[go: up one dir, main page]

CN112961230B - OsFLP protein related to plant salt tolerance, related biological material and application thereof - Google Patents

OsFLP protein related to plant salt tolerance, related biological material and application thereof Download PDF

Info

Publication number
CN112961230B
CN112961230B CN202110239576.3A CN202110239576A CN112961230B CN 112961230 B CN112961230 B CN 112961230B CN 202110239576 A CN202110239576 A CN 202110239576A CN 112961230 B CN112961230 B CN 112961230B
Authority
CN
China
Prior art keywords
protein
rice
nucleic acid
osflp
acid molecule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110239576.3A
Other languages
Chinese (zh)
Other versions
CN112961230A (en
Inventor
乐捷
张洁
张春霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Botany of CAS
Original Assignee
Institute of Botany of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Botany of CAS filed Critical Institute of Botany of CAS
Priority to CN202110239576.3A priority Critical patent/CN112961230B/en
Publication of CN112961230A publication Critical patent/CN112961230A/en
Application granted granted Critical
Publication of CN112961230B publication Critical patent/CN112961230B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8273Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Botany (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开了一种与植物耐盐相关的OsFLP蛋白质及其相关生物材料与应用。所述OsFLP蛋白质具体可为如下A1)、A2)或A3)的蛋白质:A1)氨基酸序列是序列表中序列1的蛋白质;A2)将A1)的蛋白质经过一个或几个氨基酸残基的取代和/或缺失和/或添加得到的与A1)所示的蛋白质具有90%以上的同一性且具有提高耐盐活性的蛋白质;A3)在A1)或A2)的N末端或/和C末端连接蛋白质标签得到的融合蛋白质。OsFLP蛋白质及其相关生物材料可用于提高植物的耐盐性。

Figure 202110239576

The invention discloses an OsFLP protein related to plant salt tolerance, as well as related biological materials and applications. The OsFLP protein can specifically be a protein of the following A1), A2) or A3): A1) the amino acid sequence is the protein of sequence 1 in the sequence listing; A2) the protein of A1) is substituted by one or several amino acid residues and / or deletion and / or addition of the protein shown in A1) has more than 90% identity and has a protein that improves salt tolerance activity; A3) connects the protein at the N-terminal or/and C-terminal of A1) or A2) Label the resulting fusion protein. OsFLP protein and its related biomaterials can be used to improve the salt tolerance of plants.

Figure 202110239576

Description

一种与植物耐盐相关的OsFLP蛋白质及其相关生物材料与 应用An OsFLP protein related to plant salt tolerance and its related biological materials and application

技术领域technical field

本发明涉及生物技术领域中一种与植物耐盐相关的OsFLP蛋白质及其相关生物材料与应用。The invention relates to an OsFLP protein related to plant salt tolerance and related biological materials and applications in the field of biotechnology.

背景技术Background technique

随着全球气候变化,非生物胁迫对植物生长的影响已经成为人类面临的重大挑战之一,严重制约着植物的生长和发育。非生物胁迫是指在特定环境下,任何非生物因素对植物所造成的不利影响,包括干旱、低温、盐碱等因素。其中干旱和盐碱是制约植物生长的两个最主要的胁迫因素。尤其是在全球土地盐渍化程度加深,可使用耕地面积越来越少的今天,对植物响应非生物胁迫的应答响应基因及其作用机制研究已成为当今最热点的课题之一。筛选与培育与植物耐盐性相关的基因品种对提高农业生产是十分重要的。With global climate change, the impact of abiotic stress on plant growth has become one of the major challenges faced by human beings, seriously restricting the growth and development of plants. Abiotic stress refers to the adverse effects of any abiotic factors on plants in a specific environment, including drought, low temperature, salinity and other factors. Drought and salinity are the two most important stress factors restricting plant growth. Especially as the degree of salinization of the global land is deepening and the area of arable land is decreasing, the research on the response genes and their mechanisms of action to plant responses to abiotic stress has become one of the hottest topics today. It is very important to screen and breed genetic varieties related to plant salt tolerance to improve agricultural production.

水稻作为世界上最重要的粮食作物之一,比其他作物如玉米、小麦等的基因组小,基因组长度大约为420Mb,成为继拟南芥(Arabidopsis thaliana)之后的另外一类重要的模式植物。近些年来水稻已被广泛应用于植物遗传学、发育生物学和分子生物学的研究。面对农作物生产中日益严重的土壤盐渍化问题,克隆水稻耐盐基因并对其功能进行研究,对尽快培育作物耐盐品种有重要的实践意义。As one of the most important food crops in the world, rice has a smaller genome than other crops such as corn and wheat, with a genome length of about 420Mb. It has become another important model plant after Arabidopsis thaliana. In recent years, rice has been widely used in the research of plant genetics, developmental biology and molecular biology. In the face of the increasingly serious soil salinization problem in crop production, cloning rice salt-tolerant genes and studying their functions has important practical significance for cultivating salt-tolerant varieties of crops as soon as possible.

盐胁迫能够引起渗透胁迫和离子胁迫,抑制植物正常的细胞生长和分裂。为了应对不利的环境,植物通过快速渗透和离子信号维持渗透和离子稳态。高盐渗透胁迫能迅速增加脱落酸(ABA)的生物合成,从而调节ABA依赖的胁迫反应途径。蛋白质激酶、转录因子、miRNA和活性氧相关蛋白的基因都可以通过ABA依赖途径参与盐胁迫响应;还有一些盐诱导基因是独立于ABA作用的。另外,由于盐胁迫能引起植物中渗透保护物质的积累,与这些渗透保护大分子合成相关的基因也在盐胁迫应答中发挥作用;激素作为向胞内传递胁迫信号的分子,他们的合成和传递途径中的基因也参与到盐胁迫中来。植物逆境调控网络错综复杂,对其研究充满挑战和意义,对水稻耐盐基因的探索和运用为解决当前农业生产上面临的难题提供了一个新思路,对分子育种、耐盐品种的研发有重要意义。Salt stress can cause osmotic stress and ion stress, which can inhibit the normal cell growth and division of plants. In response to adverse environments, plants maintain osmotic and ionic homeostasis through rapid osmotic and ionic signaling. High-salt osmotic stress can rapidly increase the biosynthesis of abscisic acid (ABA), thereby regulating ABA-dependent stress response pathways. Genes of protein kinases, transcription factors, miRNAs and ROS-related proteins can all participate in the response to salt stress through ABA-dependent pathways; there are also some salt-induced genes that are independent of ABA. In addition, since salt stress can cause the accumulation of osmoprotective substances in plants, the genes related to the synthesis of these osmoprotective macromolecules also play a role in the salt stress response; hormones, as molecules that transmit stress signals to cells, their synthesis and transmission Genes in the pathway were also involved in salt stress. The plant stress regulation network is intricate, and its research is full of challenges and significance. The exploration and application of rice salt-tolerant genes provides a new idea for solving the current problems in agricultural production, and is of great significance to molecular breeding and the development of salt-tolerant varieties. .

发明内容Contents of the invention

本发明所要解决的技术问题是如何提高植物的耐盐能力。The technical problem to be solved by the invention is how to improve the salt tolerance of plants.

本发明提供了一种蛋白质,名称为OsFLP,是如下A1)、A2)或A3)的蛋白质:The present invention provides a protein named OsFLP, which is the following A1), A2) or A3) protein:

A1)氨基酸序列是序列表中序列1的蛋白质;A1) The amino acid sequence is the protein of sequence 1 in the sequence listing;

A2)将A1)的蛋白质经过一个或几个氨基酸残基的取代和/或缺失和/或添加得到的与A1)所示的蛋白质具有90%以上的同一性且具有提高耐盐活性的蛋白质;A2) A protein having more than 90% identity with the protein shown in A1) obtained by substituting and/or deleting and/or adding one or several amino acid residues to the protein of A1) and having a salt-tolerance-improving activity;

A3)在A1)或A2)的N末端或/和C末端连接蛋白质标签得到的融合蛋白质。A3) A fusion protein obtained by connecting a protein tag to the N-terminus or/and C-terminus of A1) or A2).

上述蛋白质可人工合成,也可先合成其编码基因,再进行生物表达得到。The above-mentioned proteins can be synthesized artificially, or their coding genes can be synthesized first, and then biologically expressed.

上述蛋白质中,所述蛋白质标签(protein-tag)是指利用DNA体外重组技术,与目的蛋白质一起融合表达的一种多肽或者蛋白质,以便于目的蛋白质的表达、检测、示踪和/或纯化。所述蛋白质标签可为Flag标签、His标签、MBP标签、HA标签、myc标签、GST标签和/或SUMO标签等。Among the above proteins, the protein-tag refers to a polypeptide or protein that is fused and expressed with the target protein using DNA in vitro recombination technology, so as to facilitate the expression, detection, tracking and/or purification of the target protein. The protein tag can be Flag tag, His tag, MBP tag, HA tag, myc tag, GST tag and/or SUMO tag, etc.

上述蛋白质中,同一性是指氨基酸序列的同一性。可使用国际互联网上的同源性检索站点测定氨基酸序列的同一性,如NCBI主页网站的BLAST网页。例如,可在高级BLAST2.1中,通过使用blastp作为程序,将Expect值设置为10,将所有Filter设置为OFF,使用BLOSUM62作为Matrix,将Gap existence cost,Perresidue gap cost和Lambda ratio分别设置为11,1和0.85(缺省值)并进行检索一对氨基酸序列的同一性进行计算,然后即可获得同一性的值(%)。In the above-mentioned proteins, the identity refers to the identity of amino acid sequences. Amino acid sequence identities can be determined using homology search sites on the Internet, such as the BLAST webpage of the NCBI homepage. For example, in advanced BLAST2.1, by using blastp as the program, set Expect value to 10, set all Filters to OFF, use BLOSUM62 as Matrix, set Gap existence cost, Perresidue gap cost and Lambda ratio to 11 respectively , 1 and 0.85 (the default value) and search for the identity of a pair of amino acid sequences for calculation, and then the value (%) of the identity can be obtained.

上述蛋白质中,所述90%以上的同一性可为至少91%、92%、95%、96%、98%、99%或100%的同一性。Among the above proteins, the above 90% identity may be at least 91%, 92%, 95%, 96%, 98%, 99% or 100% identity.

与OsFLP相关的生物材料也属于本发明的保护范围。Biological materials related to OsFLP also belong to the protection scope of the present invention.

本发明所提供的与蛋白质OsFLP相关的生物材料,为下述B1)至B5)中的任一种:The biological material related to the protein OsFLP provided by the present invention is any one of the following B1) to B5):

B1)编码OsFLP的核酸分子;B1) a nucleic acid molecule encoding OsFLP;

B2)含有B1)所述核酸分子的表达盒;B2) an expression cassette containing the nucleic acid molecule of B1);

B3)含有B1)所述核酸分子的重组载体、或含有B1)所述表达盒的重组载体;B3) a recombinant vector containing the nucleic acid molecule described in B1), or a recombinant vector containing the expression cassette described in B1);

B4)含有B1)所述核酸分子的重组微生物、或含有B2)所述表达盒的重组微生物、或含有B3)所述重组载体的重组微生物;B4) A recombinant microorganism containing the nucleic acid molecule described in B1), or a recombinant microorganism containing the expression cassette described in B2), or a recombinant microorganism containing a recombinant vector described in B3);

B5)含有B1)所述核酸分子的转基因植物细胞系、或含有B2)所述表达盒的转基因植物细胞系、或含有B3)所述重组载体的转基因植物细胞系。B5) The transgenic plant cell line containing the nucleic acid molecule described in B1), or the transgenic plant cell line containing the expression cassette described in B2), or the transgenic plant cell line containing the recombinant vector described in B3).

其中,所述核酸分子可以是DNA,如cDNA、基因组DNA或重组DNA;所述核酸分子也可以是RNA,如mRNA或hnRNA等。Wherein, the nucleic acid molecule can be DNA, such as cDNA, genomic DNA or recombinant DNA; the nucleic acid molecule can also be RNA, such as mRNA or hnRNA.

上述生物材料中,B1)所述核酸分子为如下b1)或b2)所示的基因:In the above-mentioned biological material, the nucleic acid molecule described in B1) is the gene shown in b1) or b2) below:

b1)编码链的编码序列(CDS)是序列表中序列2的cDNA分子或DNA分子;b1) The coding sequence (CDS) of the coding strand is the cDNA molecule or DNA molecule of sequence 2 in the sequence listing;

b2)编码链的核苷酸是序列表中序列2的cDNA分子或DNA分子。b2) The nucleotides of the coding strand are cDNA molecules or DNA molecules of sequence 2 in the sequence listing.

其中,序列表中的序列2由1617个核苷酸组成,编码序列表中的序列1所示的蛋白质。Wherein, sequence 2 in the sequence listing consists of 1617 nucleotides, encoding the protein shown in sequence 1 in the sequence listing.

上述生物材料中,B2)所述的含有所述核酸分子的表达盒(OsFLP基因表达盒),是指能够在宿主细胞中表达OsFLP的核酸分子,该核酸分子不但可包括启动OsFLP基因转录的启动子,还可包括终止OsFLP转录的终止子。进一步,所述表达盒还可包括增强子序列。可用于本发明的启动子包括但不限于:组成型启动子,组织、器官和发育特异的启动子,和诱导型启动子。启动子的例子包括但不限于:花椰菜花叶病毒的组成型启动子35S;来自西红柿的创伤诱导型启动子,亮氨酸氨基肽酶("LAP",Chao等人(1999)Plant Physiology 120:979-992);来自烟草的化学诱导型启动子,发病机理相关1(PR1)(由水杨酸和BTH(苯并噻二唑-7-硫代羟酸S-甲酯)诱导);西红柿蛋白质酶抑制剂II启动子(PIN2)或LAP启动子(均可用茉莉酮酸曱酯诱导);热休克启动子(美国专利5,187,267);四环素诱导型启动子(美国专利5,057,422);种子特异性启动子,如谷子种子特异性启动子pF128(CN101063139B(中国专利200710099169.7)),种子贮存蛋白质特异的启动子(例如,菜豆球蛋白质、napin,oleosin和大豆beta conglycin的启动子(Beachy等人(1985)EMBO J.4:3047-3053))。它们可单独使用或与其它的植物启动子结合使用。此处引用的所有参考文献均全文引用。合适的转录终止子包括但不限于:农杆菌胭脂碱合成酶终止子(NOS终止子)、花椰菜花叶病毒CaMV 35S终止子、tml终止子、豌豆rbcS E9终止子和胭脂氨酸和章鱼氨酸合酶终止子(参见,例如:Odell等人(I985)Nature 313:810;Rosenberg等人(1987)Gene,56:125;Guerineau等人(1991)Mol.Gen.Genet,262:141;Proudfoot(1991)Cell,64:671;Sanfacon等人GenesDev.,5:141;Mogen等人(1990)Plant Cell,2:1261;Munroe等人(1990)Gene,91:151;Ballad等人(1989)Nucleic Acids Res.17:7891;Joshi等人(1987)Nucleic Acid Res.,15:9627)。Among the above-mentioned biological materials, the expression cassette containing the nucleic acid molecule (OsFLP gene expression cassette) described in B2) refers to a nucleic acid molecule capable of expressing OsFLP in a host cell. A terminator that terminates transcription of OsFLP may also be included. Further, the expression cassette may also include an enhancer sequence. Promoters that can be used in the present invention include, but are not limited to: constitutive promoters, tissue, organ and development specific promoters, and inducible promoters. Examples of promoters include, but are not limited to: the constitutive promoter 35S of cauliflower mosaic virus; the wound-inducible promoter from tomato, leucine aminopeptidase ("LAP", Chao et al. (1999) Plant Physiology 120: 979-992); chemically inducible promoter from tobacco, pathogenesis-related 1 (PR1) (induced by salicylic acid and BTH (benzothiadiazole-7-thiohydroxy acid S-methyl ester)); tomato Protease Inhibitor II promoter (PIN2) or LAP promoter (both inducible with methyl jasmonate); heat shock promoter (U.S. Patent 5,187,267); tetracycline-inducible promoter (U.S. Patent 5,057,422 ); seed-specific promoters, such as millet seed-specific promoter pF128 (CN101063139B (Chinese patent 200710099169.7)), seed storage protein-specific promoters (for example, the promoters of phaseolin, napin, oleosin and soybean beta conglycin ( Beachy et al. (1985) EMBO J. 4:3047-3053)). They can be used alone or in combination with other plant promoters. All references cited herein are cited in their entirety. Suitable transcription terminators include, but are not limited to: Agrobacterium nopaline synthase terminator (NOS terminator), cauliflower mosaic virus CaMV 35S terminator, tml terminator, pea rbcS E9 terminator and nopaline and octopine Synthase terminators (see, e.g.: Odell et al. ( 1985 ) Nature 313:810; Rosenberg et al. (1987) Gene, 56:125; Guerineau et al. (1991) Mol. Gen. Genet, 262:141; Proudfoot (1991) Cell, 64:671; Sanfacon et al. Genes Dev., 5:141; Mogen et al. (1990) Plant Cell, 2:1261; Munroe et al. (1990) Gene, 91:151; Ballad et al. (1989) Nucleic Acids Res. 17:7891; Joshi et al. (1987) Nucleic Acids Res., 15:9627).

可用现有的植物表达载体构建含有所述OsFLP基因表达盒的重组表达载体。所述植物表达载体包括双元农杆菌载体和可用于植物微弹轰击的载体等。如pAHC25、pWMB123、pBin438、pCAMBIA1302、pCAMBIA2301、pCAMBIA1301、pCAMBIA1300、pBI121、pCAMBIA1391-Xa、pCAMBIA1391-Xb(CAMBIA公司)、pH7WG2D.1等。所述植物表达载体还可包含外源基因的3’端非翻译区域,即包含聚腺苷酸信号和任何其它参与mRNA加工或基因表达的DNA片段。所述聚腺苷酸信号可引导聚腺苷酸加入到mRNA前体的3’端,如农杆菌冠瘿瘤诱导(Ti)质粒基因(如胭脂碱合成酶基因Nos)、植物基因(如大豆贮存蛋白质基因)3’端转录的非翻译区均具有类似功能。使用本发明的基因构建植物表达载体时,还可使用增强子,包括翻译增强子或转录增强子,这些增强子区域可以是ATG起始密码子或邻接区域起始密码子等,但必需与编码序列的阅读框相同,以保证整个序列的正确翻译。所述翻译控制信号和起始密码子的来源是广泛的,可以是天然的,也可以是合成的。翻译起始区域可以来自转录起始区域或结构基因。为了便于对转基因植物细胞或植物进行鉴定及筛选,可对所用植物表达载体进行加工,如加入可在植物中表达的编码可产生颜色变化的酶或发光化合物的基因(GUS基因、萤光素酶基因等)、抗生素的标记基因(如赋予对卡那霉素和相关抗生素抗性的nptII基因,赋予对除草剂膦丝菌素抗性的bar基因,赋予对抗生素潮霉素抗性的hph基因,和赋予对methatrexate抗性的dhfr基因,赋予对草甘磷抗性的EPSPS基因)或是抗化学试剂标记基因等(如抗除莠剂基因)、提供代谢甘露糖能力的甘露糖-6-磷酸异构酶基因。从转基因植物的安全性考虑,可不加任何选择性标记基因,直接以逆境筛选转化植株。An existing plant expression vector can be used to construct a recombinant expression vector containing the OsFLP gene expression cassette. The plant expression vectors include binary Agrobacterium vectors and vectors that can be used for plant microprojectile bombardment and the like. Such as pAHC25, pWMB123, pBin438, pCAMBIA1302, pCAMBIA2301, pCAMBIA1301, pCAMBIA1300, pBI121, pCAMBIA1391-Xa, pCAMBIA1391-Xb (CAMBIA Company), pH7WG2D.1, etc. The plant expression vector can also include the 3' untranslated region of the foreign gene, that is, the polyadenylation signal and any other DNA fragments involved in mRNA processing or gene expression. The polyadenylic acid signal can guide polyadenylic acid to be added to the 3' end of the mRNA precursor, such as Agrobacterium crown gall tumor induction (Ti) plasmid gene (such as nopaline synthase gene Nos), plant gene (such as soybean The untranslated regions transcribed at the 3' ends of storage protein genes have similar functions. When using the gene of the present invention to construct plant expression vectors, enhancers can also be used, including translation enhancers or transcription enhancers, and these enhancer regions can be ATG initiation codons or adjacent region initiation codons, etc. The reading frames of the sequences are identical to ensure correct translation of the entire sequence. The sources of the translation control signals and initiation codons are extensive and can be natural or synthetic. The translation initiation region can be from a transcription initiation region or a structural gene. In order to facilitate the identification and screening of transgenic plant cells or plants, the plant expression vectors used can be processed, such as adding genes (GUS gene, luciferase gene, etc.) genes, etc.), antibiotic marker genes (such as the nptII gene that confers resistance to kanamycin and related antibiotics, the bar gene that confers resistance to the herbicide phosphinothricin, and the hph gene that confers resistance to the antibiotic hygromycin , and the dhfr gene that confers resistance to metharexate, the EPSPS gene that confers resistance to glyphosate) or the chemical resistance marker gene (such as the herbicide resistance gene), the mannose-6- that provides the ability to metabolize mannose Phosphate isomerase gene. Considering the safety of the transgenic plants, the transformed plants can be screened directly by adversity without adding any selectable marker gene.

上述生物材料中,所述重组微生物具体可为酵母,细菌,藻和真菌。Among the above biological materials, the recombinant microorganisms can specifically be yeast, bacteria, algae and fungi.

上述的蛋白质、或上述生物材料在调控植物耐盐性中的应用也属于本发明的保护范围。The application of the above-mentioned proteins or the above-mentioned biological materials in regulating the salt tolerance of plants also belongs to the protection scope of the present invention.

为了解决上述技术问题,本发明还提供了植物试剂,其作用为提高植物耐盐性。In order to solve the above technical problems, the present invention also provides a plant agent, which is used to improve the salt tolerance of plants.

本发明所提供的植物试剂含有所述的蛋白质或/和所述的蛋白质相关的生物材料。The plant reagent provided by the present invention contains the protein or/and the biological material related to the protein.

上述植物试剂的活性成分可为所述的蛋白质或/和所述的蛋白质相关的生物材料,上述植物试剂的活性成分还可含有其他生物成分或/和非生物成分,上述植物试剂的其他活性成分本领域技术人员可根据植物的氮吸收效果确定。The active ingredient of the above-mentioned plant reagent can be the protein or/and the biological material related to the protein, the active component of the above-mentioned plant reagent can also contain other biological components or/and non-biological components, the other active components of the above-mentioned plant reagent Those skilled in the art can determine according to the nitrogen uptake effect of plants.

为了解决上述技术问题,本发明还提供了一种培育耐盐植物的方法。In order to solve the above technical problems, the present invention also provides a method for cultivating salt-tolerant plants.

本发明所提供的培育耐盐植物的方法,包括将编码所述蛋白质的核酸分子导入目的植物中,得到耐盐植物;所述耐盐植物对盐的耐受性优于所述目的植物的对盐的耐受性。The method for cultivating salt-tolerant plants provided by the present invention includes introducing the nucleic acid molecule encoding the protein into a target plant to obtain a salt-tolerant plant; the tolerance of the salt-tolerant plant to salt is better than that of the target plant Salt tolerance.

本发明还提高一种蛋白质,其对盐敏感,所述蛋白质是如下X1)、X2)或X3)的蛋白质:The present invention also provides a protein that is sensitive to salt, said protein being a protein of X1), X2) or X3) as follows:

X1)氨基酸序列是序列表中序列1第118位氨基酸残基由丙氨酸残基替换为苏氨酸残基,保持其它序列不变得到的蛋白质;X1) The amino acid sequence is a protein obtained by replacing the 118th amino acid residue of Sequence 1 in the sequence listing with an alanine residue with a threonine residue and keeping other sequences unchanged;

X2)将X1)的蛋白质经过一个或几个氨基酸残基的取代和/或缺失和/或添加得到的与X1)所示的蛋白质具有90%以上的同一性且具有提高盐敏感活性的蛋白质;X2) A protein having more than 90% identity with the protein shown in X1) obtained by substituting and/or deleting and/or adding one or several amino acid residues to the protein of X1) and having an activity of improving salt sensitivity;

X3)在X1)或X2)的N末端或/和C末端连接蛋白质标签得到的融合蛋白质。X3) A fusion protein obtained by connecting a protein tag to the N-terminus or/and C-terminus of X1) or X2).

本发明还提供与上述盐敏感蛋白质相关的生物材料,为下述Y1)至Y5)中的任一种:The present invention also provides a biological material related to the above-mentioned salt-sensitive protein, which is any one of the following Y1) to Y5):

Y1)编码所述的盐敏感蛋白质的核酸分子;Y1) a nucleic acid molecule encoding the salt-sensitive protein;

Y2)含有Y1)所述核酸分子的表达盒;Y2) an expression cassette containing the nucleic acid molecule of Y1);

Y3)含有Y1)所述核酸分子的重组载体、或含有Y1)所述表达盒的重组载体;Y3) a recombinant vector containing the nucleic acid molecule described in Y1), or a recombinant vector containing the expression cassette described in Y1);

Y4)含有Y1)所述核酸分子的重组微生物、或含有Y2)所述表达盒的重组微生物、或含有Y3)所述重组载体的重组微生物;Y4) A recombinant microorganism containing the nucleic acid molecule described in Y1), or a recombinant microorganism containing the expression cassette described in Y2), or a recombinant microorganism containing a recombinant vector described in Y3);

Y5)含有Y1)所述核酸分子的转基因植物细胞系、或含有Y2)所述表达盒的转基因植物细胞系、或含有Y3)所述重组载体的转基因植物细胞系。Y5) the transgenic plant cell line containing the nucleic acid molecule of Y1), or the transgenic plant cell line containing the expression cassette of Y2), or the transgenic plant cell line containing the recombinant vector of Y3).

本发明还提供一种培育盐敏感植物的方法,包括将编码所述的盐敏感蛋白质的核酸分子导入目的植物中,得到盐敏感植物;所述盐敏感植物对盐的敏感性高于所述目的植物的对盐的敏感性。The present invention also provides a method for cultivating salt-sensitive plants, comprising introducing the nucleic acid molecule encoding the salt-sensitive protein into a target plant to obtain a salt-sensitive plant; the sensitivity of the salt-sensitive plant to salt is higher than that of the target plant Sensitivity of plants to salt.

本发明所述目的植物可为不含编码所述蛋白质的核酸分子的单子叶植物或双子叶植物。所述单子叶植物可为谷子、水稻。The target plant of the present invention may be a monocotyledonous plant or a dicotyledonous plant not containing the nucleic acid molecule encoding the protein. The monocot can be millet, rice.

本发明方法中,其中所述的核酸分子可先进行如下修饰,再导入目的植物中,以达到更好的表达效果:In the method of the present invention, the nucleic acid molecule can be modified as follows first, and then introduced into the target plant to achieve a better expression effect:

1)修饰邻近起始甲硫氨酸的基因序列,以使翻译有效起始;例如,利用在植物中已知的有效的序列进行修饰;1) modifying the gene sequence adjacent to the starting methionine to allow efficient initiation of translation; for example, using sequences known to be effective in plants for modification;

2)与各种植物表达的启动子连接,以利于其在植物中的表达;所述启动子可包括组成型、诱导型、时序调节、发育调节、化学调节、组织优选和组织特异性启动子;启动子的选择将随着表达时间和空间需要而变化,而且也取决于靶物种;例如组织或器官的特异性表达启动子,根据需要受体在发育的什么时期而定;尽管证明了来源于双子叶植物的许多启动子在单子叶植物中是可起作用的,反之亦然,但是理想地,选择双子叶植物启动子用于双子叶植物中的表达,单子叶植物的启动子用于单子叶植物中的表达;2) Linking with various plant-expressed promoters to facilitate its expression in plants; said promoters may include constitutive, inducible, temporally regulated, developmentally regulated, chemically regulated, tissue-preferred and tissue-specific promoters ; the choice of promoter will vary with the temporal and spatial requirements of expression, and also depends on the target species; e.g. a tissue or organ-specific expression promoter, depending on what stage of development the recipient is desired; although proven source Many promoters for dicots are functional in monocots and vice versa, but ideally, dicot promoters are chosen for expression in dicots and monocot promoters are used for Expression in monocots;

3)与适合的转录终止子连接,也可以提高本发明基因的表达效率;例如来源于CaMV的tml,来源于rbcS的E9;任何已知在植物中起作用的可得到的终止子都可以与本发明基因进行连接;3) be connected with suitable transcription terminator, also can improve the expression efficiency of gene of the present invention; For example derive from the tml of CaMV, derive from the E9 of rbcS; Any obtainable terminator that is known to work in the plant all can be combined with The gene of the present invention is connected;

4)引入增强子序列,如内含子序列(例如来源于Adhl和bronzel)和病毒前导序列(例如来源于TMV,MCMV和AMV)。4) Introduce enhancer sequences, such as intron sequences (eg derived from Adhl and bronze) and viral leader sequences (eg derived from TMV, MCMV and AMV).

所述的核酸分子可通过使用Ti质粒,植物病毒栽体,直接DNA转化,微注射,电穿孔等常规生物技术方法导入植物细胞(Weissbach,1998,Method for Plant MolecularBiology VIII,Academy Press,New York,pp.411-463;Geiserson and Corey,1998,PlantMolecularBiology(2nd Edition)。The nucleic acid molecule can be introduced into plant cells by conventional biotechnological methods such as Ti plasmid, plant virus carrier, direct DNA transformation, microinjection, electroporation (Weissbach, 1998, Method for Plant Molecular Biology VIII, Academy Press, New York, pp. 411-463; Geiserson and Corey, 1998, Plant Molecular Biology (2nd Edition).

本发明所述耐盐植物或所述盐敏感植物可为转基因植物,也可为通过杂交等常规育种技术获得的植物。The salt-tolerant plant or the salt-sensitive plant of the present invention can be a transgenic plant, or a plant obtained by conventional breeding techniques such as hybridization.

本发明所述转基因植物理解为不仅包含第一代到第二代转基因植物,也包括其子代。对于转基因植物,可以在该物种中繁殖该基因,也可用常规育种技术将该基因转移进入相同物种的其它品种,特别包括商业品种中。所述转基因植物包括种子、愈伤组织、完整植株和细胞。The transgenic plants of the present invention are understood to include not only the first to second generation transgenic plants, but also their progeny. For transgenic plants, the gene can be propagated in that species, or transferred into other varieties of the same species, particularly including commercial varieties, using conventional breeding techniques. The transgenic plants include seeds, callus, whole plants and cells.

将OsFLP基因导入水稻的转基因实验证明,表达OsFLP基因的转基因水稻与受体水稻相比,显著促进了对盐的耐受性,说明OsFLP基因是与耐盐相关的基因,OsFLP基因可用于提高植物的耐盐性,提高植物的抗逆能力。The transgenic experiment of introducing the OsFLP gene into rice proved that the transgenic rice expressing the OsFLP gene significantly promoted the tolerance to salt compared with the recipient rice, indicating that the OsFLP gene is a gene related to salt tolerance, and the OsFLP gene can be used to improve the tolerance of plants. Salt tolerance, improve the stress resistance of plants.

附图说明Description of drawings

图1为实施例1中水稻OsFLP蛋白与已知R2R3-MYB家族蛋白的序列比较图。Fig. 1 is a sequence comparison diagram of rice OsFLP protein in Example 1 and known R2R3-MYB family proteins.

图2为实施例1中转OsFLP阳性转化植株的植物组织GUS染色图,其中,A为萌发3d的水稻幼苗,B为主根,C为根的中柱,D为成熟气孔,E为幼苗颈节点,F为E的颈节点局部放大图。Fig. 2 is the GUS staining figure of the plant tissue of the OsFLP-positive transformation plant in Example 1, wherein, A is the rice seedling that germinates for 3 days, B is the main root, C is the central column of the root, D is the mature stomata, and E is the neck node of the seedling, F is a partial enlarged view of the neck node of E.

图3为实施例1中不同NaCl处理时长下野生型水稻中的OsFLP基因表达量柱状图,数据表示为平均值±标准差,重复数为3,采用Student’s t test进行显著性分析,**表示显著性分析结果为P<0.01。Figure 3 is a histogram of OsFLP gene expression in wild-type rice under different NaCl treatment durations in Example 1, the data are expressed as mean ± standard deviation, the number of repetitions is 3, and the Student's t test is used for significance analysis, ** indicates The significant analysis result was P<0.01.

图4为实施例2中osflp-1突变体突变位点分析图。Fig. 4 is an analysis diagram of the mutation site of the osflp-1 mutant in Example 2.

图5为实施例3中pH7WG2D.1的质粒图谱。Figure 5 is the plasmid map of pH7WG2D.1 in Example 3.

图6为实施例3中4种材料盐处理21天后的照片和存活率柱状图。其中,图6的A图为4种材料未经盐处理的对照组照片,图6的B图为4种材料盐处理后的实验组照片,图6的C图为4种材料处理组和对照组的存活率统计柱状图,数据表示为平均值±标准差,重复数为3,采用Student’s t test进行显著性分析,**表示显著性分析结果为P<0.01。Fig. 6 is the photo and the bar graph of the survival rate of the 4 kinds of materials in Example 3 after being treated with salt for 21 days. Wherein, the A picture of Fig. 6 is the photo of the control group without salt treatment of 4 kinds of materials, the B picture of Fig. 6 is the photo of the experimental group after the salt treatment of 4 kinds of materials, and the C picture of Fig. 6 is the photo of the 4 kinds of material treatment groups and the contrast Statistical histogram of the survival rate of the group, the data is expressed as the mean ± standard deviation, the number of repetitions is 3, and the Student's t test is used for significant analysis. ** indicates that the significant analysis result is P<0.01.

具体实施方式Detailed ways

下面结合具体实施方式对本发明进行进一步的详细描述,给出的实施例仅为了阐明本发明,而不是为了限制本发明的范围。以下提供的实施例可作为本技术领域普通技术人员进行进一步改进的指南,并不以任何方式构成对本发明的限制。The present invention will be further described in detail below in conjunction with specific embodiments, and the given examples are only for clarifying the present invention, not for limiting the scope of the present invention. The examples provided below can be used as a guideline for those skilled in the art to make further improvements, and are not intended to limit the present invention in any way.

下述实施例中的实验方法,如无特殊说明,均为常规方法。下述实施例中所用的材料、试剂等,如无特殊说明,均为常规生化试剂,可从商业途径得到。The experimental methods in the following examples are conventional methods unless otherwise specified. Materials, reagents, etc. used in the following examples, unless otherwise specified, are conventional biochemical reagents, which can be obtained from commercial sources.

1载体1 carrier

下述实施例中载体pCAMBIA1301为北京华博德亿生物技术有限公司产品,货号:VT3013。The vector pCAMBIA1301 in the following examples is a product of Beijing Huabo Deyi Biotechnology Co., Ltd., product number: VT3013.

下述实施例中载体pH7WG2D.1为中国质粒载体菌株细胞株基因保藏中心(BioVector)产品,货号:BioVector921816。The vector pH7WG2D.1 in the following examples is a product of China Plasmid Vector Strain Cell Strain Gene Collection Center (BioVector), product number: BioVector921816.

下述实施例中载体TOPOvector(货号:CV0402)为北京艾德科技有限公司产品。The carrier TOPOvector (article number: CV0402) in the following examples is a product of Beijing Aide Technology Co., Ltd.

2植物品系2 plant strains

下述实施例中的水稻品种ZH11(Oryza sativa L.ssp.Japonica cv.Zhonghua11,ZH11)记载于非专利文献“OsPGIP1-Mediated Resistance to Bacterial Leaf Streakin Rice is Beyond Responsive to the Polygalacturonase of Xanthomonas oryzaepv.oryzicola”。公众可从中科院植物所获得,以重复本申请实验,不可作为其它用途使用。The rice variety ZH11 (Oryza sativa L.ssp. Japonica cv. Zhonghua11, ZH11) in the following examples is described in the non-patent literature "OsPGIP1-Mediated Resistance to Bacterial Leaf Streakin Rice is Beyond Responsive to the Polygalacturonase of Xanthomonas oryzaepv.oryzicola" . The public can obtain it from the Institute of Botany, Chinese Academy of Sciences to repeat the experiment of this application, and it cannot be used for other purposes.

4试剂4 reagents

Gateway LR ClonaseⅡenzyme mix(货号:11791019)为赛默飞世尔科技(中国)有限公司公司产品。Gateway LR ClonaseⅡenzyme mix (Product No.: 11791019) is a product of Thermo Fisher Scientific (China) Co., Ltd.

下述实施例中,如无特殊说明,序列表中各核苷酸序列的第1位均为相应DNA的5′末端核苷酸,末位均为相应DNA的3′末端核苷酸。In the following examples, unless otherwise specified, the first position of each nucleotide sequence in the sequence listing is the 5' terminal nucleotide of the corresponding DNA, and the last position is the 3' terminal nucleotide of the corresponding DNA.

实施例1、植物耐盐相关基因OsFLP的获得Example 1. Acquisition of plant salt-tolerance-related gene OsFLP

1、水稻OsFLP蛋白序列分析1. Sequence analysis of rice OsFLP protein

利用拟南芥AtFLP的氨基酸序列在NCBI(http://www.ncbi.nlm.nih.gov/)和水稻基因组数据库(http://rice.plantbiology.msu.edu/)中进行比对,寻找拟南芥AtFLP的同源蛋白。结果获得了一个与AtFLP氨基酸序列具有33.89%相似性的蛋白,并命名为OsFLP,其氨基酸序列如序列表中序列1所示。Using the amino acid sequence of Arabidopsis AtFLP in NCBI (http://www.ncbi.nlm.nih.gov/) and the rice genome database (http://rice.plantbiology.msu.edu/), to find Homologous proteins of Arabidopsis AtFLP. As a result, a protein having 33.89% similarity to AtFLP's amino acid sequence was obtained and named as OsFLP, and its amino acid sequence is shown in Sequence 1 in the Sequence Listing.

通过与已知的几个R2R3-MYB家族蛋白序列,包括拟南芥AtFLP、AtMYB88、AtMYB121、ATMYB0(ATGL1)和水稻OsMPS蛋白序列进行比较分析,结果见图1,发现在OsFLP蛋白的N端具有R2和R3两个MYB结构域。其中R2包含H1、H2和H3三个保守基序,R3包含H1、H2和H3三个保守基序,证明OsFLP是一个R2R3-MYB家族蛋白。By comparing and analyzing several known R2R3-MYB family protein sequences, including Arabidopsis AtFLP, AtMYB88, AtMYB121, ATMYB0 (ATGL1) and rice OsMPS protein sequences, the results are shown in Figure 1, and it is found that there is a R2 and R3 two MYB domains. Among them, R2 contains three conserved motifs of H1, H2 and H3, and R3 contains three conserved motifs of H1, H2 and H3, which proves that OsFLP is a R2R3-MYB family protein.

2、水稻OsFLP基因的克隆2. Cloning of rice OsFLP gene

编码OsFLP蛋白的基因名称为OsFLP,该基因在水稻基因组数据库中的编为Os07g0627300,来源于水稻日本晴生态型。OsFLP基因位于七号染色体上,共有12个外显子。The name of the gene encoding the OsFLP protein is OsFLP, which is coded as Os07g0627300 in the rice genome database, and is derived from the rice Nipponbare ecotype. The OsFLP gene is located on chromosome 7 and has 12 exons.

取水稻幼苗100-200mg,用RNA提取试剂盒提取总RNA,硝化后根据提取RNA的浓度反转录合成一定量的单链cDNA。OsFLP基因扩增条件如下,将合成的单链cDNA稀释4倍,作为PCR反应的模板:采用TOYOBO公司的高保真DNA聚合酶KOD-Plus,对OsFLP的cDNA全长进行扩增,扩增体系为50μL,含10×KOD buffer5μL,2mM dNTP mix 5μL,Primer1和Primer2各1.5μL,KOD-Plus DNA聚合酶0.5μL,模板1-5μL,补充灭菌超纯水至50μL,反应体系配制过程在冰上操作。Take 100-200 mg of rice seedlings, use RNA extraction kit to extract total RNA, and synthesize a certain amount of single-stranded cDNA by reverse transcription according to the concentration of extracted RNA after nitration. OsFLP gene amplification conditions are as follows, the synthesized single-stranded cDNA was diluted 4 times, and used as a template for PCR reaction: the full-length cDNA of OsFLP was amplified with high-fidelity DNA polymerase KOD-Plus from TOYOBO, and the amplification system was as follows: 50 μL, containing 5 μL of 10×KOD buffer, 5 μL of 2mM dNTP mix, 1.5 μL of Primer1 and Primer2, 0.5 μL of KOD-Plus DNA polymerase, 1-5 μL of template, supplemented with sterilized ultrapure water to 50 μL, and the reaction system preparation process was on ice operate.

Primer 1:5’-ATGGCGACCGGACCCGATCTG-3’;Primer 1: 5'-ATGGCGACCGGACCCGATCTG-3';

Primer 2:5’-TCATAGGCTATTAAGGAGAGC-3’。Primer 2: 5'-TCATAGGCTATTAAGGAGAGC-3'.

BIO-RAD PCR扩增仪上进行扩增,预变性5min,94℃变性30s,54℃30s,68℃2min,循环数32个,68℃延伸10min。将扩增片段用1%的琼脂糖凝胶进行电泳,回收扩增片段,连接到载体Blunt上,进行酶切及测序鉴定,获得正确的OsFLP基因cDNA(见序列表的序列2)。Amplification was carried out on a BIO-RAD PCR amplification instrument, with pre-denaturation for 5 minutes, denaturation at 94°C for 30s, 30s at 54°C, 2min at 68°C, 32 cycles, and extension at 68°C for 10 minutes. The amplified fragment was subjected to electrophoresis on 1% agarose gel, and the amplified fragment was recovered, connected to the vector Blunt, subjected to enzyme digestion and sequencing identification, and obtained the correct OsFLP gene cDNA (see sequence 2 in the sequence listing).

3、水稻OsFLP表达模式分析3. Analysis of rice OsFLP expression pattern

利用植物组织模式表达载体pGUS1301,及步骤2获得的OsFLP基因cDNA,构建OsFLP:OsFLP-GUS表达载体,转化ZH11野生型水稻,对阳性转化植株进行GUS染色,分析OsFLP表达模式。Using the plant tissue pattern expression vector pGUS1301 and the OsFLP gene cDNA obtained in step 2, construct the OsFLP:OsFLP-GUS expression vector, transform ZH11 wild-type rice, and perform GUS staining on the positively transformed plants to analyze the OsFLP expression pattern.

染色结果见图2,OsFLP可以在水稻萌发种子基部表达,在地上部和根部都有表达。在根尖、成熟气孔中表达,在地上部的表达中,颈节点处表达量高。The staining results are shown in Figure 2. OsFLP can be expressed at the base of germinated rice seeds, as well as at the shoots and roots. It is expressed in the root tip and mature stomata, and in the shoot, the expression level is high in the neck node.

4、水稻OsFLP基因在盐处理后的表达分析4. Expression analysis of rice OsFLP gene after salt treatment

取生长2周的ZH11野生型水稻幼苗,在水培管中分别用200Mm NaCl处理幼苗根部0h、2h、4h、6h、12h、24h后提取植物总RNA,设置3个重复,qRT-PCR检测OsFLP的相对表达量,OsFLP引物和内参引物如下(OsFLP引物为Primer3和Primer4;内参引物为Primer5和Primer6)。Take ZH11 wild-type rice seedlings that have grown for 2 weeks, and treat the roots of the seedlings with 200Mm NaCl in a hydroponic tube for 0h, 2h, 4h, 6h, 12h, and 24h, then extract plant total RNA, set up 3 replicates, and detect OsFLP by qRT-PCR The relative expression levels of OsFLP primers and internal reference primers are as follows (OsFLP primers are Primer3 and Primer4; internal reference primers are Primer5 and Primer6).

Primer 3:5’-AACTGGACAATTATAGCGGCAC-3’;Primer 3: 5'-AACTGGACAATTATAGCGGCAC-3';

Primer 4:5’-GGAATGTTGGGACTGTATGAGC-3’。Primer 4: 5'-GGAATGTTGGGACTGTATGAGC-3'.

Primer 5:5’-GGATCCATCTTGGCATCTCTCA-3’;Primer 5: 5'-GGATCCATCTTGGCATCTCTCA-3';

Primer 6:5’-GGGCCAGACTCGTCGTACTC-3’。Primer 6: 5'-GGGCCAGACTCGTCGTACTC-3'.

结果见图3,OsFLP基因表达受到盐胁迫的诱导上调,盐处理不同时间下,水稻中OsFLP的相对含量都显著高于正常情况,且在处理6h时表达量最高。The results are shown in Figure 3. The expression of OsFLP gene was induced and up-regulated by salt stress. The relative content of OsFLP in rice was significantly higher than normal under different salt treatment time, and the expression level was the highest at 6 hours after treatment.

实施例2、基因OsFLP突变体的获得Embodiment 2, the acquisition of gene OsFLP mutant

1、利用TILLING技术获得osflp-1突变体1. Using TILLING technology to obtain osflp-1 mutants

TILLING(Targeting Induced Local Lesions IN Genomes,定向诱导基因组局部突变)技术是一种全新的反向遗传学研究方法,利用化学诱变剂甲基磺酸乙酯对种子进行诱变,然后借助高通量测序手段快速有效的从诱变群体中鉴定出点突变。为了更好地解析OsFLP在水稻中的功能,我们用TILLING技术,获得了不同突变位点的osflp突变体株系,具体见表1。我们对获得的不同突变位点的株系进行观察比较,以气孔为出发点,找到了具有不同于野生型气孔表型的株系A2349-2,将该突变体命名为osflp-1突变体。TILLING (Targeting Induced Local Lesions IN Genomes) technology is a new reverse genetics research method, using the chemical mutagen ethyl methanesulfonate to mutate the seeds, and then using high-throughput Sequencing methods quickly and efficiently identify point mutations from mutagenized populations. In order to better analyze the function of OsFLP in rice, we used TILLING technology to obtain osflp mutant lines at different mutation sites, see Table 1 for details. We observed and compared the obtained strains at different mutation sites, and found a strain A2349-2 with a different stomatal phenotype from the wild type, and named the mutant osflp-1 mutant.

表1Table 1

Figure BDA0002961605010000081
Figure BDA0002961605010000081

Figure BDA0002961605010000091
Figure BDA0002961605010000091

2、osflp-1突变体突变位点分析2. Mutation site analysis of osflp-1 mutant

我们设计相应的引物,扩增ZH11和osflp-1突变体中的OsFLP基因组DNA。通过测序发现(图4),ZH11的OsFLP基因组DNA核苷酸序列见序列表的序列3,osflp-1突变体中OsFLP基因起始密码子ATG后第2126位处,碱基G突变为碱基A,该突变位点位于该基因的第六个外显子上。即OsFLP CDS(序列表序列2)第352位碱基由G突变为A,导致序列表中序列1第118位氨基酸残基由丙氨酸残基(Ala)替换为苏氨酸残基(Thr),氨基酸发生改变,氨基酸极性也由非极性变成极性,疏水性氨基酸变为亲水性氨基酸,氨基酸性质发生改变。We designed corresponding primers to amplify OsFLP genomic DNA in ZH11 and osflp-1 mutants. It was found by sequencing (Figure 4), that the nucleotide sequence of the OsFLP genomic DNA of ZH11 is shown in sequence 3 of the sequence table, at the 2126th position after the start codon ATG of the OsFLP gene in the osflp-1 mutant, the base G is mutated into a base A, the mutation site is located on the sixth exon of the gene. That is, the 352nd base of OsFLP CDS (sequence listing sequence 2) is mutated from G to A, resulting in the substitution of alanine residue (Ala) for threonine residue (Thr ), the amino acid changes, the polarity of the amino acid changes from non-polar to polar, the hydrophobic amino acid becomes hydrophilic, and the properties of the amino acid change.

实施例3、转基因OsFLP水稻的获得Embodiment 3, the acquisition of transgenic OsFLP rice

1、OsFLP基因过表达载体构建及水稻转基因材料的获得1. Construction of OsFLP gene overexpression vector and acquisition of rice transgenic materials

OsFLP基因过表达载体是利用pH7WG2D.1(质粒图谱见图5)作为出发载体,采取gateway体系方法构建,具体实施如下:扩增OsFLP的cDNA片段(核苷酸序列是序列2),凝胶回收后将OsFLP的cDNA片段连接到入门载体TOPOvector,得到的质粒命名为OsFLP-TOPO。将质粒OsFLP-TOPO用PVUⅠ限制性内切酶(识别位点是:CGATCG,切割后的片段具有黏性,它属于限制性内切酶Ⅱ类)在37℃条件下,酶切3小时,把酶产物进行琼脂糖凝胶电泳分离,切胶回收。取回收产物1.5μL、pH7WG2D.1质粒0.5μL及Gateway LR ClonaseⅡenzyme mix 0.5μL混合,于25℃反应4小时连接。终止反应后,将混合物转化大肠杆菌DH5α的感受态细胞,得到单菌落克隆。对单菌落进行繁殖并提取质粒,对质粒进行PCR鉴定后得到序列正确的质粒。得到的重组表达载体命名为Super-pH7WG2D.1-OsFLP。Super-pH7WG2D.1-OsFLP含有核苷酸序列是序列2的OsFLP基因,能表达氨基酸序列是序列1的蛋白质OsFLP。The OsFLP gene overexpression vector uses pH7WG2D.1 (see Figure 5 for the plasmid map) as the starting vector, and adopts the gateway system method to construct. The specific implementation is as follows: amplify the cDNA fragment of OsFLP (the nucleotide sequence is sequence 2), and gel recovery Afterwards, the cDNA fragment of OsFLP was connected to the entry vector TOPOvector, and the resulting plasmid was named OsFLP-TOPO. Digest the plasmid OsFLP-TOPO with PVUⅠ restriction endonuclease (recognition site: CGATCG, the cut fragment is sticky, it belongs to restriction endonuclease type II) at 37°C for 3 hours, put The enzyme products were separated by agarose gel electrophoresis and recovered by cutting the gel. Mix 1.5 μL of recovered product, 0.5 μL of pH7WG2D.1 plasmid, and 0.5 μL of Gateway LR ClonaseⅡenzyme mix, and react at 25°C for 4 hours for ligation. After the reaction was terminated, the mixture was transformed into competent cells of Escherichia coli DH5α to obtain single colony clones. The single colony was propagated and the plasmid was extracted, and the plasmid with the correct sequence was obtained after PCR identification of the plasmid. The obtained recombinant expression vector was named Super-pH7WG2D.1-OsFLP. Super-pH7WG2D.1-OsFLP contains the OsFLP gene whose nucleotide sequence is sequence 2, and can express the protein OsFLP whose amino acid sequence is sequence 1.

将质粒Super-pH7WG2D.1-OsFLP转化根癌农杆菌菌株EHA105的感受态细胞,利用菌落PCR和酶切的方法鉴定得到转入Super-pH7WG2D.1-OsFLP的阳性克隆(将其命名为EHA105/Super-pH7WG2D.1-OsFLP),利用EHA105/Super-pH7WG2D.1-OsFLP对水稻野生型ZH11进行转化,得到OsFLP基因过表达水稻,命名为OE。The plasmid Super-pH7WG2D.1-OsFLP was transformed into competent cells of Agrobacterium tumefaciens strain EHA105, and the positive clones transferred to Super-pH7WG2D.1-OsFLP were identified by colony PCR and enzyme digestion (named as EHA105/ Super-pH7WG2D.1-OsFLP), using EHA105/Super-pH7WG2D.1-OsFLP to transform rice wild-type ZH11 to obtain OsFLP gene overexpressed rice, named OE.

2、OsFLP基因互补osflp-1的载体构建及阳性植株获得2. OsFLP gene complementary osflp-1 vector construction and positive plants obtained

水稻互补载体为以pCAMBIA1301为出发载体进行构建,转化实施例2中的osflp-1突变体,将得到的转化苗在含有50μg/μL潮霉素的水培培养基上进行筛选,T2代的种子也需要用潮霉素进行筛选,得到的阳性植株为互补材料,命名为COM。The rice complementation vector was constructed with pCAMBIA1301 as the starting vector, transformed into the osflp-1 mutant in Example 2, and the obtained transformed seedlings were screened on a hydroponic medium containing 50 μg/μL hygromycin, and the T2 generation Seeds also need to be screened with hygromycin, and the positive plants obtained are complementary materials, named COM.

3、水稻osflp-1突变体及OsFLP基因过表达株系耐盐的表型分析3. Salt-tolerant phenotype analysis of rice osflp-1 mutants and OsFLP gene overexpression lines

采用野生型ZH11、突变体osflp-1(见实施例2)、互补材料COM(实施例3中的2构建)和OsFLP基因过表达的植株OE(实施例3中的1)共4种水稻材料的T3代植株为实验材料。Using wild-type ZH11, mutant osflp-1 (see Example 2), complementary material COM (construction of 2 in Example 3) and plant OE (1 in Example 3) with OsFLP gene overexpression, totally 4 kinds of rice materials The T3 generation plants were used as experimental materials.

在水稻大田生长环境中,实验组对生长20天的水稻幼苗进行盐处理,向幼苗浇盐溶液,浇盐浓度为200mM NaCl,浇盐处理后观察表型并统计存活率,对照组(control)以水替换盐溶液。每种材料每个处理12株,重复数为4。In the rice field growth environment, the experimental group treated the rice seedlings grown for 20 days with salt, poured a salt solution to the seedlings, and the salt concentration was 200mM NaCl, observed the phenotype and counted the survival rate after the salt treatment, and the control group (control) Replace the saline solution with water. Each material has 12 plants per treatment, and the number of repetitions is 4.

结果显示,浇盐处理15天后,对照组中4种材料幼苗生长状态没有差异,而盐处理组幼苗则表现出叶片发黄,卷缩下垂,生长停滞等胁迫状态。相同盐浓度处理下,4种幼苗对胁迫的反映不同,osflp-1突变体叶片发黄干枯现象更明显,而OsFLP过表达植株无论是生长高度还是整个植株的生长状态都更好。盐处理21天后的结果见图6,4种材料的对照组仍然都表现出正常生长的状态,相互间没有差异;而实验组中osflp-1几乎全部死亡,没有新生叶片,表现出对盐处理的高敏感性;野生型ZH11和互补植株COM叶片整体发黄,死亡植株数目小于osflp-1,OsFLP基因过表达植株则表现出对盐环境更强的耐受性,植株高度更高,叶片相对更伸展,新生叶片数目也多。对处理21天的水稻幼苗存活率进行统计发现,与野生型ZH11相比,osflp-1突变体的存活率有极显著的下降,过表达植株的存活率显著增高。The results showed that after 15 days of salt treatment, there was no difference in the growth status of the seedlings of the four materials in the control group, while the seedlings in the salt treatment group showed stress states such as yellowing of leaves, curling and drooping, and growth stagnation. Under the same salt concentration treatment, the four seedlings responded differently to the stress. The osflp-1 mutant had more obvious yellow and dry leaves, while the OsFLP overexpressed plants had better growth height and overall plant growth status. The results after 21 days of salt treatment are shown in Figure 6. The control groups of the four materials still showed normal growth, and there was no difference among them; while in the experimental group, osflp-1 almost all died, and there were no new leaves, showing that it was resistant to salt treatment. The leaves of wild-type ZH11 and complementary plant COM were yellow overall, and the number of dead plants was less than that of osflp-1, while the overexpression plants of OsFLP gene showed stronger tolerance to salt environment, higher plant height, and relatively It is more stretched, and the number of new leaves is also large. Statistics on the survival rate of rice seedlings treated for 21 days showed that compared with the wild-type ZH11, the survival rate of the osflp-1 mutant was significantly decreased, and the survival rate of the overexpressed plants was significantly increased.

同时,我们还验证了ZH11和osflp-1突变体中一些与盐胁迫响应相关基因的表达量,也将对其中差异表达的基因进行验证。At the same time, we also verified the expression levels of some genes related to salt stress response in ZH11 and osflp-1 mutants, and will also verify the differentially expressed genes.

以上对本发明进行了详述。对于本领域技术人员来说,在不脱离本发明的宗旨和范围,以及无需进行不必要的实验情况下,可在等同参数、浓度和条件下,在较宽范围内实施本发明。虽然本发明给出了特殊的实施例,应该理解为,可以对本发明作进一步的改进。总之,按本发明的原理,本申请欲包括任何变更、用途或对本发明的改进,包括脱离了本申请中已公开范围,而用本领域已知的常规技术进行的改变。按以下附带的权利要求的范围,可以进行一些基本特征的应用。The present invention has been described in detail above. For those skilled in the art, without departing from the spirit and scope of the present invention, and without unnecessary experiments, the present invention can be practiced in a wider range under equivalent parameters, concentrations and conditions. While specific embodiments of the invention have been shown, it should be understood that the invention can be further modified. In a word, according to the principles of the present invention, this application intends to include any changes, uses or improvements to the present invention, including changes made by using conventional techniques known in the art and departing from the disclosed scope of this application. Applications of some of the essential features are possible within the scope of the appended claims below.

序列表 sequence listing

<120> 一种与植物耐盐相关的OsFLP蛋白质及其相关生物材料与应用<120> An OsFLP protein related to plant salt tolerance and its related biomaterials and applications

<110> 中国科学院植物研究所<110> Institute of Botany, Chinese Academy of Sciences

<130> GNCSY210905<130>GNCSY210905

<160> 3<160> 3

<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0

<210> 1<210> 1

<211> 538<211> 538

<212> PRT<212> PRT

<213> 水稻(Oryza sativa)<213> Rice (Oryza sativa)

<400> 1<400> 1

Met Ala Thr Gly Pro Asp Leu Thr Pro Pro Ala Ala Ala Ala Ser AlaMet Ala Thr Gly Pro Asp Leu Thr Pro Pro Ala Ala Ala Ala Ser Ala

1 5 10 151 5 10 15

Glu Ala Pro Ser Ala Ser Ala Ala Lys Lys Asp Arg His Ile Val SerGlu Ala Pro Ser Ala Ser Ala Ala Lys Lys Asp Arg His Ile Val Ser

20 25 30 20 25 30

Trp Ser Thr Glu Glu Asp Asp Val Leu Arg Thr Gln Ile Ala Leu HisTrp Ser Thr Glu Glu Asp Asp Val Leu Arg Thr Gln Ile Ala Leu His

35 40 45 35 40 45

Gly Thr Asp Asn Trp Thr Ile Ile Ala Ala Gln Phe Lys Asp Lys ThrGly Thr Asp Asn Trp Thr Ile Ile Ala Ala Gln Phe Lys Asp Lys Thr

50 55 60 50 55 60

Ala Arg Gln Cys Arg Arg Arg Trp Tyr Asn Tyr Leu Asn Ser Glu CysAla Arg Gln Cys Arg Arg Arg Trp Tyr Asn Tyr Leu Asn Ser Glu Cys

65 70 75 8065 70 75 80

Lys Lys Gly Gly Trp Ser Arg Glu Glu Asp Leu Leu Leu Cys Glu AlaLys Lys Gly Gly Trp Ser Arg Glu Glu Asp Leu Leu Leu Cys Glu Ala

85 90 95 85 90 95

Gln Lys Val Leu Gly Asn Lys Trp Thr Glu Ile Ala Lys Val Val SerGln Lys Val Leu Gly Asn Lys Trp Thr Glu Ile Ala Lys Val Val Ser

100 105 110 100 105 110

Gly Arg Thr Asp Asn Ala Val Lys Asn Arg Phe Ser Thr Leu Cys LysGly Arg Thr Asp Asn Ala Val Lys Asn Arg Phe Ser Thr Leu Cys Lys

115 120 125 115 120 125

Arg Arg Ala Lys Asp Asp Glu Leu Phe Lys Glu Asn Gly Ser Leu CysArg Arg Ala Lys Asp Asp Glu Leu Phe Lys Glu Asn Gly Ser Leu Cys

130 135 140 130 135 140

Ser Ser Thr Ser Ser Lys Arg Ala Leu Val Gln Thr Gly Cys Leu ThrSer Ser Thr Ser Ser Ser Lys Arg Ala Leu Val Gln Thr Gly Cys Leu Thr

145 150 155 160145 150 155 160

Ser Gly Ala Ser Gly Ser Ala Pro Pro Ile Lys Gln Met Arg Pro CysSer Gly Ala Ser Gly Ser Ala Pro Pro Ile Lys Gln Met Arg Pro Cys

165 170 175 165 170 175

Asn Ser Asp Phe Lys Glu Asn Met Thr Pro Asn Met Arg Leu Val GlyAsn Ser Asp Phe Lys Glu Asn Met Thr Pro Asn Met Arg Leu Val Gly

180 185 190 180 185 190

Gln Asp Lys Ser Thr Gln Asp Ser Arg Gln Pro Leu Ala Ile Val TyrGln Asp Lys Ser Thr Gln Asp Ser Arg Gln Pro Leu Ala Ile Val Tyr

195 200 205 195 200 205

Gln Asn Asn Gln Asp Asn Met Asn Thr Met Asp Thr Gln Asn Leu ValGln Asn Asn Gln Asp Asn Met Asn Thr Met Asp Thr Gln Asn Leu Val

210 215 220 210 215 220

Ala Lys Thr Ala Ala Lys Gln Leu Phe Ala Gly Glu Gln Asn Cys ValAla Lys Thr Ala Ala Lys Gln Leu Phe Ala Gly Glu Gln Asn Cys Val

225 230 235 240225 230 235 240

Lys His Glu Gly Asn Phe Leu Asn Lys Asp Asp Pro Lys Ile Ala ThrLys His Glu Gly Asn Phe Leu Asn Lys Asp Asp Pro Lys Ile Ala Thr

245 250 255 245 250 255

Leu Leu Gln Arg Ala Asp Leu Leu Cys Ser Leu Ala Thr Lys Ile AsnLeu Leu Gln Arg Ala Asp Leu Leu Cys Ser Leu Ala Thr Lys Ile Asn

260 265 270 260 265 270

Thr Glu Asn Thr Ser Gln Ser Met Asp Glu Ala Trp Gln Gln Leu GlnThr Glu Asn Thr Ser Gln Ser Met Asp Glu Ala Trp Gln Gln Leu Gln

275 280 285 275 280 285

His His Leu Asp Lys Lys Asp Asp Asn Asp Met Ser Glu Ser Ser MetHis His Leu Asp Lys Lys Asp Asp Asn Asp Met Ser Glu Ser Ser Ser Met

290 295 300 290 295 300

Ser Gly Met Ala Ser Leu Leu Glu Asp Leu Asp Asp Leu Ile Val AspSer Gly Met Ala Ser Leu Leu Glu Asp Leu Asp Asp Leu Ile Val Asp

305 310 315 320305 310 315 320

Pro Tyr Glu Asn Glu Glu Glu Glu Asp Gln Asp Leu Arg Glu Gln ThrPro Tyr Glu Asn Glu Glu Glu Glu Asp Gln Asp Leu Arg Glu Gln Thr

325 330 335 325 330 335

Glu Gln Ile Asp Val Glu Asn Lys Gln Asn Ser Ser Gln Thr Ser MetGlu Gln Ile Asp Val Glu Asn Lys Gln Asn Ser Ser Gln Thr Ser Met

340 345 350 340 345 350

Glu Val Thr Ser Gln Met Val Pro Asp Asn Lys Met Glu Asp Cys ProGlu Val Thr Ser Gln Met Val Pro Asp Asn Lys Met Glu Asp Cys Pro

355 360 365 355 360 365

Asn Asp Lys Ser Thr Glu Asp Asn Asn Met Glu Pro Cys Pro Gly GluAsn Asp Lys Ser Thr Glu Asp Asn Asn Met Glu Pro Cys Pro Gly Glu

370 375 380 370 375 380

Asp Ile Pro Thr Ser Glu Asn Leu Thr Glu Ala Ala Ile Glu Asp SerAsp Ile Pro Thr Ser Glu Asn Leu Thr Glu Ala Ala Ile Glu Asp Ser

385 390 395 400385 390 395 400

Leu Leu Gln Cys Val Glu Tyr Ser Ser Pro Val His Thr Val Ile GlnLeu Leu Gln Cys Val Glu Tyr Ser Ser Pro Val His Thr Val Ile Gln

405 410 415 405 410 415

Ala Lys Thr Asp Ala Glu Ile Ala Ala Ser Glu Asn Leu Ser Glu ValAla Lys Thr Asp Ala Glu Ile Ala Ala Ser Glu Asn Leu Ser Glu Val

420 425 430 420 425 430

Leu Glu His Asn Arg Leu Gln Cys Ile Gln Leu Ala Ser Pro Ala GlnLeu Glu His Asn Arg Leu Gln Cys Ile Gln Leu Ala Ser Pro Ala Gln

435 440 445 435 440 445

Thr Thr Thr Pro Val Glu Ala Asn Ala Glu Thr Pro Ala Ser Glu LysThr Thr Thr Pro Val Glu Ala Asn Ala Glu Thr Pro Ala Ser Glu Lys

450 455 460 450 455 460

Leu Arg Glu Val Val Lys Cys Asn Asn Pro Ser Cys Ile Glu Phe ThrLeu Arg Glu Val Val Lys Cys Asn Asn Pro Ser Cys Ile Glu Phe Thr

465 470 475 480465 470 475 480

Ser Pro Ala His Thr Val Pro Thr Phe Leu Pro Tyr Ala Asp Asp MetSer Pro Ala His Thr Val Pro Thr Phe Leu Pro Tyr Ala Asp Asp Met

485 490 495 485 490 495

Pro Thr Pro Lys Phe Thr Ala Ser Glu Arg Asn Phe Leu Leu Ser ValPro Thr Pro Lys Phe Thr Ala Ser Glu Arg Asn Phe Leu Leu Ser Val

500 505 510 500 505 510

Leu Glu Leu Thr Ser Pro Gly Ser Arg Pro Asp Thr Ser Gln Gln ProLeu Glu Leu Thr Ser Pro Gly Ser Arg Pro Asp Thr Ser Gln Gln Pro

515 520 525 515 520 525

Ser Cys Lys Arg Ala Leu Leu Asn Ser LeuSer Cys Lys Arg Ala Leu Leu Asn Ser Leu

530 535 530 535

<210> 2<210> 2

<211> 1617<211> 1617

<212> DNA<212>DNA

<213> 水稻(Oryza sativa)<213> Rice (Oryza sativa)

<400> 2<400> 2

atggcgaccg gacccgatct gaccccaccc gccgccgccg cctccgccga agcgccgtcg 60atggcgaccg gacccgatct gaccccaccc gccgccgccg cctccgccga agcgccgtcg 60

gcgtcggcgg ccaagaagga ccgccacatc gtgagttgga gcaccgagga ggatgatgtg 120gcgtcggcgg ccaagaagga ccgccacatc gtgagttgga gcaccgagga ggatgatgtg 120

cttcgtactc aaattgcgct tcatggaact gataactgga caattatagc ggcacaattc 180cttcgtactc aaattgcgct tcatggaact gataactgga caattatagc ggcacaattc 180

aaggacaaga cggccagaca gtgcaggaga agatggtaca attatttgaa ctcggagtgc 240aaggacaaga cggccagaca gtgcaggaga agatggtaca attatttgaa ctcggagtgc 240

aagaaaggag ggtggtccag agaagaggac ttgctattgt gtgaggctca aaaagttctt 300aagaaaggag ggtggtccag agaagaggac ttgctattgt gtgaggctca aaaagttctt 300

gggaacaaat ggactgaaat agcaaaggtt gtctcaggca gaactgataa tgcagtgaag 360gggaacaaat ggactgaaat agcaaaggtt gtctcaggca gaactgataa tgcagtgaag 360

aatcggtttt ctactctatg caaaaggcgg gccaaggatg acgagctatt caaggaaaat 420aatcggtttt ctactctatg caaaaggcgg gccaaggatg acgagctatt caaggaaaat 420

ggatcattat gttccagtac aagttcaaag agggcattgg tacaaactgg gtgtctcaca 480ggatcattat gttccagtac aagttcaaag agggcattgg tacaaactgg gtgtctcaca 480

tctggtgcaa gtggctctgc accacctatt aagcagatga ggccatgtaa ttctgatttc 540tctggtgcaa gtggctctgc accacctatt aagcagatga ggccatgtaa ttctgatttc 540

aaagagaata tgacaccaaa tatgagatta gttggacaag acaagagcac acaagattct 600aaagagaata tgacaccaaa tatgagatta gttggacaag acaagagcac acaagattct 600

cgacagcctc ttgcaattgt ttatcaaaac aatcaagata atatgaatac aatggatacc 660cgacagcctc ttgcaattgt ttatcaaaac aatcaagata atatgaatac aatggatacc 660

caaaatcttg ttgctaaaac tgcagcaaaa caattatttg cgggggaaca gaattgcgtt 720caaaatcttg ttgctaaaac tgcagcaaaa caattatttg cgggggaaca gaattgcgtt 720

aagcatgagg gtaatttttt gaacaaggat gatccaaaaa ttgctacttt attgcagcga 780aagcatgagg gtaatttttt gaacaaggat gatccaaaaa ttgctacttt attgcagcga 780

gccgacttgc tttgctccct agcaacgaaa ataaatactg aaaatacaag ccaaagcatg 840gccgacttgc tttgctccct agcaacgaaa ataaatactg aaaatacaag ccaaagcatg 840

gacgaagcct ggcagcaact acagcatcat ttggataaga aagatgataa tgacatgtca 900gacgaagcct ggcagcaact acagcatcat ttggataaga aagatgataa tgacatgtca 900

gagagcagta tgtcgggaat ggcttcactc ctagaggatc ttgacgattt aattgtagac 960gagagcagta tgtcgggaat ggcttcactc ctagaggatc ttgacgattt aattgtagac 960

ccctatgaga atgaagagga agaagaccag gatttaaggg agcagaccga acagattgat 1020ccctatgaga atgaagagga agaagaccag gatttaaggg agcagaccga acagatgat 1020

gtggagaaca agcaaaattc ttcacaaact agcatggaag ttacatcaca aatggttcct 1080gtggagaaca agcaaaattc ttcacaaact agcatggaag ttacatcaca aatggttcct 1080

gacaataaaa tggaggactg cccaaatgat aagagcacag aagacaataa tatggaaccg 1140gacaataaaa tggaggactg cccaaatgat aagagcacag aagacaataa tatggaaccg 1140

tgccctggtg aagacatacc aacatctgaa aacttgactg aggctgctat cgaagatagc 1200tgccctggtg aagacatacc aacatctgaa aacttgactg aggctgctat cgaagatagc 1200

ttgcttcaat gtgtggaata cagctctcct gtacacacag ttattcaagc taaaacagat 1260ttgcttcaat gtgtggaata cagctctcct gtacacacag ttattcaagc taaaacagat 1260

gcagaaatag cagcatcgga gaatcttagc gaggttctcg aacataacag gcttcagtgt 1320gcagaaatag cagcatcgga gaatcttagc gaggttctcg aacataacag gcttcagtgt 1320

attcaattag cctcccctgc tcagacaact accccagttg aagcaaatgc agaaacacca 1380attcaattag cctcccctgc tcagacaact accccagttg aagcaaatgc agaaacacca 1380

gcttctgaga agttacgcga ggttgtcaaa tgtaacaatc cttcatgtat cgaattcact 1440gcttctgaga agttacgcga ggttgtcaaa tgtaacaatc cttcatgtat cgaattcact 1440

tcgcctgctc atacagtccc aacattcctg ccgtacgcag atgacatgcc gactccaaaa 1500tcgcctgctc atacagtccc aacattcctg ccgtacgcag atgacatgcc gactccaaaa 1500

tttactgcta gtgagaggaa ttttttgctg tctgtgcttg agttgacctc gccagggtcg 1560tttactgcta gtgagaggaa ttttttgctg tctgtgcttg agttgacctc gccagggtcg 1560

aggccagaca cttctcagca gccttcttgc aaaagggctc tccttaatag cctatga 1617aggccagaca cttctcagca gccttcttgc aaaagggctc tccttaatag cctatga 1617

<210> 3<210> 3

<211> 4733<211> 4733

<212> DNA<212> DNA

<213> 水稻(Oryza sativa)<213> Rice (Oryza sativa)

<400> 3<400> 3

ccctttaccc ccatctcaca ctccaccccc cctctctctc gtttcctcct ctccacccaa 60ccctttaccc ccatctcaca ctccacccccc cctctctctc gtttcctcct ctccacccaa 60

cccaacccaa ctcggtcgtc gtcgtcgtct tcctctcgaa tccacggttc aaaaattccc 120cccaacccaa ctcggtcgtc gtcgtcgtct tcctctcgaa tccacggttc aaaaattccc 120

tccactcgcg cccatttccc caaaccctag ccggccccgg ctcgccgccg cccgccgccc 180tccactcgcg cccatttccc caaaccctag ccggccccgg ctcgccgccg cccgccgccc 180

gccggctgcc tacctcggcc tgccgggatc cgtgcgcgga acatgcggga tcccggacca 240gccggctgcc tacctcggcc tgccgggatc cgtgcgcgga acatgcggga tcccggacca 240

tggcgaccgg acccgatctg accccacccg ccgccgccgc ctccgccgaa gcgccgtcgg 300tggcgaccgg acccgatctg accccacccg ccgccgccgc ctccgccgaa gcgccgtcgg 300

cgtcggcggc caagaaggac cgccacatcg tgagttggag caccgaggtg cgtacgagtt 360cgtcggcggc caagaaggac cgccacatcg tgagttggag caccgaggtg cgtacgagtt 360

gtcgtggtct atcgagtcgt gtgtttctgg attttgggag tttttttttt gggtgcgttt 420gtcgtggtct atcgagtcgt gtgtttctgg attttgggag tttttttttt gggtgcgttt 420

gcgctttcct gctcgatttg gttgcctgaa attttggggt tccactcctg tagcaatcat 480gcgctttcct gctcgatttg gttgcctgaa attttggggt tccactcctg tagcaatcat 480

tccccttctt tatttttttg ggggctaata tgcagtggat ttttcacgta attaggcatg 540tccccttctt tatttttttg ggggctaata tgcagtggat ttttcacgta attaggcatg 540

acctatcgaa atggactttg gttgggctcc tcgcgcctaa tttttgtggt tttaggcgat 600acctatcgaa atggactttg gttgggctcc tcgcgcctaa tttttgtggt ttaggcgat 600

attcgtgagg attgagaata attggagttt gaatttgtgt ctacttttca agattttggt 660attcgtgagg attgagaata attggagttt gaatttgtgt ctacttttca agattttggt 660

tgggttcctc tcacctaatt ctatggttta aggcaatatt cttcgtgagc attgaggata 720tgggttcctc tcacctaatt ctatggttta aggcaatatt cttcgtgagc attgaggata 720

attgaaattt gaatctgtgt accttttaga taatggaaaa gtgcatcaca cttcctggaa 780attgaaattt gaatctgtgt accttttaga taatggaaaa gtgcatcaca cttcctggaa 780

tttgtgcctt tcccgctcga tttcgatgcc tagaacatgg gggtcgaatt agttctcgac 840tttgtgcctt tcccgctcga tttcgatgcc tagaacatgg gggtcgaatt agttctcgac 840

gcctctagca attattcccc ttctttttgc ctaacgaaca gtagattttt cacatagtta 900gcctctagca attattcccc ttctttttgc ctaacgaaca gtagattttt cacatagtta 900

ggcataatct atctaaatgg actttggttt gattcgactc ctgcctattt tttttggtct 960ggcataatct atctaaatgg actttggttt gattcgactc ctgcctattt tttttggtct 960

aaggtgatat ttgtgagcat cgagaatagt cgaagtttga atatgtgtcc ctttcttctt 1020aaggtgatat ttgtgagcat cgagaatagt cgaagtttga atatgtgtcc ctttcttctt 1020

tttgaaaagt gtattgcatt tccaagaact tgtgcctaca taattataat taattataat 1080tttgaaaagt gtattgcatt tccaagaact tgtgcctaca taattataat taattataat 1080

tataatataa ttataattgt tagcttcaga tgctgtcgaa cctttccttg ggagtgcgtc 1140tataatataa ttataattgt tagcttcaga tgctgtcgaa cctttccttg ggagtgcgtc 1140

tgcgattttt tgtttaactt ttagaccaaa ttgtttttct gatgtttgca cctttcttcc 1200tgcgattttt tgtttaactt ttagaccaaa ttgtttttct gatgtttgca cctttcttcc 1200

tgttaggagg atgatgtgct tcgtactcaa attgcgcttc atggaactga taagtatgaa 1260tgttaggagg atgatgtgct tcgtactcaa attgcgcttc atggaactga taagtatgaa 1260

ttcttcccac ttcccatctc aattgacttt ttttttctag atttaatcac catattttac 1320ttcttcccac ttcccatctc aattgacttt ttttttctag atttaatcac catattttac 1320

actgtttttc cttttccttt cggtagctgg acaattatag cggcacaatt caaggacaag 1380actgtttttc cttttccttt cggtagctgg acaattatag cggcacaatt caaggacaag 1380

acggccagac agtgcaggag aaggtgtgta cagtgtacct cgccatcctc tgactaaaag 1440acggccagac agtgcaggag aaggtgtgta cagtgtacct cgccatcctc tgactaaaag 1440

agtggtttta ttggaatttc gttcgaattt tttacgaaat atgcatgccg ccctgttcat 1500agtggtttta ttggaatttc gttcgaattt tttacgaaat atgcatgccg ccctgttcat 1500

tttttctttg cttggttact gctgcagatg gtacaattat ttgaactcgg agtgcaagaa 1560tttttctttg cttggttact gctgcagatg gtacaattat ttgaactcgg agtgcaagaa 1560

aggagggtgg tccagagaag aggacttgct attgtgtgag gtgggatatt gatattgtga 1620aggagggtgg tccagagaag aggacttgct attgtgtgag gtggggatatt gatattgtga 1620

cattttaatt atttggtcca gacactgaat ttccctgaag ttaggaattg ctgcataaaa 1680cattttaatt atttggtcca gacactgaat ttccctgaag ttaggaattg ctgcataaaa 1680

cacttagatt tctgatttgg caaatatgcg tcagtttcat gaatttggga attttggcag 1740cacttagatt tctgatttgg caaatatgcg tcagtttcat gaatttggga attttggcag 1740

acactttgat tttattatta ggaaccattt gtgatgtaac ttttgggcca aactttagat 1800acactttgat tttattatta ggaaccattt gtgatgtaac ttttgggcca aactttagat 1800

ttctgaattg gcaaatatgc ggtcggttac ttcctcagtg agacaacagg ccaggcatat 1860ttctgaattg gcaaatatgc ggtcggttac ttcctcagtg agacaacagg ccaggcatat 1860

tgctatgccc atggaattga gcatgtacgt atgcagcttt tcagattttt gggaaaagaa 1920tgctatgccc atggaattga gcatgtacgt atgcagcttt tcagattttt gggaaaagaa 1920

tgggattctt ttgtaaatag caggagatag gatttatatt tttgtatata taagagaagt 1980tgggattctt ttgtaaatag caggagatag gatttatatt tttgtatata taagagaagt 1980

ctagatgggc ttgcgcattg attagttttg caatgtcata tttttcttct tattattttg 2040ctagatgggc ttgcgcattg attagttttg caatgtcata tttttcttcttattattttg 2040

gctgcaagtt ttatgctctg acagacttgg aactccgcat actggaaacc ctaaaccacc 2100gctgcaagtt ttatgctctg acagacttgg aactccgcat actggaaacc ctaaaccacc 2100

tgttctgcat agatttgtgg ttgttttcat aattatttgt ttctaccatg gattccttaa 2160tgttctgcat agatttgtgg ttgttttcat aattatttgt ttctaccatg gattccttaa 2160

caagattgaa tcatgtattc ttctctactt ggaattgtca tgcaggctca aaaagttctt 2220caagattgaa tcatgtattc ttctctactt ggaattgtca tgcaggctca aaaagttctt 2220

gggaacaaat ggactgaaat agcaaaggtt gtctcaggca ggtgggtttc ttgtattatg 2280gggaacaaat ggactgaaat agcaaaggtt gtctcaggca ggtgggtttc ttgtattatg 2280

cagtttactg caagatgaaa aaaatacatg taataaaata tctgacatgt tttttgtttg 2340cagtttactg caagatgaaa aaaatacatg taataaaata tctgacatgt tttttgtttg 2340

tttgtccaca gcagaactga taatgcagtg aagaatcggt tttctactct atgcaaaagg 2400tttgtccaca gcagaactga taatgcagtg aagaatcggt tttctactct atgcaaaagg 2400

cgggccaagg atgacgagct attcaaggaa aatggatcat tatgttccag tacaagttca 2460cgggccaagg atgacgagct attcaaggaa aatggatcat tatgttccag tacaagttca 2460

aagagggcat tggtacaaac tgggtgtctc acatctggtg caagtggctc tgcaccacct 2520aagagggcat tggtacaaac tgggtgtctc acatctggtg caagtggctc tgcaccacct 2520

attaagcaga tgaggtacac ataacactag catcactatt ttctattaag catgcgaagc 2580attaagcaga tgaggtacac ataacactag catcactatt ttctattaag catgcgaagc 2580

aacttacatt tttctcttct gcaactaggc catgtaattc tgatttcaaa gagaatatga 2640aacttacatt tttctcttct gcaactaggc catgtaattc tgatttcaaa gagaatatga 2640

caccaaatat gagattagtt ggacaagaca agagcacaca agattctcga cagcctcttg 2700caccaaatat gagattagtt ggacaagaca agagcacaca agattctcga cagcctcttg 2700

caattgttta tcaaaacaat caagataata tgaatacaat ggatacccaa aatcttgttg 2760caattgttta tcaaaacaat caagataata tgaatacaat ggatacccaa aatcttgttg 2760

ctaaaactgc agcaaaacaa ttatttgcgg gggaacagaa ttgtaagcct gttttcctct 2820ctaaaactgc agcaaaacaa ttatttgcgg gggaacagaa ttgtaagcct gttttcctct 2820

ataatgtgca tttgagtttg atgtatttgt cttgtcccag ctttaatcac agctatgtgc 2880ataatgtgca tttgagtttg atgtatttgt cttgtcccag ctttaatcac agctatgtgc 2880

ataattgcag gcgttaagca tgagggtaat tttttgaaca aggatgatcc aaaaattgct 2940ataattgcag gcgttaagca tgagggtaat tttttgaaca aggatgatcc aaaaattgct 2940

actttattgc agcgagccga cttgctttgc tccctagcaa cgaaaataaa tactgaaaat 3000actttattgc agcgagccga cttgctttgc tccctagcaa cgaaaataaa tactgaaaat 3000

acaagccaaa gcatggacga agcctggcag gtatgacagc accaacttgt tctaaatttg 3060acaagccaaa gcatggacga agcctggcag gtatgacagc accaacttgt tctaaatttg 3060

gaacttaggc ttgcagcctt gtactctatt tgaaataaac tgtgctatgc ctgtttcagc 3120gaacttaggc ttgcagcctt gtactctatt tgaaataaac tgtgctatgc ctgtttcagc 3120

aactacagca tcatttggat aagaaagatg ataatgacat gtcagagagc agtatgtcgg 3180aactacagca tcatttggat aagaaagatg ataatgacat gtcagagagc agtatgtcgg 3180

gaatggcttc actcctagag gatcttgacg atttaattgt agacccctat gagaatgaag 3240gaatggcttc actcctagag gatcttgacg atttaattgt agaccccctat gagaatgaag 3240

aggaagaaga ccaggattta aggtaataat catcatctgg tcatcatttt ggttaaatct 3300aggaagaagaaga ccaggattta aggtaataat catcatctgg tcatcatttt ggttaaatct 3300

attttctcag ttgttgacac tatctaccat tactgtgcaa acagggagca gaccgaacag 3360attttctcag ttgttgacac tatctaccat tactgtgcaa acaggggagca gaccgaacag 3360

attgatgtgg agaacaagca aaattcttca caaactagca tggaagttac atcacaaatg 3420attgatgtgg agaacaagca aaattcttca caaactagca tggaagttac atcacaaatg 3420

gttcctgaca ataaaatgga ggactgccca aatgataaga gcacagaaga caataatatg 3480gttcctgaca ataaaatgga ggactgccca aatgataaga gcacagaaga caataatatg 3480

gaaccgtgcc ctggtaacct atgctcttaa ttattacttt ggtaaaatgc tctttaaacc 3540gaaccgtgcc ctggtaacct atgctcttaa ttaattacttt ggtaaaatgc tctttaaacc 3540

acatatagaa aatgaactaa attctttaag ctaaaccagg tgaagacata ccaacatctg 3600acatatagaa aatgaactaa attctttaag ctaaaccagg tgaagacata ccaacatctg 3600

aaaacttgac tgaggctgct atcgaagata gcttgcttca atgtgtggaa tacagctctc 3660aaaacttgac tgaggctgct atcgaagata gcttgcttca atgtgtggaa tacagctctc 3660

ctgtacacac agttattcaa gctaaaacag atgcagaaat agcagcatcg gagaatctta 3720ctgtacacac agttattcaa gctaaaacag atgcagaaat agcagcatcg gagaatctta 3720

gcgaggttct cgaacataac aggcttcagt gtattcaatt agcctcccct gctcagacaa 3780gcgaggttct cgaacataac aggcttcagt gtattcaatt agcctcccct gctcagacaa 3780

ctaccccagt tgaagcaaat gcagaaacac cagcttctga gaagttacgc gaggttgtca 3840ctaccccagt tgaagcaaat gcagaaacac cagcttctga gaagttacgc gaggttgtca 3840

aatgtaacaa tccttcatgt atcgaattca cttcgcctgc tcatacagtc ccaacattcc 3900aatgtaacaa tccttcatgt atcgaattca cttcgcctgc tcatacagtc ccaacattcc 3900

tgccgtacgc agatgacatg ccgactccaa aatttactgc tagtgtaagc tttcaactgc 3960tgccgtacgc agatgacatg ccgactccaa aatttactgc tagtgtaagc tttcaactgc 3960

ttgacatatg atatggccgg ttcatatcga acatataata cttacctgaa aaaaccatat 4020ttgacatatg atatggccgg ttcatatcga acatataata cttacctgaa aaaaccatat 4020

gacaaatata tttacattta tatttatttg aatttccagg agaggaattt tttgctgtct 4080gacaaatata tttacattta tatttatttg aatttccagg agaggaattt tttgctgtct 4080

gtgcttgagt tgacctcgcc agggtcgagg ccagacactt ctcagcagcc ttcttgcaaa 4140gtgcttgagt tgacctcgcc agggtcgagg ccagacactt ctcagcagcc ttcttgcaaa 4140

agggctctcc ttaatagcct atgaaactgt tataagtata tttcagtttt ttttcctgca 4200agggctctcc ttaatagcct atgaaactgt tataagtata tttcagtttt ttttcctgca 4200

ttattggtgt gcctgggatc taaacccaag cctgccatgc atgccccctc agcatgccta 4260ttatggtgt gcctgggatc taaacccaag cctgccatgc atgccccctc agcatgccta 4260

ctattcagcg tgtgttagga ggttctttga catactccta tttgcatcaa gtttggatat 4320ctattcagcg tgtgttagga ggttctttga catactccta tttgcatcaa gtttggatat 4320

ctcatatcca agtttagctg tttgtatatg agatctcaat tgttttaaga gtctcatagt 4380ctcatatcca agtttagctg tttgtatatg agatctcaat tgttttaaga gtctcatagt 4380

ttgtttggtt gtacatattg cattggcggt gttgtagtag catcatacag gaattaaaag 4440ttgtttggtt gtacatattg cattggcggt gttgtagtag catcatacag gaattaaaag 4440

gggcgatggt gtaccaaaga gtttacagct tgtatccaaa atatagaata agtactattc 4500gggcgatggt gtaccaaaga gtttacagct tgtatccaaa atatagaata agtactattc 4500

tttgtgtaat taactcttgt aacctttcta tgttgtacgg aatatattgg tttggtgtgt 4560tttgtgtaat taactcttgt aacctttcta tgttgtacgg aatatattgg tttggtgtgt 4560

agtgtgattt aacagtttcc ttctgactga acaaatgtgg ctgatcctat acggcgaggt 4620agtgtgattt aacagtttcc ttctgactga acaaatgtgg ctgatcctat acggcgaggt 4620

gatattaggt actactagta ttgtatgtgc tccctgatgt tgggaagtta ccttattgat 4680gatattaggt actactagta ttgtatgtgc tccctgatgt tgggaagtta ccttattgat 4680

gctcactgtg ttgtccagta ctccagtttc aatatacatt cttctatgtg ata 4733gctcactgtg ttgtccagta ctccagtttc aatatacatt cttctatgtg ata 4733

Claims (7)

1. Use of a protein for regulating salt tolerance in rice, characterized in that the protein is a protein of the following A1) or A2):
a1 Amino acid sequence is protein of sequence 1 in a sequence table;
a2 Fusion proteins obtained by ligating protein tags at the N-terminal or/and C-terminal of A1);
the regulation of the salt tolerance of the rice is that the salt tolerance of the rice for up-regulating the expression quantity of the protein is enhanced; the salt tolerance of rice with the expression quantity of the protein is reduced.
2. Use of a biological material related to the protein of claim 1 for regulating and controlling salt tolerance of rice, wherein the regulation of salt tolerance of rice is an enhancement of salt tolerance of rice which up-regulates the expression level of the protein; the salt tolerance of rice with the expression quantity of the protein is reduced;
the biomaterial is any one of the following B1) to B5):
b1 A nucleic acid molecule encoding the protein of claim 1;
b2 An expression cassette comprising the nucleic acid molecule of B1);
b3 A recombinant vector comprising the nucleic acid molecule of B1) or a recombinant vector comprising the expression cassette of B2);
b4 A recombinant microorganism comprising the nucleic acid molecule of B1), or a recombinant microorganism comprising the expression cassette of B2), or a recombinant microorganism comprising the recombinant vector of B3);
b5 A transgenic plant cell line comprising the nucleic acid molecule of B1), or a transgenic plant cell line comprising the expression cassette of B2), or a transgenic plant cell line comprising the recombinant vector of B3).
3. The use according to claim 2, wherein the nucleic acid molecule of B1) is a gene as set forth in B1) or B2) below:
b1 A coding sequence of the coding chain is a cDNA molecule or a DNA molecule of a sequence 2 in a sequence table;
b2 The nucleotide of the coding chain is a cDNA molecule or a DNA molecule of a sequence 2 in a sequence table.
4. A method for cultivating salt-tolerant rice comprising introducing a nucleic acid molecule encoding the protein of claim 1 into a rice of interest to obtain salt-tolerant rice; the salt tolerance of the salt tolerant rice is better than the salt tolerance of the rice of interest.
5. The method according to claim 4, wherein the rice of interest is a rice not containing a nucleic acid molecule encoding the protein of claim 1.
6. A protein, characterized in that it is a protein of the following X1) or X2):
x1) is protein which is obtained by replacing 118 th amino acid residue of the sequence 1 in the sequence table by threonine residue with alanine residue and keeping other sequences unchanged;
x2) a fusion protein obtained by ligating a protein tag to the N-terminus or/and the C-terminus of X1).
7. A biological material related to the protein according to claim 6, which is any one of the following Y1) to Y5):
y1) a nucleic acid molecule encoding the protein of claim 6;
y2) an expression cassette comprising the nucleic acid molecule of Y1);
y3) a recombinant vector comprising the nucleic acid molecule of Y1) or a recombinant vector comprising the expression cassette of Y2);
y4) a recombinant microorganism comprising the nucleic acid molecule of Y1), or a recombinant microorganism comprising the expression cassette of Y2), or a recombinant microorganism comprising the recombinant vector of Y3);
y5) a transgenic plant cell line containing the nucleic acid molecule of Y1), or a transgenic plant cell line containing the expression cassette of Y2), or a transgenic plant cell line containing the recombinant vector of Y3).
CN202110239576.3A 2021-03-04 2021-03-04 OsFLP protein related to plant salt tolerance, related biological material and application thereof Active CN112961230B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110239576.3A CN112961230B (en) 2021-03-04 2021-03-04 OsFLP protein related to plant salt tolerance, related biological material and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110239576.3A CN112961230B (en) 2021-03-04 2021-03-04 OsFLP protein related to plant salt tolerance, related biological material and application thereof

Publications (2)

Publication Number Publication Date
CN112961230A CN112961230A (en) 2021-06-15
CN112961230B true CN112961230B (en) 2023-06-09

Family

ID=76276420

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110239576.3A Active CN112961230B (en) 2021-03-04 2021-03-04 OsFLP protein related to plant salt tolerance, related biological material and application thereof

Country Status (1)

Country Link
CN (1) CN112961230B (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102234327B (en) * 2010-04-29 2013-09-11 中国农业大学 Plant salt resistant associated protein AtST1, coded genes and application thereof
CN107827964B (en) * 2017-12-11 2021-04-16 北京林业大学 A transcription factor PwNAC2 related to plant stress tolerance and its encoding gene and application

Also Published As

Publication number Publication date
CN112961230A (en) 2021-06-15

Similar Documents

Publication Publication Date Title
EP2302062A1 (en) Identification of E2F target genes and uses thereof
CN113563442B (en) Drought resistance-related protein IbSPB1 and its encoding genes and applications
CN111850030B (en) Application of protein GmULT1 in regulating plant seed weight
CN110078807A (en) Promote the protein and its encoding gene of potassium ion efficient absorption
CN111434679B (en) Application of plant type-related proteins in regulating plant type
CN112980873B (en) Protein related to plant type and coding gene and application thereof
CN109929019A (en) A kind of and plant salt tolerance alkali GAP-associated protein GAP GsERF7 and its encoding gene and application
CN105713079B (en) Application of protein and related biomaterials in improving plant yield
CN114805508B (en) Rice heading stage gene DHD3 function and application
CN112961230B (en) OsFLP protein related to plant salt tolerance, related biological material and application thereof
CN103588867B (en) Soybean transcription factor GmMYB174a, and coding gene and applications thereof
CN113929758B (en) Potassium ion transporter protein HbRSAR1 and application thereof in regulating potassium transport of plants
CN111197047A (en) Soybean protein GmUBCa related to seed weight regulation and application of soybean protein GmUBCa and related biological material thereof
CN107022011B (en) A kind of soybean transcription factor GmDISS1 and its encoding gene and application
CN114920812A (en) GhERF9 protein related to low potassium stress response and its related biomaterials and applications
CN114349833A (en) Application of calmodulin binding protein COLD12 in regulating and controlling COLD tolerance of plants
CN114349832A (en) Application of calmodulin binding protein COLD13 in regulating and controlling COLD tolerance of plants
CN105646683A (en) Application of slat-tolerant protein kit and related biomaterials in regulating and controlling salt tolerance in plants
CN114656534A (en) BASS6 protein, coding gene thereof and application of BASS6 protein in regulating and controlling saline-alkali tolerance of plants
CN107739403B (en) A protein related to plant flowering period and its encoding gene and application
CN112125964A (en) Plant grain weight-related protein GmJAZ3 and its encoding gene and application
CN114644691B (en) EIP1 protein and its coding gene and drought resistance application
CN104844699A (en) Soybean GmNEK1 protein, and coding gene and application of soybean GmNEK1 protein
CN114644699B (en) Application of Substances Regulating ZmARP1 Gene Expression in Regulating Plant Drought Resistance
CN113861279B (en) Application of Soybean Transcription Factor GmbHHLH664 and Its Encoding Gene in Improving Seed Protein Content

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant