CN112960105A - 一种可设计电阻的电驱动连续碳纤维增强形状记忆聚合物变形蒙皮 - Google Patents
一种可设计电阻的电驱动连续碳纤维增强形状记忆聚合物变形蒙皮 Download PDFInfo
- Publication number
- CN112960105A CN112960105A CN202110331763.4A CN202110331763A CN112960105A CN 112960105 A CN112960105 A CN 112960105A CN 202110331763 A CN202110331763 A CN 202110331763A CN 112960105 A CN112960105 A CN 112960105A
- Authority
- CN
- China
- Prior art keywords
- shape memory
- continuous carbon
- memory polymer
- carbon fiber
- skin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229920000049 Carbon (fiber) Polymers 0.000 title claims abstract description 51
- 239000004917 carbon fiber Substances 0.000 title claims abstract description 51
- 229920000431 shape-memory polymer Polymers 0.000 title claims abstract description 40
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 title claims abstract description 33
- 239000002245 particle Substances 0.000 claims abstract description 20
- 239000011159 matrix material Substances 0.000 claims abstract description 15
- 229920001577 copolymer Polymers 0.000 claims description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 2
- 239000004593 Epoxy Substances 0.000 claims description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Natural products C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims description 2
- 239000006229 carbon black Substances 0.000 claims description 2
- 239000002041 carbon nanotube Substances 0.000 claims description 2
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims description 2
- 239000000835 fiber Substances 0.000 abstract description 2
- 230000010354 integration Effects 0.000 abstract description 2
- 230000003014 reinforcing effect Effects 0.000 abstract description 2
- 238000000034 method Methods 0.000 description 5
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000012779 reinforcing material Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C3/00—Wings
- B64C3/26—Construction, shape, or attachment of separate skins, e.g. panels
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/04—Reinforcing macromolecular compounds with loose or coherent fibrous material
- C08J5/0405—Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
- C08J5/042—Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2325/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
- C08J2325/02—Homopolymers or copolymers of hydrocarbons
- C08J2325/04—Homopolymers or copolymers of styrene
- C08J2325/08—Copolymers of styrene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2371/00—Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
- C08J2371/02—Polyalkylene oxides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2379/00—Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
- C08J2379/04—Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
- C08J2379/08—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/02—Fibres or whiskers
- C08K7/04—Fibres or whiskers inorganic
- C08K7/06—Elements
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Aviation & Aerospace Engineering (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Reinforced Plastic Materials (AREA)
Abstract
本发明提供了一种可设计电阻的电驱动连续碳纤维增强形状记忆聚合物变形蒙皮,该方案包括有形状记忆聚合物基体和至少一根非直线型排列的连续碳纤维;形状记忆聚合物基体包覆在连续碳纤维外部。该方案中使用非直线形排列的连续碳纤维增强形状记忆聚合物变形蒙皮,蒙皮在可变形的情况下,相比于单纯填充颗粒或者短纤维,其力学性能得到进一步的提高;连续碳纤维和导电颗粒既作为增强体又作为导电网络,可以实现功能集成;通过调整连续碳纤维的长度来设计碳纤维的电阻值,并根据使用条件通过导电颗粒传递焦耳热,确保蒙皮电阻值与施加电压匹配,可以实现在蒙皮迅速升温的同时防止形状记忆聚合物因瞬时高温产生损伤。
Description
技术领域
本发明涉及的是航空技术领域,尤其是一种可设计电阻的电驱动连续碳纤维增强形状记忆聚合物变形蒙皮。
背景技术
在通电条件下,电驱动形状记忆聚合物形蒙皮可以利用焦耳热效应来驱动自身变形,不需要额外提供加热系统。形状记忆聚合物大多都是电绝缘、高热阻材料,为使形状记忆聚合物蒙皮可以实现较大的变形并且具备电驱动变形功能,增强材料通常选用可导电的粉末或短切碳纤维。由于碳纤维的伸长率很小,不适合使用连续碳纤维制造可变形机翼蒙皮,并且连续碳纤维电阻一般都很小,而形状记忆聚合物导热系数低,一旦施加的电压不合适,连续碳纤维因通电产生的瞬时高温来不及向聚合物扩散,很容易造成形状记忆聚合物损伤。
发明内容
本发明的目的,就是针对现有技术所存在的不足,而提供一种可设计电阻的电驱动连续碳纤维增强形状记忆聚合物变形蒙皮,该方案采用非直线型排列的连续碳纤维以及导电颗粒作为增强材料和导电网络,具有更好的力学性能,同时能够精准设计蒙皮的电阻值,使蒙皮的电阻值与施加的电压匹配,能够在实现蒙皮迅速升温的同时避免形状记忆聚合物因瞬时高温产生损伤。
本方案是通过如下技术措施来实现的:
一种可设计电阻的电驱动连续碳纤维增强形状记忆聚合物变形蒙皮,包括有形状记忆聚合物基体和至少一根非直线型排列的连续碳纤维;形状记忆聚合物基体包覆在连续碳纤维外部。
作为本方案的优选:形状记忆聚合物基体的一个水平面上设置至少一根沿该水平面排列且排列方向一致的连续碳纤维。
作为本方案的优选:形状记忆聚合物基体内部能够设置导电颗粒,导电颗粒与连续碳纤维不接触。
作为本方案的优选:通过控制非直线形排列的连续碳纤维的长度能够设计蒙皮的电阻值。
作为本方案的优选:通过控制非直线形排列的连续碳纤维的长度和改变导电颗粒的含量能够设计蒙皮电阻值。
作为本方案的优选:蒙皮的导电回路由连续碳纤维单独组成或由连续碳纤维和导电颗粒共同组成。
作为本方案的优选:形状记忆聚合物基体为形状记忆苯乙烯共聚物、形状记忆环氧共聚物、形状记忆氰酸酯共聚物的一种或是几种的混合。
作为本方案的优选:导电颗粒的材料为碳黑或碳纳米管。
本方案的有益效果可根据对上述方案的叙述得知,由于在该方案中使用非直线形排列的连续碳纤维增强形状记忆聚合物变形蒙皮,蒙皮在可变形的情况下,相比于单纯填充颗粒或者短纤维,其力学性能得到进一步的提高;连续碳纤维和导电颗粒既作为增强体又作为导电网络,可以实现功能集成;通过调整连续碳纤维的长度来设计碳纤维的电阻值,并根据使用条件通过导电颗粒传递焦耳热,确保蒙皮电阻值与施加电压匹配,可以实现在蒙皮迅速升温的同时防止形状记忆聚合物因瞬时高温产生损伤。
由此可见,本发明与现有技术相比,具有突出的实质性特点和显著的进步,其实施的有益效果也是显而易见的。
附图说明
图1为本发明的结构示意图。
图2为本发明实施例的结构示意图。
图3为本发明蒙皮展开过程示意图。
图中,1为形状记忆聚合物基体,2为连续碳纤维,3为导电颗粒。
具体实施方式
本说明书中公开的所有特征,或公开的所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以以任何方式组合。
本说明书(包括任何附加权利要求、摘要和附图)中公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换。即,除非特别叙述,每个特征只是一系列等效或类似特征中的一个例子而已。
实施例:
通过蒙皮尺寸及碳纤维电阻率确定非直线形排列的连续碳纤维2数量及每根非直线形排列的连续碳纤维长度,进而确定每根非直线形排列的连续碳纤维在蒙皮厚度方向上的排布的层数。如图2所示,非直线形排列的一根连续碳纤维在形状记忆聚合物基体1的厚度方向分布了三层;根据蒙皮不同电阻值和使用条件,可加入不定量的导电颗粒3,导电颗粒增强体3均匀分散于形状记忆聚合物基体1中。
本实施例在通电条件下,蒙皮依靠自身电阻产生的焦耳热进行升温,当形状记聚合物处于玻璃化转变温度以上时,通过驱动器使蒙皮变为U形结构,之后断电,蒙皮冷却后形状固定;再次通电,此变形蒙皮能够快速回复到初始形状,如图3所示。
本发明并不局限于前述的具体实施方式。本发明扩展到任何在本说明书中披露的新特征或任何新的组合,以及披露的任一新的方法或过程的步骤或任何新的组合。
Claims (8)
1.一种可设计电阻的电驱动连续碳纤维增强形状记忆聚合物变形蒙皮,其特征是:包括有形状记忆聚合物基体和至少一根非直线型排列的连续碳纤维;所述形状记忆聚合物基体包覆在连续碳纤维外部。
2.根据权利要求1所述的一种可设计电阻的电驱动连续碳纤维增强形状记忆聚合物变形蒙皮,其特征是:所述形状记忆聚合物基体的一个水平面上设置至少一根沿该水平面排列且排列方向一致的连续碳纤维。
3.根据权利要求1所述的一种可设计电阻的电驱动连续碳纤维增强形状记忆聚合物变形蒙皮,其特征是:所述形状记忆聚合物基体内部能够设置导电颗粒,导电颗粒与连续碳纤维不接触。
4.根据权利要求1所述的一种可设计电阻的电驱动连续碳纤维增强形状记忆聚合物变形蒙皮,其特征是:通过控制非直线形排列的连续碳纤维的长度能够设计蒙皮的电阻值。
5.根据权利要求3所述的一种可设计电阻的电驱动连续碳纤维增强形状记忆聚合物变形蒙皮,其特征是:通过控制非直线形排列的连续碳纤维的长度和改变导电颗粒的含量能够设计蒙皮电阻值。
6.根据权利要求1或3所述的一种可设计电阻的电驱动连续碳纤维增强形状记忆聚合物变形蒙皮,其特征是:蒙皮的导电回路由连续碳纤维单独组成或由连续碳纤维和导电颗粒共同组成。
7.根据权利要求1所述的一种可设计电阻的电驱动连续碳纤维增强形状记忆聚合物变形蒙皮,其特征是:所述形状记忆聚合物基体为形状记忆苯乙烯共聚物、形状记忆环氧共聚物、形状记忆氰酸酯共聚物的一种或是几种的混合。
8.根据权利要求1所述的一种可设计电阻的电驱动连续碳纤维增强形状记忆聚合物变形蒙皮,其特征是:所述导电颗粒的材料为碳黑或碳纳米管。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110331763.4A CN112960105A (zh) | 2021-03-29 | 2021-03-29 | 一种可设计电阻的电驱动连续碳纤维增强形状记忆聚合物变形蒙皮 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110331763.4A CN112960105A (zh) | 2021-03-29 | 2021-03-29 | 一种可设计电阻的电驱动连续碳纤维增强形状记忆聚合物变形蒙皮 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN112960105A true CN112960105A (zh) | 2021-06-15 |
Family
ID=76278759
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110331763.4A Pending CN112960105A (zh) | 2021-03-29 | 2021-03-29 | 一种可设计电阻的电驱动连续碳纤维增强形状记忆聚合物变形蒙皮 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112960105A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115675833A (zh) * | 2022-12-29 | 2023-02-03 | 中国空气动力研究与发展中心设备设计与测试技术研究所 | 一种基于主动变形蒙皮的多形态变形机翼 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101513932A (zh) * | 2009-03-30 | 2009-08-26 | 哈尔滨工业大学 | 一种可改变刚度的变形机翼蒙皮 |
CN101652243A (zh) * | 2007-03-08 | 2010-02-17 | 阿伦尼亚航空器材股份公司 | 温度和湿度受控的复合材料制品及其使用方法 |
US20100266867A1 (en) * | 2006-06-13 | 2010-10-21 | Geerardus Hubertus Joannes Jozeph Roebroeks | Laminate of metal sheets and polymer |
US20100282906A1 (en) * | 2009-05-10 | 2010-11-11 | Raytheon Company | Multi-layer metal/shape memory polymer roll-up wing structures for fitment-constrained air vehicles |
GB201205710D0 (en) * | 2012-03-30 | 2012-05-16 | Mbda Uk Ltd | Composite material suitable for a morphing skin |
CN103332289A (zh) * | 2013-06-09 | 2013-10-02 | 哈尔滨工业大学 | 一种形状记忆聚合物变刚度蒙皮 |
US20150101325A1 (en) * | 2013-10-11 | 2015-04-16 | University Of Dayton | Reconfigurable skin system based on spatially targeted activation of shape memory polymers |
CN105460228A (zh) * | 2014-08-15 | 2016-04-06 | 波音公司 | 飞行器中使用的导电热塑性接地平面 |
CN109096699A (zh) * | 2018-07-10 | 2018-12-28 | 哈尔滨工业大学 | 一种电驱动形状记忆聚合物复合材料及其制备方法 |
WO2020249900A1 (fr) * | 2019-06-12 | 2020-12-17 | Centre National d'Études Spatiales | Structure tubulaire à mémoire de forme |
CN112550663A (zh) * | 2020-12-08 | 2021-03-26 | 中国空气动力研究与发展中心设备设计及测试技术研究所 | 一种基于智能驱动装置的变形机翼 |
-
2021
- 2021-03-29 CN CN202110331763.4A patent/CN112960105A/zh active Pending
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100266867A1 (en) * | 2006-06-13 | 2010-10-21 | Geerardus Hubertus Joannes Jozeph Roebroeks | Laminate of metal sheets and polymer |
CN101652243A (zh) * | 2007-03-08 | 2010-02-17 | 阿伦尼亚航空器材股份公司 | 温度和湿度受控的复合材料制品及其使用方法 |
CN101513932A (zh) * | 2009-03-30 | 2009-08-26 | 哈尔滨工业大学 | 一种可改变刚度的变形机翼蒙皮 |
US20100282906A1 (en) * | 2009-05-10 | 2010-11-11 | Raytheon Company | Multi-layer metal/shape memory polymer roll-up wing structures for fitment-constrained air vehicles |
GB201205710D0 (en) * | 2012-03-30 | 2012-05-16 | Mbda Uk Ltd | Composite material suitable for a morphing skin |
CN103332289A (zh) * | 2013-06-09 | 2013-10-02 | 哈尔滨工业大学 | 一种形状记忆聚合物变刚度蒙皮 |
US20150101325A1 (en) * | 2013-10-11 | 2015-04-16 | University Of Dayton | Reconfigurable skin system based on spatially targeted activation of shape memory polymers |
CN105460228A (zh) * | 2014-08-15 | 2016-04-06 | 波音公司 | 飞行器中使用的导电热塑性接地平面 |
CN109096699A (zh) * | 2018-07-10 | 2018-12-28 | 哈尔滨工业大学 | 一种电驱动形状记忆聚合物复合材料及其制备方法 |
WO2020249900A1 (fr) * | 2019-06-12 | 2020-12-17 | Centre National d'Études Spatiales | Structure tubulaire à mémoire de forme |
CN112550663A (zh) * | 2020-12-08 | 2021-03-26 | 中国空气动力研究与发展中心设备设计及测试技术研究所 | 一种基于智能驱动装置的变形机翼 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115675833A (zh) * | 2022-12-29 | 2023-02-03 | 中国空气动力研究与发展中心设备设计与测试技术研究所 | 一种基于主动变形蒙皮的多形态变形机翼 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Leng et al. | Electroactive thermoset shape memory polymer nanocomposite filled with nanocarbonpowders | |
Chen et al. | Designs of conductive polymer composites with exceptional reproducibility of positive temperature coefficient effect: A review | |
Liang et al. | Effects of carbon fiber content and size on electric conductive properties of reinforced high density polyethylene composites | |
AU2019208221A1 (en) | Method for manufacturing heating element, heating element manufactured thereby, and use method thereof | |
CN111073059B (zh) | 一种纳米纤维素电热膜及其制备方法 | |
CN105321635A (zh) | 基于3d打印的电导率梯度聚合物绝缘子制造方法 | |
DE102011119844A1 (de) | Verbundstruktur mit Eisschutzvorrichtung sowie Herstellverfahren | |
CN112960105A (zh) | 一种可设计电阻的电驱动连续碳纤维增强形状记忆聚合物变形蒙皮 | |
CN103588983A (zh) | 一种柔性高分子ptc材料的制备方法 | |
DE2928293A1 (de) | Verfahren zur harzinjektion beim gewebeimpraegnieren | |
CN109096699B (zh) | 一种电驱动形状记忆聚合物复合材料及其制备方法 | |
Rogers et al. | Characterization of deformation induced changes to conductivity in an electrically triggered shape memory polymer | |
Cortés et al. | 3D printed anti-icing and de-icing system based on CNT/GNP doped epoxy composites with self-curing and structural health monitoring capabilities | |
CN111516338B (zh) | 一种双层高分子基电响应形状记忆材料及其制备方法 | |
CN106189085A (zh) | 一种石墨烯电热材料及其制备方法 | |
Gackowski et al. | Multi-material additive manufacturing of self-heating structures for out-of-autoclave post-processing and de-icing | |
Liang | Effects of heat treatment on electrical conductivity of HDPE/CB composites | |
Yue et al. | Enhanced reproducibility of positive temperature coefficient effect of TPO/HDPE blends via elastic crosslinking | |
Xu et al. | Electrothermally‐Driven Elongating‐Contracting Film Actuators Based on Two‐Way Shape Memory Carbon Nanotube/Ethylene‐Vinyl Acetate Composites | |
CN103214857A (zh) | 具备自限温性能的硅橡胶 | |
EP3447284A1 (de) | Rotorblatt für eine windenergieanlage, verfahren zum kontaktieren einer elektrisch leitfähigen beschichtung auf ein rotorblatt einer windenergieanlage und windener-gieanlage | |
Liang | Electrical conductivities of high‐density polyethylene composites reinforced with carbon fiber and nanometer carbon black | |
KR101940066B1 (ko) | 난방용 발열체 및 그 제조방법 | |
CN203801088U (zh) | 智能防火发热电缆 | |
Lan et al. | Shape recovery performances of a deployable hinge fabricated by fiber-reinforced shape-memory polymer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20210615 |
|
RJ01 | Rejection of invention patent application after publication |