[go: up one dir, main page]

CN112941398B - 一种石墨增强自润滑铜合金及其制备方法 - Google Patents

一种石墨增强自润滑铜合金及其制备方法 Download PDF

Info

Publication number
CN112941398B
CN112941398B CN202110117945.1A CN202110117945A CN112941398B CN 112941398 B CN112941398 B CN 112941398B CN 202110117945 A CN202110117945 A CN 202110117945A CN 112941398 B CN112941398 B CN 112941398B
Authority
CN
China
Prior art keywords
powder
copper alloy
graphite
copper
lubricating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110117945.1A
Other languages
English (en)
Other versions
CN112941398A (zh
Inventor
夏木建
李年莲
林岳宾
刘爱辉
王华玲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huaiyin Institute of Technology
Original Assignee
Huaiyin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huaiyin Institute of Technology filed Critical Huaiyin Institute of Technology
Priority to CN202110117945.1A priority Critical patent/CN112941398B/zh
Publication of CN112941398A publication Critical patent/CN112941398A/zh
Application granted granted Critical
Publication of CN112941398B publication Critical patent/CN112941398B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/058Mixtures of metal powder with non-metallic powder by reaction sintering (i.e. gasless reaction starting from a mixture of solid metal compounds)
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

本发明公开了一种石墨增强自润滑铜合金及其制备方法,该石墨增强自润滑铜合金包括铜合金基体,铜合金基体上分布有Ni2B、Cr3C2以及石墨,Ni2B、Cr3C2以及石墨总量与铜合金基体质量比为5%~25%,该石墨增强自润滑铜合金的制备方法包括以下步骤:(1)活化铜粉;(2)镀镍铜粉;(3)将镀镍铜粉、B4C粉与Cr粉采用球磨工艺进行球磨,获得混合均匀的铜合金复合材料粉末;(4)利用高能激光束在铜合金复合材料粉末表面进行分区扫描加工,得到石墨增强铜合金。该石墨增强铜合金内具有耐磨功能的Ni2B、Cr3C2化合物增强相以及具有自润滑功能的石墨,在提高铜合金的耐磨性的同时有效降低了摩擦系数,制备时激光束的利用率高,成形质量好。

Description

一种石墨增强自润滑铜合金及其制备方法
技术领域
本发明涉及一种铜合金及其制备方法,更具体地,涉及一种石墨增强自润滑铜合金及其制备方法。
背景技术
纯铜呈玫瑰红色,但暴露在空气中极易发生氧化,氧化后呈紫色,因而纯铜又被称为紫铜。纯铜塑性好、延展性高、具有较好的耐腐蚀性以及良好的导电性和导热性。铜能与锌、锡、铅、铁等多种金属形成合金,具有更好的强度与硬度,其所兼具有的优良的力学和电学性能使它被广泛应用在各种场合,例如电子、电力、机械、航空航天以及交通等重要行业。然而,尽管铜及铜合金拥有诸多优良性能,但其本身硬度较低、耐磨性差,难以满足现代工业的需求,故开发综合性能优异的铜合金及其复合材料方能降低摩擦系数、提高铜合金的耐磨性和服役寿命。合金化能够提高铜基铜合金强度,即,就是加入合金元素来增强基体金属材料。合金化强化方法的本质就是利用原子溶入晶格后从而引起晶格发生畸变产生了应力来达到提升材料的强度及耐磨性。但该方法易使铜合金在高温下易发生强化失效,由于铜合金的承载质点较少,耐磨性不好,长时间的磨损易导致材料的损坏,利用较高的硬度和弹性模量的SiC、TiC、TiB2等陶瓷颗粒增强铜基复合材料能够通过陶瓷增强颗粒阻碍位错,位错运动时会绕过较硬的陶瓷颗粒,留下位错环后继续运动,有效的阻碍位错运动,也可增殖位错,以提高金属基体的强度及耐磨性。但原位陶瓷颗粒增强铜合金中形成的陶瓷颗粒,例如基于铝热反应的Al2O3/Cu复合材料体系中的Al2O3陶瓷,属于摩擦组元,一定程度上能降低铜合金的磨损率,但并不能降低摩擦系数,限制了铜合金的广泛应用。
发明内容
发明目的:本发明的目的是提供一种耐磨性好、摩擦系数低、磨损率低、具有自润滑性能的石墨增强自润滑铜合金,本发明的另一目的是提供该铜合金的制备方法。
技术方案:本发明所述的石墨增强自润滑铜合金,包括铜合金基体,铜合金基体上分布有Ni2B、Cr3C2以及石墨,Ni2B、Cr3C2以及石墨总量与铜合金基体质量比为5%~25%。
其中,Ni2B、Cr3C2以及石墨的摩尔比为11.4:1:1.25~57:12:1。
本发明所述的石墨增强自润滑铜合金的制备方法包括以下步骤:
(1)将铜粉置于盐酸水溶液中进行清洗活化,再利用去离子水清洗至中性,过滤后进行干燥;
(2)将硫酸镍、次磷酸二氢钠、硼酸钠混合均匀配置成镀液,将铜粉加入镀液中施镀,过滤镀镍铜粉后进行干燥;
(3)将镀镍铜粉、B4C粉与Cr粉采用球磨工艺进行球磨,获得混合均匀的铜合金复合材料粉末;
(4)利用高能激光束在铜合金复合材料粉末表面进行分区扫描加工,得到石墨增强铜合金。
其中,铜粉为球形铜粉;步骤1中盐酸水溶液体积分数为40%~50%,铜粉置于盐酸水溶液后利用磁力搅拌20~60min;步骤2中镀液中硫酸镍浓度为30~50g/L,次磷酸二氢钠浓度为40~55g/L,硼酸钠浓度为50~65g/L,镀液中加入铜粉前,利用氨水将镀液的pH调至11~13,镀液中加入铜粉后,将镀液温度控制在80~100℃,施镀1.5~3h;步骤3中镀镍铜粉、B4C粉与Cr粉的质量比为10~50:1~5:1,在氩气体保护下进行球磨;步骤4中高能激光束扫描分区边长大小为1~5mm,光斑直径为25~100μm,功率为250~400W,扫描加工时在高纯氩气保护气氛中。
制备原理:本发明依据铜合金在服役过程中摩擦学性能需求,基于材料冶金学原理,采用碱性化学镀镍法在球形Cu粉表面镀镍层,将镀镍球形铜粉、B4C粉与Cr粉经惰性气体保护的球磨混合后获得镀镍球形铜合金复合材料粉末;其次,基于高能激光束约束下Ni-B-C-Cr间发生的8Ni+B4C→4Ni2B+C、2C+3Cr→Cr3C2的原位冶金特征,在氩气保护下,借助高能激光束在上述球磨获得的铜合金混合粉末表面扫描熔化/凝固成形具有Ni2B及自润滑功能的石墨,所生成的Ni2B化合物能提高合金的耐磨性能,且石墨能有效降低合金的摩擦系数;同时少量的Cr元素与原位生成的石墨在高温下反应形成Cr3C2化合物陶瓷进一步增强铜合金的磨损性能。
有益效果:本发明与现有技术相比,其显著优点是:1、依据氩气保护下高能激光束约束下Ni-B-C-Cr间原位反应热力学特征及反应机理,高能激光束在经球磨混合的镀镍球形铜粉、B4C粉与Cr粉而成的铜合金复合材料粉末表面扫描成形具有耐磨功能的Ni2B、Cr3C2化合物增强相以及具有自润滑功能的石墨,既能提高铜合金的耐磨性,同时也能有效降低其摩擦系数;2、本发明基于高能激光束诱导成形的原位Ni2B、Cr3C2化合物增强相较高的冶金结合界面强度,进一步促进铜合金耐磨性及润滑功能的提高;3、高能激光束具有高柔性成形的优点,但铜合金对其反射率较高,导致成形效率低及成形质量下降,本发明基于高能激光束与铜合金粉末间的热物理作用,采用工艺简单的碱性化学镀镍法在球形铜粉末表面镀镍,显著提高铜合金对激光束的吸收能力,提高了成形质量;同时镀镍层在高能激光束高温诱导下与B4C粉末间发生原位反应,形成功能相,也促进了铜合金摩擦学性能的提升。
附图说明
图1是实施例1制得的石墨增强自润滑铜合金的显微组织图;
图2是实施例2制得的石墨增强自润滑铜合金的摩擦系数曲线。
具体实施方式
实施例1
(1)将球形铜粉放置于体积分数为40%的盐酸水溶液中进行磁力搅拌20min清洗活化,再采用去离子水对铜粉进行清洗至中性,过滤球形铜粉后进行干燥;
(2)采用碱性化学镀镍法,以浓度为30g/L的硫酸镍、浓度为40g/L的次磷酸二氢钠、浓度为50g/L硼酸钠配置成镀液,采用氨水将镀液的pH调至11,将镀液温度控制在80℃,将活化后的铜粉加入镀液中施镀1.5h,过滤镀镍球形铜粉后进行干燥;
(3)将500g镀镍球形铜粉、B4C粉10g与Cr粉10g置于球磨机中,在氩气体保护下,采用球磨工艺进行球磨,获得混合均匀的铜合金复合材料粉末;
(4)在高纯氩气保护气氛中,利用光斑直径为25μm、功率为250W的高能激光束在铜合金复合材料粉末表面进行尺寸为1mm的分区扫描加工,成形原位诱导Ni2B、Cr3C2、石墨增强自润滑铜合金。
从图1可发现原位Ni2B、Cr3C2化合物增强相及石墨与铜合金基体界面结合较好,无明显冶金缺陷。根据X射线图谱中衍射峰面积,计算Ni2B、Cr3C2及石墨与铜合金基体质量比为20.15%,根据公式计算出Ni2B、Cr3C2及石墨的摩尔比为11.25:1.3:1。
实施例2
本实施例与实施例1的区别是:步骤2中硫酸镍浓度为50g/L、次磷酸二氢钠浓度为55g/L、硼酸钠浓度为65g/L,将pH调至13;步骤4中高能激光束光斑直径为40μm、功率为350W。所得石墨增强自润滑铜合金摩擦系数曲线如图2所示,其平均摩擦系数约为0.13。
实施例3
本实施例与实施例2的区别是:步骤2中镀液温度为100℃,施镀时间为3h;步骤3中镀镍球形铜粉500g、B4C粉30g、Cr粉10g;步骤4中激光束功率为400W。
实施例4
本实施例与实施例3的区别是:步骤3中镀镍球形铜粉100g、B4C粉10g、Cr粉10g;步骤4中扫描分区边长大小为5mm、高能激光束光斑直径为100μm。
对比例
(1)将球形铜粉放置于体积分数为40%的盐酸水溶液中进行磁力搅拌20min清洗活化,再采用去离子水对铜粉进行清洗至中性,过滤球形铜粉后进行干燥;
(3)将500g球形铜粉、B4C粉10g与Cr粉10g置于球磨机中,在氩气体保护下,采用球磨工艺进行球磨,获得混合均匀的铜合金复合材料粉末;
(4)在高纯氩气保护气氛中,利用光斑直径为25μm、功率为250W的高能激光束在铜合金复合材料粉末表面进行尺寸为1mm的分区扫描加工,成形原位诱导石墨增强自润滑铜合金。
实施例2、3和4中制造的激光诱导原位自润滑铜合金的磨损率在6.84~7.21×10- 8mm3·N-1·m-1范围内,摩擦系数稳定在0.11~0.15。低于现有热压烧结的自润滑铜合金的最优磨损率约8×10-8mm3·N-1·m-1、最优摩擦系数约为0.5。对比例中制备的石墨增强自润滑铜合金磨损率1.02×10-5mm3·N-1·m-1,平均摩擦系数0.32,这是因为所形成的铜合金中无自润滑特性的碳形成,且无新的耐磨的新相形成,导致其磨损率和摩擦系数均较高,进一步说明本发明提供的激光诱导原位自润滑铜合金的成形方法能实现有效提升铜合金的耐磨性能,且能降低摩擦系数。

Claims (8)

1.一种石墨增强自润滑铜合金,其特征在于,包括铜合金基体,所述铜合金基体上分布有Ni2B、Cr3C2以及石墨,所述Ni2B、Cr3C2以及石墨总量与铜合金基体质量比为5%~25%,所述合金的制备原料为镀镍球形铜粉、B4C粉与Cr粉;所述Ni2B、Cr3C2以及石墨的摩尔比为11.4:1:1.25~57:12:1;其制备方法包括以下步骤:
(1)将铜粉置于盐酸水溶液中进行清洗活化,再利用去离子水清洗至中性,过滤后进行干燥;
(2)采用碱性镀镍法,将硫酸镍、次磷酸二氢钠、硼酸钠混合均匀配置成镀液,将铜粉加入镀液中施镀,过滤镀镍铜粉后进行干燥;
(3)将镀镍铜粉、B4C粉与Cr粉采用球磨工艺进行球磨,获得混合均匀的铜合金复合材料粉末;
(4)利用高能激光束在铜合金复合材料粉末表面进行分区扫描加工,得到石墨增强铜合金。
2.根据权利要求1所述的石墨增强自润滑铜合金,其特征在于,所述铜粉为球形铜粉。
3.根据权利要求1所述的石墨增强自润滑铜合金,其特征在于,所述步骤(1)中盐酸水溶液体积分数为40%~50%,铜粉置于盐酸水溶液后利用磁力搅拌20~60min。
4.根据权利要求1所述的石墨增强自润滑铜合金,其特征在于,所述步骤(2)中镀液中硫酸镍浓度为30~50g/L,次磷酸二氢钠浓度为40~55g/L,硼酸钠浓度为50~65g/L。
5.根据权利要求1所述的石墨增强自润滑铜合金,其特征在于,所述步骤(2)中镀液中加入铜粉前,利用氨水将镀液的pH调至11~13。
6.根据权利要求1所述的石墨增强自润滑铜合金,其特征在于,所述步骤(2)中镀液中加入铜粉后,将镀液温度控制在80~100℃,施镀1.5~3h。
7.根据权利要求1所述的石墨增强自润滑铜合金,其特征在于,所述步骤(3)中镀镍铜粉、B4C粉与Cr粉的质量比为10~50:1~5:1,在氩气体保护下进行球磨。
8.根据权利要求1所述的石墨增强自润滑铜合金,其特征在于,所述步骤(4)中高能激光束扫描分区边长大小为1~5mm,光斑直径为25~100μm,功率为250~400W,扫描加工时在高纯氩气保护气氛中。
CN202110117945.1A 2021-01-28 2021-01-28 一种石墨增强自润滑铜合金及其制备方法 Active CN112941398B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110117945.1A CN112941398B (zh) 2021-01-28 2021-01-28 一种石墨增强自润滑铜合金及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110117945.1A CN112941398B (zh) 2021-01-28 2021-01-28 一种石墨增强自润滑铜合金及其制备方法

Publications (2)

Publication Number Publication Date
CN112941398A CN112941398A (zh) 2021-06-11
CN112941398B true CN112941398B (zh) 2022-06-03

Family

ID=76238638

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110117945.1A Active CN112941398B (zh) 2021-01-28 2021-01-28 一种石墨增强自润滑铜合金及其制备方法

Country Status (1)

Country Link
CN (1) CN112941398B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114833339B (zh) * 2022-05-06 2023-06-16 中国铁道科学研究院集团有限公司 耐高温粉末冶金摩擦材料与耐温闸片及其制备方法与应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0647187B2 (ja) * 1989-07-31 1994-06-22 トヨタ自動車株式会社 肉盛用分散強化銅基合金
JPH0762191B2 (ja) * 1990-11-29 1995-07-05 大同メタル工業株式会社 焼結銅合金層を有する摺動部材
CN101255510B (zh) * 2008-03-26 2013-01-23 晶能光电(江西)有限公司 高强高导含铬铜合金及其制备方法
US8782461B2 (en) * 2010-09-24 2014-07-15 Intel Corporation Method and system of live error recovery
CN110144481A (zh) * 2019-06-03 2019-08-20 河南科技大学 一种高温高强高导高耐磨铜基复合材料及其制备方法
CN111014660B (zh) * 2020-01-14 2022-03-25 中国科学院兰州化学物理研究所 一种具有优异力学性能的铜基石墨复合润滑密封材料及其制备方法

Also Published As

Publication number Publication date
CN112941398A (zh) 2021-06-11

Similar Documents

Publication Publication Date Title
CN109023013B (zh) 一种耐腐蚀高强度AlCoCrFeNi-Cu高熵合金的制备方法
CN102794578B (zh) 一种用于钎焊钛合金与钢或钛铝合金与钢的钎料
Lee et al. Development of nanocomposite lead-free electronic solders
JP2009057630A (ja) Snメッキ導電材料及びその製造方法並びに通電部品
Gao et al. Study on metallurgically prepared copper-coated carbon fibers reinforced aluminum matrix composites
CN112941398B (zh) 一种石墨增强自润滑铜合金及其制备方法
Shen et al. Interfacial characteristics of titanium coated micro-powder diamond abrasive tools fabricated by electroforming-brazing composite process
CN110699676A (zh) 一种高强度高电导率的金属玻璃复合材料及其制备方法
CN107586989B (zh) 一种铜基高温自润滑复合材料
CN101168846A (zh) 一种铝电解用陶瓷基惰性阳极与金属导电杆的连接方法
CN112941362B (zh) 一种原位双相氧化物陶瓷减磨铜合金及其制备方法
CN104164591A (zh) 耐腐蚀性铝合金接合线
CN1167823C (zh) 高温耐磨耐腐蚀Cr-Ni-Si金属硅化物合金材料
CN100385028C (zh) 高温耐磨耐蚀Co-Ti-Si金属间化合物合金材料
CN110295298B (zh) 一种石墨烯铝复合材料的制备方法
CHEN et al. Electrochemical corrosion behaviour of Zn-Sn-Cu-xNi lead-free solder alloys
Sharma et al. Co-electrodeposition of nanocomposites
JP7340875B2 (ja) 共晶組織を含有する銅チタン合金及びその調製方法
Espiritu et al. Fabrication and characterization of Cu–Zn–Sn shape memory alloys via an electrodeposition–annealing route
CN112222552B (zh) 一种伽马电极丝及其制备方法
Zhai et al. Mechanical, photoelectric and thermal reliability of SAC307 solder joints with Ni-decorated MWCNTs for flip-chip LED package component during aging
CN113199024B (zh) 三元层状化合物、金属基复合材料及其制作方法和原料
JPWO2009099239A1 (ja) 放電被覆方法およびそれに用いる圧粉体電極
CN112458333B (zh) 一种双相陶瓷减磨铜合金及其制备方法
CN108161270A (zh) 一种用于低温封装铝合金与LED芯片的颗粒增强Sn-Zn纳米焊料及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20210611

Assignee: Kunshan lifeimin Precision Machinery Co.,Ltd.

Assignor: HUAIYIN INSTITUTE OF TECHNOLOGY

Contract record no.: X2023980048439

Denomination of invention: A graphite reinforced self-lubricating copper alloy and its preparation method

Granted publication date: 20220603

License type: Common License

Record date: 20231129