CN112960697A - Efficient waste SCR denitration catalyst recovery method - Google Patents
Efficient waste SCR denitration catalyst recovery method Download PDFInfo
- Publication number
- CN112960697A CN112960697A CN202110199984.0A CN202110199984A CN112960697A CN 112960697 A CN112960697 A CN 112960697A CN 202110199984 A CN202110199984 A CN 202110199984A CN 112960697 A CN112960697 A CN 112960697A
- Authority
- CN
- China
- Prior art keywords
- solution
- recovering
- scr denitration
- denitration catalyst
- waste scr
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 71
- 239000002699 waste material Substances 0.000 title claims abstract description 67
- 238000000034 method Methods 0.000 title claims abstract description 40
- 238000011084 recovery Methods 0.000 title abstract description 37
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 52
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims abstract description 51
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 51
- 239000010937 tungsten Substances 0.000 claims abstract description 51
- 239000010936 titanium Substances 0.000 claims abstract description 43
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 43
- OJLGWNFZMTVNCX-UHFFFAOYSA-N dioxido(dioxo)tungsten;zirconium(4+) Chemical compound [Zr+4].[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O OJLGWNFZMTVNCX-UHFFFAOYSA-N 0.000 claims abstract description 34
- 239000002893 slag Substances 0.000 claims abstract description 28
- 238000000605 extraction Methods 0.000 claims abstract description 15
- 239000002994 raw material Substances 0.000 claims abstract description 14
- 238000000746 purification Methods 0.000 claims abstract description 7
- 239000000243 solution Substances 0.000 claims description 70
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N titanium dioxide Inorganic materials O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 24
- 239000002244 precipitate Substances 0.000 claims description 20
- 239000012071 phase Substances 0.000 claims description 18
- 239000003795 chemical substances by application Substances 0.000 claims description 16
- 239000012074 organic phase Substances 0.000 claims description 16
- 239000000843 powder Substances 0.000 claims description 16
- XMVONEAAOPAGAO-UHFFFAOYSA-N sodium tungstate Chemical compound [Na+].[Na+].[O-][W]([O-])(=O)=O XMVONEAAOPAGAO-UHFFFAOYSA-N 0.000 claims description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 14
- DUNKXUFBGCUVQW-UHFFFAOYSA-J zirconium tetrachloride Chemical compound Cl[Zr](Cl)(Cl)Cl DUNKXUFBGCUVQW-UHFFFAOYSA-J 0.000 claims description 14
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 claims description 12
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 12
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical class [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 12
- 238000004140 cleaning Methods 0.000 claims description 12
- 238000001035 drying Methods 0.000 claims description 12
- 238000001914 filtration Methods 0.000 claims description 12
- 239000000203 mixture Substances 0.000 claims description 12
- 238000003756 stirring Methods 0.000 claims description 12
- 238000005406 washing Methods 0.000 claims description 12
- 239000012716 precipitator Substances 0.000 claims description 9
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 claims description 8
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 claims description 8
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 claims description 8
- 229960001484 edetic acid Drugs 0.000 claims description 8
- -1 polyoxyethylene Polymers 0.000 claims description 7
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 claims description 6
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 claims description 6
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims description 6
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 claims description 6
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 claims description 6
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 claims description 6
- 239000001099 ammonium carbonate Substances 0.000 claims description 6
- 238000007664 blowing Methods 0.000 claims description 6
- 238000001816 cooling Methods 0.000 claims description 6
- 239000003085 diluting agent Substances 0.000 claims description 6
- 150000002148 esters Chemical class 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 6
- 239000003350 kerosene Substances 0.000 claims description 6
- 238000002386 leaching Methods 0.000 claims description 6
- 235000011837 pasties Nutrition 0.000 claims description 6
- 239000004071 soot Substances 0.000 claims description 6
- 235000002906 tartaric acid Nutrition 0.000 claims description 6
- 239000011975 tartaric acid Substances 0.000 claims description 6
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 claims description 6
- 239000003546 flue gas Substances 0.000 claims description 5
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 4
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 4
- 235000019270 ammonium chloride Nutrition 0.000 claims description 4
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 4
- SHFJWMWCIHQNCP-UHFFFAOYSA-M hydron;tetrabutylazanium;sulfate Chemical compound OS([O-])(=O)=O.CCCC[N+](CCCC)(CCCC)CCCC SHFJWMWCIHQNCP-UHFFFAOYSA-M 0.000 claims description 4
- 150000003512 tertiary amines Chemical class 0.000 claims description 4
- 229910000013 Ammonium bicarbonate Inorganic materials 0.000 claims description 3
- 235000012538 ammonium bicarbonate Nutrition 0.000 claims description 3
- 235000012501 ammonium carbonate Nutrition 0.000 claims description 3
- 239000012535 impurity Substances 0.000 claims description 3
- 230000001376 precipitating effect Effects 0.000 claims description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 2
- 239000007864 aqueous solution Substances 0.000 claims description 2
- 229910052681 coesite Inorganic materials 0.000 claims description 2
- 229910052593 corundum Inorganic materials 0.000 claims description 2
- 229910052906 cristobalite Inorganic materials 0.000 claims description 2
- SJWFXCIHNDVPSH-UHFFFAOYSA-N octan-2-ol Chemical group CCCCCCC(C)O SJWFXCIHNDVPSH-UHFFFAOYSA-N 0.000 claims description 2
- 239000002245 particle Substances 0.000 claims description 2
- 239000000377 silicon dioxide Substances 0.000 claims description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 2
- 239000007787 solid Substances 0.000 claims description 2
- 229910052682 stishovite Inorganic materials 0.000 claims description 2
- 229910052905 tridymite Inorganic materials 0.000 claims description 2
- 229910001845 yogo sapphire Inorganic materials 0.000 claims description 2
- 230000008901 benefit Effects 0.000 abstract description 3
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 abstract description 2
- 229910052751 metal Inorganic materials 0.000 abstract description 2
- 239000002184 metal Substances 0.000 abstract description 2
- ZNOKGRXACCSDPY-UHFFFAOYSA-N tungsten trioxide Chemical compound O=[W](=O)=O ZNOKGRXACCSDPY-UHFFFAOYSA-N 0.000 description 8
- 239000004408 titanium dioxide Substances 0.000 description 7
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 6
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- XMGCJZBZVMGBQN-UHFFFAOYSA-N 2-[3-[3-[2,2-diphenylethyl-[[4-fluoro-3-(trifluoromethyl)phenyl]methyl]amino]propoxy]phenyl]acetamide Chemical compound NC(=O)CC1=CC=CC(OCCCN(CC(C=2C=CC=CC=2)C=2C=CC=CC=2)CC=2C=C(C(F)=CC=2)C(F)(F)F)=C1 XMGCJZBZVMGBQN-UHFFFAOYSA-N 0.000 description 2
- MWKFXSUHUHTGQN-UHFFFAOYSA-N decan-1-ol Chemical compound CCCCCCCCCCO MWKFXSUHUHTGQN-UHFFFAOYSA-N 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- BWDBEAQIHAEVLV-UHFFFAOYSA-N 6-methylheptan-1-ol Chemical compound CC(C)CCCCCO BWDBEAQIHAEVLV-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000004056 waste incineration Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G41/00—Compounds of tungsten
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G23/00—Compounds of titanium
- C01G23/001—Preparation involving a liquid-liquid extraction, an adsorption or an ion-exchange
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G23/00—Compounds of titanium
- C01G23/04—Oxides; Hydroxides
- C01G23/047—Titanium dioxide
- C01G23/0475—Purification
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G41/00—Compounds of tungsten
- C01G41/003—Preparation involving a liquid-liquid extraction, an adsorption or an ion-exchange
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B1/00—Preliminary treatment of ores or scrap
- C22B1/02—Roasting processes
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B34/00—Obtaining refractory metals
- C22B34/10—Obtaining titanium, zirconium or hafnium
- C22B34/12—Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
- C22B34/1236—Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining titanium or titanium compounds from ores or scrap by wet processes, e.g. by leaching
- C22B34/1254—Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining titanium or titanium compounds from ores or scrap by wet processes, e.g. by leaching using basic solutions or liquors
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B34/00—Obtaining refractory metals
- C22B34/30—Obtaining chromium, molybdenum or tungsten
- C22B34/36—Obtaining tungsten
- C22B34/365—Obtaining tungsten from spent catalysts
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B7/00—Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
- C22B7/006—Wet processes
- C22B7/008—Wet processes by an alkaline or ammoniacal leaching
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/80—Compositional purity
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Nanotechnology (AREA)
- Geochemistry & Mineralogy (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Catalysts (AREA)
Abstract
The invention relates to a method for efficiently recovering a waste SCR denitration catalyst, and belongs to the field of non-ferrous metal recovery. The invention provides a novel process for recovering tungsten from a waste SCR denitration catalyst, which greatly improves the comprehensive benefit of titanium recovery and mainly comprises the steps of raw material pretreatment, tungsten element extraction, coarse titanium slag recovery, tungsten element purification, zirconium tungstate recovery and the like. The process has the advantages of high product value, low loss of target recovery elements, low cost investment and the like, and can realize efficient treatment of the waste SCR denitration catalyst.
Description
Technical Field
The invention belongs to the technical field of non-ferrous metal recovery, and particularly relates to a method for efficiently recovering a waste SCR denitration catalyst, in particular to a method for preparing nano zirconium tungstate and recovering coarse titanium slag by taking the waste SCR denitration catalyst as a raw material.
Background
With the gradual promotion of environmental awareness and requirements, in addition to electric power plants, various industries such as steel, waste incineration, cement, glass and the like begin to be forcibly required to remove nitrogen oxides in flue gas, and the development of novel SCR denitration catalysts aiming at flue gas conditions of different industries is always a technical hotspot and a difficult point in the denitration field. Meanwhile, along with the development and application of the novel SCR denitration catalyst suitable for various flue gases, the yield of the waste SCR denitration catalyst is greatly increased, and the simple stacking and landfill can not meet the requirements of relevant regulations and specifications and is not suitable any more. Therefore, a technology for efficiently disposing of the waste SCR denitration catalyst has been a research hotspot in the field of denitration.
The content of tungsten element in the waste SCR denitration catalyst is relatively low, the efficiency of each reaction in the recovery process has great influence on the recovery rate of final elements, the deposition rate is often low when the tungsten element is deposited in the prior art, so that a great amount of precious elements are wasted, meanwhile, a great amount of impurity elements are deposited together with the tungsten element, the purity of the final product is not ideal, and the product value is generally low. The recovery process of titanium element has similar defects with tungsten element, and the feasibility of the process is directly limited by the complex process, low element recovery rate and poor product purity. Therefore, there is a need to develop a high-efficiency process for disposing the waste SCR denitration catalyst.
The total content of titanium dioxide and tungsten trioxide in the waste SCR denitration catalyst can reach over 75 percent, and the method for efficiently recovering tungsten and titanium elements in the form of nano zirconium tungstate and coarse titanium slag is a novel waste SCR denitration catalyst recovery mode.
Disclosure of Invention
The invention aims to solve the technical problem of providing an efficient recovery method of a waste SCR denitration catalyst, and high-quality nano zirconium tungstate and coarse titanium slag are recovered and obtained through a specific recovery process according to the existence form and chemical characteristics of titanium and tungsten elements in the waste SCR denitration catalyst.
In order to solve the technical problems, the invention adopts a technical scheme that: the method for recovering the high-efficiency waste SCR denitration catalyst comprises the following steps:
(1) pretreatment of raw materials: roasting the waste SCR denitration catalyst raw material, further cleaning the waste catalyst by using a cleaning solution consisting of 10-20% of rosin polyoxyethylene ester (RPGC), 5-15% of tartaric acid and 65-85% of triethanolamine after soot blowing, and crushing to obtain waste catalyst powder;
(2) extracting tungsten element: preparing a saturated sodium chloride solution, slowly adding the waste catalyst powder obtained in the step (1) into the saturated sodium chloride solution, stirring the mixture to be pasty, and roasting the mixture at the temperature of 750 ℃ and 850 ℃ for 3-6 hours to obtain a sintered block; crushing the sintered cake to 150 meshes, repeatedly leaching the roasted sodium tungstate by using an ethanolamine solution with the volume concentration of 10-20%, and filtering to obtain a sodium tungstate solution and a titanium precipitate;
(3) and (3) recovering coarse titanium slag: washing the titanium precipitate obtained in the step (2) with clear water, removing impurity elements attached to the surface, drying and recovering to obtain coarse titanium slag;
(4) tungsten element purification: preparing an extracting agent to extract tungsten element from the solution obtained in the step (2), wherein the extracting agent consists of an effective component, a phase regulator and a diluent, the effective component is trioctyl tertiary amine, the phase regulator is sec-octanol, the diluent is sulfonated kerosene, the number of extraction stages is 1-3, and the volume ratio of an organic phase to a water phase at each stage is 1: 3-5; using ammonium chloride, ammonium bicarbonate or ammonium carbonate solution as a stripping agent to strip tungsten elements from the extractant to obtain stripping solution, wherein the stripping stage number is 1-3, and the volume ratio of an organic phase to a water phase of each stage is 1: 3-5;
(5) and (3) recovering zirconium tungstate: preparing a mixed aqueous solution of zirconium chloride, ethylene diamine tetraacetic acid and hexadecyl trimethyl ammonium bromide as a precipitant, adding the precipitant into a stripping solution, heating the solution to 80-95 ℃, continuously stirring for 2-4h, and then cooling and standing the solution at room temperature for 6-12 h; filtering to obtain zirconium tungstate precipitate, washing the precipitate with ethanol, and finally drying and recovering to obtain the nano zirconium tungstate.
Further, the waste SCR denitration catalyst in the step (1) is eliminated V for industrial flue gas denitration2O5-WO3/TiO2Catalyst of the type comprising WO3、TiO2、V2O5、Al2O3、SiO2And CaO.
Further, the roasting temperature in the step (1) is 550-750 ℃, and the roasting time is 3-6 h.
Further, the mass content of the tetrabutylammonium hydrogen sulfate in the ammonia water solution in the step (2) is 0.1-0.25%.
Further, the liquid-solid mass ratio of the ammonia water solution to the waste catalyst powder in the step (2) is 5-10: 1.
Further, the volume fractions of the effective components, the phase regulator and the diluent in the extracting agent in the step (4) are respectively 5-15%, 10-20% and 65-85%.
Further, the concentration of the stripping agent solution in the step (4) is 1-2.5 mol/L.
Further, the concentration of each component of the precipitating agent in the step (5) is as follows: zirconium chloride is 1-2mol/L, ethylene diamine tetraacetic acid is 0.25-0.75mol/L, and hexadecyl trimethyl ammonium bromide is 0.1-0.3 mol/L.
Further, the molar ratio of zirconium chloride in the precipitating agent to tungsten element in the solution in the step (5) is 1-1.2: 1.
Further, the particle size of the waste catalyst powder in the step (1) is 300 meshes or less.
The method provided by the invention can be used for efficiently recovering titanium and tungsten elements in the waste SCR denitration catalyst, so that high-quality nano zirconium tungstate and coarse titanium slag are obtained. Wherein the purity of the zirconium tungstate is more than 99 percent, the content of titanium dioxide in the coarse titanium slag can reach more than 87 percent, and the recovery rates of tungsten and titanium elements respectively reach more than 95 percent and 97 percent.
Detailed Description
In order to make the aforementioned objects, features and advantages of the present invention comprehensible, embodiments accompanied with examples are described in detail below.
In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention, however, the present invention may be embodied in other specific forms than those described herein, and it will be apparent to those skilled in the art that the present invention may be practiced without departing from the spirit and scope of the present invention.
Example 1: with V2O5-WO3/TiO2The method for preparing nano zirconium tungstate and recovering coarse titanium slag by using the waste SCR denitration catalyst as a raw material comprises the following specific steps:
(1) pretreatment of raw materials
Roasting the waste catalyst for 6 hours at 550 ℃, further cleaning the waste catalyst by using a cleaning solution consisting of 10 percent of rosin polyoxyethylene ester (RPGC), 5 percent of tartaric acid and 85 percent of triethanolamine after soot blowing treatment, and crushing the waste catalyst to be less than 300 meshes to obtain waste catalyst powder;
(2) extraction of tungsten element
Preparing a saturated sodium chloride solution, slowly adding the waste catalyst powder obtained in the step (1) into the saturated sodium chloride solution, stirring the mixture to be pasty, and roasting the mixture for 6 hours at 750 ℃ to obtain a sintered block; crushing the sintered cake to 150 meshes, repeatedly leaching sodium tungstate generated after roasting by using ethanolamine solution with the volume concentration of 10%, and filtering to obtain sodium tungstate solution and titanium precipitate;
(3) coarse titanium slag recovery
Washing and drying the precipitate obtained in the step (2) to obtain coarse titanium slag, and completing the recovery of titanium element;
(4) purification of tungsten element
Preparing an extracting agent consisting of 5% of trioctyl tertiary amine, 10% of octanol, 5% of decanol and 85% of sulfonated kerosene according to volume fraction, and performing 3-stage extraction on tungsten element in a sodium tungstate solution, wherein the volume ratio of an organic phase to a water phase of each stage is 1: 3; preparing an ammonium chloride solution with the concentration of 1mol/L, and performing 3-stage back extraction on tungsten element entering an organic phase, wherein the volume ratio of each stage of organic phase to a water phase is 1: 3;
(5) zirconium tungstate recovery
Preparing a precipitator, wherein the concentrations of zirconium chloride, ethylene diamine tetraacetic acid and hexadecyl trimethyl ammonium bromide in the precipitator are 1mol/L, 0.25mol/L and 0.1mol/L respectively; adding a precipitant into the stripping solution according to a molar ratio of zirconium chloride/tungsten element of 1, heating the solution to 80 ℃, continuously stirring for 2 hours, and then placing the solution in a room temperature environment for cooling and standing for 6 hours; filtering to obtain zirconium tungstate precipitate, washing with ethanol, drying, and recovering to obtain nanometer zirconium tungstate to recover tungsten element;
by the embodiment 1, the recovery rate of the tungsten element is 95.37 percent, and the recovery rate of the titanium element is 97.81 percent; the purity of the recovered nano zirconium tungstate is 99.20%, and the content of titanium dioxide in the recovered coarse titanium slag is 87.56%.
Example 2: with V2O5-WO3/TiO2The method for preparing nano zirconium tungstate and recovering coarse titanium slag by using the waste SCR denitration catalyst as a raw material comprises the following specific steps:
(1) pretreatment of raw materials
Roasting the waste catalyst for 4 hours at 650 ℃, further cleaning the waste catalyst by using a cleaning solution consisting of 20 percent of rosin polyoxyethylene ester (RPGC), 15 percent of tartaric acid and 65 percent of triethanolamine after soot blowing treatment, and crushing the waste catalyst to be less than 300 meshes to obtain waste catalyst powder;
(2) extraction of tungsten element
Preparing a saturated sodium chloride solution, slowly adding the waste catalyst powder obtained in the step (1) into the saturated sodium chloride solution, stirring the mixture to be pasty, and roasting the mixture for 3 hours at 850 ℃ to obtain a sintered block; crushing the sintered cake to 150 meshes, repeatedly leaching sodium tungstate generated after roasting by using an ethanolamine solution with the volume concentration of 20%, and filtering to obtain a sodium tungstate solution and a titanium precipitate;
(3) coarse titanium slag recovery
Washing and drying the precipitate obtained in the step (2) to obtain coarse titanium slag, and completing the recovery of titanium element;
(4) purification of tungsten element
Preparing an extracting agent consisting of 10% of trioctyl tertiary amine, 10% of octanol and 80% of sulfonated kerosene according to volume fraction, and performing 2-stage extraction on tungsten element in a sodium tungstate solution, wherein the volume ratio of each stage of organic phase to water phase is 1: 4; preparing an ammonium bicarbonate solution with the concentration of 2mol/L, and performing 3-stage back extraction on tungsten element entering an organic phase, wherein the volume ratio of each stage of organic phase to a water phase is 1: 4;
(5) zirconium tungstate recovery
Preparing a precipitator, wherein the concentrations of zirconium chloride, ethylene diamine tetraacetic acid and hexadecyl trimethyl ammonium bromide in the precipitator are 1.5mol/L, 0.55mol/L and 0.15mol/L respectively; adding a precipitant into the stripping solution according to a molar ratio of zirconium chloride to tungsten element of 1.1, heating the solution to 90 ℃, continuously stirring for 2.5h, and then placing the solution in a room temperature environment for cooling and standing for 8 h; filtering to obtain zirconium tungstate precipitate, washing with ethanol, drying, and recovering to obtain nanometer zirconium tungstate to recover tungsten element.
By the embodiment 2, the recovery rate of the tungsten element is 95.93 percent, and the recovery rate of the titanium element is 97.98 percent; the purity of the recovered nano zirconium tungstate is 99.34%, and the content of titanium dioxide in the recovered crude titanium slag is 87.89%.
Example 3: with V2O5-WO3/TiO2The method for preparing nano zirconium tungstate and recovering coarse titanium slag by using the waste SCR denitration catalyst as a raw material comprises the following specific steps:
(1) pretreatment of raw materials
Roasting the waste catalyst for 3 hours at 750 ℃, further cleaning the waste catalyst by using a cleaning solution consisting of 15 percent of rosin polyoxyethylene ester (RPGC), 10 percent of tartaric acid and 75 percent of triethanolamine after soot blowing treatment, and crushing the waste catalyst to be less than 300 meshes to obtain waste catalyst powder;
(2) extraction of tungsten element
Preparing a saturated sodium chloride solution, slowly adding the waste catalyst powder obtained in the step (1) into the saturated sodium chloride solution, stirring the mixture to be pasty, and roasting the mixture at 800 ℃ for 4 hours to obtain a sintered block; crushing the sintered cake to 150 meshes, repeatedly leaching sodium tungstate generated after roasting by using an ethanolamine solution with the volume concentration of 15%, and filtering to obtain a sodium tungstate solution and a titanium precipitate;
(3) coarse titanium slag recovery
Washing and drying the precipitate obtained in the step (2) to obtain coarse titanium slag, and completing the recovery of titanium element;
(4) purification of tungsten element
Preparing an extracting agent consisting of 10% of trioctyl tertiary amine, 15% of isooctanol and 75% of sulfonated kerosene according to volume fraction, and performing 1-stage extraction on tungsten element in a sodium tungstate solution, wherein the volume ratio of an organic phase to a water phase is 1: 5; preparing an ammonium carbonate solution with the concentration of 2.5mol/L, and performing 1-stage back extraction on tungsten element entering an organic phase, wherein the volume ratio of the organic phase to a water phase is 1: 5;
(5) zirconium tungstate recovery
Preparing a precipitator, wherein the concentrations of zirconium chloride, ethylene diamine tetraacetic acid and hexadecyl trimethyl ammonium bromide in the precipitator are 2mol/L, 0.75mol/L and 0.3mol/L respectively; adding a precipitant into the stripping solution according to a molar ratio of zirconium chloride/tungsten element of 1.2, heating the solution to 95 ℃, continuously stirring for 4 hours, and then placing the solution in a room temperature environment for cooling and standing for 12 hours; filtering to obtain zirconium tungstate precipitate, washing with ethanol, drying, and recovering to obtain nanometer zirconium tungstate to recover tungsten element.
By the embodiment 3, the recovery rate of the tungsten element is 96.77 percent, and the recovery rate of the titanium element is 98.05 percent; the purity of the recovered nano zirconium tungstate is 99.78%, and the content of titanium dioxide in the recovered coarse titanium slag is 87.98%.
Example 4: with V2O5-WO3/TiO2The method for preparing nano zirconium tungstate and recovering coarse titanium slag by using the waste SCR denitration catalyst as a raw material comprises the following specific steps:
(1) pretreatment of raw materials
Roasting the waste catalyst for 3.5h at 670 ℃, further cleaning the waste catalyst by using a cleaning solution consisting of 10 percent of rosin polyoxyethylene ester (RPGC), 15 percent of tartaric acid and 75 percent of triethanolamine after soot blowing treatment, and crushing the waste catalyst to be less than 300 meshes to obtain waste catalyst powder;
(2) extraction of tungsten element
Preparing a saturated sodium chloride solution, slowly adding the waste catalyst powder obtained in the step (1) into the saturated sodium chloride solution, stirring the mixture to be pasty, and roasting the mixture at 750 ℃ for 5 hours to obtain a sintered block; crushing the sintered cake to 150 meshes, repeatedly leaching sodium tungstate generated after roasting by using an ethanolamine solution with the volume concentration of 15%, and filtering to obtain a sodium tungstate solution and a titanium precipitate;
(3) coarse titanium slag recovery
Washing and drying the precipitate obtained in the step (2) to obtain coarse titanium slag, and completing the recovery of titanium element;
(4) purification of tungsten element
Preparing an extracting agent consisting of 14% of trioctyl tertiary amine, 15% of octanol and 72% of sulfonated kerosene according to volume fraction, and performing 2-stage extraction on tungsten element in a sodium tungstate solution, wherein the volume ratio of each stage of organic phase to water phase is 1: 4; preparing an ammonium chloride solution with the concentration of 1.5mol/L, and performing 1-stage back extraction on tungsten element entering an organic phase, wherein the volume ratio of each stage of organic phase to a water phase is 1: 4;
(5) zirconium tungstate recovery
Preparing a precipitator, wherein the concentrations of zirconium chloride, ethylene diamine tetraacetic acid and hexadecyl trimethyl ammonium bromide in the precipitator are 1.6mol/L, 0.65mol/L and 0.25mol/L respectively; adding a precipitant into a stripping solution according to a molar ratio of zirconium chloride to tungsten element of 1.05, heating the solution to 85 ℃, continuously stirring for 3.5 hours, and then placing the solution in a room temperature environment for cooling and standing for 10 hours; filtering to obtain zirconium tungstate precipitate, washing with ethanol, drying, and recovering to obtain nanometer zirconium tungstate to recover tungsten element.
By the example 4, the recovery rate of the tungsten element is 96.21%, and the recovery rate of the titanium element is 98.93%; the purity of the recovered nano zirconium tungstate is 99.41 percent, and the content of titanium dioxide in the recovered coarse titanium slag is 87.67 percent.
The method provided by the invention can be used for efficiently recovering titanium and tungsten elements in the waste SCR denitration catalyst, so that high-quality nano zirconium tungstate and coarse titanium slag are obtained. Wherein the purity of the zirconium tungstate is more than 99 percent, the content of titanium dioxide in the coarse titanium slag can reach more than 87 percent, and the recovery rates of tungsten and titanium elements respectively reach more than 95 percent and 97 percent.
The above detailed description is provided for a method for recovering an efficient waste SCR denitration catalyst provided by the present application, and a specific example is applied in the present application to explain the principle and the implementation manner of the present application, and the description of the above example is only used to help understanding the method and the core idea of the present application; meanwhile, for a person skilled in the art, according to the idea of the present application, there may be variations in the specific embodiments and the application scope, and in summary, the content of the present specification should not be construed as a limitation to the present application.
Claims (10)
1. A method for recovering a high-efficiency waste SCR denitration catalyst is characterized by comprising the following steps:
(1) pretreatment of raw materials: roasting the waste SCR denitration catalyst raw material, further cleaning the waste catalyst by using a cleaning solution consisting of 10-20% of rosin polyoxyethylene ester (RPGC), 5-15% of tartaric acid and 65-85% of triethanolamine after soot blowing, and crushing to obtain waste catalyst powder;
(2) extracting tungsten element: preparing a saturated sodium chloride solution, slowly adding the waste catalyst powder obtained in the step (1) into the saturated sodium chloride solution, stirring the mixture to be pasty, and roasting the mixture at the temperature of 750 ℃ and 850 ℃ for 3-6 hours to obtain a sintered block; crushing the sintered cake to 150 meshes, repeatedly leaching the roasted sodium tungstate by using an ethanolamine solution with the volume concentration of 10-20%, and filtering to obtain a sodium tungstate solution and a titanium precipitate;
(3) and (3) recovering coarse titanium slag: washing the titanium precipitate obtained in the step (2) with clear water, removing impurity elements attached to the surface, drying and recovering to obtain coarse titanium slag;
(4) tungsten element purification: preparing an extracting agent to extract tungsten element from the solution obtained in the step (2), wherein the extracting agent consists of an effective component, a phase regulator and a diluent, the effective component is trioctyl tertiary amine, the phase regulator is sec-octanol, the diluent is sulfonated kerosene, the number of extraction stages is 1-3, and the volume ratio of an organic phase to a water phase at each stage is 1: 3-5; using ammonium chloride, ammonium bicarbonate or ammonium carbonate solution as a stripping agent to strip tungsten elements from the extractant to obtain stripping solution, wherein the stripping stage number is 1-3, and the volume ratio of an organic phase to a water phase of each stage is 1: 3-5;
(5) and (3) recovering zirconium tungstate: preparing a mixed aqueous solution of zirconium chloride, ethylene diamine tetraacetic acid and hexadecyl trimethyl ammonium bromide as a precipitant, adding the precipitant into a stripping solution, heating the solution to 80-95 ℃, continuously stirring for 2-4h, and then cooling and standing the solution at room temperature for 6-12 h; filtering to obtain zirconium tungstate precipitate, washing the precipitate with ethanol, and finally drying and recovering to obtain the nano zirconium tungstate.
2. The method for recovering the high-efficiency waste SCR denitration catalyst according to claim 1, wherein the method comprises the following steps: the waste SCR denitration catalyst in the step (1) is eliminated for industrial flue gas denitrationV of2O5-WO3/TiO2Catalyst of the type comprising WO3、TiO2、V2O5、Al2O3、SiO2And CaO.
3. The method for recovering the high-efficiency waste SCR denitration catalyst according to claim 1, wherein the method comprises the following steps: the roasting temperature in the step (1) is 550-750 ℃, and the roasting time is 3-6 h.
4. The method for recovering the high-efficiency waste SCR denitration catalyst according to claim 1, wherein the method comprises the following steps: the mass content of tetrabutylammonium hydrogen sulfate in the ammonia water solution in the step (2) is 0.1-0.25%.
5. The method for recovering the high-efficiency waste SCR denitration catalyst according to claim 1, wherein the method comprises the following steps: the liquid-solid mass ratio of the ammonia water solution to the waste catalyst powder in the step (2) is 5-10: 1.
6. The method for recovering the high-efficiency waste SCR denitration catalyst according to claim 1, wherein the method comprises the following steps: in the step (4), the volume fractions of the effective components, the phase regulator and the diluent in the extractant are respectively 5-15%, 10-20% and 65-85%.
7. The method for recovering the high-efficiency waste SCR denitration catalyst according to claim 1, wherein the method comprises the following steps: the concentration of the stripping agent solution in the step (4) is 1-2.5 mol/L.
8. The method for recovering the high-efficiency waste SCR denitration catalyst according to claim 1, wherein the method comprises the following steps: the concentration of each component of the precipitator in the step (5) is as follows: zirconium chloride is 1-2mol/L, ethylene diamine tetraacetic acid is 0.25-0.75mol/L, and hexadecyl trimethyl ammonium bromide is 0.1-0.3 mol/L.
9. The method for recovering the high-efficiency waste SCR denitration catalyst according to claim 1, wherein the method comprises the following steps: in the step (5), the molar ratio of zirconium chloride in the precipitating agent to tungsten element in the solution is 1-1.2: 1.
10. The method for recovering the high-efficiency waste SCR denitration catalyst according to claim 1, wherein the method comprises the following steps: the particle size of the waste catalyst powder in the step (1) is less than 300 meshes.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110199984.0A CN112960697B (en) | 2021-02-23 | 2021-02-23 | Efficient waste SCR denitration catalyst recovery method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110199984.0A CN112960697B (en) | 2021-02-23 | 2021-02-23 | Efficient waste SCR denitration catalyst recovery method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112960697A true CN112960697A (en) | 2021-06-15 |
CN112960697B CN112960697B (en) | 2022-06-28 |
Family
ID=76285619
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110199984.0A Active CN112960697B (en) | 2021-02-23 | 2021-02-23 | Efficient waste SCR denitration catalyst recovery method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112960697B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115194163A (en) * | 2022-07-15 | 2022-10-18 | 北京科技大学 | A method for recovering and preparing titanium and tungsten powder from waste SCR denitration catalyst |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104805298A (en) * | 2015-05-22 | 2015-07-29 | 北京赛科康仑环保科技有限公司 | Method for recovering waste SCR (Selective Catalytic Reduction) denitration catalyst |
RU2598728C1 (en) * | 2015-07-02 | 2016-09-27 | Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (ТГУ) | Method of producing nanostructured powder of zirconium tungstate |
CN106756030A (en) * | 2016-11-15 | 2017-05-31 | 东南大学 | A kind of method that vanadium, tungsten leachate are separated in the SCR denitration from failure |
CN107089684A (en) * | 2017-06-12 | 2017-08-25 | 哈尔滨工业大学 | The preparation method of nanometer wolframic acid zirconium powder |
CN109607612A (en) * | 2018-12-24 | 2019-04-12 | 孙昕 | Method for recovering vanadium, tungsten and titanium resources in waste SCR denitration catalyst |
CN109750156A (en) * | 2019-03-15 | 2019-05-14 | 华北电力大学 | A method for recovering vanadium, tungsten/molybdenum and titanium elements from waste SCR denitration catalyst |
CN110817944A (en) * | 2019-11-06 | 2020-02-21 | 北京华电光大环境股份有限公司 | Recovery method of waste SCR denitration catalyst |
CN111020193A (en) * | 2019-11-06 | 2020-04-17 | 北京华电光大环境股份有限公司 | Method for recovering vanadium, tungsten and titanium elements from waste SCR denitration catalyst |
-
2021
- 2021-02-23 CN CN202110199984.0A patent/CN112960697B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104805298A (en) * | 2015-05-22 | 2015-07-29 | 北京赛科康仑环保科技有限公司 | Method for recovering waste SCR (Selective Catalytic Reduction) denitration catalyst |
WO2016187993A1 (en) * | 2015-05-22 | 2016-12-01 | 北京赛科康仑环保科技有限公司 | Method for recovering and disposing waste scr denitrification catalyst |
RU2598728C1 (en) * | 2015-07-02 | 2016-09-27 | Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (ТГУ) | Method of producing nanostructured powder of zirconium tungstate |
CN106756030A (en) * | 2016-11-15 | 2017-05-31 | 东南大学 | A kind of method that vanadium, tungsten leachate are separated in the SCR denitration from failure |
CN107089684A (en) * | 2017-06-12 | 2017-08-25 | 哈尔滨工业大学 | The preparation method of nanometer wolframic acid zirconium powder |
CN109607612A (en) * | 2018-12-24 | 2019-04-12 | 孙昕 | Method for recovering vanadium, tungsten and titanium resources in waste SCR denitration catalyst |
CN109750156A (en) * | 2019-03-15 | 2019-05-14 | 华北电力大学 | A method for recovering vanadium, tungsten/molybdenum and titanium elements from waste SCR denitration catalyst |
CN110817944A (en) * | 2019-11-06 | 2020-02-21 | 北京华电光大环境股份有限公司 | Recovery method of waste SCR denitration catalyst |
CN111020193A (en) * | 2019-11-06 | 2020-04-17 | 北京华电光大环境股份有限公司 | Method for recovering vanadium, tungsten and titanium elements from waste SCR denitration catalyst |
Non-Patent Citations (1)
Title |
---|
李强等: "废弃SCR脱硝催化剂资源化利用研究进展", 《中国冶金》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115194163A (en) * | 2022-07-15 | 2022-10-18 | 北京科技大学 | A method for recovering and preparing titanium and tungsten powder from waste SCR denitration catalyst |
CN115194163B (en) * | 2022-07-15 | 2023-05-30 | 北京科技大学 | A method for preparing titanium tungsten powder by recycling waste SCR denitrification catalyst |
Also Published As
Publication number | Publication date |
---|---|
CN112960697B (en) | 2022-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111020193B (en) | Method for recovering vanadium, tungsten and titanium elements from waste SCR denitration catalyst | |
CN107419104B (en) | The comprehensive recovering process of useless SCR denitration | |
CN110578058B (en) | Method for recovering titanium, tungsten, vanadium and silicon in waste catalyst for coal-fired flue gas denitration | |
CN104805302B (en) | A kind of method that vanadium and titanium are extracted from titanium slag containing vanadium | |
CN106435197B (en) | A kind of SCR denitration dead catalyst valuable metal alkaline extraction retracting device and technique | |
CN105714118B (en) | A kind of extraction from discarded SCR catalyst reclaims tungsten, the technique of vanadium | |
CN110817944B (en) | Recovery method of waste SCR denitration catalyst | |
CN106048230A (en) | Separating and recovering method for W and V in waste SCR denitration catalyst | |
CN114774701B (en) | Resource utilization method of industrial waste salt and waste denitration catalyst | |
CN104928475A (en) | Recycling method of rare earth-containing aluminum silicon waste material | |
CN105274341A (en) | Method for leaching metallic vanadium and metallic tungsten in waste selective catalytic reduction (SCR) denitration catalyst | |
CN108642276A (en) | A kind of method that acid decomposition scheelite prepares tungsten oxide and tungsten powder | |
CN106277043B (en) | The method that separating metal oxide is extracted from catalyst for denitrating flue gas | |
CN113233482A (en) | Secondary aluminum ash resource utilization method | |
CN112960697B (en) | Efficient waste SCR denitration catalyst recovery method | |
CN113846227A (en) | A kind of separation and recovery method of various metal components in red mud leaching solution | |
CN112125336B (en) | Method for recovering nano bismuth titanate, bismuth vanadate and high-purity tungsten slag from waste denitration catalyst | |
CN112939094B (en) | A method for preparing nano-cobalt tungstate and reclaiming coarse titanium slag | |
CN109762997B (en) | Method for extracting scandium from refractory high-silicon scandium-rich tungsten slag | |
CN115924926B (en) | Method for efficiently recycling valuable components in waste SCR catalyst | |
CN112110482B (en) | Method for recovering nano strontium titanate and high-purity tungsten slag from waste SCR denitration catalyst | |
CN110760683A (en) | Method for extracting vanadium from waste SCR catalyst and preparing alkali metal fluotitanate, product and application thereof | |
CN111732123B (en) | Method for preparing magnesium metavanadate from waste SCR denitration catalyst | |
CN106350679B (en) | A method of recycling valuable metal titanium vanadium tungsten from useless SCR denitration | |
CN112093825B (en) | Method for recovering nano cobalt titanate and high-purity tungsten slag from waste SCR denitration catalyst |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |