[go: up one dir, main page]

CN112945901A - Method for detecting quality of ensiled soybeans based on near infrared spectrum - Google Patents

Method for detecting quality of ensiled soybeans based on near infrared spectrum Download PDF

Info

Publication number
CN112945901A
CN112945901A CN202110178828.6A CN202110178828A CN112945901A CN 112945901 A CN112945901 A CN 112945901A CN 202110178828 A CN202110178828 A CN 202110178828A CN 112945901 A CN112945901 A CN 112945901A
Authority
CN
China
Prior art keywords
silage
soybean
quality
physical
chemical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110178828.6A
Other languages
Chinese (zh)
Inventor
姜妍
王绍东
王遂
薛恩玉
李远明
王晓云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeast Agricultural University
Original Assignee
Northeast Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeast Agricultural University filed Critical Northeast Agricultural University
Priority to CN202110178828.6A priority Critical patent/CN112945901A/en
Publication of CN112945901A publication Critical patent/CN112945901A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明公开一种基于近红外光谱的青贮大豆品质检测方法,包括:S1、收集青贮饲用型大豆的地上植株并烘干粉碎后作为待测样品;S2、对待测样品进行理化指标测定,并将测定结果划分为校准集和验证集;S3、对待测样品进行近红外光谱扫描得到吸光值;S4、对吸光值进行预处理;S5、基于校准集的吸光值以及理化指标测定结果,采用PLS分别构建不同理化指标的青贮大豆品质预测模型;S6、基于验证集对预测模型进行校验,获取最优预测模型;S7、基于各理化指标所对应的最优预测模型完成青贮大豆品质检测。本发明能够提高青贮大豆饲用品质的检测效率及检测结果的精准性,检测过程简洁、高效、绿色,填补了青贮大豆植株品质近红外检测的空白。

Figure 202110178828

The invention discloses a method for detecting the quality of silage soybeans based on near-infrared spectroscopy. Divide the measurement results into a calibration set and a verification set; S3, scan the sample to be tested by near-infrared spectrum to obtain the absorbance value; S4, preprocess the absorbance value; S5, based on the absorbance value of the calibration set and the measurement results of physical and chemical indexes, use PLS Build silage soybean quality prediction models with different physical and chemical indicators respectively; S6, verify the prediction model based on the validation set, and obtain the optimal prediction model; S7, complete the silage soybean quality detection based on the optimal prediction model corresponding to each physical and chemical indicator. The method can improve the detection efficiency of the silage soybean feed quality and the accuracy of the detection results, the detection process is simple, efficient and green, and fills the blank of the near-infrared detection of the silage soybean plant quality.

Figure 202110178828

Description

Method for detecting quality of ensiled soybeans based on near infrared spectrum
Technical Field
The invention relates to the technical field of quality detection of ensiled soybeans, in particular to a method for detecting the quality of ensiled soybeans based on near infrared spectrum.
Background
The soybean is a grain and oil crop with rich protein and fat content, the grains have rich nutrient substances, and the bean pulp after squeezing and leaching is high-quality plant protein feed. By utilizing the nutritional characteristics of high protein, the soybean plant can be used as silage to solve the problem of high protein shortage in the feed. However, the detection of the quality of the ensiled soybeans becomes an important research content and an urgent problem to be solved, most of the existing detection methods for the quality index of the feed are conventional chemical detection through national standards or industrial standards, and the like, wherein the crude protein content is determined by a national standard GB/T6432-; meanwhile, the reagent consumption is large, environmental pollution is easily caused, and the health of people is damaged.
In recent years, the Near Infrared Spectroscopy (NIRS) method is gaining more and more favor in various industries due to its advantages of rapidness, simplicity, non-damage, greenness, etc. In the aspect of feed analysis, the method can be used for analyzing the major components of the feed and evaluating the nutritional value of the feed. At present, soybean is mainly used as feed, soybean meal is taken as main material, silage type soybean is taken as a new member of silage resources, NIRS is used for detecting the silage quality evaluation and belongs to new content, so that a silage soybean quality detection method based on near infrared spectrum is needed to be provided, and the development and utilization of silage soybean on forage research and application can be promoted.
Disclosure of Invention
The invention aims to provide a method for detecting the quality of silage soybeans based on a near infrared spectrum, which aims to solve the technical problems in the prior art, can greatly improve the detection efficiency of the feeding quality of the silage soybeans and the accuracy of a detection result, has a simple, high-efficiency and green detection process, and fills the blank of near infrared detection of the quality of silage soybean plants.
In order to achieve the purpose, the invention provides the following scheme: the invention provides a method for detecting the quality of ensiled soybeans based on near infrared spectrum, which comprises the following steps:
s1, collecting overground plant parts of different varieties of silage type soybeans in different growth periods, treating the collected plants, drying the plants at a preset temperature to constant weight, and crushing the plants to be used as samples to be detected;
s2, performing physical and chemical index measurement on the sample to be measured collected in the step S1, and dividing physical and chemical index measurement results of the sample to be measured into a calibration set and a verification set;
s3, performing near infrared spectrum scanning on the sample to be detected collected in the step S1 to obtain a corresponding light absorption value;
s4, preprocessing the light absorption value obtained in the step S3;
s5, respectively constructing silage soybean quality prediction models with different physicochemical indexes by adopting a Partial Least Squares (PLS) method based on the light absorption value and the physicochemical index measurement result after the calibration set data preprocessing;
s6, verifying the silage soybean quality prediction models with different physicochemical indexes based on the verification set, and acquiring the optimal silage soybean quality prediction models corresponding to the physicochemical indexes based on the verification result;
and S7, respectively inputting the light absorption values of the near infrared spectrum scanning of the ensiled soybeans to be detected into the optimal ensiled soybean quality prediction models corresponding to the physical and chemical indexes to finish the ensiled soybean quality detection.
Preferably, in the step S1, the different growth periods include full bloom period, early stage of grain swelling, and middle stage of grain swelling; the treatment modes of the plants in each growth period are respectively as follows: the whole plant is sampled in the full-bloom stage and the initial stage of the seed blowing, and the plant after pod removal treatment is sampled in the middle stage of the seed blowing.
Preferably, in step S2, the physicochemical indexes include crude protein CP, neutral detergent fiber NDF, and acidic detergent fiber ADF.
Preferably, in step S2, the physicochemical index is measured according to national standard or industry standard.
Preferably, in the step S3, the spectral range of the near infrared spectrum scan is 900-1700 nm.
Preferably, in step S4, the data preprocessing includes: first order derivation NW1stSecond order derivation NW2ndThe standard normal variable transformation method SNV and the detrending algorithm DE-trending are combined.
Preferably, in step S5, the silage soybean quality prediction model for each of the physicochemical indexes includes a NW-based model1st、NW1st+DE-trending、NW1st+DE-trending+SNV、NW2nd+ DE-trending + SNV four data preprocessing modes PLS model.
Preferably, the silage soybean quality prediction model corresponding to each physical and chemical index adopts NW1stAnd + DE-ending + SNV data preprocessing mode.
Preferably, in step S6, the index for verifying the silage soybean quality prediction models with different physicochemical indexes includes a determination coefficient R2Root mean square error RMSE value.
The invention discloses the following technical effects:
the method adopts a national standard method to measure the physicochemical indexes of the silage soybean, carries out near infrared spectrum scanning on a silage soybean sample to be measured, constructs a silage soybean quality prediction model by using a partial least square method based on the correlation between the variation rule of the light absorption value of the near infrared spectrum and the physicochemical index value of the feed soybean, optimizes the silage soybean quality prediction model based on the decision coefficient and the root mean square error, and inputs the light absorption value of the near infrared spectrum of the sample to be measured into the optimal silage soybean quality prediction model to realize the rapid and accurate detection of the silage soybean quality, thereby greatly improving the detection efficiency of the silage soybean quality and the accuracy of the detection result, having simple, efficient and green detection process and filling the blank of the near infrared detection of the silage soybean plant quality.
Drawings
In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the drawings needed in the embodiments will be briefly described below, and it is obvious that the drawings in the following description are only some embodiments of the present invention, and it is obvious for those skilled in the art to obtain other drawings without creative efforts.
FIG. 1 is a flow chart of the method for detecting the quality of ensiled soybeans based on near infrared spectroscopy;
FIG. 2 is a diagram illustrating an original spectrum of a near-infrared scan according to an embodiment of the present invention;
FIG. 3 shows an NW in an embodiment of the invention1stA spectrum schematic after pretreatment;
FIG. 4 shows an NW in an embodiment of the invention1stA spectrum schematic diagram after + DE-trending pretreatment;
FIG. 5 shows an NW in an embodiment of the invention1stA spectrum schematic diagram after + DE-trending + SNV pretreatment;
FIG. 6 is a graph showing the distribution of predicted values and reference values of crude protein content in the examples of the present invention; wherein, fig. 6(a) is a three-group value model, and fig. 6(b) is a two-group value model;
FIG. 7 is a graph showing the distribution of predicted NDF content values and reference values according to an embodiment of the present invention; among them, fig. 7(a) is a three-group value model, and fig. 7(b) is a two-group value model;
FIG. 8 is a graph illustrating the predicted ADF content versus reference distribution according to an embodiment of the present invention; fig. 8(a) shows a three-group value model, and fig. 8(b) shows a two-group value model.
Detailed Description
The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the drawings in the embodiments of the present invention, and it is obvious that the described embodiments are only a part of the embodiments of the present invention, and not all of the embodiments. All other embodiments, which can be derived by a person skilled in the art from the embodiments given herein without making any creative effort, shall fall within the protection scope of the present invention.
In order to make the aforementioned objects, features and advantages of the present invention comprehensible, embodiments accompanied with figures are described in further detail below.
Referring to fig. 1, the present embodiment provides a method for detecting quality of ensiled soybeans based on near infrared spectroscopy, including the following steps:
s1, collecting overground plant parts of different varieties of silage type soybeans in different growth periods, treating the collected plants, drying the plants at a preset temperature to constant weight, and crushing the plants to be used as samples to be detected;
in this example, 25 soybean varieties were sampled at full bloom stage, initial stage of kernel swelling, and middle stage of kernel swelling, and the plants at each growth stage were treated in the following manners: the full plant is sampled in full-bloom stage and initial stage of kernel blowing, the plant after pod removing treatment is sampled in middle stage of kernel blowing, and the specific soybean variety is shown in table 1:
TABLE 1
Figure BDA0002940872540000061
After the plants were sampled in the three sampling periods and different treatment modes in table 1, the sample plants were dried at 65 ℃ to constant weight, crushed and tested, and 57 samples were collected in total.
S2, performing physical and chemical index measurement on the sample to be measured collected in the step S1, and dividing physical and chemical index measurement results of the sample to be measured into a calibration set and a verification set;
the physical and chemical indexes comprise three main silage quality indexes of CP (Crude Protein), NDF (Neutral Detergent Fiber) and ADF (Acid Detergent Fiber); and the physicochemical indexes of each sample are repeatedly detected for three times according to national standards or industrial standards, and the physicochemical indexes of 57 samples to be detected are measured to obtain 171 chemical values in total so as to ensure the accuracy of data acquisition.
The CP is detected according to a detection method GB/T6432-.
S3, performing near infrared spectrum scanning on the sample to be detected collected in the step S1 to obtain a corresponding light absorption value;
in the near infrared spectrum scanning process, samples are directly and uniformly stacked by hands in a natural sample loading mode, each sample to be detected is scanned after three times of rotation scanning and three times of repacking respectively under the same environmental condition, and the near infrared spectrum is collected in an averaging mode so as to overcome the nonuniformity of the samples and collect 171 spectra in total; wherein, repacking is to get powder from the sample again, and the weight is flat and the thickness is consistent.
The scan parameters were as follows: a near infrared spectrum imager (DA7250, Perten, Sweden) is utilized, the spectral range is 900-1700nm, the wavelength precision is less than 0.3nm, the spectral resolution is 7nm, the diode spacing (pixel spacing) is 3.1 nm/pixel, the detector is InGaAs, and the electric temperature control cold treatment is carried out on 256 pixels. The rotary cup with the sample can be driven, and the computer and the near infrared imaging system acquisition software are used for controlling the system to operate. In order to ensure the consistency of the obtained spectrum, the detection temperature is 15-25 ℃, the thickness of the sample is 5mm, and the humidity range is 30-70%.
S4, preprocessing the light absorption value obtained in the step S3; the data preprocessing comprises the following steps: first order derivation NW1stSecond order derivation NW2ndOne or more of SNV (Standard Normal variant transformation) and DE-trending combined pretreatment methods.
S5, respectively constructing silage soybean quality prediction models with different physicochemical indexes by adopting a Partial Least Squares (PLS) method based on the light absorption value after calibration set data preprocessing and the physicochemical index measurement result;
the method specifically comprises the following steps: and (3) constructing a silage soybean quality prediction model by using a partial least square method based on the good correlation between the change rule of the light absorption value of the spectrum after data preprocessing and the increase of the quality index value of the feeding soybean.
The partial least squares method is a mathematical optimization technique that minimizes the sum of the squares of the errors by minimizing the sum of the squares of the errors to find the best functional match for a set of data, and using the simplest method to find some absolute unknowable true values.
The silage soybean quality prediction model corresponding to each physical and chemical index comprises a model based on NW1st、NW1st+DE-trending、NW1st+DE-trending+SNV、NW2nd+ DE-trending + SNV.
And S6, verifying the silage soybean quality prediction models with different physicochemical indexes based on the verification set, verifying the accuracy of the feeding soybean quality prediction models, and acquiring an optimal silage soybean quality prediction model based on the verification result.
Model evaluation indexes: respectively by determining the coefficient R2And evaluating the calibration effect and the prediction capability of the model by the Root Mean Square Error (RMSE) value. R2The closer to 1, the more remarkable the regression effect is, and the closer to 0 the RMSE is, the better the stability and the prediction capability of the model are.
In this embodiment, the basic statistical data of the crude protein content, the NDF content, and the ADF content in 57 samples to be tested are shown in tables 2, 3, and 4, respectively:
TABLE 2
Average (%) Maximum value (%) Minimum value (%) Standard deviation of
16.21 22.79 11.21 2.04
TABLE 3
Average (%) Maximum value (%) Minimum value (%) Standard deviation of
51.25 63.48 41.02 5.02
TABLE 4
Average (%) Maximum value (%) Minimum value (%) Standard deviation of
33.88 42.51 25.00 4.51
The original spectrum of the near-infrared scanning of 57 samples to be measured is shown in fig. 2, the spectrum after first-order derivation pretreatment is shown in fig. 3, the spectrum after trend-removing algorithm pretreatment is shown in fig. 4, the spectrum after standard normal variable transformation pretreatment is shown in fig. 5, and the curve of the treated spectrum is smoother than that of the original spectrum.
In this embodiment, the results of the physicochemical index measurements of 57 samples to be measured are divided into calibration sets and verification sets, wherein the coefficients of the calibration sets and the verification sets are represented as RC 2、RP 2The root mean square error is expressed as RMSEC, RMSEP, respectively. The determination coefficients and the root mean square error calculation results of the silage soybean quality prediction model based on various physicochemical indexes of different spectrum pretreatment methods are shown in table 5:
TABLE 5
Figure BDA0002940872540000101
As can be seen from table 5 and fig. 2 to 5, NW was used1stThe three spectrum preprocessing methods of + DE-trending + SNV are combined, the obtained silage soybean quality prediction model has the best effect, and the silage soybean quality prediction model is subjected to NW1stBy the three spectrum preprocessing methods of + DE-trending + SNV, an original spectrum curve becomes smooth, and the noise, baseline drift and collinearity phenomena of the curve are eliminated well.
The accuracy of the chemical values and the representativeness of the samples are the basis for establishing accurate models, so that the relative deviation is calculated according to the national standard algorithm, and the determination of the appropriate one of the three chemical values is that if the three chemical values do not differ much (i.e. the standard deviation is less than 20%), the average is taken, if the difference is large (i.e. the standard deviation is greater than or equal to 20%), the value with the smallest relative deviation is taken. Two chemical values were determined as the average of two similar results. In the embodiment, three groups of values and two groups of values are taken as representatives and are respectively calculated and then are brought into the database for comparative analysis, and the model is further verified.
For crude protein content, three sets of value calibration sets and random cross validation set R in the spectral data of the samples from the gavage soybean plants were compared by PLS calibration and validation models for three sets of values and two sets of values20.97 and 0.96, respectively, calibration set of two sets of values and random cross-validation set R20.96 and 0.95, respectively, while the RMSE in the calibration set was 0.50 in three sets of values, 0.49 in two sets of values, and 0.56 and 0.55 in the random cross-validation set, respectively. Through the crude protein content model, the average value of two close chemical numerical results is analyzed to be the true value, the model effect is slightly good after calculation, and the distribution curve of the predicted value of the crude protein content and the reference value is shown in fig. 6, wherein fig. 6(a) is a three-group value model, and fig. 6(b) is a two-group value model.
For NDF content, calibration set of three sets of values and R for random cross validation set20.90 and 0.88, respectively, R for the calibration set and random cross-validation set of the two sets of values20.90 and 0.89 respectively. RMSE of 1.58 for the three sets of values in the calibration set<1.74 for both sets of values; while the RMSE for the three sets of values in the validation set was 1.72<The distribution graph of the predicted value of NDF content and the reference value is shown in fig. 7, wherein fig. 7(a) is a three-set model and fig. 7(b) is a two-set model; as can be seen from FIG. 7, the NDF model for the three sets of values performed well.
Calibration and validation set R of three sets of values for ADF content2Calibration and verification sets R of two sets of values, 0.95 and 0.94, respectively20.94 and 0.93, respectively. RMSE of 1.04 for the three sets of values in the calibration set<1.10 of the two sets of values; while the RMSE for the three sets of values in the validation set was 1.13<FIG. 8 is a graph showing a distribution of predicted ADF content and reference values for 1.20 of the two sets of values, wherein FIG. 8(a) is a three-set model and FIG. 8(b) is a two-set model; as can be seen from FIG. 8, the ADF model for the three sets of values works well.
Statistical data shows that the model difference between the three groups of values and the two groups of values is not obvious, and the accuracy of measuring chemical values is verified. And in the later stage, along with the increase of the sample amount, the calibration model is corrected, the newly added sample is subjected to chemical test, near-infrared scanning and pretreatment, and the near-infrared detection value is subjected to model prediction and verification according to the steps.
And S7, respectively inputting the light absorption values of the near infrared spectrum scanning of the ensiled soybeans to be detected into the optimal ensiled soybean quality prediction models corresponding to the physical and chemical indexes to finish the ensiled soybean quality detection.
And (4) for the silage soybeans to be detected, processing the plants according to the step S1, drying and crushing the plants, performing infrared spectrum scanning to obtain corresponding light absorption values, preprocessing the light absorption values according to the step S4, and inputting the preprocessed light absorption values into optimal silage soybean quality prediction models corresponding to various physicochemical indexes to finish silage soybean quality detection.
The invention has the following technical effects:
the method adopts a national standard method to measure the physicochemical indexes of the silage soybean, carries out near infrared spectrum scanning on a silage soybean sample to be measured, constructs a silage soybean quality prediction model by using a partial least square method based on the correlation between the variation rule of the light absorption value of the near infrared spectrum and the physicochemical index value of the feed soybean, optimizes the silage soybean quality prediction model based on the decision coefficient and the root mean square error, and inputs the light absorption value of the near infrared spectrum of the sample to be measured into the optimal silage soybean quality prediction model to realize the rapid and accurate detection of the silage soybean quality, thereby greatly improving the detection efficiency of the silage soybean quality and the accuracy of the detection result, having simple, efficient and green detection process and filling the blank of the near infrared detection of the silage soybean plant quality.
The above-described embodiments are merely illustrative of the preferred embodiments of the present invention, and do not limit the scope of the present invention, and various modifications and improvements of the technical solutions of the present invention can be made by those skilled in the art without departing from the spirit of the present invention, and the technical solutions of the present invention are within the scope of the present invention defined by the claims.

Claims (9)

1.一种基于近红外光谱的青贮大豆品质检测方法,其特征在于,包括:1. a method for detecting quality of soybean silage based on near-infrared spectrum, is characterized in that, comprises: S1、收集不同品种青贮饲用型大豆在不同生长期的地上植株部分,对收集的植株进行处理后,在预设温度下烘干至恒重后粉碎,作为待测样品;S1, collect the aboveground plant parts of different varieties of silage-type soybeans in different growth stages, after the collected plants are processed, dried at a preset temperature to a constant weight and then pulverized as a sample to be tested; S2、对所述步骤S1收集的待测样品进行理化指标测定,并将所述待测样品的理化指标测定结果划分为校准集和验证集;S2, performing physical and chemical index measurement on the sample to be tested collected in step S1, and dividing the physical and chemical index measurement results of the sample to be tested into a calibration set and a verification set; S3、对所述步骤S1收集的待测样品进行近红外光谱扫描,得到对应的吸光值;S3, performing near-infrared spectrum scanning on the sample to be tested collected in step S1 to obtain a corresponding absorbance value; S4、对所述步骤S3得到的吸光值进行数据预处理;S4, performing data preprocessing on the absorbance value obtained in the step S3; S5、基于所述校准集数据预处理后的吸光值以及理化指标测定结果,采用偏最小二乘法PLS分别构建不同理化指标的青贮大豆品质预测模型;S5. Based on the pre-processed light absorption value of the calibration set data and the measurement results of physical and chemical indicators, the partial least squares method (PLS) is used to respectively construct quality prediction models of silage soybeans with different physical and chemical indicators; S6、基于所述验证集对不同理化指标的青贮大豆品质预测模型进行校验,基于校验结果获取各理化指标所对应的最优青贮大豆品质预测模型;S6, verifying the silage soybean quality prediction models of different physical and chemical indicators based on the verification set, and obtaining the optimal silage soybean quality prediction model corresponding to each physical and chemical indicator based on the verification results; S7、将待测青贮大豆近红外光谱扫描的吸光值分别输入至各理化指标所对应的最优青贮大豆品质预测模型,完成青贮大豆品质检测。S7. Input the absorbance values scanned by the near-infrared spectrum of the silage soybean to be tested into the optimal silage soybean quality prediction model corresponding to each physical and chemical index to complete the silage soybean quality detection. 2.根据权利要求1所述的基于近红外光谱的青贮大豆品质检测方法,其特征在于,所述步骤S1中,不同生长期包括盛花期、鼓粒初期、鼓粒中期;各生长期的植株的处理方式分别为:盛花期、鼓粒初期对全株进行取样,鼓粒中期对去荚处理后的植株进行取样。2. the method for detecting quality of soybean silage based on near-infrared spectrum according to claim 1, is characterized in that, in described step S1, different growth stages comprise blooming stage, early stage of drumming, middle stage of drumming; the plants of each growth stage The treatment methods were as follows: the whole plant was sampled at the full flowering stage and the early stage of drumming, and the plants after pod removal were sampled in the middle stage of drumming. 3.根据权利要求1所述的基于近红外光谱的青贮大豆品质检测方法,其特征在于,所述步骤S2中,所述理化指标包括粗蛋白CP、中性洗涤纤维NDF、酸性洗涤纤维ADF。3. The method for detecting quality of soybean silage based on near-infrared spectroscopy according to claim 1, wherein in the step S2, the physical and chemical indicators include crude protein CP, neutral detergent fiber NDF, and acid detergent fiber ADF. 4.根据权利要求3所述的基于近红外光谱的青贮大豆品质检测方法,其特征在于,所述步骤S2中,所述理化指标采用国家标准或行业标准进行测定。4. The method for detecting the quality of soybean silage based on near-infrared spectroscopy according to claim 3, characterized in that, in the step S2, the physical and chemical indexes are measured using national standards or industry standards. 5.根据权利要求1所述的基于近红外光谱的青贮大豆品质检测方法,其特征在于,所述步骤S3中,近红外光谱扫描的光谱范围为900-1700nm。5 . The method for detecting the quality of soybean silage based on near-infrared spectroscopy according to claim 1 , wherein in the step S3 , the spectral range of near-infrared spectroscopy scans is 900-1700 nm. 6 . 6.根据权利要求1所述的基于近红外光谱的青贮大豆品质检测方法,其特征在于,所述步骤S4中,所述数据预处理包括:一阶求导NW1st、二阶求导NW2nd、标准正态变量变换方法SNV、去趋势算法DE-trending中的一种或多种组合。6. The method for detecting quality of soybean silage based on near-infrared spectroscopy according to claim 1, wherein in the step S4, the data preprocessing comprises: first-order derivation NW 1st , second-order derivation NW 2nd , One or more combinations of standard normal variable transformation method SNV and detrending algorithm DE-trending. 7.根据权利要求6所述的基于近红外光谱的青贮大豆品质检测方法,其特征在于,所述步骤S5中,每个所述理化指标对应的青贮大豆品质预测模型包括基于NW1st、NW1st+DE-trending、NW1st+DE-trending+SNV、NW2nd+DE-trending+SNV四种数据预处理方式的PLS模型。7. The method for detecting the quality of soybean silage based on near-infrared spectroscopy according to claim 6, wherein in the step S5, the quality prediction model of soybean silage corresponding to each of the physical and chemical indicators comprises a method based on NW 1st , NW 1st +DE-trending, NW 1st +DE-trending+SNV, NW 2nd +DE-trending+SNV PLS model of four data preprocessing methods. 8.根据权利要求7所述的基于近红外光谱的青贮大豆品质检测方法,其特征在于,每个所述理化指标对应的青贮大豆品质预测模型采用NW1st+DE-trending+SNV数据预处理方式。8. The silage soybean quality detection method based on near-infrared spectroscopy according to claim 7, wherein the silage soybean quality prediction model corresponding to each described physical and chemical index adopts NW 1st +DE-trending+SNV data preprocessing mode . 9.根据权利要求1所述的基于近红外光谱的青贮大豆品质检测方法,其特征在于,所述步骤S6中,对不同理化指标的青贮大豆品质预测模型进行校验的指标包括决定系数R2、均方根误差RMSE值。9. The method for detecting the quality of soybean silage based on near-infrared spectroscopy according to claim 1, wherein in the step S6, the index for verifying the quality prediction model of soybean silage with different physical and chemical indicators includes a coefficient of determination R 2 , RMSE value of root mean square error.
CN202110178828.6A 2021-02-07 2021-02-07 Method for detecting quality of ensiled soybeans based on near infrared spectrum Pending CN112945901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110178828.6A CN112945901A (en) 2021-02-07 2021-02-07 Method for detecting quality of ensiled soybeans based on near infrared spectrum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110178828.6A CN112945901A (en) 2021-02-07 2021-02-07 Method for detecting quality of ensiled soybeans based on near infrared spectrum

Publications (1)

Publication Number Publication Date
CN112945901A true CN112945901A (en) 2021-06-11

Family

ID=76244832

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110178828.6A Pending CN112945901A (en) 2021-02-07 2021-02-07 Method for detecting quality of ensiled soybeans based on near infrared spectrum

Country Status (1)

Country Link
CN (1) CN112945901A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114518339A (en) * 2022-02-23 2022-05-20 新希望六和股份有限公司 Method for establishing near-infrared prediction model of wet-based fermented soybean meal and application
CN115541342A (en) * 2022-10-15 2022-12-30 东北农业大学 Breeding feed quality determination system and method based on silage corn and soybean blending
CN115728268A (en) * 2022-11-16 2023-03-03 贵州茅台酒股份有限公司 Construction method, detection method and device of warehouse-splitting curve physical and chemical index detection model

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105021564A (en) * 2015-08-06 2015-11-04 云南同创检测技术股份有限公司 Method for determining content of ergosterol in tobacco based on near infrared spectroscopic analysis technology
CN106092962A (en) * 2016-08-17 2016-11-09 山西省农业科学院农作物品种资源研究所 A kind of near infrared spectroscopy quickly detects the method for millet crude protein content
CN110208210A (en) * 2019-05-27 2019-09-06 河南省饲草饲料站 The building and application of alfalfa hay effective component prediction model
CN110220865A (en) * 2019-05-28 2019-09-10 河南省饲草饲料站 The construction method of whole corn silage nutritional ingredient prediction model and application
CN110346322A (en) * 2019-05-27 2019-10-18 河南省饲草饲料站 The construction method of silage corn nutritional ingredient prediction model and application

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105021564A (en) * 2015-08-06 2015-11-04 云南同创检测技术股份有限公司 Method for determining content of ergosterol in tobacco based on near infrared spectroscopic analysis technology
CN106092962A (en) * 2016-08-17 2016-11-09 山西省农业科学院农作物品种资源研究所 A kind of near infrared spectroscopy quickly detects the method for millet crude protein content
CN110208210A (en) * 2019-05-27 2019-09-06 河南省饲草饲料站 The building and application of alfalfa hay effective component prediction model
CN110346322A (en) * 2019-05-27 2019-10-18 河南省饲草饲料站 The construction method of silage corn nutritional ingredient prediction model and application
CN110220865A (en) * 2019-05-28 2019-09-10 河南省饲草饲料站 The construction method of whole corn silage nutritional ingredient prediction model and application

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
严衍禄 等编著: "《近红外光谱分析的原理、技术与应用》", 31 December 2013 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114518339A (en) * 2022-02-23 2022-05-20 新希望六和股份有限公司 Method for establishing near-infrared prediction model of wet-based fermented soybean meal and application
CN114518339B (en) * 2022-02-23 2023-08-01 新希望六和股份有限公司 Method for establishing near-infrared prediction model of wet-base fermented soybean meal and application
CN115541342A (en) * 2022-10-15 2022-12-30 东北农业大学 Breeding feed quality determination system and method based on silage corn and soybean blending
CN115728268A (en) * 2022-11-16 2023-03-03 贵州茅台酒股份有限公司 Construction method, detection method and device of warehouse-splitting curve physical and chemical index detection model

Similar Documents

Publication Publication Date Title
Huang et al. Improved generalization of spectral models associated with Vis-NIR spectroscopy for determining the moisture content of different tea leaves
CN112945901A (en) Method for detecting quality of ensiled soybeans based on near infrared spectrum
WO2020232959A1 (en) Near infrared spectral feature extraction method and system based on functional principal component analysis
CN110672546A (en) A modeling method of distiller&#39;s grains model based on portable near-infrared spectrometer
CN118243644B (en) Method for estimating nitrogen content of grassland vegetation leaf
CN109540837B (en) A method for rapid detection of lignocellulose content in ramie leaves by near infrared
CN107917897A (en) The method of the special doctor&#39;s food multicomponent content of near infrared ray
CN106018337A (en) Method for determination of phytic acid content of cotton seed powder
CN102937575B (en) Watermelon sugar degree rapid modeling method based on secondary spectrum recombination
Fadock et al. Visible-near infrared reflectance spectroscopy for nondestructive analysis of red wine grapes
CN105486662A (en) Cottonseed gossypol content non-destructive measurement method based on near-infrared spectrum technology
CN111795943A (en) A method for non-destructive detection of exogenous sucrose in tea based on near-infrared spectroscopy
Yu et al. Rapid and visual measurement of fat content in peanuts by using the hyperspectral imaging technique with chemometrics
CN110672578A (en) Model universality and stability verification method for polar component detection of frying oil
CN110231306A (en) A kind of method of lossless, the quick odd sub- seed protein content of measurement
CN110231302A (en) A kind of method of the odd sub- seed crude fat content of quick measurement
Perez et al. Authentication of green asparagus varieties by near‐infrared reflectance spectroscopy
CN105806803A (en) Multi-index collaborative analysis wavelength combination and selection method thereof
de Oliveira et al. Comparative analysis of compact and benchtop near-infrared spectrometers for forage nutritional trait measurements
Wang et al. Monitoring model for predicting maize grain moisture at the filling stage using NIRS and a small sample size
CN114720421B (en) A method for detecting relative feeding value of oats based on near infrared spectroscopy
CN115420708A (en) Near-infrared nondestructive detection method for capsaicin substances in dried peppers
Yang et al. Study on hyperspectral monitoring model of β-glucan content in oat grains
CN115541531A (en) Method for predicting protein content in feed based on two-dimensional correlation spectrum
Paiva-Peredo et al. Transformations for non-destructive evaluation of brix in mango by reflectance spectroscopy and machine learning.

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210611

RJ01 Rejection of invention patent application after publication