CN112945108B - A precision displacement measurement method and device based on electro-optical modulation sidebands - Google Patents
A precision displacement measurement method and device based on electro-optical modulation sidebands Download PDFInfo
- Publication number
- CN112945108B CN112945108B CN202110105425.9A CN202110105425A CN112945108B CN 112945108 B CN112945108 B CN 112945108B CN 202110105425 A CN202110105425 A CN 202110105425A CN 112945108 B CN112945108 B CN 112945108B
- Authority
- CN
- China
- Prior art keywords
- frequency
- electro
- microwave signal
- interferometer
- sideband
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000006073 displacement reaction Methods 0.000 title claims abstract description 38
- 238000000691 measurement method Methods 0.000 title claims abstract description 10
- 230000003595 spectral effect Effects 0.000 claims abstract description 41
- 238000005259 measurement Methods 0.000 claims abstract description 23
- 230000010287 polarization Effects 0.000 claims description 9
- 230000008878 coupling Effects 0.000 claims description 6
- 238000010168 coupling process Methods 0.000 claims description 6
- 238000005859 coupling reaction Methods 0.000 claims description 6
- 238000000034 method Methods 0.000 abstract description 7
- 238000001228 spectrum Methods 0.000 abstract description 3
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/02—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B9/00—Measuring instruments characterised by the use of optical techniques
- G01B9/02—Interferometers
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Instruments For Measurement Of Length By Optical Means (AREA)
Abstract
本发明属于精密位移测量技术领域,提供了一种基于电光调制边带的精密位移测量方法及装置,所述方法通过调节电光调制器的边带频率与干涉仪共振,获得干涉仪第一腔长对应的第一自由光谱范围Δν1,以及第二腔长对应的第二自由光谱范围Δν2;根据第一自由光谱范围Δν1和第二自由光谱范围Δν2计算得到干涉仪的位移ΔL。本发明通过锁定电光调制器的边带频率与干涉仪的自由光谱范围共振,将干涉仪的位移测量转化为微波共振频率的测量,提高位移测量的准确度。
The invention belongs to the technical field of precision displacement measurement, and provides a precision displacement measurement method and device based on electro-optical modulation sidebands. The method obtains the first cavity length of the interferometer by adjusting the sideband frequency of the electro-optic modulator and the resonance of the interferometer. The corresponding first free spectral range Δν 1 and the second free spectral range Δν 2 corresponding to the second cavity length; the displacement ΔL of the interferometer is calculated according to the first free spectral range Δν 1 and the second free spectral range Δν 2 . The invention converts the displacement measurement of the interferometer into the measurement of microwave resonant frequency by locking the sideband frequency of the electro-optic modulator to resonate with the free spectrum range of the interferometer, thereby improving the accuracy of displacement measurement.
Description
技术领域technical field
本发明涉及精密位移测量技术领域,尤其涉及一种基于电光调制边带的精密位移测量方法及装置。The invention relates to the technical field of precision displacement measurement, in particular to a precision displacement measurement method and device based on electro-optical modulation sidebands.
背景技术Background technique
精密位移测量在精密制造、先进传感以及计量等领域都具有重要作用。常用的精密位移测量方法主要基于激光干涉仪方法,通过干涉仪条纹的计数与细分来实现对位移的精密测量。而传统的方法是通过两束激光同时锁定Fabry-Perot(法布里-珀罗谐振腔)干涉仪,复杂度高,且测量精度低。Precision displacement measurement plays an important role in precision manufacturing, advanced sensing, and metrology. The commonly used precision displacement measurement method is mainly based on the laser interferometer method, and the precise measurement of displacement is realized by counting and subdividing the interferometer fringes. The traditional method uses two laser beams to simultaneously lock the Fabry-Perot (Fabry-Perot resonator) interferometer, which has high complexity and low measurement accuracy.
发明内容Contents of the invention
针对上述现有技术中存在的技术问题,本发明提供了一种基于电光调制边带的精密位移测量方法及装置,主要通过锁定电光调制器的边带频率与干涉仪的自由光谱范围共振,将干涉仪的位移测量转化为微波共振频率的测量,提高位移测量的准确度。Aiming at the technical problems existing in the above-mentioned prior art, the present invention provides a precise displacement measurement method and device based on electro-optic modulation sidebands, mainly by locking the sideband frequency of the electro-optic modulator to resonate with the free spectral range of the interferometer, and the The displacement measurement of the interferometer is converted into the measurement of microwave resonance frequency, which improves the accuracy of displacement measurement.
具体的,主要通过以下技术方案来实现:Specifically, it is mainly realized through the following technical solutions:
一种基于电光调制边带的精密位移测量方法,包括以下步骤:A precise displacement measurement method based on electro-optical modulation sidebands, comprising the following steps:
通过调节电光调制器的边带频率与干涉仪共振,获得干涉仪第一腔长对应的第一自由光谱范围Δν1,以及第二腔长对应的第二自由光谱范围Δν2;By adjusting the sideband frequency of the electro-optic modulator to resonate with the interferometer, the first free spectral range Δν 1 corresponding to the first cavity length of the interferometer, and the second free spectral range Δν 2 corresponding to the second cavity length are obtained;
根据第一自由光谱范围Δν1和第二自由光谱范围Δν2计算得到干涉仪的位移ΔL。The displacement ΔL of the interferometer is calculated according to the first free spectral range Δν 1 and the second free spectral range Δν 2 .
优选地,根据第一自由光谱范围Δν1和第二自由光谱范围Δν2计算得到干涉仪的位移ΔL,具体包括:Preferably, the displacement ΔL of the interferometer is calculated according to the first free spectral range Δν1 and the second free spectral range Δν2 , specifically including:
通过下式计算得到干涉仪的位移ΔL:The displacement ΔL of the interferometer is calculated by the following formula:
其中,Δν1为第一自由光谱范围,Δν2为第二自由光谱范围,c为真空光速常数,n为折射率。Among them, Δν 1 is the first free spectral range, Δν 2 is the second free spectral range, c is the vacuum light velocity constant, and n is the refractive index.
优选地,调节电光调制器的边带频率与干涉仪共振,具体包括:Preferably, adjusting the sideband frequency of the electro-optic modulator to resonate with the interferometer specifically includes:
电光调制器包括第一电光调制器和第二电光调制器,激光发射器输出的激光光束依次通过第一电光调制器和第二电光调制器后产生频率为ω1的第一边带和频率为ω2的第二边带;The electro-optic modulator comprises a first electro-optic modulator and a second electro-optic modulator, and the laser beam output by the laser emitter passes through the first electro-optic modulator and the second electro-optic modulator in sequence to generate the first sideband with a frequency of ω 1 and a frequency of the second sideband of ω 2 ;
光电接收器根据接收的包含第一边带和第二边带的激光光束产生微波信号,所述微波信号包含频率为ω1的第一微波信号和频率为ω2的第二微波信号;The photoelectric receiver generates a microwave signal according to the received laser beam comprising the first sideband and the second sideband, and the microwave signal comprises a first microwave signal with a frequency of ω1 and a second microwave signal with a frequency of ω2 ;
频率分处理单元将第一微波信号和第二微波信号进行分离,并将第一微波信号输入给激光频率锁定器,以及将第二微波信号输入给电光边带锁定器;The frequency division processing unit separates the first microwave signal and the second microwave signal, and inputs the first microwave signal to the laser frequency locker, and inputs the second microwave signal to the electro-optic sideband locker;
激光频率锁定器将第三微波信号与第一微波信号进行相位差比较,产生用于锁定激光与干涉仪的误差信号,并将该误差信号反馈给激光发射器;The laser frequency locker compares the phase difference between the third microwave signal and the first microwave signal, generates an error signal for locking the laser and the interferometer, and feeds the error signal back to the laser transmitter;
电光边带锁定器通过输出电压信号调节第四微波信号的频率ω2与干涉仪共振;The electro-optic sideband locker adjusts the frequency ω 2 of the fourth microwave signal to resonate with the interferometer through the output voltage signal;
频率计数器记录与干涉仪共振时的第四微波信号的频率ω2,以便于根据记录的频率获得干涉仪不同腔长对应的自由光谱范围;The frequency counter records the frequency ω 2 of the fourth microwave signal when it resonates with the interferometer, so as to obtain the free spectral range corresponding to different cavity lengths of the interferometer according to the recorded frequency;
所述第三微波信号为微波信号发生器输入给第一电光调制器的频率为ω1的微波信号,用于驱动第一电光调制器产生频率为ω1的第一边带,所述第四微波信号为压控振荡器输入给第二电光调制器的频率为ω2的微波信号,用于驱动第二电光调制器产生频率为ω2的第二边带。The third microwave signal is a microwave signal with a frequency of ω1 that the microwave signal generator inputs to the first electro-optic modulator, and is used to drive the first electro-optic modulator to generate a first sideband with a frequency of ω1 , and the fourth The microwave signal is a microwave signal with a frequency of ω2 that is input to the second electro-optic modulator by the voltage-controlled oscillator, and is used to drive the second electro-optic modulator to generate a second sideband with a frequency of ω2 .
优选地,获得干涉仪第一腔长对应的第一自由光谱范围Δν1,以及第二腔长对应的第二自由光谱范围Δν2,具体包括:Preferably, the first free spectral range Δν 1 corresponding to the first cavity length of the interferometer and the second free spectral range Δν 2 corresponding to the second cavity length are obtained, specifically including:
移动干涉仪的平面反射镜于第一位置,干涉仪的腔长为第一腔长,则电光边带锁定器通过输出电压信号调节第四微波信号的频率ω2与干涉仪共振,此时的频率ω2记为ω21,则干涉仪第一腔长对应的第一自由光谱范围Δν1=ω21;Move the plane reflector of the interferometer to the first position, the cavity length of the interferometer is the first cavity length, then the electro-optic sideband locker adjusts the frequency ω of the fourth microwave signal to resonate with the interferometer through the output voltage signal, at this time The frequency ω 2 is recorded as ω 21 , then the first free spectral range Δν 1 = ω 21 corresponding to the first cavity length of the interferometer;
移动干涉仪的平面反射镜于第二位置,干涉仪的腔长为第二腔长,则电光边带锁定器通过输出电压信号调节第四微波信号的频率ω2与干涉仪共振,此时的频率ω2记为ω22,则干涉仪第二腔长对应的第二自由光谱范围Δν2=ω22。Move the flat reflector of the interferometer to the second position, and the cavity length of the interferometer is the second cavity length, then the electro-optic sideband locker adjusts the frequency ω of the fourth microwave signal to resonate with the interferometer through the output voltage signal, and at this time The frequency ω 2 is denoted as ω 22 , then the second free spectral range Δν 2 =ω 22 corresponding to the second cavity length of the interferometer.
一种基于电光调制边带的精密位移测量装置,包括顺序依次设置的激光发射器、第一电光调制器、第二电光调制器、偏振分光棱镜、四分之一波片、耦合透镜和干涉仪,干涉仪包括凹面反射镜以及可移动的平面反射镜;A precision displacement measurement device based on electro-optical modulation sidebands, including a laser transmitter, a first electro-optic modulator, a second electro-optic modulator, a polarization beam splitter, a quarter-wave plate, a coupling lens, and an interferometer arranged in sequence , the interferometer includes a concave mirror and a movable plane mirror;
所述第一电光调制器还连接有微波信号发生器,所述微波信号发生器与激光频率锁定器连接,所述激光频率锁定器分别与所述激光发射器和频率分处理单元连接,所述频率分处理单元分别与光电接收器和电光边带锁定器连接,电光边带锁定器分别与频率计数器和压控振荡器连接,所述压控振荡器与所述第二电光调制器连接,所述光电接收器与所述偏振分光棱镜连接。The first electro-optic modulator is also connected with a microwave signal generator, and the microwave signal generator is connected with a laser frequency locker, and the laser frequency locker is respectively connected with the laser transmitter and the frequency division processing unit, and the The frequency division processing unit is respectively connected with the photoelectric receiver and the electro-optic sideband locker, and the electro-optic sideband locker is respectively connected with the frequency counter and the voltage-controlled oscillator, and the voltage-controlled oscillator is connected with the second electro-optic modulator, so The photoelectric receiver is connected with the polarization beam splitting prism.
本发明相较于现有技术具有以下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
1、通过锁定电光调制器的边带频率与干涉仪的自由光谱范围共振,将干涉仪的位移测量转化为微波共振频率的测量,有利于提高位移测量的准确度;1. By locking the sideband frequency of the electro-optic modulator to resonate with the free spectral range of the interferometer, the displacement measurement of the interferometer is converted into the measurement of microwave resonance frequency, which is conducive to improving the accuracy of displacement measurement;
2、利用电光调制边带频率响应高,易通过压控振荡器控制的特点,实现电光调制边带频率与干涉仪自由光谱范围的锁定,实时测量干涉仪的位移;2. Utilizing the characteristics of high frequency response of electro-optical modulation sidebands and easy control by voltage-controlled oscillators, the locking of electro-optic modulation sideband frequencies and the free spectral range of the interferometer is realized, and the displacement of the interferometer is measured in real time;
3、克服了传统方法通过两束激光同时锁定干涉仪而复杂度高且测量精度低的问题。3. It overcomes the problem of high complexity and low measurement accuracy in the traditional method of simultaneously locking the interferometer with two laser beams.
附图说明Description of drawings
1、图1为本发明提供的一种基于电光调制边带的精密位移测量装置的结构示意图;1. Figure 1 is a schematic structural view of a precision displacement measuring device based on electro-optic modulation sidebands provided by the present invention;
附图标记:Reference signs:
单频窄线宽激光器-1、第一电光调制器-2、第二电光调制器-3、偏振分光棱镜-4、四分之一波片-5、耦合透镜-6、Fabry-Perot干涉仪的凹面反射镜-7、Fabry-Perot干涉仪的平面反射镜-8、压控振荡器-9、微波信号发生器-10、激光频率锁定器-11、频率分处理单元-12、电光边带锁定器-13、频率计数器-14和光电接收器-15。Single-frequency narrow-linewidth laser-1, first electro-optic modulator-2, second electro-optic modulator-3, polarization beamsplitter prism-4, quarter-wave plate-5, coupling lens-6, Fabry-Perot interferometer The concave mirror of the Fabry-Perot interferometer-7, the plane mirror of the Fabry-Perot interferometer-8, the voltage-controlled oscillator-9, the microwave signal generator-10, the laser frequency locker-11, the frequency division processing unit-12, the electro-optic sideband Locker-13, Frequency Counter-14 and Photoelectric Receiver-15.
具体实施方式Detailed ways
为了使本领域技术人员更清楚的理解本发明的核心思想,下面将结合附图对其进行详细的说明。In order to make those skilled in the art understand the core idea of the present invention more clearly, it will be described in detail below with reference to the accompanying drawings.
本发明实施例提供了一种基于电光调制边带的精密位移测量装置,如图1所示,具体包括顺序依次设置的单频窄线宽激光器1、第一电光调制器2、第二电光调制器3、偏振分光棱镜4、四分之一波片5、耦合透镜6、Fabry-Perot干涉仪的凹面反射镜7和Fabry-Perot干涉仪的平面反射镜8,平面反射镜8可左右移动。The embodiment of the present invention provides a precision displacement measurement device based on electro-optical modulation sidebands, as shown in Figure 1, which specifically includes a single-frequency narrow-linewidth laser 1, a first electro-
所述第一电光调制器2还连接有微波信号发生器10,所述微波信号发生器10与激光频率锁定器11连接,所述激光频率锁定器11分别与所述单频窄线宽激光器1和频率分处理单元12连接,所述频率分处理单元12分别与光电接收器15和电光边带锁定器13连接,电光边带锁定器13分别与频率计数器14和压控振荡器9连接,所述压控振荡器9与所述第二电光调制器3连接,所述光电接收器15与所述偏振分光棱镜4连接。The first electro-
下面结合附图1对本发明实施例的一种基于电光调制边带的精密位移测量方法进行说明,包括:A precise displacement measurement method based on electro-optical modulation sidebands according to an embodiment of the present invention will be described below in conjunction with accompanying drawing 1, including:
首先移动Fabry-Perot干涉仪的平面反射镜8于第一位置,此时Fabry-Perot干涉仪的腔长记为第一腔长L1,以及干涉仪第一腔长对应的第一自由光谱范围记为Δν1。First move the
单频窄线宽激光器1发射的激光光束依次通过第一电光调制器2和第二电光调制器3,分别产生频率为ω1的第一边带和频率为ω2的第二边带。The laser beam emitted by the single-frequency narrow-linewidth laser 1 passes through the first electro-
包含第一边带和第二边带的激光光束依次通过偏振分光棱镜4、四分之一波片5和耦合透镜6后入射进Fabry-Perot干涉仪中,设入射进Fabry-Perot干涉仪中的激光光束包括第一激光光束和第二激光光束两部分,Fabry-Perot干涉仪中的凹面反射镜7将其中一部分即第一激光光束反射至耦合透镜6,再依次通过四分之一波片5和偏振分光棱镜4后,入射至光电接收器15,另一部分即第二激光光束通过Fabry-Perot干涉仪的凹面反射镜7入射至Fabry-Perot干涉仪的平面反射镜8。The laser beam including the first sideband and the second sideband passes through the polarization splitter prism 4, the quarter-
光电接收器15根据接收的包含第一边带和第二边带的激光光束产生微波信号,所述微波信号包含频率为ω1的第一微波信号和频率为ω2的第二微波信号。The
频率分处理单元12将第一微波信号和第二微波信号进行分离,并将第一微波信号输入给激光频率锁定器11,以及将第二微波信号输入给电光边带锁定器13。The frequency
激光频率锁定器11将第三微波信号与第一微波信号进行相位差比较,产生用于锁定激光与Fabry-Perot干涉仪的误差信号,并将该误差信号反馈给单频窄线宽激光器1,所述第三微波信号为微波信号发生器10输入给第一电光调制器2的频率为ω1的微波信号,用于驱动第一电光调制器2产生频率为ω1的第一边带。The
电光边带锁定器13通过输出电压信号调节第四微波信号的频率ω2与Fabry-Perot干涉仪共振,将此时第四微波信号的频率ω2记为ω21,因此,Fabry-Perot干涉仪第一腔长L1对应的第一自由光谱范围Δν1为:Δν1=ω21,上述第四微波信号为压控振荡器9输入给第二电光调制器3的频率为ω2的微波信号,用于驱动第二电光调制器3产生频率为ω2的第二边带。The electro-
利用频率计数器记录与干涉仪共振时的第四微波信号的频率ω2,即ω21。Use a frequency counter to record the frequency ω 2 of the fourth microwave signal when it resonates with the interferometer, that is, ω 21 .
然后,再移动Fabry-Perot干涉仪的平面反射镜8于第二位置,此时Fabry-Perot干涉仪的腔长记为第二腔长L2,以及干涉仪第二腔长对应的第二自由光谱范围记为Δν2。Then, move the
同理,电光边带锁定器13通过输出电压信号调节第四微波信号的频率ω2与Fabry-Perot干涉仪共振,将此时第四微波信号的频率ω2记为ω22,因此,Fabry-Perot干涉仪第二腔长L2对应的第二自由光谱范围Δν2为:Δν2=ω22。In the same way, the electro-
利用频率计数器再次记录与干涉仪共振时的第四微波信号的频率ω2,即ω22。Use a frequency counter to record again the frequency ω 2 of the fourth microwave signal when resonating with the interferometer, ie ω 22 .
因此,由上可知,Fabry-Perot干涉仪的位移ΔL为:Therefore, it can be seen from the above that the displacement ΔL of the Fabry-Perot interferometer is:
ΔL=L2-L1 (1)ΔL=L 2 -L 1 (1)
而Fabry-Perot干涉仪的自由光谱范围Δν根据下式(2)计算:The free spectral range Δν of the Fabry-Perot interferometer is calculated according to the following formula (2):
其中,c为真空光速常数,n为折射率,L为Fabry-Perot干涉仪的腔长。Among them, c is the vacuum light velocity constant, n is the refractive index, and L is the cavity length of the Fabry-Perot interferometer.
因此,根据公式(1)和(2)可知,Fabry-Perot干涉仪的位移ΔL可表示为:Therefore, according to formulas (1) and (2), the displacement ΔL of the Fabry-Perot interferometer can be expressed as:
综上所述,由公式(3)可知,只需通过测量Fabry-Perot干涉仪第一腔长对应的第一自由光谱范围Δν1和Fabry-Perot干涉仪第二腔长对应的第二自由光谱范围Δν2,即可实现对Fabry-Perot干涉仪的位移测量。In summary, it can be known from formula (3) that only by measuring the first free spectrum range Δν 1 corresponding to the first cavity length of the Fabry-Perot interferometer and the second free spectrum corresponding to the second cavity length of the Fabry-Perot interferometer The range Δν 2 can realize the displacement measurement of the Fabry-Perot interferometer.
而上述有Δν1=ω21和Δν2=ω22,因此,本发明通过锁定电光调制器的边带频率与干涉仪的自由光谱范围共振,将干涉仪的位移测量转化为微波共振频率的测量,有利于提高位移测量的准确度,同时,利用电光调制边带频率响应高,易通过压控振荡器控制的特点,实现电光调制边带频率与干涉仪自由光谱范围的锁定,实时测量干涉仪的位移,解决了传统方法通过两束激光同时锁定干涉仪而复杂度高且测量精度低的问题。However, there are Δν 1 = ω 21 and Δν 2 = ω 22 above. Therefore, the present invention converts the displacement measurement of the interferometer into the measurement of the microwave resonance frequency by locking the sideband frequency of the electro-optic modulator to resonate with the free spectral range of the interferometer , which is conducive to improving the accuracy of displacement measurement. At the same time, using the characteristics of high frequency response of electro-optical modulation sidebands and easy control by voltage-controlled oscillators, the locking of electro-optic modulation sideband frequency and the free spectral range of the interferometer is realized, and the interferometer can be measured in real time. It solves the problem of high complexity and low measurement accuracy in the traditional method of simultaneously locking the interferometer with two laser beams.
以上对本发明实施例进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。The embodiments of the present invention have been described in detail above, and specific examples have been used in this paper to illustrate the principles and implementation methods of the present invention. The descriptions of the above embodiments are only used to help understand the core idea of the present invention; at the same time, for those in the art Ordinary technicians, according to the idea of the present invention, will have changes in the specific implementation and application range. In summary, the contents of this specification should not be construed as limiting the present invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110105425.9A CN112945108B (en) | 2021-01-26 | 2021-01-26 | A precision displacement measurement method and device based on electro-optical modulation sidebands |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110105425.9A CN112945108B (en) | 2021-01-26 | 2021-01-26 | A precision displacement measurement method and device based on electro-optical modulation sidebands |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112945108A CN112945108A (en) | 2021-06-11 |
CN112945108B true CN112945108B (en) | 2022-11-18 |
Family
ID=76237152
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110105425.9A Expired - Fee Related CN112945108B (en) | 2021-01-26 | 2021-01-26 | A precision displacement measurement method and device based on electro-optical modulation sidebands |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112945108B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115128800B (en) * | 2022-06-27 | 2024-02-02 | 西北工业大学 | Optical displacement sensitive unit based on F-P cavity and reverse design method |
CN115420367B (en) * | 2022-08-26 | 2025-06-13 | 中国航空工业集团公司北京长城计量测试技术研究所 | A concave reflection focusing laser vibrometer calibration device and method |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001003258A1 (en) * | 1999-06-30 | 2001-01-11 | The Australian National University | Interferometer control and laser frequency locking |
CN102252614A (en) * | 2010-05-17 | 2011-11-23 | 中国计量科学研究院 | Device for measuring characteristic length of acoustic resonance cavity |
CN102288103A (en) * | 2011-06-27 | 2011-12-21 | 清华大学 | Folding-fabry-perot-cavity-based absolute distance measurement method and device |
CN102508231A (en) * | 2011-10-28 | 2012-06-20 | 清华大学 | Fabry-Perot interference absolute distance measurement method based on femtosecond optical frequency comb and device thereof |
CN103047979A (en) * | 2011-10-13 | 2013-04-17 | 中国计量科学研究院 | Passive laser gyroscope |
CN211234726U (en) * | 2020-03-06 | 2020-08-11 | 江苏大学 | Optical ring-down device with adjustable cavity length |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2005225034B2 (en) * | 2005-10-18 | 2011-08-11 | The Australian National University | Interferometric sensor |
US7488930B2 (en) * | 2006-06-02 | 2009-02-10 | Medeikon Corporation | Multi-channel low coherence interferometer |
-
2021
- 2021-01-26 CN CN202110105425.9A patent/CN112945108B/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001003258A1 (en) * | 1999-06-30 | 2001-01-11 | The Australian National University | Interferometer control and laser frequency locking |
CN102252614A (en) * | 2010-05-17 | 2011-11-23 | 中国计量科学研究院 | Device for measuring characteristic length of acoustic resonance cavity |
CN102288103A (en) * | 2011-06-27 | 2011-12-21 | 清华大学 | Folding-fabry-perot-cavity-based absolute distance measurement method and device |
CN103047979A (en) * | 2011-10-13 | 2013-04-17 | 中国计量科学研究院 | Passive laser gyroscope |
CN102508231A (en) * | 2011-10-28 | 2012-06-20 | 清华大学 | Fabry-Perot interference absolute distance measurement method based on femtosecond optical frequency comb and device thereof |
CN211234726U (en) * | 2020-03-06 | 2020-08-11 | 江苏大学 | Optical ring-down device with adjustable cavity length |
Non-Patent Citations (1)
Title |
---|
窄线宽激光在光学谐振腔腔长精密测量中的应用;焦东东等;《光学学报》;20170131;第37卷(第1期);第011207-1到011207-8页 * |
Also Published As
Publication number | Publication date |
---|---|
CN112945108A (en) | 2021-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108181627B (en) | All-fiber bidirectional mode-locking femtosecond laser ranging device and method based on time domain scanning | |
CN102183234B (en) | Frequency scanning absolute distance measurement method and device based on femtosecond optical frequency comb | |
CN109270825B (en) | Dual-wavelength good-bad cavity active optical clock based on secondary cavity locking technology and implementation method thereof | |
CN109211414B (en) | Ultra-high precision optical frequency tester and its test method | |
CN106289049B (en) | Quantum interference measuring device and method based on Squeezed Vacuum injection | |
CN112083358B (en) | Laser frequency stabilization system for SERF ultrahigh sensitive magnetic field measuring device | |
CN112945108B (en) | A precision displacement measurement method and device based on electro-optical modulation sidebands | |
CN110867720B (en) | Miniaturized low-cost large-frequency tuning range frequency-stabilized laser system and method | |
CN105375250B (en) | A kind of atom-chamber coupling produces the method and device of high-order transverse mode | |
CN114899702A (en) | Laser device offset frequency stabilizing device and method based on optical fiber ring resonator | |
CN108534986B (en) | A multi-longitudinal mode laser resonator FSR measurement device and measurement method | |
CN101261322B (en) | Dual Frequency He-Ne Laser Optical Feedback Rangefinder | |
CN104950311A (en) | OEO (optoelectronic oscillator) based wide-range and high-precision absolute distance measurement system with self-calibration function | |
CN112117636A (en) | Double-feedback semiconductor laser frequency stabilization system based on optical frequency comb | |
TW201719109A (en) | Apparatus for measuring cavity length of optical resonant cavity | |
CN101694921A (en) | Semiconductor laser all-fiber frequency stabilizing system | |
CN109580032A (en) | The super steady optics cavity zero crossing temperature measuring device of one kind and measurement method | |
CN104409963A (en) | Narrow-linewidth and long-time-stable frequency dye laser and frequency stabilization method thereof | |
CN105067565B (en) | A kind of laser cavity-type BPM gaseous spectrum measuring system based on femtosecond optical frequency comb | |
CN110911963A (en) | A Highly Stable Polarization Spectral Frequency Stabilizer | |
CN106199623B (en) | A kind of femtosecond laser intermode beat frequency method range-measurement system | |
Yoshino et al. | Fiber-coupling-operated orthogonal-linear-polarization Nd: YAG microchip laser: photothermal beat-frequency stabilization and interferometric displacement measurement application | |
RU2805291C1 (en) | Device for measuring the parameters of a fiber-optic resonator using a tunable source of optical radiation and compensation for the nonlinearity of frequency tuning | |
CN108469335B (en) | Method for measuring frequency doubling efficiency of frequency doubling cavity | |
JPH09101109A (en) | Laser interferometer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20221118 |