taaaaaatgc 1380
atcaaaaaaa ccaggtaatg aacctgggtc cgaactctaa actgctgaaa gaatacaaat 1440
cccagctgat cgaactgaac atcgaacagt tcgaagcagg tatcggtctg atcctgggtg 1500
atgcttacat ccgttctcgt gatgaaggta aaacctactg tatgcagttc gagtggaaaa 1560
acaaagcata catggaccac gtatgtctgc tgtacgatca gtgggtactg tccccgccgc 1620
acaaaaaaca acgtgttaac cacctgggta acctggtaat cacctggggc gcccagactt 1680
tcaaacacca agctttcaac aaactggcta acctgttcat cgttaacaac aaaaaaacca 1740
tcccgaacaa cctggttgaa aactacctga ccccgatgtc tctggcatac tggttcatgg 1800
atgatggtgg taaatgggat tacaacaaaa actctaccaa caaatcgatc gtactgaaca 1860
cccagtcttt cactttcgaa gaagtagaat acctggttaa gggtctgcgt aacaaattcc 1920
aactgaactg ttacgtaaaa atcaacaaaa acaaaccgat catctacatc gattctatgt 1980
cttacctgat cttctacaac ctgatcaaac cgtacctgat cccgcagatg atgtacaaac 2040
tgccgaacac tatctcctcc gaaactttcc tgaaataagc atgcccgttc catacagaag 2100
ctgggcgaac aaacgatgct cgccttccag aaaaccgagg atgcgaacca cttcatccgg 2160
ggtcagcacc accggcaagc gccgcgacgg ccgaggtctt ccgatctcct gaagccaggg 2220
cagatccgtg cacagcacct tgccgtagaa gaacagcaag gccgccaatg cctgacgatg 2280
cgtggagacc gaaaccttgc gctcgttcgc cagccaggac agaaatgcct cgacttcgct 2340
gctgcccaag gttgccgggt gacgcacacc gtggaaacgg atgaaggcac gaacccagtg 2400
gacataagcc tgttcggttc gtaagctgta atgcaagtag cgtatgcgct cacgcaactg 2460
gtccagaacc ttgaccgaac gcagcggtgg taacggcgca gtggcggttt tcatggcttg 2520
ttatgactgt ttttttgggg tacagtctat gcctcgggca tccaagcagc aagcgcgtta 2580
cgccgtgggt cgatgtttga tgttatggag cagcaacgat gttacgcagc agggcagtcg 2640
ccctaaaaca aagttaaaca tcatgaggga agcggtgatc gccgaagtat cgactcaact 2700
atcagaggta gttggcgtca tcgagcgcca tctcgaaccg acgttgctgg ccgtacattt 2760
gtacggctcc gcagtggatg gcggcctgaa gccacacagt gatattgatt tgctggttac 2820
ggtgaccgta aggcttgatg aaacaacgcg gcgagctttg atcaacgacc ttttggaaac 2880
ttcggcttcc cctggagaga gcgagattct ccgcgctgta gaagtcacca ttgttgtgca 2940
cgacgacatc attccgtggc gttatccagc taagcgcgaa ctgcaatttg gagaatggca 3000
gcgcaatgac attcttgcag gtatcttcga gccagccacg atcgacattg atctggctat 3060
cttgctgaca aaagcaagag aacatagcgt tgccttggta ggtccagcgg cggaggaact 3120
ctttgatccg gttcctgaac aggatctatt tgaggcgcta aatgaaacct taacgctatg 3180
gaactcgccg cccgactggg ctggcgatga gcgaaatgta gtgcttacgt tgtcccgcat 3240
ttggtacagc gcagtaaccg gcaaaatcgc gccgaaggat gtcgctgccg actgggcaat 3300
ggagcgcctg ccggcccagt atcagcccgt catacttgaa gctagacagg cttatcttgg 3360
acaagaagaa gatcgcttgg cctcgcgcgc agatcagttg gaagaatttg tccactacgt 3420
gaaaggcgag atcaccaagg tagtcggcaa ataatgtcta acaattcgtt caagccgacg 3480
ccgcttcgcg gcgcggctta actcaagcgt tagatgcact aagcacataa ttgctcacag 3540
ccaaactatc aggtcaagtc tgcttttatt atttttaagc gtgcataata agccctacac 3600
aaattgggag atatatcatg aaaggctggc tttttcttgt tatcgcaata gttggcgaag 3660
taatcgcaac atccgcatta aaatctagcg agggctttac taagctcctg cagagatctg 3720
aattccctag agagacgaaa gtgattgcgc ctacccggat attatcgtga ggatgcgtca 3780
tcgccattgc tccccaaata caaaaccaat ttcagccagt gcctcgtcca ttttttcgat 3840
gaactccggc acgatctcgt caaaactcgc catgtacttt tcatcccgct caatcacgac 3900
ataatgcagg ccttcacgct tcatacgcgg gtcatagttg gcaaagtacc aggcattttt 3960
tcgcgtcacc cacatgctgt actgcacctg ggccatgtaa gctgacttta tggcctcgaa 4020
accaccgagc cggaacttca tgaaatcccg ggaggtaaac gggcatttca gttcaaggcc 4080
gttgccgtca ctgcataaac catcgggaga gcaggcggta cgcatacttt cgtcgcgata 4140
gatgatcggg gattcagtaa cattcacgcc ggaagtgaat tcaaacaggg ttctggcgtc 4200
gttctcgtac tgttttcccc aggccagtgc tttagcgtta acttccggag ccacaccggt 4260
gcaaacctca gcaagcaggg tgtggaagta ggacattttc atgtcaggcc acttctttcc 4320
ggagcggggt tttgctatca cgttgtgaac ttctgaagcg gtgatgacgc cgagccgtaa 4380
tttgtgccac gcatcatccc cctgttcgac agctctcaca tcgatcccgg tacgctgcag 4440
gataatgtcc ggtgtcatgc tgccaccttc tgctctgcgg ctttctgttt caggaatcca 4500
agagctttta ctgcttcggc ctgtgtcagt tctgacgatg cacgaatgtc gcggcgaaat 4560
atctgggaac agagcggcaa taagtcgtca tcccatgttt tatccagggc gatcagcaga 4620
gtgttaatct cctgcatggt ttcatcgtta accggagtga tgtcgcgttc cggctgacgt 4680
tctgcagtgt atgcagtatt ttcgacaatg cgctcggctt catccttgtc atagatacca 4740
gcaaatccga aggccagacg ggcacactga atcatggctt tatgacgtaa catccgtttg 4800
ggatgcgact gccacggccc cgtgatttct ctgccttcgc gagttttgaa tggttcgcgg 4860
cggcattcat ccatccattc ggtaacgcag atcggatgat tacggtcctt gcggtaaatc 4920
cggcatgtac aggattcatt gtcctgctca aagtccatgc catcaaactg ctggttttca 4980
ttgatgatgc gggaccagcc atcaacgccc accaccggaa cgatgccatt ctgcttatca 5040
ggaaaggcgt aaatttcttt cgtccacgga ttaaggccgt actggttggc aacgatcagt 5100
aatgcgatga actgcgcatc gctggcatca cctttaaatg ccgtctggcg aagagtggtg 5160
atcagttcct gtgggtcgac agaatccatg ccgacacgtt cagccagctt cccagccagc 5220
gttgcgagtg cagtactcat tcgttttata cctctgaatc aatatcaacc tggtggtgag 5280
caatggtttc aaccatgtac cggatgtgtt ctgccatgcg ctcctgaaac tcaacatcgt 5340
catcaaacgc acgggtaatg gattttttgc tggccccgtg gcgttgcaaa tgatcgatgc 5400
atagcgattc aaacaggtgc tggggcaggc ctttttccat gtcgtctgcc agttctgcct 5460
ctttctcttc acgggcgagc tgctggtagt gacgcgccca gctctgagcc tcaagacgat 5520
cctgaatgta ataagcgttc atggctgaac tcctgaaata gctgtgaaaa tatcgcccgc 5580
gaaatgccgg gctgattagg aaaacaggaa agggggttag tgaatgcttt tgcttgatct 5640
cagtttcagt attaatatcc attttttata agcgtcgact gtttcctgtg tgaaattgtt 5700
atccgctcac aattccacac attatacgag ccggaagcat aaagtgtaaa gcctggggtg 5760
cctaatgagt gagaattcgg atctcgacgg gatgttgatt ctgtcatggc atatccttac 5820
aacttaaaaa agcaaaaggg ccgcagatgc gacccttgtg tatcaaacaa gacgattaaa 5880
aatcttcgtt agtttctgct acgccttcgc tatcatctac agagaaatcc ggcgttgagt 5940
tcgggttgct cagcagcaac tcacgtactt tcttctcgat ctctttcgcg gtttccgggt 6000
tatctttcag ccaggcagtc gcattcgctt taccctgacc gatcttctca cctttgtagc 6060
tgtaccacgc gcctgctttc tcgatcagct tctcttttac gcccaggtca accagttcgc 6120
cgtagaagtt gataccttcg ccgtagagga tctggaattc agcctgttta aacggcgcag 6180
cgattttgtt cttcaccact ttcacgcggg tttcgctacc caccacgttt tcgccctctt 6240
tcaccgcgcc gatacgacgg atgtcgagac gaacagaggc gtagaatttc agcgcgttac 6300
caccggtagt ggtttccggg ttaccgaaca tcacaccaat tttcatacgg atctggttga 6360
tgaagatcag cagcgtgttg gactgcttca ggttacccgc cagcttacgc atcgcctggc 6420
tcatcatacg tgccgcaagg cccatgtgag agtcgccgat ttcgccttcg atttccgctt 6480
tcggcgtcag tgccgccacg gagtcaacga cgataacgtc tactgcgcca gaacgcgcca 6540
gggcgtcaca gatttccagt gcctgctcgc cggtgtccgg ctgggagcac agcaggttgt 6600
cgatatcgac gcccagttta cgtgcgtaga ttgggtccag cgcgtgttca gcatcgataa 6660
acgcacaggt tttaccttca cgctgcgctg cggcgatcac ctgcagcgtc agcgtggttt 6720
taccggaaga ttccggtccg tagatttcga cgatacggcc catcggcaga ccacctgccc 6780
caagcgcgat atccagtgaa agcgaaccgg tagagatggt ttccacatcc atggaacggt 6840
cttcacccag gcgcatgatg gagcctttac caaattgttt ctcaatctgg cccagtgctg 6900
ccgccaacgc tttctgtttg ttttcgtcga tagccatttt tactcctgtc atgccgggta 6960
ataccggata gtcaatatgt tctgttgaag caattatact gtatgctcat acagtatcaa 7020
gtgttttgta gaaattgttg ccacaaggtc tgcaatgcat acgcagtagc ctgacgacgc 7080
accgcatcac ggtcgccgct gaagcatccc gccgggtaat gccttcaccg cgggcagtgg 7140
caaaagcaaa ccagacggtg ccgacaggct tctctagatc cgcctacctt tcacgagttg 7200
cgcagtttgt ctgcaagact ctatgagaag cagataagcg ataagtttgc tcaacatctt 7260
ctcgggcata agtcggacac catggcatca cagtatcgtg atgacagagg cagggagtgg 7320
gacaaaattg aaatcaaata atgattttat tttgactgat agtgacctgt tcgttgcaac 7380
aaattgataa gcaatgccaa gcttggcact ggctgatcag ctagctcact gcccgctttc 7440
cagtcgggaa acctgtcgtg ccagctgcat taatgaatcg gccaacgcgc ggggagaggc 7500
ggtttgcgta ttgggcgcca gggtggtttt tcttttcacc agtgagacgg gcaacagctg 7560
attgcccttc accgcctggc cctgagagag ttgcagcaag cggtccacgc tggtttgccc 7620
cagcaggcga aaatcctgtt tgatggtggt taacggcggg atataacatg agctgtcttc 7680
ggtatcgtcg tatcccacta ccgagatatc cgcaccaacg cgcagcccgg actcggtaat 7740
ggcgcgcatt gcgcccagcg ccatctgatc gttggcaacc agcatcgcag tgggaacgat 7800
gccctcattc agcatttgca tggtttgttg aaaaccggac atggcactcc agtcgccttc 7860
ccgttccgct atcggctgaa tttgattgcg agtgagatat ttatgccagc cagccagacg 7920
cagacgcgcc gagacagaac ttaatgggcc cgctaacagc gcgatttgct ggtgacccaa 7980
tgcgaccaga tgctccacgc ccagtcgcgt accgtcttca tgggagaaaa taatactgtt 8040
gatgggtgtc tggtcagaga catcaagaaa taacgccgga acattagtgc aggcagcttc 8100
cacagcaatg gcatcctggt catccagcgg atagttaatg atcagcccac tgacgcgttg 8160
cgcgagaaga ttgtgcaccg ccgctttaca ggcttcgacg ccgcttcgtt ctaccatcga 8220
caccaccacg ctggcaccca gttgatcggc gcgagattta atcgccgcga caatttgcga 8280
cggcgcgtgc agggccagac tggaggtggc aacgccaatc agcaacgact gtttgcccgc 8340
cagttgttgt gccacgcggt tgggaatgta attcagctcc gccatcgccg cttccacttt 8400
ttcccgcgtt ttcgcagaaa cgtggctggc ctggttcacc acgcgggaaa cggtctgata 8460
agagacaccg gcatactctg cgacatcgta taacgttact ggtttcacat tcaccaccct 8520
gaattgactc tcttccgggc gctatcatgc cataccgcga aaggttttgc accattcgat 8580
gctagcccat gggtatggac agttttccct ttgatatgta acggtgaaca gttgttctac 8640
ttttgtttgt tagtcttgat gcttcactga tagatacaag agccataaga acctcagatc 8700
cttccgtatt tagccagtat gttctctagt gtggttcgtt gtttttgcgt gagccatgag 8760
aacgaaccat tgagatcata cttactttgc atgtcactca aaaattttgc ctcaaaactg 8820
gtgagctgaa tttttgcagt taaagcatcg tgtagtgttt ttcttagtcc gttacgtagg 8880
taggaatctg atgtaatggt tgttggtatt ttgtcaccat tcatttttat ctggttgttc 8940
tcaagttcgg ttacgagatc catttgtcta tctagttcaa cttggaaaat caacgtatca 9000
gtcgggcggc ctcgcttatc aaccaccaat ttcatattgc tgtaagtgtt taaatcttta 9060
cttattggtt tcaaaaccca ttggttaagc cttttaaact catggtagtt attttcaagc 9120
attaacatga acttaaattc atcaaggcta atctctatat ttgccttgtg agttttcttt 9180
tgtgttagtt cttttaataa ccactcataa atcctcatag agtatttgtt ttcaaaagac 9240
ttaacatgtt ccagattata ttttatgaat ttttttaact ggaaaagata aggcaatatc 9300
tcttcactaa aaactaattc taatttttcg cttgagaact tggcatagtt tgtccactgg 9360
aaaatctcaa agcctttaac caaaggattc ctgatttcca cagttctcgt catcagctct 9420
ctggttgctt tagctaatac accataagca ttttccctac tgatgttcat catctgagcg 9480
tattggttat aagtgaacga taccgtccgt tctttccttg tagggttttc aatcgtgggg 9540
ttgagtagtg ccacacagca taaaattagc ttggtttcat gctccgttaa gtcatagcga 9600
ctaatcgcta gttcatttgc tttgaaaaca actaattcag acatacatct caattggtct 9660
aggtgatttt aatcactata ccaattgaga tgggctagtc aatgataatt actagtcctt 9720
ttcctttgag ttgtgggtat ctgtaaattc tgctagacct ttgctggaaa acttgtaaat 9780
tctgctagac cctctgtaaa ttccgctaga cctttgtgtg ttttttttgt ttatattcaa 9840
gtggttataa tttatagaat aaagaaagaa taaaaaaaga taaaaagaat agatcccagc 9900
cctgtgtata actcactact ttagtcagtt ccgcagtatt acaaaaggat gtcgcaaacg 9960
ctgtttgctc ctctacaaaa cagaccttaa aaccctaaag gcttaagtag caccctcgca 10020
agctcggttg cggccgcaat cgggcaaatc gctgaatatt ccttttgtct ccgaccatca 10080
ggcacctgag tcgctgtctt tttcgtgaca ttcagttcgc tgcgctcacg gctctggcag 10140
tgaatggggg taaatggcac tacaggcgcc ttttatggat tcatgcaagg aaactaccca 10200
taatacaaga aaagcccgtc acgggcttct cagggcgttt tatggcgggt ctgctatgtg 10260
gtgctatctg actttttgct gttcagcagt tcctgccctc tgattttcca gtctgaccac 10320
ttcggattat cccgtgacag gtcattcaga ctggctaatg cacccagtaa ggcagcggta 10380
tcatcaacgg ggtctgacgc tcagtggaac gaaaactcac gttaagggat tttggtcatg 10440
agattatcaa aaaggatctt cacctagatc cttttaaatt aaaaatgaag ttttaaatca 10500
atctaaagta tatatgagta aacttggtct gacagttacc aatgcttaat cagtgaggca 10560
cctatctcag cgatctgtct atttcgttca tccatagttg cctgactccc cgtcgtgtag 10620
ataactacga tacgggaggg cttaccatct ggccccagtg ctgcaatgat accgcgagac 10680
ccacgctcac cggctccaga tttatcagca ataaaccagc cagccg 10726

Claims (8)

1.一种偏好利用木糖高效分泌乙酸和FFA的大肠杆菌工程菌的构建方法;其特征是,包括如下步骤:1. the construction method of the Escherichia coli engineering bacteria that prefers to utilize xylose to efficiently secrete acetic acid and FFA; it is characterized in that, comprises the steps: (1)从E.coli MG1655中敲除ptsG基因得到菌株ECΔp;(1) Knock out the ptsG gene from E. coli MG1655 to obtain strain ECΔp; (2)从菌株ECΔp中敲除manZ基因得到菌株ECΔp-m;(2) Knock out the manZ gene from strain ECΔp to obtain strain ECΔp-m; (3)从菌株ECΔp-m中敲除atpFH基因得到菌株ECΔp-m-a;(3) Knock out the atpFH gene from strain ECΔp-m to obtain strain ECΔp-m-a; (4)从菌株ECΔp-m-a中敲除envR基因得到菌株ECΔp-m-a-e。(4) Knock out the envR gene from strain ECΔp-m-a to obtain strain ECΔp-m-a-e. 2.如权利要求1所述的方法,其特征是,ptsG基因的核苷酸序列为SEQ ID No.1;manZ基因核苷酸序列为SEQ ID No.2;atpFH基因核苷酸序列为SEQ ID No.3;envR基因核苷酸序列为SEQ ID No.4。2. The method of claim 1, wherein the nucleotide sequence of the ptsG gene is SEQ ID No. 1; the nucleotide sequence of the manZ gene is SEQ ID No. 2; the nucleotide sequence of the atpFH gene is SEQ ID No. 2 ID No.3; the nucleotide sequence of the envR gene is SEQ ID No.4. 3.如权利要求1所述的方法,其特征是,基因敲除是基于λ-red和I-SceI的基因组无痕操作技术;具体敲除步骤如下:3. method as claimed in claim 1, is characterized in that, gene knockout is based on λ-red and I-SceI genome traceless operation technology; Concrete knockout step is as follows: (1)以E.coli MG1655菌株基因组为模板,分别扩增出目的基因上下游同源臂片段A和片段B;(1) Using the genome of E.coli MG1655 strain as a template, the upstream and downstream homology arm fragment A and fragment B of the target gene were amplified respectively; (2)以pTKS/CS质粒为模板,分别扩增四环素抗性基因tet上游片段tet1和下游片段tet2;(2) Using the pTKS/CS plasmid as a template, amplify the upstream fragment tet1 and the downstream fragment tet2 of the tetracycline resistance gene tet, respectively; (3)再以片段A、tet1为模板,进行重叠延伸PCR扩增出片段A-tet1,同样以片段tet2、B为模板,进行重叠延伸PCR扩增出片段tet2-B;(3) Take fragment A and tet1 as templates again, carry out overlapping extension PCR to amplify fragment A-tet1, and also use fragment tet2 and B as templates, carry out overlapping extension PCR to amplify fragment tet2-B; (4)再次进行重叠延伸PCR,以A-tet1和tet2-B为扩增模板,扩增出敲除片段A-t-B;(4) Carry out overlap extension PCR again, and use A-tet1 and tet2-B as amplification templates to amplify the knockout fragment A-t-B; (5)敲除片段A-t-B经电击转化法转入大肠杆菌;(5) The knockout fragment A-t-B was transformed into Escherichia coli by electroporation method; (6)弹出四环素抗性及缺失pKTRed质粒,经两次筛选后得到目的基因敲除菌株。(6) The tetracycline resistance and deletion pKTRed plasmid was popped up, and the target gene knockout strain was obtained after two screenings. 4.如权利要求3所述的方法,其特征是,pTKS/CS质粒为SEQ ID No.5所示核苷酸序列;四环素抗性基因tet为SEQ ID No.6所示核苷酸序列;上游片段tet1核苷酸序列如SEQ IDNo.7所示;下游片段tet2基因核苷酸序列如SEQ ID No.8所示;pKTRed质粒核苷酸序列如SEQ ID No.9所示。4. The method of claim 3, wherein the pTKS/CS plasmid is the nucleotide sequence shown in SEQ ID No.5; the tetracycline resistance gene tet is the nucleotide sequence shown in SEQ ID No.6; The nucleotide sequence of the upstream fragment tet1 is shown in SEQ ID No. 7; the nucleotide sequence of the downstream fragment tet2 gene is shown in SEQ ID No. 8; the nucleotide sequence of the pKTRed plasmid is shown in SEQ ID No. 9. 5.如权利要求3所述的方法,其特征是,所述步骤1)中ptsG基因敲除引物序列如下:5. method as claimed in claim 3 is characterized in that, in described step 1), ptsG gene knockout primer sequence is as follows: ptsG-Af:TGGCTGTGTTGAAAGGTGTTGCCGptsG-Af: TGGCTGTGTTGAAAGGTGTTGCCG ptsG-Ar:TATCCCTAAGCACAATGCCTCTATTTAGTTAACGTTCTGptsG-Ar: TATCCCTAAGCACAATGCCTCTATTTAGTTAACGTTCTG ptsG-Bf:AGGGTAATCAGAACGTTAACTAAATAGAGGCATTGTGCTAAAAACGAACAAATGGCAGAGptsG-Bf: AGGGTAATCAGAACGTTAACTAAATAGAGGCATTGTGCTAAAAACGAACAAATGGCAGAG ptsG-Br:GTCTGCAAGGCGCTCAAGACGptsG-Br: GTCTGCAAGGCGCTCAAGACG ptsG-tetf1:CAGAACGTTAACTAAATAGAGGCATTGTGCTTAGGGATAACAGGGTAATATTTACptsG-tetf1: CAGAACGTTAACTAAATAGAGGCATTGTGCTTAGGGATAACAGGGTAATATTTAC ptsG-tetr1:GGTAAAGCGATCCCACCACCAGCCptsG-tetr1: GGTAAAGCGATCCCACCACCAGCC ptsG-tetf2:GCGTGAAGTGGTTCGGTTptsG-tetf2: GCGTGAAGTGGTTCGGTT ptsG-tetr2:TCGTTTTTAGCACAATGCCTCTATTTAGTTAACGTTCTGATTACCCTGTTATCCCTAC。ptsG-tetr2: TCGTTTTTAGCACAATGCCTCTATTTAGTTAACGTTCTGATTACCCTGTTATCCCCTAC. 6.如权利要求3所述的方法,其特征是,所述步骤2)中manZ基因敲除引物序列如下:6. method as claimed in claim 3, is characterized in that, in described step 2), manZ gene knockout primer sequence is as follows: manZ-Af:TGCAAGCCTTCATCTTCATGGmanZ-Af:TGCAAGCCTTCATCTTCATGG manZ-Ar:TATCCCTA AGCACAATGCCTCTATTTAGTTAACGTTCTGmanZ-Ar: TATCCCTAAGCACAATGCCTCTATTTAGTTAACGTTCTG manZ-Bf:AGGGTAATCAGAACGTTAACTAAATAGAGGCATTGTGCTAAAAACGAACAAATGGCAGAGmanZ-Bf: AGGGTAATCAGAACGTTAACTAAATAGAGGCATTGTGCTAAAAACGAACAAATGGCAGAG manZ-Br:GTCTGCAAGGCGCTCAAGACGmanZ-Br: GTCTGCAAGGCGCTCAAGACG manZ-tetf1:CAGAACGTTAACTAAATAGAGGCATTGTGCTTAGGGATAACAGGGTAATATTTACmanZ-tetf1: CAGAACGTTAACTAAATAGAGGCATTGTGCTTAGGGATAACAGGGTAATATTTAC manZ-tetr1:GGTAAAGCGATCCCACCACCAGCCmanZ-tetr1: GGTAAAGCGATCCCACCACCAGCC manZ-tetf2:GCGTGAAGTGGTTCGGTTmanZ-tetf2: GCGTGAAGTGGTTCGGTT manZ-tetr2:CAACAGTCTTCGCTCACCTGTTAGTCCAGTTCGATTACCCTGTTATCCCTAC。manZ-tetr2: CAACAGTCTTCGCTCACCTGTTAGTCCAGTTCGATTACCCTGTTATCCCCTAC. 7.如权利要求3所述的方法,其特征是,所述步骤3)中atpFH基因敲除引物序列如下:7. method as claimed in claim 3 is characterized in that, in described step 3), atpFH gene knockout primer sequence is as follows: atpFH-Af:TGCAAGCCTTCATCTTCATGGatpFH-Af:TGCAAGCCTTCATCTTCATGG atpFH-Ar:TATCCCTAAGCACAATGCCTCTATTTAGTTAACGTTCTGatpFH-Ar: TATCCCTAAGCACAATGCCTCTATTTAGTTAACGTTCTG atpFH-Bf:AGGGTAATCAGAACGTTAACTAAATAGAGGCATTGTGCTAAAAACGAACAAATGGCAGAGatpFH-Bf: AGGGTAATCAGAACGTTAACTAAATAGAGGCATTGTGCTAAAAACGAACAAATGGCAGAG atpFH-Br:GTCTGCAAGGCGCTCAAGACGatpFH-Br: GTCTGCAAGGCGCTCAAGACG atpFH-Tetf1:CAGAACGTTAACTAAATAGAGGCATTGTGCTTAGGGATAACAGGGTAATATTACatpFH-Tetf1: CAGAACGTTAACTAAATAGAGGCATTGTGCTTAGGGATAACAGGGTAATATTAC atpFH-Tetr1:GGTAAAGCGATCCCACCAGCCatpFH-Tetr1: GGTAAAGCGATCCCACCAGCC atpFH-Tetf2:GCGTGAAGTGGTTCGGTTatpFH-Tetf2: GCGTGAAGTGGTTCGGTT atpFH-Tetr2:TCGTTTTTAGCACAATGCCTCTATTTAGTTAACGTTCTGATTACCCTGTTATCCCTAC。atpFH-Tetr2:TCGTTTTTAGCACAATGCCTCTATTTAGTTAACGTTCTGATTACCCTGTTATCCCCTAC. 8.如权利要求3所述的方法,其特征是,所述步骤4)中envR基因敲除引物序列如下:8. The method of claim 3, wherein the envR gene knockout primer sequence in the step 4) is as follows: envR-Af:TGCAAGCCTTCATCTTCATGGenvR-Af:TGCAAGCCTTCATCTTCATGG envR-Ar:TATCCCTAAGCACAATGCCTCTATTTAGTTAACGTTCTGenvR-Ar: TATCCCTAAGCACAATGCCTCTATTTAGTTAACGTTCTG envR-Bf:AGGGTAATCAGAACGTTAACTAAATAGAGGCATTGTGCTAAAAACGAACAAATGGCAGAGenvR-Bf: AGGGTAATCAGAACGTTAACTAAATAGAGGCATTGTGCTAAAAACGAACAAATGGCAGAG envR-Br:GTCTGCAAGGCGCTCAAGACGenvR-Br: GTCTGCAAGGCGCTCAAGACG envR-tetf1:CAGAACGTTAACTAAATAGAGGCATTGTGCTTAGGGATAACAGGGTAATATTTACenvR-tetf1: CAGAACGTTAACTAAATAGAGGCATTGTGCTTAGGGATAACAGGGTAATATTTAC envR-tetr1:GGTAAAGCGATCCCACCACCAGCCenvR-tetr1: GGTAAAGCGATCCCACCACCAGCC envR-tetf2:GCGTGAAGTGGTTCGGTTenvR-tetf2:GCGTGAAGTGGTTCGGTT envR-tetr2:TCGTTTTTAGCACAATGCCTCTATTTAGTTAACGTTCTGATTACCCTGTTATCCCTAC。envR-tetr2: TCGTTTTTAGCACAATGCCTCTATTTAGTTAACGTTCTGATTACCCTGTTATCCCCTAC.
CN202011442400.XA 2020-12-08 2020-12-08 Construction method of escherichia coli engineering bacteria preferring to efficiently secrete acetic acid and FFA by utilizing xylose Pending CN112961814A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011442400.XA CN112961814A (en) 2020-12-08 2020-12-08 Construction method of escherichia coli engineering bacteria preferring to efficiently secrete acetic acid and FFA by utilizing xylose

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011442400.XA CN112961814A (en) 2020-12-08 2020-12-08 Construction method of escherichia coli engineering bacteria preferring to efficiently secrete acetic acid and FFA by utilizing xylose

Publications (1)

Publication Number Publication Date
CN112961814A true CN112961814A (en) 2021-06-15

Family

ID=76271627

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011442400.XA Pending CN112961814A (en) 2020-12-08 2020-12-08 Construction method of escherichia coli engineering bacteria preferring to efficiently secrete acetic acid and FFA by utilizing xylose

Country Status (1)

Country Link
CN (1) CN112961814A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116355919A (en) * 2021-12-28 2023-06-30 天津大学 Escherichia coli strain with high production of flavin mononucleotide and its construction method and application

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040152159A1 (en) * 2002-11-06 2004-08-05 Causey Thomas B. Materials and methods for the efficient production of acetate and other products
CN101365785A (en) * 2002-07-01 2009-02-11 阿基昂生命科学公司,以生物技术资源部的名义经营 Process and materials for production of glucosamine and n-acetylglucosamine
US20100129883A1 (en) * 2007-04-09 2010-05-27 Eiteman Mark A Substrate-selective co-fermentation process
CN104946576A (en) * 2015-04-27 2015-09-30 中国科学院过程工程研究所 Escherichia coli gene engineering strain and construction method thereof, and application of strain in pyruvic acid production

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101365785A (en) * 2002-07-01 2009-02-11 阿基昂生命科学公司,以生物技术资源部的名义经营 Process and materials for production of glucosamine and n-acetylglucosamine
US20040152159A1 (en) * 2002-11-06 2004-08-05 Causey Thomas B. Materials and methods for the efficient production of acetate and other products
US20100129883A1 (en) * 2007-04-09 2010-05-27 Eiteman Mark A Substrate-selective co-fermentation process
CN104946576A (en) * 2015-04-27 2015-09-30 中国科学院过程工程研究所 Escherichia coli gene engineering strain and construction method thereof, and application of strain in pyruvic acid production

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YARU LIU等: "Construction of a "nutrition supply-detoxification" coculture consortium for medium-chain-length polyhydroxyalkanoate production with a glucose-xylose mixture", 《J IND MICROBIOL BIOTECHNOL.》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116355919A (en) * 2021-12-28 2023-06-30 天津大学 Escherichia coli strain with high production of flavin mononucleotide and its construction method and application
CN116355919B (en) * 2021-12-28 2024-03-19 天津大学 Escherichia coli strain for high-yield flavin mononucleotide, construction method and application

Similar Documents

Publication Publication Date Title
Dai et al. Biodiesel generation from oleaginous yeast Rhodotorula glutinis with xylose assimilating capacity
BRPI0618074A2 (en) thermophilic organisms for converting lignocellulosic biomass to ethanol
Wang et al. Efficient L-lactic acid production from sweet sorghum bagasse by open simultaneous saccharification and fermentation
US9716287B2 (en) Biofuel and electricity producing fuel cells and systems and methods related to same
EP2652121A1 (en) Xylose utilizing zymomonas mobilis with improved ethanol production in biomass hydrolysate medium
JP2012530490A (en) Zymomonas with improved arabinose utilization capacity
CN116716196B (en) A recombinant bacterium for producing (-)-α-bisabolol and its preparation method and use
CN116555054A (en) Recombinant schizochytrium limacinum with high DHA yield, construction method and application thereof
CN112961814A (en) Construction method of escherichia coli engineering bacteria preferring to efficiently secrete acetic acid and FFA by utilizing xylose
CN112280700A (en) Acetic acid and formic acid resistant fermentation strain and construction method thereof
CN111826372B (en) Engineering strain for producing butanol using xylose and its construction method and application
CN117721135A (en) A recombinant strain expressing α-amylase and its construction method and application
CN115975823B (en) Phospholipase D gene knockout Schizochytrium genetic engineering strain and its construction method and application
Zhang et al. Alginate lyase of a novel algae fermentation strain
CN113881737B (en) Method for producing CMP-sialic acid on large scale by coupling fermentation of genetically engineered bacteria and yeast
CN116004487B (en) A genetically engineered bacterium and a method for producing poly 3-hydroxybutyrate using the same
CN113512506B (en) Yeast having high tolerance to lignocellulosic biomass-derived inhibitor, and method for constructing same
CN112553221B (en) Bifunctional thiolase gene MvaE, expression vector, recombinant strain and application thereof
CN112176010B (en) Method for promoting biotin synthesis, recombinant cell and genetic engineering bacterium for promoting biotin synthesis
Zhang et al. Alcohol dehydrogenase of a novel algae fermentation strain Meyerozyma guilliermondii
CN106010993A (en) Rhodosporidium toruloides for producing linolenic acid and preparing method thereof
CN114456964B (en) Recombinant yarrowia lipolytica for high yield of stigmasterol, construction method thereof, fermentation medium for producing stigmasterol and application
WO2005100543A1 (en) Process for producing l-lactic acid
CN118726223B (en) A genetically engineered bacterium and its construction method and application
CN114517174B (en) Engineering bacteria and applications for synthesizing notoginseng

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210615