[go: up one dir, main page]

CN112949098B - Iterative correction method and iterative correction system for kinematic error mapping matrix - Google Patents

Iterative correction method and iterative correction system for kinematic error mapping matrix Download PDF

Info

Publication number
CN112949098B
CN112949098B CN202110419520.6A CN202110419520A CN112949098B CN 112949098 B CN112949098 B CN 112949098B CN 202110419520 A CN202110419520 A CN 202110419520A CN 112949098 B CN112949098 B CN 112949098B
Authority
CN
China
Prior art keywords
error
matrix
cosα
sinα
error mapping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110419520.6A
Other languages
Chinese (zh)
Other versions
CN112949098A (en
Inventor
高健
罗于恒
张揽宇
陈新
陈云
陈桪
张凯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hymson Laser Technology Group Co Ltd
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN202110419520.6A priority Critical patent/CN112949098B/en
Publication of CN112949098A publication Critical patent/CN112949098A/en
Application granted granted Critical
Publication of CN112949098B publication Critical patent/CN112949098B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明公开了一种运动学误差映射矩阵的迭代修正方法,包括运动学约束方程建立步骤、误差项引入步骤、误差映射模型和矩阵建立步骤、结构误差获取步骤、误差映射矩阵处理步骤和修正结构误差参数获取步骤。还公开了一种运动学误差映射矩阵的迭代修正系统,包括运动学约束方程建立模块、误差项引入模块、误差映射模型和矩阵建立模块、结构误差获取模块、误差映射矩阵处理模块和修正结构误差参数获取模块。所述运动学误差映射矩阵的迭代修正方法及其迭代修正系统,利用建模误差补偿矩阵解决了高阶小量取舍带来的建模求解和建模精度的矛盾问题,在舍去高阶小量的同时能避免其带来的误差影响,保证了建模的有效性和准确性。

Figure 202110419520

The invention discloses an iterative correction method for a kinematic error mapping matrix, which includes a kinematic constraint equation establishment step, an error term introduction step, an error mapping model and matrix establishment step, a structure error acquisition step, an error mapping matrix processing step and a correction structure. Error parameter acquisition steps. Also disclosed is an iterative correction system for a kinematic error mapping matrix, including a kinematic constraint equation establishment module, an error term introduction module, an error mapping model and matrix establishment module, a structural error acquisition module, an error mapping matrix processing module, and a structural error correction module. Parameter acquisition module. The iterative correction method of the kinematic error mapping matrix and the iterative correction system thereof use the modeling error compensation matrix to solve the conflicting problem of modeling solution and modeling accuracy caused by the high-order small-quantity trade-off. At the same time, it can avoid the influence of errors and ensure the validity and accuracy of the modeling.

Figure 202110419520

Description

运动学误差映射矩阵的迭代修正方法及其迭代修正系统Iterative Correction Method of Kinematic Error Mapping Matrix and Its Iterative Correction System

技术领域technical field

本发明涉及并联机构技术领域,特别是一种运动学误差映射矩阵的迭代修正方法及其迭代修正系统。The invention relates to the technical field of parallel mechanisms, in particular to an iterative correction method for a kinematic error mapping matrix and an iterative correction system thereof.

背景技术Background technique

并联机构因为其结构紧凑、刚度高、累积误差小、对输入误差的敏感度低和精度高的特点受到了越来越多的重视。平台的末端精度很大程度上取决于关节精度,但由于实际加工和装配过程中存在制造寸尺误差以及装配误差,现阶段高精度控制的基础和核心问题是如何获取平台的准确信息。误差映射模型的建立是运动学标定的第一步,模型建立的好坏直接影响了辨识精度,以及最后的标定精度。Parallel mechanism has received more and more attention because of its compact structure, high rigidity, small accumulated error, low sensitivity to input error and high precision. The end accuracy of the platform depends largely on the joint accuracy. However, due to the manufacturing dimensional error and assembly error in the actual processing and assembly process, the basic and core problem of high-precision control at this stage is how to obtain accurate information of the platform. The establishment of the error mapping model is the first step of kinematics calibration. The quality of the model establishment directly affects the identification accuracy and the final calibration accuracy.

但在对误差进行建模时,高阶小量会带来耦合项,导致无法解出误差映射矩阵,需要在建模过程舍去高阶小量,则会带来建模误差,尤其在误差项数值较大时,直接舍去高阶小量的影响是很大的,会对最后的迭代精度造成影响。However, when modeling errors, high-order small quantities will bring coupling terms, which makes it impossible to solve the error mapping matrix. It is necessary to discard high-order small quantities in the modeling process, which will bring modeling errors, especially in the error When the value of the item is large, the impact of directly discarding the high-order small quantity is very large, which will affect the final iteration accuracy.

发明内容SUMMARY OF THE INVENTION

针对上述缺陷,本发明的目的在于提出一种运动学误差映射矩阵的迭代修正方法及其迭代修正系统,利用建模误差补偿矩阵解决了高阶小量取舍带来的建模求解和建模精度的矛盾问题,在舍去高阶小量的同时能避免其带来的误差影响,保证了建模的有效性和准确性。In view of the above defects, the purpose of the present invention is to propose an iterative correction method and iterative correction system for the kinematic error mapping matrix, and use the modeling error compensation matrix to solve the modeling solution and modeling accuracy caused by the high-order small-quantity trade-off. The contradictory problem of , while discarding the high-order small quantities, it can avoid the influence of errors, which ensures the validity and accuracy of the modeling.

为达此目的,本发明采用以下技术方案:一种运动学误差映射矩阵的迭代修正方法,包括运动学约束方程建立步骤、误差项引入步骤、误差映射模型和矩阵建立步骤、结构误差获取步骤、误差映射矩阵处理步骤和修正结构误差参数获取步骤;In order to achieve this purpose, the present invention adopts the following technical scheme: an iterative correction method for a kinematic error mapping matrix, comprising a step of establishing a kinematic constraint equation, a step of introducing an error term, a step of establishing an error mapping model and a matrix, a step of obtaining a structural error, Error mapping matrix processing step and correction structure error parameter acquisition step;

运动学约束方程建立步骤为:通过闭环矢量法建立三轴并联机构的原始运动学约束方程;The steps of establishing the kinematic constraint equation are: establishing the original kinematic constraint equation of the three-axis parallel mechanism through the closed-loop vector method;

所述误差项引入步骤为:对所述原始运动学约束方程做微摄动得到带有误差项的微摄动运动学方程,其中,所述误差项包括一阶小量和高阶小量;The step of introducing the error term is: performing micro-perturbation on the original kinematic constraint equation to obtain a micro-perturbation kinematic equation with an error term, wherein the error term includes a first-order epsilon and a high-order epsilon;

所述误差映射模型和矩阵建立步骤为:首先建立舍去高阶小量的第一误差映射模型和不舍去高阶小量的第二误差映射模型;The error mapping model and matrix establishment steps are as follows: firstly, establish a first error mapping model that discards high-order small quantities and a second error mapping model that does not discard high-order small quantities;

然后建立舍去高阶小量的第一误差映射矩阵和不舍去高阶小量的第二误差映射矩阵;Then establish a first error mapping matrix that discards high-order small quantities and a second error mapping matrix that does not discard high-order small quantities;

所述结构误差获取步骤为:对所述第一误差映射模型做运动学误差辨识,得到结构误差;The step of obtaining the structural error is: performing kinematic error identification on the first error mapping model to obtain the structural error;

所述误差映射矩阵处理步骤为:首先将所述结构误差代入所述第一误差映射矩阵得到第一矩阵元素,然后对所述第一矩阵元素执行均方根得到第一均方根值;The error mapping matrix processing step is: firstly, substituting the structural error into the first error mapping matrix to obtain a first matrix element, and then performing a root mean square on the first matrix element to obtain a first root mean square value;

然后将所述结构误差代入所述第二误差映射矩阵得到第二矩阵元素,然后对所述第二矩阵元素执行均方根得到第二均方根值;Then substitute the structural error into the second error mapping matrix to obtain a second matrix element, and then perform a root mean square on the second matrix element to obtain a second root mean square value;

然后计算所述第一均方根与第二均方根的比值,得到建模误差补偿矩阵;Then, the ratio of the first root mean square to the second root mean square is calculated to obtain a modeling error compensation matrix;

所述修正结构误差参数获取步骤:通过迭代算法对所述建模误差补偿矩阵执行二次辨识,得到修正结构误差参数。The step of obtaining the corrected structural error parameters: performing secondary identification on the modeling error compensation matrix through an iterative algorithm to obtain the corrected structural error parameters.

例如,所述三轴并联机构包括第一同轴直线电机、第二同轴直线电机、第三同轴直线电机、X轴导轨、Z轴直线导轨、Z轴导轨、刚性杆件和两个锲形刚体件;For example, the three-axis parallel mechanism includes a first coaxial linear motor, a second coaxial linear motor, a third coaxial linear motor, an X-axis guide rail, a Z-axis linear guide, a Z-axis guide, a rigid rod and two wedges Rigid body parts;

所述第一同轴直线电机、第二同轴直线电机和第三同轴直线电机均滑动设置于所述X轴导轨;The first coaxial linear motor, the second coaxial linear motor and the third coaxial linear motor are all slidably arranged on the X-axis guide rail;

两个所述锲形刚体件分别与所述第一同轴直线电机和第三同轴直线电机固定连接,两个所述锲形刚体件均设有一个斜侧壁,两个所述斜侧壁相对设置,两个所述斜侧壁均设有所述Z轴直线导轨;The two wedge-shaped rigid body parts are respectively fixedly connected with the first coaxial linear motor and the third coaxial linear motor. The walls are oppositely arranged, and the two inclined side walls are provided with the Z-axis linear guide rail;

所述Z轴导轨与所述第二同轴直线电机固定连接,所述刚性杆件的中部与所述Z轴导轨滑动连接,所述刚性杆件的两端均铰接有连接部,两个所述连接部分别与两个所述锲形刚体件的Z轴直线导轨滑动连接;The Z-axis guide rail is fixedly connected to the second coaxial linear motor, the middle part of the rigid rod is slidably connected to the Z-axis guide rail, and both ends of the rigid rod are hinged with connecting parts, and the two The connecting parts are respectively slidably connected with the Z-axis linear guide rails of the two wedge-shaped rigid body parts;

所述运动学约束方程建立步骤具体为:通过闭环矢量法建立所述三轴并联机构的原始运动学约束方程:The specific steps of establishing the kinematic constraint equation are: establishing the original kinematic constraint equation of the three-axis parallel mechanism by the closed-loop vector method:

z-l1 sinα=-k1(q0-l1 cosα+l1-q1),zl 1 sinα=-k 1 (q 0 -l 1 cosα+l 1 -q 1 ),

z+l2 sinα=k2(q0+l2 cosα-l2-q2),z+l 2 sinα=k 2 (q 0 +l 2 cosα-l 2 -q 2 ),

x=q0x=q 0 ,

其中,l1和l2分别为所述刚性杆件的中部到两个锲形刚体件的距离,k1和k2分别为两个所述锲形刚体件的斜侧壁的斜率,q0、q1和q2分别为第二同轴直线电机、第一同轴直线电机和第三同轴直线电机的移动量,x、z和α为三个终端移动量。Wherein, l 1 and l 2 are the distances from the middle of the rigid rod member to the two wedge-shaped rigid body members, respectively, k 1 and k 2 are the slopes of the inclined side walls of the two wedge-shaped rigid body members, respectively, q 0 , q 1 and q 2 are the movement amounts of the second coaxial linear motor, the first coaxial linear motor and the third coaxial linear motor respectively, and x, z and α are the movement amounts of the three terminals.

值得说明的是,在所述误差映射模型和矩阵建立步骤中,所述第一误差映射模型为:It should be noted that, in the step of establishing the error mapping model and matrix, the first error mapping model is:

Figure GDA0003198112780000041
Figure GDA0003198112780000041

Figure GDA0003198112780000042
Figure GDA0003198112780000042

δx=δq0δx=δq 0 ;

所述第二误差映射模型为:The second error mapping model is:

δz-(l1 cosα+δl1 cosα-k1l1 sinαδz-(l 1 cosα+δl 1 cosα-k 1 l 1 sinα

-δk1l1 sinα-k1δl1 sinα-δk1δl1 sinα)δα-δk 1 l 1 sinα-k 1 δl 1 sinα-δk 1 δl 1 sinα)δα

=(-k1 cosα-δk1 cosα+sinα+k1+δk1)δl1 =(-k 1 cosα-δk 1 cosα+sinα+k 1 +δk 1 )δl 1

+(-l1 cosα-δl1 cosα-q1+q0+l1+δl1)δk1 +(-l 1 cosα-δl 1 cosα-q 1 +q 0 +l 1 +δl 1 )δk 1

-(k1+δk1)δq1+(k1+δk1)δq0-(k 1 +δk 1 )δq 1 +(k 1 +δk 1 )δq 0 ,

δz+(l2 cosα+δl2 cosα+k2l2 sinαδz+(l 2 cosα+δl 2 cosα+k 2 l 2 sinα

+δk2l2 sinα+k2δl2 sinα+δk2δl2 sinα)δα+δk 2 l 2 sinα+k 2 δl 2 sinα+δk 2 δl 2 sinα)δα

=(k2 cosα+δk2 cosα-sinα-k2-δk2)δl2 =(k 2 cosα+δk 2 cosα-sinα-k 2 -δk 2 )δl 2

+(l2 cosα+δl2 cosα-q2+q0-l2-δl2)δk2 +(l 2 cosα+δl 2 cosα-q 2 +q 0 -l 2 -δl 2 )δk 2

-(k2+δk2)δq2+(k2+δk2)δq0-(k 2 +δk 2 )δq 2 +(k 2 +δk 2 )δq 0 ,

δx=δq0δx=δq 0 ;

其中,δ为一阶小量。Among them, δ is a first-order small quantity.

可选地,在所述误差映射模型和矩阵建立步骤中,将所述第一误差映射模型转变成第一误差映射矩阵:δx=J1δd;Optionally, in the error mapping model and matrix establishment step, the first error mapping model is converted into a first error mapping matrix: δx=J 1 δd;

将所述第二误差映射模型转变成第二误差映射矩阵:δx=J2δd;Transforming the second error mapping model into a second error mapping matrix: δx=J 2 δd;

其中,in,

δd=[δd1,δd2,δd3],δd1=[δq0,0,0,0]Tδd=[δd 1 ,δd 2 ,δd 3 ],δd 1 =[δq 0 ,0,0,0] T ,

δd2=[δq0,δq1,δl1,δk1]T,δd3=[δq0,δq2,δl2,δk2]Tδd 2 =[δq 0 , δq 1 , δl 1 , δk 1 ] T , δd 3 =[δq 0 , δq 2 , δl 2 , δk 2 ] T .

具体地,在所述修正结构误差参数获取步骤中,所述迭代算法具体为:δd=((J1J*)TJ1J*+λE)′(J1J*)Tδx,Specifically, in the step of obtaining the corrected structural error parameter, the iterative algorithm is specifically: δd=((J 1 J * ) T J 1 J * +λE)′(J 1 J * ) T δx,

其中,J1为第一误差映射矩阵,J*为建模误差补偿矩阵,λE为岭估计。Among them, J1 is the first error mapping matrix, J * is the modeling error compensation matrix, and λE is the ridge estimation.

优选的,一种运动学误差映射矩阵的迭代修正系统,包括运动学约束方程建立模块、误差项引入模块、误差映射模型和矩阵建立模块、结构误差获取模块、误差映射矩阵处理模块和修正结构误差参数获取模块;Preferably, an iterative correction system for kinematic error mapping matrix includes a kinematic constraint equation establishment module, an error term introduction module, an error mapping model and matrix establishment module, a structure error acquisition module, an error mapping matrix processing module and a correction structure error parameter acquisition module;

运动学约束方程建立模块用于通过闭环矢量法建立三轴并联机构的原始运动学约束方程;The kinematic constraint equation establishment module is used to establish the original kinematic constraint equation of the three-axis parallel mechanism through the closed-loop vector method;

所述误差项引入模块用于对所述原始运动学约束方程做微摄动得到带有误差项的微摄动运动学方程,其中,所述误差项包括一阶小量和高阶小量;The error term introduction module is configured to perform micro-perturbation on the original kinematic constraint equation to obtain a micro-perturbation kinematic equation with an error term, wherein the error term includes a first-order epsilon and a high-order epsilon;

所述误差映射模型和矩阵建立模块用于建立舍去高阶小量的第一误差映射模型和不舍去高阶小量的第二误差映射模型;The error mapping model and matrix building module are used to establish a first error mapping model that discards high-order small quantities and a second error mapping model that does not discard high-order small quantities;

还用于建立舍去高阶小量的第一误差映射矩阵和不舍去高阶小量的第二误差映射矩阵;It is also used to establish a first error mapping matrix that discards high-order small quantities and a second error mapping matrix that does not discard high-order small quantities;

所述结构误差获取模块用于对所述第一误差映射模型做运动学误差辨识,得到结构误差;The structural error acquisition module is used to perform kinematic error identification on the first error mapping model to obtain structural errors;

所述误差映射矩阵处理模块用于将所述结构误差代入所述第一误差映射矩阵得到第一矩阵元素,还用于对所述矩阵元素执行均方根得到第一均方根值;The error mapping matrix processing module is used for substituting the structural error into the first error mapping matrix to obtain a first matrix element, and for performing root mean square on the matrix element to obtain a first root mean square value;

还用于将所述结构误差代入所述第二误差映射矩阵得到第二矩阵元素,还用于对所述第二矩阵元素执行均方根得到第二均方根值;is also used for substituting the structural error into the second error mapping matrix to obtain a second matrix element, and is also used for performing a root mean square on the second matrix element to obtain a second root mean square value;

还用于计算所述第一均方根与第二均方根的比值,得到建模误差补偿矩阵;is also used to calculate the ratio of the first root mean square to the second root mean square to obtain a modeling error compensation matrix;

所述修正结构误差参数获取模块用于通过迭代算法对所述建模误差补偿矩阵执行二次辨识,得到修正结构误差参数。The modified structural error parameter acquisition module is configured to perform secondary identification on the modeling error compensation matrix through an iterative algorithm to obtain modified structural error parameters.

例如,所述三轴并联机构包括第一同轴直线电机、第二同轴直线电机、第三同轴直线电机、X轴导轨、Z轴直线导轨、Z轴导轨、刚性杆件和两个锲形刚体件;For example, the three-axis parallel mechanism includes a first coaxial linear motor, a second coaxial linear motor, a third coaxial linear motor, an X-axis guide rail, a Z-axis linear guide, a Z-axis guide, a rigid rod and two wedges Rigid body parts;

所述第一同轴直线电机、第二同轴直线电机和第三同轴直线电机均滑动设置于所述X轴导轨;The first coaxial linear motor, the second coaxial linear motor and the third coaxial linear motor are all slidably arranged on the X-axis guide rail;

两个所述锲形刚体件分别与所述第一同轴直线电机和第三同轴直线电机固定连接,两个所述锲形刚体件均设有一个斜侧壁,两个所述斜侧壁相对设置,两个所述斜侧壁均设有所述Z轴直线导轨;The two wedge-shaped rigid body parts are respectively fixedly connected with the first coaxial linear motor and the third coaxial linear motor. The walls are oppositely arranged, and the two inclined side walls are provided with the Z-axis linear guide rail;

所述Z轴导轨与所述第二同轴直线电机固定连接,所述刚性杆件的中部与所述Z轴导轨滑动连接,所述刚性杆件的两端均铰接有连接部,两个所述连接部分别与两个所述锲形刚体件的Z轴直线导轨滑动连接;The Z-axis guide rail is fixedly connected to the second coaxial linear motor, the middle part of the rigid rod is slidably connected to the Z-axis guide rail, and both ends of the rigid rod are hinged with connecting parts, and the two The connecting parts are respectively slidably connected with the Z-axis linear guide rails of the two wedge-shaped rigid body parts;

所述运动学约束方程建立步骤用于通过闭环矢量法建立所述三轴并联机构的原始运动学约束方程:The step of establishing the kinematic constraint equation is used to establish the original kinematic constraint equation of the three-axis parallel mechanism through the closed-loop vector method:

z-l1 sinα=-k1(q0-l1 cosα+l1-q1),zl 1 sinα=-k 1 (q 0 -l 1 cosα+l 1 -q 1 ),

z+l2 sinα=k2(q0+l2 cosα-l2-q2),z+l 2 sinα=k 2 (q 0 +l 2 cosα-l 2 -q 2 ),

x=q0x=q 0 ,

其中,l1和l2分别为所述刚性杆件的中部到两个锲形刚体件的距离,k1和k2分别为两个所述锲形刚体件的斜侧壁的斜率,q0、q1和q2分别为第二同轴直线电机、第一同轴直线电机和第三同轴直线电机的移动量,x、z和α为三个终端移动量。Wherein, l 1 and l 2 are the distances from the middle of the rigid rod member to the two wedge-shaped rigid body members, respectively, k 1 and k 2 are the slopes of the inclined side walls of the two wedge-shaped rigid body members, respectively, q 0 , q 1 and q 2 are the movement amounts of the second coaxial linear motor, the first coaxial linear motor and the third coaxial linear motor respectively, and x, z and α are the movement amounts of the three terminals.

值得说明的是,所述误差映射模型和矩阵建立模块用于建立所述第一误差映射模型:It should be noted that the error mapping model and the matrix establishment module are used to establish the first error mapping model:

Figure GDA0003198112780000071
Figure GDA0003198112780000071

Figure GDA0003198112780000072
Figure GDA0003198112780000072

δx=δq0δx=δq 0 ;

还用于建立所述第二误差映射模型:Also used to build the second error mapping model:

δz-(l1 cosα+δl1 cosα-k1l1 sinαδz-(l 1 cosα+δl 1 cosα-k 1 l 1 sinα

-δk1l1 sinα-k1δl1 sinα-δk1δl1 sinα)δα-δk 1 l 1 sinα-k 1 δl 1 sinα-δk 1 δl 1 sinα)δα

=(-k1 cosα-δk1 cosα+sinα+k1+δk1)δl1 =(-k 1 cosα-δk 1 cosα+sinα+k 1 +δk 1 )δl 1

+(-l1 cosα-δl1 cosα-q1+q0+l1+δl1)δk1 +(-l 1 cosα-δl 1 cosα-q 1 +q 0 +l 1 +δl 1 )δk 1

-(k1+δk1)δq1+(k1+δk1)δq0-(k 1 +δk 1 )δq 1 +(k 1 +δk 1 )δq 0 ,

δz+(l2 cosα+δl2 cosα+k2l2 sinαδz+(l 2 cosα+δl 2 cosα+k 2 l 2 sinα

+δk2l2 sinα+k2δl2 sinα+δk2δl2 sinα)δα+δk 2 l 2 sinα+k 2 δl 2 sinα+δk 2 δl 2 sinα)δα

=(k2 cosα+δk2 cosα-sinα-k2-δk2)δl2 =(k 2 cosα+δk 2 cosα-sinα-k 2 -δk 2 )δl 2

+(l2 cosα+δl2 cosα-q2+q0-l2-δl2)δk2 +(l 2 cosα+δl 2 cosα-q 2 +q 0 -l 2 -δl 2 )δk 2

-(k2+δk2)δq2+(k2+δk2)δq0-(k 2 +δk 2 )δq 2 +(k 2 +δk 2 )δq 0 ,

δx=δq0δx=δq 0 ;

其中,δ为一阶小量。Among them, δ is a first-order small quantity.

可选地,所述误差映射模型和矩阵建立模块用于将所述第一误差映射模型转变成所述第一误差映射矩阵:δx=J1δd;Optionally, the error mapping model and matrix establishment module are used to convert the first error mapping model into the first error mapping matrix: δx=J 1 δd;

还用于将所述第二误差映射模型转变成第二误差映射矩阵:δx=J2δd;It is also used to transform the second error mapping model into a second error mapping matrix: δx=J 2 δd;

其中,in,

δd=[δd1,δd2,δd3],δd1=[δq0,0,0,0]Tδd=[δd 1 ,δd 2 ,δd 3 ],δd 1 =[δq 0 ,0,0,0] T ,

δd2=[δq0,δq1,δl1,δk1]T,δd3=[δq0,δq2,δl2,δk2]Tδd 2 =[δq 0 , δq 1 , δl 1 , δk 1 ] T , δd 3 =[δq 0 , δq 2 , δl 2 , δk 2 ] T .

具体地,所述修正结构误差参数获取模块的迭代算法为:δd=((J1J*)TJ1J*+λE)′(J1J*)Tδx,Specifically, the iterative algorithm of the modified structural error parameter acquisition module is: δd=((J 1 J * ) T J 1 J * +λE)′(J 1 J * ) T δx,

其中,J1为第一误差映射矩阵,J*为建模误差补偿矩阵,λE为岭估计。Among them, J1 is the first error mapping matrix, J * is the modeling error compensation matrix, and λE is the ridge estimation.

本发明的有益效果:在所述运动学误差映射矩阵的迭代修正方法中,通过在迭代的过程中引入均方根比值矩阵,来补偿舍去高阶小量引入的建模误差,在舍去高阶小量的同时能避免其带来的误差影响,保证了建模的有效性和准确性。Beneficial effects of the present invention: in the iterative correction method for the kinematic error mapping matrix, by introducing the root mean square ratio matrix in the iterative process, the modeling error introduced by discarding high-order small quantities is compensated, and the The high-order small quantities can avoid the influence of errors and ensure the validity and accuracy of the modeling.

所述运动学误差映射矩阵的迭代修正方法通过运动学约束方程建立步骤、误差项引入步骤、误差映射模型和矩阵建立步骤、结构误差获取步骤、误差映射矩阵处理步骤和修正结构误差参数获取步骤,解决了高阶小量取舍带来的建模求解和建模精度的矛盾问题,将高阶小量加权而成的建模误差补偿矩阵代入所建立的迭代公式中,在迭代过程中修正其建模误差。The iterative correction method for the kinematic error mapping matrix includes the steps of establishing a kinematic constraint equation, introducing an error term, establishing an error mapping model and matrix, obtaining a structural error, processing the error mapping matrix, and obtaining a modified structural error parameter, The contradiction between modeling solution and modeling accuracy caused by high-order small-quantity trade-off is solved. The modeling error compensation matrix weighted by high-order small quantities is substituted into the established iterative formula, and its construction is corrected in the iterative process. Modulo error.

附图说明Description of drawings

图1是本发明的一个实施例中迭代修正方法的流程图;1 is a flowchart of an iterative correction method in an embodiment of the present invention;

图2是本发明的一个实施例中三轴并联机构的结构示意图;2 is a schematic structural diagram of a three-axis parallel mechanism in an embodiment of the present invention;

图3是本发明的一个实施例中三轴并联机构运动时参数的示意图。FIG. 3 is a schematic diagram of parameters during movement of a three-axis parallel mechanism in an embodiment of the present invention.

其中:1第一同轴直线电机;2第二同轴直线电机;3第三同轴直线电机;4X轴导轨;5Z轴直线导轨;6Z轴导轨;7刚性杆件;8锲形刚体件;9连接部。Among them: 1 first coaxial linear motor; 2 second coaxial linear motor; 3 third coaxial linear motor; 4X axis guide rail; 5Z axis linear guide rail; 6Z axis guide rail; 7 rigid rods; 9 Connections.

具体实施方式Detailed ways

下面详细描述本发明的实施方式,实施方式的示例在附图中示出,其中,相同或类似的标号自始至终表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。Embodiments of the present invention are described in detail below, examples of which are illustrated in the accompanying drawings, wherein the same or similar reference numerals refer to the same or similar elements or elements having the same or similar functions throughout. The embodiments described below with reference to the accompanying drawings are exemplary, only used to explain the present invention, and should not be construed as a limitation of the present invention.

在本发明的实施方式的描述中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本发明的实施方式的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。In the description of the embodiments of the present invention, the terms "first" and "second" are only used for description purposes, and cannot be understood as indicating or implying relative importance or implying the number of indicated technical features. Thus, features defined as "first", "second" may expressly or implicitly include one or more of said features. In the description of the embodiments of the present invention, "plurality" means two or more, unless otherwise expressly and specifically defined.

在本发明的实施方式的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明的实施方式中的具体含义。In the description of the embodiments of the present invention, it should be noted that, unless otherwise expressly specified and limited, the terms "installed", "connected" and "connected" should be understood in a broad sense, for example, it may be a fixed connection or a It is a detachable connection, or an integral connection; it can be directly connected, or it can be indirectly connected through an intermediate medium, and it can be the internal communication of two elements or the interaction relationship between the two elements. For those of ordinary skill in the art, the specific meanings of the above terms in the embodiments of the present invention can be understood according to specific situations.

下文的公开提供了许多不同的实施方式或例子用来实现本发明的实施方式的不同结构。为了简化本发明的实施方式的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明的实施方式可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本发明的实施方式提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。The following disclosure provides many different embodiments or examples for implementing different structures of embodiments of the invention. In order to simplify the disclosure of the embodiments of the present invention, the components and arrangements of specific examples are described below. Of course, they are only examples and are not intended to limit the invention. Furthermore, embodiments of the present invention may repeat reference numerals and/or reference letters in different instances, such repetition is for the purpose of simplicity and clarity and does not in itself indicate the relationship between the various embodiments and/or arrangements discussed . In addition, the embodiments of the present invention provide examples of various specific processes and materials, but one of ordinary skill in the art will recognize the application of other processes and/or the use of other materials.

如图1所示,一种运动学误差映射矩阵的迭代修正方法,包括运动学约束方程建立步骤、误差项引入步骤、误差映射模型和矩阵建立步骤、结构误差获取步骤、误差映射矩阵处理步骤和修正结构误差参数获取步骤;As shown in Figure 1, an iterative correction method for a kinematic error mapping matrix includes a kinematic constraint equation establishment step, an error term introduction step, an error mapping model and matrix establishment step, a structural error acquisition step, an error mapping matrix processing step and Correction of structural error parameter acquisition steps;

运动学约束方程建立步骤为:通过闭环矢量法建立三轴并联机构的原始运动学约束方程;The steps of establishing the kinematic constraint equation are: establishing the original kinematic constraint equation of the three-axis parallel mechanism through the closed-loop vector method;

所述误差项引入步骤为:对所述原始运动学约束方程做微摄动得到带有误差项的微摄动运动学方程,其中,所述误差项包括一阶小量和高阶小量;The step of introducing the error term is: performing micro-perturbation on the original kinematic constraint equation to obtain a micro-perturbation kinematic equation with an error term, wherein the error term includes a first-order epsilon and a high-order epsilon;

所述误差映射模型和矩阵建立步骤为:首先建立舍去高阶小量的第一误差映射模型和不舍去高阶小量的第二误差映射模型;The error mapping model and matrix establishment steps are as follows: firstly, establish a first error mapping model that discards high-order small quantities and a second error mapping model that does not discard high-order small quantities;

然后建立舍去高阶小量的第一误差映射矩阵和不舍去高阶小量的第二误差映射矩阵;Then establish a first error mapping matrix that discards high-order small quantities and a second error mapping matrix that does not discard high-order small quantities;

所述结构误差获取步骤为:对所述第一误差映射模型做运动学误差辨识,得到结构误差;The step of obtaining the structural error is: performing kinematic error identification on the first error mapping model to obtain the structural error;

所述误差映射矩阵处理步骤为:首先将所述结构误差代入所述第一误差映射矩阵得到第一矩阵元素,然后对所述第一矩阵元素执行均方根得到第一均方根值;The error mapping matrix processing step is: firstly, substituting the structural error into the first error mapping matrix to obtain a first matrix element, and then performing a root mean square on the first matrix element to obtain a first root mean square value;

然后将所述结构误差代入所述第二误差映射矩阵得到第二矩阵元素,然后对所述第二矩阵元素执行均方根得到第二均方根值;Then substitute the structural error into the second error mapping matrix to obtain a second matrix element, and then perform a root mean square on the second matrix element to obtain a second root mean square value;

然后计算所述第一均方根与第二均方根的比值,得到建模误差补偿矩阵;Then, the ratio of the first root mean square to the second root mean square is calculated to obtain a modeling error compensation matrix;

所述修正结构误差参数获取步骤:通过迭代算法对所述建模误差补偿矩阵执行二次辨识,得到修正结构误差参数。The step of obtaining the corrected structural error parameters: performing secondary identification on the modeling error compensation matrix through an iterative algorithm to obtain the corrected structural error parameters.

在所述运动学误差映射矩阵的迭代修正方法中,通过在迭代的过程中引入均方根比值矩阵,来补偿舍去高阶小量引入的建模误差,在舍去高阶小量的同时能避免其带来的误差影响,保证了建模的有效性和准确性。In the iterative correction method of the kinematic error mapping matrix, a root mean square ratio matrix is introduced in the iterative process to compensate for the modeling error introduced by discarding the high-order small quantities, and while the high-order small quantities are discarded It can avoid the influence of errors and ensure the validity and accuracy of the modeling.

所述运动学误差映射矩阵的迭代修正方法通过运动学约束方程建立步骤、误差项引入步骤、误差映射模型和矩阵建立步骤、结构误差获取步骤、误差映射矩阵处理步骤和修正结构误差参数获取步骤,解决了高阶小量取舍带来的建模求解和建模精度的矛盾问题,将高阶小量加权而成的建模误差补偿矩阵代入所建立的迭代公式中,在迭代过程中修正其建模误差。The iterative correction method for the kinematic error mapping matrix includes the steps of establishing a kinematic constraint equation, introducing an error term, establishing an error mapping model and matrix, obtaining a structural error, processing the error mapping matrix, and obtaining a modified structural error parameter, The contradiction between modeling solution and modeling accuracy caused by high-order small-quantity trade-off is solved. The modeling error compensation matrix weighted by high-order small quantities is substituted into the established iterative formula, and its construction is corrected in the iterative process. Modulo error.

所述运动学误差辨识具体为对误差映射模型进行L-M迭代,δx为测量出的终端误差,δd为需要辨识的误差项,通过L-M迭代就可以求得δd中误差源的值。The kinematic error identification is specifically L-M iteration on the error mapping model, δx is the measured terminal error, δd is the error term to be identified, and the value of the error source in δd can be obtained through L-M iteration.

一些实施例中,如图2所示,所述三轴并联机构包括第一同轴直线电机1、第二同轴直线电机2、第三同轴直线电机3、X轴导轨4、Z轴直线导轨5、Z轴导轨6、刚性杆件7和两个锲形刚体件8;In some embodiments, as shown in FIG. 2, the three-axis parallel mechanism includes a first coaxial linear motor 1, a second coaxial linear motor 2, a third coaxial linear motor 3, an X-axis guide rail 4, and a Z-axis linear motor. Guide rail 5, Z-axis guide rail 6, rigid rod 7 and two wedge-shaped rigid body parts 8;

所述第一同轴直线电机1、第二同轴直线电机2和第三同轴直线电机3均滑动设置于所述X轴导轨4;The first coaxial linear motor 1, the second coaxial linear motor 2 and the third coaxial linear motor 3 are all slidably arranged on the X-axis guide rail 4;

两个所述锲形刚体件8分别与所述第一同轴直线电机1和第三同轴直线电机3固定连接,两个所述锲形刚体件8均设有一个斜侧壁,两个所述斜侧壁相对设置,两个所述斜侧壁均设有所述Z轴直线导轨5;The two wedge-shaped rigid body parts 8 are respectively fixedly connected with the first coaxial linear motor 1 and the third coaxial linear motor 3, and the two wedge-shaped rigid body parts 8 are each provided with an inclined side wall, and two The inclined side walls are oppositely arranged, and the Z-axis linear guide rails 5 are provided on both of the inclined side walls;

所述Z轴导轨6与所述第二同轴直线电机2固定连接,所述刚性杆件7的中部与所述Z轴导轨6滑动连接,所述刚性杆件7的两端均铰接有连接部9,两个所述连接部9分别与两个所述锲形刚体件8的Z轴直线导轨5滑动连接;The Z-axis guide rail 6 is fixedly connected to the second coaxial linear motor 2 , the middle of the rigid rod 7 is slidably connected to the Z-axis guide 6 , and both ends of the rigid rod 7 are hingedly connected. part 9, the two connecting parts 9 are respectively slidably connected with the Z-axis linear guide rails 5 of the two wedge-shaped rigid body parts 8;

所述运动学约束方程建立步骤具体为:通过闭环矢量法建立所述三轴并联机构的原始运动学约束方程:The specific steps of establishing the kinematic constraint equation are: establishing the original kinematic constraint equation of the three-axis parallel mechanism by the closed-loop vector method:

z-l1 sinα=-k1(q0-l1 cosα+l1-q1),zl 1 sinα=-k 1 (q 0 -l 1 cosα+l 1 -q 1 ),

z+l2 sinα=k2(q0+l2 cosα-l2-q2),z+l 2 sinα=k 2 (q 0 +l 2 cosα-l 2 -q 2 ),

x=q0x=q 0 ,

其中,l1和l2分别为所述刚性杆件7的中部到两个锲形刚体件8的距离,k1和k2分别为两个所述锲形刚体件8的斜侧壁的斜率,q0、q1和q2分别为第二同轴直线电机2、第一同轴直线电机1和第三同轴直线电机3的移动量,x、z和α为三个终端移动量。Wherein, l 1 and l 2 are the distances from the middle of the rigid rod member 7 to the two wedge-shaped rigid body members 8 respectively, and k 1 and k 2 are the slopes of the inclined side walls of the two wedge-shaped rigid body members 8 respectively , q 0 , q 1 and q 2 are the movement amounts of the second coaxial linear motor 2 , the first coaxial linear motor 1 and the third coaxial linear motor 3 respectively, and x, z and α are the movement amounts of the three terminals.

如图3所示,实线为运动前的三轴并联机构,虚线为运动后的三轴并联机构。所述三轴并联机构在X轴方向产生的终端移动量为x,在Z轴方向上产生的终端移动量为z,通过所述刚性杆件7于所述锲形刚体件8上运动,使所述刚性杆件7与X轴的方向之间的夹角为α。l1为所述刚性杆件7的中部到左边的所述锲形刚体件8的距离,l2为所述刚性杆件7的中部到右边的所述锲形刚体件8的距离。k1为位于左边的所述锲形刚体件8的斜侧壁的斜率,k2为位于右边的所述锲形刚体件8的斜侧壁的斜率。q0、q1和q2分别为第二同轴直线电机2、第一同轴直线电机1和第三同轴直线电机3的于X轴的移动量。As shown in Figure 3, the solid line is the three-axis parallel mechanism before motion, and the dotted line is the three-axis parallel mechanism after motion. The terminal movement of the three-axis parallel mechanism in the X-axis direction is x, and the terminal movement in the Z-axis direction is z. The rigid rod 7 moves on the wedge-shaped rigid body 8, so that the The included angle between the rigid rod 7 and the direction of the X-axis is α. l1 is the distance from the middle of the rigid rod 7 to the wedge-shaped rigid body 8 on the left, and l2 is the distance from the middle of the rigid rod 7 to the wedge-shaped rigid body 8 on the right. k 1 is the slope of the inclined side wall of the wedge-shaped rigid body 8 located on the left, and k 2 is the slope of the inclined side wall of the wedge-shaped rigid body 8 located on the right. q 0 , q 1 and q 2 are the movement amounts of the second coaxial linear motor 2 , the first coaxial linear motor 1 and the third coaxial linear motor 3 on the X-axis, respectively.

例如,在所述误差映射模型和矩阵建立步骤中,所述第一误差映射模型为:For example, in the error mapping model and matrix establishment step, the first error mapping model is:

Figure GDA0003198112780000131
Figure GDA0003198112780000131

Figure GDA0003198112780000132
Figure GDA0003198112780000132

δx=δq0δx=δq 0 ;

所述第二误差映射模型为:The second error mapping model is:

δz-(l1 cosα+δl1 cosα-k1l1 sinαδz-(l 1 cosα+δl 1 cosα-k 1 l 1 sinα

-δk1l1 sinα-k1δl1 sinα-δk1δl1 sinα)δα-δk 1 l 1 sinα-k 1 δl 1 sinα-δk 1 δl 1 sinα)δα

=(-k1 cosα-δk1 cosα+sinα+k1+δk1)δl1 =(-k 1 cosα-δk 1 cosα+sinα+k 1 +δk 1 )δl 1

+(-l1 cosα-δl1 cosα-q1+q0+l1+δl1)δk1 +(-l 1 cosα-δl 1 cosα-q 1 +q 0 +l 1 +δl 1 )δk 1

-(k1+δk1)δq1+(k1+δk1)δq0-(k 1 +δk 1 )δq 1 +(k 1 +δk 1 )δq 0 ,

δz+(l2 cosα+δl2 cosα+k2l2 sinαδz+(l 2 cosα+δl 2 cosα+k 2 l 2 sinα

+δk2l2 sinα+k2δl2 sinα+δk2δl2 sinα)δα+δk 2 l 2 sinα+k 2 δl 2 sinα+δk 2 δl 2 sinα)δα

=(k2 cosα+δk2 cosα-sinα-k2-δk2)δl2 =(k 2 cosα+δk 2 cosα-sinα-k 2 -δk 2 )δl 2

+(l2 cosα+δl2 cosα-q2+q0-l2-δl2)δk2 +(l 2 cosα+δl 2 cosα-q 2 +q 0 -l 2 -δl 2 )δk 2

-(k2+δk2)δq2+(k2+δk2)δq0-(k 2 +δk 2 )δq 2 +(k 2 +δk 2 )δq 0 ,

δx=δq0δx=δq 0 ;

其中,δ为一阶小量。Among them, δ is a first-order small quantity.

所述误差项引入步骤中的微摄动运动方程为:The micro-perturbation motion equation in the error term introduction step is:

z+δz-(l1+δl1)sin(α+δα)z+δz-(l 1 +δl 1 )sin(α+δα)

=-(k1+δk1)[q0+δq0-(l1+δl1)cos(α+δα)+(l1+δl1+q1+δq1)],=-(k 1 +δk 1 )[q 0 +δq 0 -(l 1 +δl 1 )cos(α+δα)+(l 1 +δl 1 +q 1 +δq 1 )],

z+δz-(l2+δl2)sin(α+δα)z+δz-(l 2 +δl 2 )sin(α+δα)

=(k2+δk2)[q0+δq0-(l2+δl2)cos(α+δα)+(l2+δl2-q2-δq2)],=(k 2 +δk 2 )[q 0 +δq 0 -(l 2 +δl 2 )cos(α+δα)+(l 2 +δl 2 -q 2 -δq 2 )],

x+δx=q0+δq0x+δx=q 0 +δq 0 ;

对所述微摄动运动学方程舍去所述高阶小量后再减去所述原始运动学约束方程得到所述第一误差映射模型。高阶小量指的是两个及两个以上的一阶小量δ相乘。The first error mapping model is obtained by subtracting the original kinematic constraint equation after discarding the high-order small quantity from the micro-perturbation kinematic equation. High-order small quantities refer to the multiplication of two or more first-order small quantities δ.

值得说明的是,在所述误差映射模型和矩阵建立步骤中,将所述第一误差映射模型转变成第一误差映射矩阵:δx=J1δd;It should be noted that, in the step of establishing the error mapping model and matrix, the first error mapping model is converted into a first error mapping matrix: δx=J 1 δd;

将所述第二误差映射模型转变成第二误差映射矩阵:δx=J2δd;Transforming the second error mapping model into a second error mapping matrix: δx=J 2 δd;

其中,δd=[δd1,δd2,δd3],δd1=[δq0,0,0,0]TWherein, δd=[δd 1 ,δd 2 ,δd 3 ],δd 1 =[δq 0 ,0,0,0] T ,

δd2=[δq0,δq1,δl1,δk1]T,δd3=[δq0,δq2,δl2,δk2]Tδd 2 =[δq 0 , δq 1 , δl 1 , δk 1 ] T , δd 3 =[δq 0 , δq 2 , δl 2 , δk 2 ] T .

所述第一误差映射矩阵δx=J1δd和所述第二误差映射矩阵δx=J2δd均为3*12的J矩阵。在所述误差映射矩阵处理步骤中,分析舍去与不舍去之间的差别,先分析第一误差映射矩阵和第二误差映射矩阵的单个元素,观察元素的变化。The first error mapping matrix δx=J 1 δd and the second error mapping matrix δx=J 2 δd are both J matrices of 3*12. In the error mapping matrix processing step, the difference between discarding and not discarding is analyzed, and the single element of the first error mapping matrix and the second error mapping matrix is analyzed first, and the changes of the elements are observed.

例如,在不舍去高阶小量时,J2×7元素为:For example, the J 2×7 elements are:

(sinα-δk1-k1+k1 cosα+δk1 cosα)*(l2 cosα+δl1 cosα+l2k2 sinα+l2δk2 sinα+δl2k2 sinα+δl2δk2 sinα)/(l1 cosα+l2 cosα+δl1 cosα+δl2 cosα-l1k1 sinα+l2k2 sinα+l1δk1 sinα-δl1k1 sinα+l2δk2 sinα+δl2k2 sinα+δl1δk1 sinα+δl2δk2 sinα)(sinα-δk 1 -k 1 +k 1 cosα+δk 1 cosα)*(l 2 cosα+δl 1 cosα+l 2 k 2 sinα+l 2 δk 2 sinα+δl 2 k 2 sinα+δl 2 δk 2 sinα )/(l 1 cosα+l 2 cosα+δl 1 cosα+δl 2 cosα-l 1 k 1 sinα+l 2 k 2 sinα+l 1 δk 1 sinα-δl 1 k 1 sinα+l 2 δk 2 sinα+δl 2 k 2 sinα+δl 1 δk 1 sinα+δl 2 δk 2 sinα)

其中δliδki为高阶小量,带δ的项为需要辨识的参数项。Among them, δl i δk i is a high-order small quantity, and the item with δ is the parameter item that needs to be identified.

舍去该高阶小量时,J2×7元素为:When this higher-order fraction is discarded, the elements of J 2 × 7 are:

Figure GDA0003198112780000151
Figure GDA0003198112780000151

可选地,在所述修正结构误差参数获取步骤中,所述迭代算法具体为:δd=((J1J*)TJ1J*+λE)′(J1J*)Tδx,Optionally, in the step of obtaining the corrected structural error parameter, the iterative algorithm is specifically: δd=((J 1 J * ) T J 1 J * +λE)′(J 1 J * ) T δx,

其中,J1为第一误差映射矩阵,J*为建模误差补偿矩阵,λE为岭估计。Among them, J 1 is the first error mapping matrix, J * is the modeling error compensation matrix, and λE is the ridge estimation.

建模误差补偿矩阵J*为引入的建模误差补偿矩阵,是一个只有主对角元素的方阵,其行数等于J矩阵的列数,其中的对角线元素按照所述第一均方根与第二均方根的比值加权而成,其目的在于每次迭代都尽量还原未舍去时的真实值,λE为岭估计,岭估计的目的在于解决迭代过程中出现奇异矩阵难以求逆的问题。The modeling error compensation matrix J * is the introduced modeling error compensation matrix, which is a square matrix with only main diagonal elements, the number of rows is equal to the number of columns of the J matrix, and the diagonal elements are in accordance with the first mean square It is weighted by the ratio of the root and the second root mean square. The purpose is to restore the true value when it is not discarded as much as possible in each iteration. The problem.

具体地,一种运动学误差映射矩阵的迭代修正系统,包括运动学约束方程建立模块、误差项引入模块、误差映射模型和矩阵建立模块、结构误差获取模块、误差映射矩阵处理模块和修正结构误差参数获取模块;Specifically, an iterative correction system for a kinematic error mapping matrix includes a kinematic constraint equation establishment module, an error term introduction module, an error mapping model and matrix establishment module, a structure error acquisition module, an error mapping matrix processing module, and a correction structure error. parameter acquisition module;

运动学约束方程建立模块用于通过闭环矢量法建立三轴并联机构的原始运动学约束方程;The kinematic constraint equation establishment module is used to establish the original kinematic constraint equation of the three-axis parallel mechanism through the closed-loop vector method;

所述误差项引入模块用于对所述原始运动学约束方程做微摄动得到带有误差项的微摄动运动学方程,其中,所述误差项包括一阶小量和高阶小量;The error term introduction module is configured to perform micro-perturbation on the original kinematic constraint equation to obtain a micro-perturbation kinematic equation with an error term, wherein the error term includes a first-order epsilon and a high-order epsilon;

所述误差映射模型和矩阵建立模块用于建立舍去高阶小量的第一误差映射模型和不舍去高阶小量的第二误差映射模型;The error mapping model and matrix building module are used to establish a first error mapping model that discards high-order small quantities and a second error mapping model that does not discard high-order small quantities;

还用于建立舍去高阶小量的第一误差映射矩阵和不舍去高阶小量的第二误差映射矩阵;It is also used to establish a first error mapping matrix that discards high-order small quantities and a second error mapping matrix that does not discard high-order small quantities;

所述结构误差获取模块用于对所述第一误差映射模型做运动学误差辨识,得到结构误差;The structural error acquisition module is used to perform kinematic error identification on the first error mapping model to obtain structural errors;

所述误差映射矩阵处理模块用于将所述结构误差代入所述第一误差映射矩阵得到第一矩阵元素,还用于对所述矩阵元素执行均方根得到第一均方根值;The error mapping matrix processing module is used for substituting the structural error into the first error mapping matrix to obtain a first matrix element, and for performing root mean square on the matrix element to obtain a first root mean square value;

还用于将所述结构误差代入所述第二误差映射矩阵得到第二矩阵元素,还用于对所述第二矩阵元素执行均方根得到第二均方根值;is also used for substituting the structural error into the second error mapping matrix to obtain a second matrix element, and is also used for performing a root mean square on the second matrix element to obtain a second root mean square value;

还用于计算所述第一均方根与第二均方根的比值,得到建模误差补偿矩阵;is also used to calculate the ratio of the first root mean square to the second root mean square to obtain a modeling error compensation matrix;

所述修正结构误差参数获取模块用于通过迭代算法对所述建模误差补偿矩阵执行二次辨识,得到修正结构误差参数。The modified structural error parameter acquisition module is configured to perform secondary identification on the modeling error compensation matrix through an iterative algorithm to obtain modified structural error parameters.

所述运动学误差映射矩阵的迭代修正系统通过所述运动学约束方程建立模块、误差项引入模块、误差映射模型和矩阵建立模块、结构误差获取模块、误差映射矩阵处理模块、修正结构误差参数获取模块,解决了高阶小量取舍带来的建模求解和建模精度的矛盾问题,将高阶小量加权而成的建模误差补偿矩阵代入所建立的迭代公式中,在迭代过程中修正其建模误差。The iterative correction system of the kinematic error mapping matrix is obtained through the kinematic constraint equation establishment module, the error term introduction module, the error mapping model and matrix establishment module, the structure error acquisition module, the error mapping matrix processing module, and the correction structure error parameter acquisition module. The module solves the contradiction between modeling solution and modeling accuracy caused by high-order small-quantity trade-offs, and substitutes the modeling error compensation matrix weighted by high-order small quantities into the established iterative formula, and corrects it in the iterative process. its modeling error.

优选的,所述三轴并联机构包括第一同轴直线电机1、第二同轴直线电机2、第三同轴直线电机3、X轴导轨4、Z轴直线导轨5、Z轴导轨6、刚性杆件7和两个锲形刚体件8;Preferably, the three-axis parallel mechanism includes a first coaxial linear motor 1, a second coaxial linear motor 2, a third coaxial linear motor 3, an X-axis guide rail 4, a Z-axis linear guide rail 5, a Z-axis guide rail 6, Rigid rod member 7 and two wedge-shaped rigid body members 8;

所述第一同轴直线电机1、第二同轴直线电机2和第三同轴直线电机3均滑动设置于所述X轴导轨4;The first coaxial linear motor 1, the second coaxial linear motor 2 and the third coaxial linear motor 3 are all slidably arranged on the X-axis guide rail 4;

两个所述锲形刚体件8分别与所述第一同轴直线电机1和第三同轴直线电机3固定连接,两个所述锲形刚体件8均设有一个斜侧壁,两个所述斜侧壁相对设置,两个所述斜侧壁均设有所述Z轴直线导轨5;The two wedge-shaped rigid body parts 8 are respectively fixedly connected with the first coaxial linear motor 1 and the third coaxial linear motor 3, and the two wedge-shaped rigid body parts 8 are each provided with an inclined side wall, and two The inclined side walls are oppositely arranged, and the Z-axis linear guide rails 5 are provided on both of the inclined side walls;

所述Z轴导轨6与所述第二同轴直线电机2固定连接,所述刚性杆件7的中部与所述Z轴导轨6滑动连接,所述刚性杆件7的两端均铰接有连接部9,两个所述连接部9分别与两个所述锲形刚体件8的Z轴直线导轨5滑动连接;The Z-axis guide rail 6 is fixedly connected to the second coaxial linear motor 2 , the middle of the rigid rod 7 is slidably connected to the Z-axis guide 6 , and both ends of the rigid rod 7 are hingedly connected. part 9, the two connecting parts 9 are respectively slidably connected with the Z-axis linear guide rails 5 of the two wedge-shaped rigid body parts 8;

所述运动学约束方程建立步骤用于通过闭环矢量法建立所述三轴并联机构的原始运动学约束方程:The step of establishing the kinematic constraint equation is used to establish the original kinematic constraint equation of the three-axis parallel mechanism through the closed-loop vector method:

z-l1 sinα=-k1(q0-l1 cosα+l1-q1),zl 1 sinα=-k 1 (q 0 -l 1 cosα+l 1 -q 1 ),

z+l2 sinα=k2(q0+l2 cosα-l2-q2),z+l 2 sinα=k 2 (q 0 +l 2 cosα-l 2 -q 2 ),

x=q0x=q 0 ,

其中,l1和l2分别为所述刚性杆件7的中部到两个锲形刚体件8的距离,k1和k2分别为两个所述锲形刚体件8的斜侧壁的斜率,q0、q1和q2分别为第二同轴直线电机2、第一同轴直线电机1和第三同轴直线电机3的移动量,x、z和α为三个终端移动量。Wherein, l 1 and l 2 are the distances from the middle of the rigid rod member 7 to the two wedge-shaped rigid body members 8 respectively, and k 1 and k 2 are the slopes of the inclined side walls of the two wedge-shaped rigid body members 8 respectively , q 0 , q 1 and q 2 are the movement amounts of the second coaxial linear motor 2 , the first coaxial linear motor 1 and the third coaxial linear motor 3 respectively, and x, z and α are the movement amounts of the three terminals.

如图3所示,所述三轴并联机构在X轴方向产生的终端移动量为x,在Z轴方向上产生的终端移动量为z,通过所述刚性杆件7于所述锲形刚体件8上运动,使所述刚性杆件7与X轴的方向之间的夹角为α。l1为所述刚性杆件7的中部到左端的长度,l2为所述刚性杆件7的中部到右端的长度。k1为位于左边的所述锲形刚体件8的斜侧壁的斜率,k2为位于右边的所述锲形刚体件8的斜侧壁的斜率。q0、q1和q2分别为第二同轴直线电机2、第一同轴直线电机1和第三同轴直线电机3的于X轴的移动量。As shown in FIG. 3 , the terminal movement amount generated by the three-axis parallel mechanism in the X-axis direction is x, and the terminal movement amount generated in the Z-axis direction is z. The member 8 moves up, so that the included angle between the rigid rod member 7 and the direction of the X axis is α. l 1 is the length from the middle to the left end of the rigid rod 7 , and l 2 is the length from the middle to the right end of the rigid rod 7 . k 1 is the slope of the inclined side wall of the wedge-shaped rigid body 8 located on the left, and k 2 is the slope of the inclined side wall of the wedge-shaped rigid body 8 located on the right. q 0 , q 1 and q 2 are the movement amounts of the second coaxial linear motor 2 , the first coaxial linear motor 1 and the third coaxial linear motor 3 on the X-axis, respectively.

一些实施例中,所述误差映射模型和矩阵建立模块用于建立所述第一误差映射模型:In some embodiments, the error mapping model and matrix establishment module are used to establish the first error mapping model:

Figure GDA0003198112780000181
Figure GDA0003198112780000181

Figure GDA0003198112780000191
Figure GDA0003198112780000191

δx=δq0δx=δq 0 ;

还用于建立所述第二误差映射模型:Also used to build the second error mapping model:

δz-(l1 cosα+δl1 cosα-k1l1 sinαδz-(l 1 cosα+δl 1 cosα-k 1 l 1 sinα

-δk1l1 sinα-k1δl1 sinα-δk1δl1 sinα)δα-δk 1 l 1 sinα-k 1 δl 1 sinα-δk 1 δl 1 sinα)δα

=(-k1 cosα-δk1 cosα+sinα+k1+δk1)δl1 =(-k 1 cosα-δk 1 cosα+sinα+k 1 +δk 1 )δl 1

+(-l1 cosα-δl1 cosα-q1+q0+l1+δl1)δk1 +(-l 1 cosα-δl 1 cosα-q 1 +q 0 +l 1 +δl 1 )δk 1

-(k1+δk1)δq1+(k1+δk1)δq0-(k 1 +δk 1 )δq 1 +(k 1 +δk 1 )δq 0 ,

δz+(l2 cosα+δl2 cosα+k2l2 sinαδz+(l 2 cosα+δl 2 cosα+k 2 l 2 sinα

+δk2l2 sinα+k2δl2 sinα+δk2δl2 sinα)δα+δk 2 l 2 sinα+k 2 δl 2 sinα+δk 2 δl 2 sinα)δα

=(k2 cosα+δk2 cosα-sinα-k2-δk2)δl2 =(k 2 cosα+δk 2 cosα-sinα-k 2 -δk 2 )δl 2

+(l2 cosα+δl2 cosα-q2+q0-l2-δl2)δk2 +(l 2 cosα+δl 2 cosα-q 2 +q 0 -l 2 -δl 2 )δk 2

-(k2+δk2)δq2+(k2+δk2)δq0-(k 2 +δk 2 )δq 2 +(k 2 +δk 2 )δq 0 ,

δx=δq0δx=δq 0 ;

其中,δ为一阶小量。Among them, δ is a first-order small quantity.

例如,所述误差映射模型和矩阵建立模块用于将所述第一误差映射模型转变成所述第一误差映射矩阵:δx=J1δd;For example, the error mapping model and matrix establishment module are used to convert the first error mapping model into the first error mapping matrix: δx=J 1 δd;

还用于将所述第二误差映射模型转变成第二误差映射矩阵:δx=J2δd;It is also used to transform the second error mapping model into a second error mapping matrix: δx=J 2 δd;

其中,in,

δd=[δd1,δd2,δd3],δd1=[δq0,0,0,0]Tδd=[δd 1 ,δd 2 ,δd 3 ],δd 1 =[δq 0 ,0,0,0] T ,

δd2=[δq0,δq1,δl1,δk1]T,δd3=[δq0,δq2,δl2,δk2]Tδd 2 =[δq 0 , δq 1 , δl 1 , δk 1 ] T , δd 3 =[δq 0 , δq 2 , δl 2 , δk 2 ] T .

所述第一误差映射矩阵为3*12的J矩阵。在所述误差映射矩阵处理步骤中,分析舍去与不舍去之间的差别,先分析第一误差映射矩阵和第二误差映射矩阵的单个元素,观察元素的变化。The first error mapping matrix is a 3*12 J matrix. In the error mapping matrix processing step, the difference between discarding and not discarding is analyzed, and the single element of the first error mapping matrix and the second error mapping matrix is analyzed first, and the changes of the elements are observed.

值得说明的是,所述修正结构误差参数获取模块的迭代算法为:δd=((J1J*)TJ1J*+λE)′(J1J*)Tδx,It should be noted that the iterative algorithm of the modified structural error parameter acquisition module is: δd=((J 1 J * ) T J 1 J * +λE)′(J 1 J * ) T δx,

其中,J1为第一误差映射矩阵,J*为建模误差补偿矩阵,λE为岭估计。Among them, J 1 is the first error mapping matrix, J * is the modeling error compensation matrix, and λE is the ridge estimation.

在本说明书的描述中,参考术语“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”或“一些示例”等的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。In the description of this specification, reference to the terms "one embodiment," "some embodiments," "exemplary embodiment," "example," "specific example," or "some examples" or the like is meant to be used in conjunction with the described embodiments. A particular feature, structure, material or characteristic described by way or example is included in at least one embodiment or example of the present invention. In this specification, schematic representations of the above terms do not necessarily refer to the same embodiment or example. Furthermore, the particular features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples.

流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本发明的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本发明的实施例所属技术领域的技术人员所理解。Any description of a process or method in the flowcharts or otherwise described herein may be understood to represent a module, segment or portion of code comprising one or more executable instructions for implementing a specified logical function or step of the process , and the scope of the preferred embodiments of the invention includes alternative implementations in which the functions may be performed out of the order shown or discussed, including performing the functions substantially concurrently or in the reverse order depending upon the functions involved, which should It is understood by those skilled in the art to which the embodiments of the present invention belong.

尽管上面已经示出和描述了本发明的实施方式,可以理解的是,上述实施方式是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施实施进行变化、修改、替换和变型。Although the embodiments of the present invention have been shown and described above, it should be understood that the above embodiments are exemplary and should not be construed as limiting the present invention. Variations, modifications, substitutions and alterations are made to the implementation.

Claims (2)

1.一种运动学误差映射矩阵的迭代修正方法,其特征在于:包括运动学约束方程建立步骤、误差项引入步骤、误差映射模型和矩阵建立步骤、结构误差获取步骤、误差映射矩阵处理步骤和修正结构误差参数获取步骤;1. an iterative correction method of kinematic error mapping matrix, it is characterized in that: comprise kinematic constraint equation establishment step, error term introduction step, error mapping model and matrix establishment step, structure error acquisition step, error mapping matrix processing step and Correction of structural error parameter acquisition steps; 运动学约束方程建立步骤为:通过闭环矢量法建立三轴并联机构的原始运动学约束方程;The steps of establishing the kinematic constraint equation are: establishing the original kinematic constraint equation of the three-axis parallel mechanism through the closed-loop vector method; 所述三轴并联机构包括第一同轴直线电机、第二同轴直线电机、第三同轴直线电机、X轴导轨、Z轴直线导轨、Z轴导轨、刚性杆件和两个锲形刚体件;The three-axis parallel mechanism includes a first coaxial linear motor, a second coaxial linear motor, a third coaxial linear motor, an X-axis guide rail, a Z-axis linear guide, a Z-axis guide, a rigid rod and two wedge-shaped rigid bodies piece; 所述第一同轴直线电机、第二同轴直线电机和第三同轴直线电机均滑动设置于所述X轴导轨;The first coaxial linear motor, the second coaxial linear motor and the third coaxial linear motor are all slidably arranged on the X-axis guide rail; 两个所述锲形刚体件分别与所述第一同轴直线电机和第三同轴直线电机固定连接,两个所述锲形刚体件均设有一个斜侧壁,两个所述斜侧壁相对设置,两个所述斜侧壁均设有所述Z轴直线导轨;The two wedge-shaped rigid body parts are respectively fixedly connected with the first coaxial linear motor and the third coaxial linear motor. The walls are oppositely arranged, and the two inclined side walls are provided with the Z-axis linear guide rail; 所述Z轴导轨与所述第二同轴直线电机固定连接,所述刚性杆件的中部与所述Z轴导轨滑动连接,所述刚性杆件的两端均铰接有连接部,两个所述连接部分别与两个所述锲形刚体件的Z轴直线导轨滑动连接;The Z-axis guide rail is fixedly connected to the second coaxial linear motor, the middle part of the rigid rod is slidably connected to the Z-axis guide rail, and both ends of the rigid rod are hinged with connecting parts, and the two The connecting parts are respectively slidably connected with the Z-axis linear guide rails of the two wedge-shaped rigid body parts; 所述运动学约束方程建立步骤具体为:通过闭环矢量法建立所述三轴并联机构的原始运动学约束方程:The specific steps of establishing the kinematic constraint equation are: establishing the original kinematic constraint equation of the three-axis parallel mechanism by the closed-loop vector method: z-l1sinα=-k1(q0-l1cosα+l1-q1),zl 1 sinα=-k 1 (q 0 -l 1 cosα+l 1 -q 1 ), z+l2sinα=k2(q0+l2cosα-l2-q2),z+l 2 sinα=k 2 (q 0 +l 2 cosα-l 2 -q 2 ), x=q0x=q 0 , 其中,l1和l2分别为所述刚性杆件的中部到两个锲形刚体件的距离,k1和k2分别为两个所述锲形刚体件的斜侧壁的斜率,q0、q1和q2分别为第二同轴直线电机、第一同轴直线电机和第三同轴直线电机的移动量,x、z和α为三个终端移动量;所述三轴并联机构在X轴方向产生的终端移动量为x,在Z轴方向上产生的终端移动量为z,通过所述刚性杆件于所述锲形刚体件上运动,使所述刚性杆件与X轴的方向之间的夹角为α;Wherein, l 1 and l 2 are the distances from the middle of the rigid rod member to the two wedge-shaped rigid body members, respectively, k 1 and k 2 are the slopes of the inclined side walls of the two wedge-shaped rigid body members, respectively, q 0 , q 1 and q 2 are respectively the movement amounts of the second coaxial linear motor, the first coaxial linear motor and the third coaxial linear motor, and x, z and α are the movement amounts of the three terminals; the three-axis parallel mechanism The terminal movement amount generated in the X-axis direction is x, and the terminal movement amount generated in the Z-axis direction is z. The included angle between the directions is α; 所述误差项引入步骤为:对所述原始运动学约束方程做微摄动得到带有误差项的微摄动运动学方程,其中,所述误差项包括一阶小量和高阶小量;The step of introducing the error term is: performing micro-perturbation on the original kinematic constraint equation to obtain a micro-perturbation kinematic equation with an error term, wherein the error term includes a first-order epsilon and a high-order epsilon; 所述误差映射模型和矩阵建立步骤为:首先建立舍去高阶小量的第一误差映射模型和不舍去高阶小量的第二误差映射模型;The error mapping model and matrix establishment steps are as follows: first, establish a first error mapping model that discards high-order small quantities and a second error mapping model that does not discard high-order small quantities; 然后建立舍去高阶小量的第一误差映射矩阵和不舍去高阶小量的第二误差映射矩阵;Then establish a first error mapping matrix that discards high-order small quantities and a second error mapping matrix that does not discard high-order small quantities; 所述结构误差获取步骤为:对所述第一误差映射模型做运动学误差辨识,得到结构误差;The step of obtaining the structural error is: performing kinematic error identification on the first error mapping model to obtain the structural error; 所述误差映射矩阵处理步骤为:首先将所述结构误差代入所述第一误差映射矩阵得到第一矩阵元素,然后对所述第一矩阵元素执行均方根得到第一均方根值;The error mapping matrix processing step is: firstly, substituting the structural error into the first error mapping matrix to obtain a first matrix element, and then performing a root mean square on the first matrix element to obtain a first root mean square value; 然后将所述结构误差代入所述第二误差映射矩阵得到第二矩阵元素,然后对所述第二矩阵元素执行均方根得到第二均方根值;Then substitute the structural error into the second error mapping matrix to obtain a second matrix element, and then perform a root mean square on the second matrix element to obtain a second root mean square value; 然后计算所述第一均方根与第二均方根的比值,得到建模误差补偿矩阵;Then, the ratio of the first root mean square to the second root mean square is calculated to obtain a modeling error compensation matrix; 所述修正结构误差参数获取步骤:通过迭代算法对所述建模误差补偿矩阵执行二次辨识,得到修正结构误差参数;The step of obtaining the modified structural error parameters: performing secondary identification on the modeling error compensation matrix through an iterative algorithm to obtain the modified structural error parameters; 所述迭代算法具体为δd=((J1J*)TJ1J*+λE)′(J1J*)Tδx,The iterative algorithm is specifically δd=((J 1 J * ) T J 1 J * +λE)′(J 1 J * ) T δx, 其中,J1为第一误差映射矩阵,J*为建模误差补偿矩阵,λE为岭估计;所述运动学误差辨识具体为对误差映射模型进行L-M迭代,δx为测量出的终端误差,δd为需要辨识的误差项,通过L-M迭代就可以求得δd中误差源的值;Among them, J 1 is the first error mapping matrix, J * is the modeling error compensation matrix, λE is the ridge estimation; the kinematic error identification is specifically LM iteration on the error mapping model, δx is the measured terminal error, δd For the error term to be identified, the value of the error source in δd can be obtained through LM iteration; 在所述误差映射模型和矩阵建立步骤中,所述第一误差映射模型为:In the error mapping model and matrix establishment step, the first error mapping model is:
Figure FDA0003252610240000031
Figure FDA0003252610240000031
Figure FDA0003252610240000032
Figure FDA0003252610240000032
δx=δq0δx=δq 0 ; 所述第二误差映射模型为:The second error mapping model is: δz-(l1cosα+δl1cosα-k1l1sinαδz-(l 1 cosα+δl 1 cosα-k 1 l 1 sinα -δk1l1sinα-k1δl1sinα-δk1δl1sinα)δα-δk 1 l 1 sinα-k 1 δl 1 sinα-δk 1 δl 1 sinα)δα =(-k1cosα-δk1cosα+sinα+k1+δk1)δl1 =(-k 1 cosα-δk 1 cosα+sinα+k 1 +δk 1 )δl 1 +(-l1cosα-δl1cosα-q1+q0+l1+δl1)δk1 +(-l 1 cosα-δl 1 cosα-q 1 +q 0 +l 1 +δl 1 )δk 1 -(k1+δk1)δq1+(k1+δk1)δq0-(k 1 +δk 1 )δq 1 +(k 1 +δk 1 )δq 0 , δz+(l2cosα+δl2cosα+k2l2sinαδz+(l 2 cosα+δl 2 cosα+k 2 l 2 sinα +δk2l2sinα+k2δl2sinα+δk2δl2sinα)δα+δk 2 l 2 sinα+k 2 δl 2 sinα+δk 2 δl 2 sinα)δα =(k2cosα+δk2cosα-sinα-k2-δk2)δl2 =(k 2 cosα+δk 2 cosα-sinα-k 2 -δk 2 )δl 2 +(l2cosα+δl2cosα-q2+q0-l2-δl2)δk2 +(l 2 cosα+δl 2 cosα-q 2 +q 0 -l 2 -δl 2 )δk 2 -(k2+δk2)δq2+(k2+δk2)δq0-(k 2 +δk 2 )δq 2 +(k 2 +δk 2 )δq 0 , δx=δq0δx=δq 0 ; 其中,δ为一阶小量;Among them, δ is a first-order small quantity; 在所述误差映射模型和矩阵建立步骤中,将所述第一误差映射模型转变成第一误差映射矩阵:δx=J1δd;In the error mapping model and matrix establishment step, the first error mapping model is converted into a first error mapping matrix: δx=J 1 δd; 将所述第二误差映射模型转变成第二误差映射矩阵:δx=J2δd;Transforming the second error mapping model into a second error mapping matrix: δx=J 2 δd; 其中,in, δd=[δd1,δd2,δd3],δd1=[δq0,0,0,0]Tδd=[δd 1 ,δd 2 ,δd 3 ],δd 1 =[δq 0 ,0,0,0] T , δd2=[δq0,δq1,δl1,δk1]T,δd3=[δq0,δq2,δl2,δk2]Tδd 2 =[δq 0 ,δq 1 ,δl 1 ,δk 1 ] T ,δd 3 =[δq 0 ,δq 2 ,δl 2 ,δk 2 ] T ; 其中,所述第一误差映射矩阵δx=J1δd和所述第二误差映射矩阵δx=J2δd均为3*12的J矩阵。Wherein, the first error mapping matrix δx=J 1 δd and the second error mapping matrix δx=J 2 δd are both J matrices of 3*12.
2.一种运动学误差映射矩阵的迭代修正系统,其特征在于:包括运动学约束方程建立模块、误差项引入模块、误差映射模型和矩阵建立模块、结构误差获取模块、误差映射矩阵处理模块和修正结构误差参数获取模块;2. an iterative correction system of kinematic error mapping matrix, it is characterized in that: comprise kinematic constraint equation establishment module, error term introduction module, error mapping model and matrix establishment module, structure error acquisition module, error mapping matrix processing module and Modified structural error parameter acquisition module; 运动学约束方程建立模块用于通过闭环矢量法建立三轴并联机构的原始运动学约束方程;The kinematic constraint equation establishment module is used to establish the original kinematic constraint equation of the three-axis parallel mechanism through the closed-loop vector method; 所述三轴并联机构包括第一同轴直线电机、第二同轴直线电机、第三同轴直线电机、X轴导轨、Z轴直线导轨、Z轴导轨、刚性杆件和两个锲形刚体件;The three-axis parallel mechanism includes a first coaxial linear motor, a second coaxial linear motor, a third coaxial linear motor, an X-axis guide rail, a Z-axis linear guide, a Z-axis guide, a rigid rod and two wedge-shaped rigid bodies piece; 所述第一同轴直线电机、第二同轴直线电机和第三同轴直线电机均滑动设置于所述X轴导轨;The first coaxial linear motor, the second coaxial linear motor and the third coaxial linear motor are all slidably arranged on the X-axis guide rail; 两个所述锲形刚体件分别与所述第一同轴直线电机和第三同轴直线电机固定连接,两个所述锲形刚体件均设有一个斜侧壁,两个所述斜侧壁相对设置,两个所述斜侧壁均设有所述Z轴直线导轨;The two wedge-shaped rigid body parts are respectively fixedly connected to the first coaxial linear motor and the third coaxial linear motor. The walls are oppositely arranged, and the two inclined side walls are provided with the Z-axis linear guide rail; 所述Z轴导轨与所述第二同轴直线电机固定连接,所述刚性杆件的中部与所述Z轴导轨滑动连接,所述刚性杆件的两端均铰接有连接部,两个所述连接部分别与两个所述锲形刚体件的Z轴直线导轨滑动连接;The Z-axis guide rail is fixedly connected to the second coaxial linear motor, the middle part of the rigid rod is slidably connected to the Z-axis guide rail, and both ends of the rigid rod are hinged with connecting parts, and the two The connecting parts are respectively slidably connected with the Z-axis linear guide rails of the two wedge-shaped rigid body parts; 所述运动学约束方程建立步骤用于通过闭环矢量法建立所述三轴并联机构的原始运动学约束方程:The step of establishing the kinematic constraint equation is used to establish the original kinematic constraint equation of the three-axis parallel mechanism through the closed-loop vector method: z-l1sinα=-k1(q0-l1cosα+l1-q1),zl 1 sinα=-k 1 (q 0 -l 1 cosα+l 1 -q 1 ), z+l2sinα=k2(q0+l2cosα-l2-q2),z+l 2 sinα=k 2 (q 0 +l 2 cosα-l 2 -q 2 ), x=q0x=q 0 , 其中,l1和l2分别为所述刚性杆件的中部到两个锲形刚体件的距离,k1和k2分别为两个所述锲形刚体件的斜侧壁的斜率,q0、q1和q2分别为第二同轴直线电机、第一同轴直线电机和第三同轴直线电机的移动量,x、z和α为三个终端移动量;所述三轴并联机构在X轴方向产生的终端移动量为x,在Z轴方向上产生的终端移动量为z,通过所述刚性杆件于所述锲形刚体件上运动,使所述刚性杆件与X轴的方向之间的夹角为α;Wherein, l 1 and l 2 are the distances from the middle of the rigid rod member to the two wedge-shaped rigid body members, respectively, k 1 and k 2 are the slopes of the inclined side walls of the two wedge-shaped rigid body members, respectively, q 0 , q 1 and q 2 are respectively the movement amounts of the second coaxial linear motor, the first coaxial linear motor and the third coaxial linear motor, and x, z and α are the movement amounts of the three terminals; the three-axis parallel mechanism The terminal movement amount generated in the X-axis direction is x, and the terminal movement amount generated in the Z-axis direction is z. The included angle between the directions is α; 所述误差项引入模块用于对所述原始运动学约束方程做微摄动得到带有误差项的微摄动运动学方程,其中,所述误差项包括一阶小量和高阶小量;The error term introduction module is configured to perform micro-perturbation on the original kinematic constraint equation to obtain a micro-perturbation kinematic equation with an error term, wherein the error term includes a first-order epsilon and a high-order epsilon; 所述误差映射模型和矩阵建立模块用于建立舍去高阶小量的第一误差映射模型和不舍去高阶小量的第二误差映射模型;The error mapping model and matrix building module are used to establish a first error mapping model that discards high-order small quantities and a second error mapping model that does not discard high-order small quantities; 还用于建立舍去高阶小量的第一误差映射矩阵和不舍去高阶小量的第二误差映射矩阵;It is also used to establish a first error mapping matrix that discards high-order small quantities and a second error mapping matrix that does not discard high-order small quantities; 所述结构误差获取模块用于对所述第一误差映射模型做运动学误差辨识,得到结构误差;The structural error acquisition module is used to perform kinematic error identification on the first error mapping model to obtain structural errors; 所述误差映射矩阵处理模块用于将所述结构误差代入所述第一误差映射矩阵得到第一矩阵元素,还用于对所述矩阵元素执行均方根得到第一均方根值;The error mapping matrix processing module is used for substituting the structural error into the first error mapping matrix to obtain a first matrix element, and for performing root mean square on the matrix element to obtain a first root mean square value; 还用于将所述结构误差代入所述第二误差映射矩阵得到第二矩阵元素,还用于对所述第二矩阵元素执行均方根得到第二均方根值;is also used to substitute the structural error into the second error mapping matrix to obtain a second matrix element, and is also used to perform a root mean square on the second matrix element to obtain a second root mean square value; 还用于计算所述第一均方根与第二均方根的比值,得到建模误差补偿矩阵;is also used to calculate the ratio of the first root mean square to the second root mean square to obtain a modeling error compensation matrix; 所述修正结构误差参数获取模块用于通过迭代算法对所述建模误差补偿矩阵执行二次辨识,得到修正结构误差参数;The modified structural error parameter acquisition module is configured to perform secondary identification on the modeling error compensation matrix through an iterative algorithm to obtain modified structural error parameters; 所述修正结构误差参数获取模块的迭代算法为:δd=((J1J*)TJ1J*+λE)′(J1J*)Tδx,The iterative algorithm of the modified structural error parameter acquisition module is: δd=((J 1 J * ) T J 1 J * +λE)′(J 1 J * ) T δx, 其中,J1为第一误差映射矩阵,J*为建模误差补偿矩阵,λE为岭估计;Among them, J 1 is the first error mapping matrix, J * is the modeling error compensation matrix, and λE is the ridge estimation; 所述运动学误差辨识具体为对误差映射模型进行L-M迭代,δx为测量出的终端误差,δd为需要辨识的误差项,通过L-M迭代就可以求得δd中误差源的值;The kinematic error identification is specifically L-M iteration on the error mapping model, δx is the measured terminal error, δd is the error term to be identified, and the value of the error source in δd can be obtained through L-M iteration; 所述误差映射模型和矩阵建立模块用于建立所述第一误差映射模型:The error mapping model and matrix establishment module are used to establish the first error mapping model:
Figure FDA0003252610240000071
Figure FDA0003252610240000071
Figure FDA0003252610240000072
Figure FDA0003252610240000072
δx=δq0δx=δq 0 ; 还用于建立所述第二误差映射模型:Also used to build the second error mapping model: δz-(l1cosα+δl1cosα-k1l1sinαδz-(l 1 cosα+δl 1 cosα-k 1 l 1 sinα -δk1l1sinα-k1δl1sinα-δk1δl1sinα)δα-δk 1 l 1 sinα-k 1 δl 1 sinα-δk 1 δl 1 sinα)δα =(-k1cosα-δk1cosα+sinα+k1+δk1)δl1 =(-k 1 cosα-δk 1 cosα+sinα+k 1 +δk 1 )δl 1 +(-l1cosα-δl1cosα-q1+q0+l1+δl1)δk1 +(-l 1 cosα-δl 1 cosα-q 1 +q 0 +l 1 +δl 1 )δk 1 -(k1+δk1)δq1+(k1+δk1)δq0-(k 1 +δk 1 )δq 1 +(k 1 +δk 1 )δq 0 , δz+(l2cosα+δl2cosα+k2l2sinαδz+(l 2 cosα+δl 2 cosα+k 2 l 2 sinα +δk2l2sinα+k2δl2sinα+δk2δl2sinα)δα+δk 2 l 2 sinα+k 2 δl 2 sinα+δk 2 δl 2 sinα)δα =(k2cosα+δk2cosα-sinα-k2-δk2)δl2 =(k 2 cosα+δk 2 cosα-sinα-k 2 -δk 2 )δl 2 +(l2cosα+δl2cosα-q2+q0-l2-δl2)δk2 +(l 2 cosα+δl 2 cosα-q 2 +q 0 -l 2 -δl 2 )δk 2 -(k2+δk2)δq2+(k2+δk2)δq0-(k 2 +δk 2 )δq 2 +(k 2 +δk 2 )δq 0 , δx=δq0δx=δq 0 ; 其中,δ为一阶小量;Among them, δ is a first-order small quantity; 所述误差映射模型和矩阵建立模块用于将所述第一误差映射模型转变成所述第一误差映射矩阵:δx=J1δd;The error mapping model and matrix establishment module are used to convert the first error mapping model into the first error mapping matrix: δx=J 1 δd; 还用于将所述第二误差映射模型转变成第二误差映射矩阵:δx=J2δd;It is also used to transform the second error mapping model into a second error mapping matrix: δx=J 2 δd; 其中,in, δd=[δd1,δd2,δd3],δd1=[δq0,0,0,0]Tδd=[δd 1 ,δd 2 ,δd 3 ],δd 1 =[δq 0 ,0,0,0] T , δd2=[δq0,δq1,δl1,δk1]T,δd3=[δq0,δq2,δl2,δk2]Tδd 2 =[δq 0 ,δq 1 ,δl 1 ,δk 1 ] T ,δd 3 =[δq 0 ,δq 2 ,δl 2 ,δk 2 ] T ; 其中,所述第一误差映射矩阵δx=J1δd和所述第二误差映射矩阵δx=J2δd均为3*12的J矩阵。Wherein, the first error mapping matrix δx=J 1 δd and the second error mapping matrix δx=J 2 δd are both J matrices of 3*12.
CN202110419520.6A 2021-04-19 2021-04-19 Iterative correction method and iterative correction system for kinematic error mapping matrix Active CN112949098B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110419520.6A CN112949098B (en) 2021-04-19 2021-04-19 Iterative correction method and iterative correction system for kinematic error mapping matrix

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110419520.6A CN112949098B (en) 2021-04-19 2021-04-19 Iterative correction method and iterative correction system for kinematic error mapping matrix

Publications (2)

Publication Number Publication Date
CN112949098A CN112949098A (en) 2021-06-11
CN112949098B true CN112949098B (en) 2022-02-11

Family

ID=76233042

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110419520.6A Active CN112949098B (en) 2021-04-19 2021-04-19 Iterative correction method and iterative correction system for kinematic error mapping matrix

Country Status (1)

Country Link
CN (1) CN112949098B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115979231B (en) 2023-03-20 2023-07-18 广东工业大学 A Dimensionless Kinematics Calibration Method Based on Virtual Points and Related Devices

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101126808B1 (en) * 2010-03-02 2012-03-23 경북대학교 산학협력단 Error estimation method and device for multi-axis controlled machines
CN105446264B (en) * 2015-12-24 2018-05-22 南京航空航天大学 The machine tool accuracy optimum design method of feature based
CN109746915B (en) * 2019-01-18 2022-03-15 埃夫特智能装备股份有限公司 A kinematic method for improving the absolute positioning accuracy of industrial robots
CN112346408B (en) * 2020-09-30 2023-11-24 北京工业大学 A geometric error compensation method for CNC grinding machines by constructing a system of linear equations of two variables

Also Published As

Publication number Publication date
CN112949098A (en) 2021-06-11

Similar Documents

Publication Publication Date Title
CN112949098B (en) Iterative correction method and iterative correction system for kinematic error mapping matrix
TWI501562B (en) A method to estimate the ratio errors of the capacitors in the digital-to-analog converter of a successive approximation analog digital converter and its application to calibrate the successive approximation analog digital converter
CN109769096B (en) Servo motion control method for linear array CCD scanning process
CN107453756B (en) Front-end calibration method for pipeline ADC
CN115167284B (en) A Data-Driven Static Decoupling Matrix Calibration Method for Precision Motion Table
CN115079729B (en) Motion platform position compensation method, compensation system and electronic equipment
CN109884988B (en) Hole making normal interpolation correction method of five-axis numerical control hole making machine tool
CN104395804A (en) Optical assembly producing method and method for designing lens for assembly
CN107514986A (en) A Displacement Sensor Calibration Device Based on Air Floating Platform
CN114862932A (en) BIM global positioning-based pose correction method and motion distortion correction method
CN110160436B (en) Error measuring method and device of linear displacement sensor
CN112729214B (en) Measuring method for correcting reference point coordinates based on test data
CN113655585B (en) Method for adjusting and detecting zoom imaging lens
CN113503813B (en) Six-degree-of-freedom motion platform linear displacement positioning precision measurement and error compensation method
CN115371659B (en) Full-temperature zero-offset compensation method for fiber-optic gyroscope with forward correction
CN109976255A (en) A kind of Kinematic Calibration method for parallel main shaft head
CN115373433B (en) Turntable motion compensation method, device, equipment and storage medium
CN110207723B (en) Control precision testing method for photoelectric tracker composite axis control system
CN114003045B (en) Target tracking method of photoelectric tracker, terminal and readable storage medium
CN107784138B (en) Point cloud gravity deformation correction method based on structural mechanics analysis
KR20070012472A (en) Adaptive Command Filtering for Servo Mechanism Control System
CN101551226B (en) Device and method for improving positioning precision of absolute position of precise machining equipment moving platform
CN114111804A (en) Multi-source multi-category measurement data time zero high-precision alignment method for carrier rocket
CN118112927A (en) Dynamic hysteresis modeling and feedforward control method of piezoelectric actuator based on MGPI
CN118153308A (en) DRPI-based piezoelectric driver dynamic hysteresis modeling and feedforward control method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230721

Address after: 518000 301, Building B, Kemulong Science Park, Guansheng 5th Road, Luhu Community, Guanhu Street, Longhua District, Shenzhen, Guangdong

Patentee after: Hymson Laser Technology Group Co., Ltd.

Address before: 510062 Dongfeng East Road, Yuexiu District, Guangzhou, Guangdong 729

Patentee before: GUANGDONG University OF TECHNOLOGY