[go: up one dir, main page]

CN112919928A - 一种吸声黑体泡沫材料及其制备方法 - Google Patents

一种吸声黑体泡沫材料及其制备方法 Download PDF

Info

Publication number
CN112919928A
CN112919928A CN202110398409.3A CN202110398409A CN112919928A CN 112919928 A CN112919928 A CN 112919928A CN 202110398409 A CN202110398409 A CN 202110398409A CN 112919928 A CN112919928 A CN 112919928A
Authority
CN
China
Prior art keywords
foam
sound
graphene
preparation
black body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110398409.3A
Other languages
English (en)
Other versions
CN112919928B (zh
Inventor
许震
刘晓婷
高超
庞凯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN202110398409.3A priority Critical patent/CN112919928B/zh
Publication of CN112919928A publication Critical patent/CN112919928A/zh
Priority to EP22787576.2A priority patent/EP4177300A4/en
Priority to PCT/CN2022/086668 priority patent/WO2022218354A1/zh
Application granted granted Critical
Publication of CN112919928B publication Critical patent/CN112919928B/zh
Priority to US18/115,753 priority patent/US12215211B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B30/00Compositions for artificial stone, not containing binders
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/40Impregnation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/35Composite foams, i.e. continuous macromolecular foams containing discontinuous cellular particles or fragments
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/40Porous or lightweight materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/52Sound-insulating materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/038Use of an inorganic compound to impregnate, bind or coat a foam, e.g. waterglass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/044Micropores, i.e. average diameter being between 0,1 micrometer and 0,1 millimeter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2361/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • C08J2361/20Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C08J2361/26Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds
    • C08J2361/28Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds with melamine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/02Polyamines

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Structural Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

本发明首次提出一种多级泡沫吸声黑体材料,通过在商业化的聚合物泡沫骨架内部利用溶剂塑化发泡的技术引入石墨烯气凝胶,从而将超薄的石墨烯鼓嵌入到了泡沫骨架中,当声波进入到此泡沫黑体中,大量的石墨烯鼓自身产生剧烈共振效应,从而快速实现声波的衰减,结合聚合物泡沫自身多孔结构对于声波的摩擦损耗,在宽频范围内均具有优异的吸声性能。此方案基于商用泡沫材料,方法简单,成本较低,具有广泛工业化应用的潜力。

Description

一种吸声黑体泡沫材料及其制备方法
技术领域
本发明属于功能材料技术领域,具体涉及一种吸声黑体泡沫材料及其制备方法。
背景技术
吸声材料具有广泛的应用,从人身防护、电器保护到建筑设计等各个领域均发挥着不可或缺的作用。目前,世界上大约有1/5的人正遭受着听力受损的危害,且这一数量正在不断的快速增长。因此,探索高性能的声学吸收材料显得尤为重要。作为传统的吸声材料,聚合物泡沫由于其高度多孔的结构已广泛的应用于各个领域中,其吸声性能的基本原理主要依靠声波在多孔空穴内部进行摩擦产生损耗。目前,已有许多的研究对聚合物泡沫的孔径与孔结构进行不断的优化调控其吸声性能,但是此类传统材料已难以满足日益增长的声学需求。通过在聚合物泡沫中添加功能性纳米材料,如石墨烯、碳纳米管、纳米纤维等,也有利于增强其吸声性能。但是,纳米填料的加入所引出的吸声性能增加仍是增加声波与骨架的接触面积,从而进一步增加声波的摩擦损耗,其本质上在吸声领域并未有基础的突破。
石墨烯是2004年英国曼彻斯特大学康斯坦丁·诺沃肖洛夫和安德烈·海姆发现,其是石墨的单原子层结构,由sp2杂化的碳原子构成正六边形网络、蜂窝状二维结构,展示出了许多迷人的特性。在纳米机械振动领域,由于石墨烯具有低的平面内刚性及单原子层厚度,其所制备的石墨烯鼓期间更容易产生较大的平面外变形,且其从低频到超高频区域均存在明显的谐振效应。因此,利用石墨烯鼓的振动效应去进行声波的衰减是比较理想的方案。但是,石墨烯鼓作为声学吸收材料仍存在两大难题。首先,超薄的石墨烯鼓很难组装成日常需求的宏观材料进行使用;虽然气凝胶可以将纳米厚度的石墨烯集合在三维多孔材料中,但是由于片层与片层之间结合较弱,未固定形成纳米石墨烯鼓结构,因此在振动时容易产生片层滑移,影响其吸声能力;且由于石墨烯的成本较高,利用单独的石墨烯进行大规模应用,目前仍显得较为不足。其次,直接将石墨烯片层固定的聚合物泡沫内部,石墨烯会倾向于层层堆积,从而严重损失了石墨烯超薄的振动特性。因此,如何制备新型的高性能吸声材料仍存在巨大的挑战。
本方案提供了一种采用聚合物泡沫-石墨烯鼓的复合材料实现了吸声性能的大幅度提升,可作为声学黑体使用。通过将氧化石墨烯嵌入到聚合物泡沫内部,然后采用溶剂塑化发泡的手段将氧化石墨烯在泡沫壁上进行发泡,从而形成超薄的石墨烯鼓结构,充分将石墨烯鼓的振动特性在商业化泡沫上进行应用,不仅得到了目前吸声效果最好、吸声频率最宽的黑体材料,且此方法简单,成本较低,有利于此吸声黑体在日常生活中的大规模应用。
发明内容
本发明提供了一种多级泡沫吸声黑体材料,包括聚合物泡沫骨架和附着在所述骨架上的连续的石墨烯共振腔,所述聚合物泡沫骨架的孔径在10um以上;所述石墨烯共振腔的腔壁为厚度在100nm以下的石墨烯。其中,聚合物泡沫骨架形成一级泡沫结构,石墨烯共振腔形成二级泡沫结构。二级泡沫结构可作为有效的吸声单元,与一级泡沫结构形成类亥姆霍兹共振腔;当声音进入一级泡沫结构后,声波与一级泡沫结构的骨架发生摩擦损耗,传递到二级泡沫结构,石墨烯产生共振,进一步实现声波能量损耗,在传感、电磁屏蔽及声学管理领域的具有广泛应用。
所述的商业化的聚合物泡沫为常用的吸声泡沫材料,如聚氨酯泡沫,三聚氰胺泡沫。
本发明所述的吸声黑体泡沫材料通过如下方法制备得到:将聚合物泡沫浸渍于氧化石墨烯的分散液中,氧化石墨烯填充到泡沫的内部(或可通过真空灌注的方式加速石墨烯填充),干燥后将所得泡沫放置于发泡剂溶液中进行发泡,发泡后干燥便得到了多级泡沫吸声黑体材料。
进一步地,所述的氧化石墨烯可采用Hummers方法、改进的Hummers方法及电化学方法等进行制备。
进一步地,所述的氧化石墨烯的分散液的浓度为0.1-50mg/g,其中氧化石墨烯的浓度越高,则最后所得到的得到二级泡沫结构含量越高。
进一步地,所述的发泡剂溶液为水合肼溶液、硼氢化钠溶液、碳酸氢钠溶液及碳酸钠溶液中的一种。
进一步地,发泡后还进行化学还原或热还原。所述化学还原的还原剂为氢碘酸、水合肼、维生素C、乙二胺等常用还原剂中的一种,其中优选的为氢碘酸/乙醇还原体系。
本发明的有益效果在于:
(1)将石墨烯鼓纳米结构嵌入到聚合物泡沫中,可实现吸声性能200-1000%的提高。在100-10000Hz的平均吸声系数可以达到0.8以上,其中,在200-6000Hz的平均吸声系数可达到0.9。
(2)由于聚合物泡沫的技术工艺成熟,成本较低,因此利于实现此吸声黑体的大规模使用。
(3)所采用的溶剂塑化发泡工艺较为简单,无须特殊的干燥工艺,因此更加利于工业化进程。
(4)所制备的吸声黑体具有优异的机械性能,可耐受不同形变,因此可适用各类应用场所中。
附图说明
图1为实施例1所制备得到的吸声泡沫黑体材料实物图。
图2为实施例1所制备的吸声泡沫黑体的在200-6000Hz的吸声曲线。
图3为实施例1所制备的吸声泡沫黑体的扫描示意图。
图4为对比例1所制备的泡沫的吸声曲线。
图5为对比例2所制备的泡沫的吸声曲线.
图6为应用例1所搭建的装置示意图。
图7为应用例1中吸声泡沫黑体在200-6000Hz频率声音的声音损耗。
具体实施方式
下面结合实施例对本发明进一步描述。但本发明的保护范围不仅限于此。
实施例1
将20mm厚度的三聚氰胺泡沫(孔径50-200um)置于10mg/ml的水相氧化石墨烯(采购于杭州高烯科技公司,平均尺寸20um)浸渍2h,随后将干燥后的泡沫至于30%的水合肼发泡2h,自然干燥后,便得到了高性能的多级泡沫吸声黑体材料,如图3所示,其中二级泡沫结构中石墨烯的壁厚为20nm,在100-10000Hz的平均吸声系数为0.78,在200-6000Hz的平均吸声系数为0.86。
实施例2
同实施例1,其中三聚氰胺泡沫的孔径为50-200um,厚度为30mm,所得到高性能的多级泡沫吸声黑体材料,其中二级泡沫结构中石墨烯的壁厚为20nm,在100-10000Hz的平均吸声系数为0.8,在200-6000Hz的平均吸声系数为0.89。
实施例3
同实施例2,其中将三聚氰胺泡沫替换为孔径为10-100um的聚氨酯泡沫,所得到高性能的多级泡沫吸声黑体材料,其中二级泡沫结构中石墨烯的壁厚为15nm,在100-10000Hz的平均吸声系数为0.75,在200-6000Hz的平均吸声系数为0.83。
实施例4
同实施例1中,其中将氧化石墨烯的浓度替换为5mg/ml, 所得到高性能的多级泡沫吸声黑体材料,其中二级泡沫结构中石墨烯的壁厚为12nm,在100-10000Hz的平均吸声系数为0.65,在200-6000Hz的平均吸声系数为0.71。
实施例5
同实施例1中,其中将水合肼替换为1%质量分数的硼氢化钠溶液, 所得到高性能的多级泡沫吸声黑体材料,其中二级泡沫结构中石墨烯的壁厚为50nm,在100-10000Hz的平均吸声系数为0.77,在200-6000Hz的平均吸声系数为0.87。
对比例1
同实施例1中,其中将浸渍完氧化石墨烯的泡沫直接进行化学还原,所得到的样品在100-10000Hz的平均吸声系数为0.25,在200-6000Hz的平均吸声系数为0.3。
对比例2
同实施例1中,其中不对三聚氰胺泡沫做任何处理,样品在100-10000Hz的平均吸声系数为0.17,在200-6000Hz的平均吸声系数为0.21。
应用例1
如图6所示,将发声器放置于实施例1所制备的吸声泡沫黑体盒子中,其中发声器由信号发声器驱动,然后利用声学探针进行检测声波的信号,经过放大电路,可实时的显示于示波器上;并对不添加吸声合体盒子的声波信号进行了测试,作为对比,结果如图7所示,表明由实施例1所制备的吸声黑体泡沫对于200-6000Hz声音的衰减率更高。

Claims (8)

1.一种多级泡沫吸声黑体材料,其特征在于,包括聚合物泡沫骨架和附着在所述骨架上的连续的石墨烯共振腔,所述聚合物泡沫骨架的孔径在10um以上;所述石墨烯共振腔的腔壁为厚度在100nm以下的石墨烯。
2.根据权利要求1所述的制备方法,其特征在于:所述的商业化的聚合物泡沫为常用的吸声泡沫材料,如聚氨酯泡沫,三聚氰胺泡沫。
3.如权利要求1所述的吸声黑体泡沫材料的制备方法,包括以下步骤:将聚合物泡沫浸渍于氧化石墨烯的分散液中,氧化石墨烯填充到泡沫的内部,干燥后将所得泡沫放置于发泡剂溶液中进行发泡,发泡后干燥便得到了吸声黑体泡沫材料。
4.根据权利要求1所述的制备方法,其特征在于:所述的氧化石墨烯可采用Hummers方法、改进的Hummers方法及电化学方法等进行制备得到。
5.根据权利要求1所述的制备方法,其特征在于:所述的氧化石墨烯的分散液的浓度为0.1-50mg/g。
6.根据权利要求1所述的制备方法,其特征在于:所述的发泡剂溶液为水合肼溶液、硼氢化钠溶液、碳酸氢钠溶液及碳酸钠溶液中的一种。
7.根据权利要求1所述的制备方法,其特征在于:发泡后还进行还原。
8.根据权利要求1所述的制备方法,其特征在于:吸声黑体泡沫材料在100-10000Hz的平均吸声系数可以达到0.8以上。
CN202110398409.3A 2021-04-14 2021-04-14 一种多级泡沫吸声黑体材料 Active CN112919928B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202110398409.3A CN112919928B (zh) 2021-04-14 2021-04-14 一种多级泡沫吸声黑体材料
EP22787576.2A EP4177300A4 (en) 2021-04-14 2022-04-13 MULTI-STAGE FOAM SOUND-ABSORBING BLACK BODY MATERIAL, AND PREPARATION METHOD THEREFOR
PCT/CN2022/086668 WO2022218354A1 (zh) 2021-04-14 2022-04-13 一种多级泡沫吸声黑体材料及其制备方法
US18/115,753 US12215211B2 (en) 2021-04-14 2023-02-28 Multi-stage foam sound-absorbing black body material and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110398409.3A CN112919928B (zh) 2021-04-14 2021-04-14 一种多级泡沫吸声黑体材料

Publications (2)

Publication Number Publication Date
CN112919928A true CN112919928A (zh) 2021-06-08
CN112919928B CN112919928B (zh) 2022-06-24

Family

ID=76174358

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110398409.3A Active CN112919928B (zh) 2021-04-14 2021-04-14 一种多级泡沫吸声黑体材料

Country Status (4)

Country Link
US (1) US12215211B2 (zh)
EP (1) EP4177300A4 (zh)
CN (1) CN112919928B (zh)
WO (1) WO2022218354A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022218354A1 (zh) * 2021-04-14 2022-10-20 浙江大学 一种多级泡沫吸声黑体材料及其制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104097357A (zh) * 2013-04-07 2014-10-15 宁波汇洲新材料科技发展有限公司 一种多孔吸声材料及其加工方法
CN104627995A (zh) * 2015-02-09 2015-05-20 哈尔滨工程大学 泡状石墨烯材料及其制备方法
CN106243379A (zh) * 2016-07-23 2016-12-21 天津大学 一种基于氧化石墨烯和聚合物的电磁屏蔽泡沫复合材料及制备方法
CN108250728A (zh) * 2018-03-09 2018-07-06 四川大学 一种聚合物/石墨烯气凝胶复合泡沫材料及其制备方法
WO2018157208A1 (en) * 2017-03-01 2018-09-07 The University Of Adelaide Acoustic graphene-containing compositions/materials and methods of formation
CN108615519A (zh) * 2018-04-27 2018-10-02 中国航发北京航空材料研究院 一种石墨烯多孔隔声降噪材料
CN109081633A (zh) * 2018-08-13 2018-12-25 苏州华龙化工有限公司 一种玻璃棉基高强度防水吸声材料及其制备方法
CN110002434A (zh) * 2019-03-26 2019-07-12 北京理工大学 一种吸声降噪超轻石墨烯泡沫材料及其制备方法
WO2019210051A1 (en) * 2018-04-25 2019-10-31 Massachusetts Institute Of Technology Energy efficient soundproofing window retrofits
CN210288758U (zh) * 2019-05-12 2020-04-10 山西建投晋东南建筑产业有限公司 一种节能环保隔声轻质墙体
CN112399289A (zh) * 2020-12-02 2021-02-23 镇江贝斯特新材料有限公司 具有高散热效率的微型扬声器模组及包含其的智能手机

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9738527B2 (en) * 2012-08-23 2017-08-22 Monash University Graphene-based materials
CN105733244A (zh) * 2016-02-29 2016-07-06 歌尔声学股份有限公司 吸音件的制备方法和吸音件
CN107652624B (zh) * 2017-10-17 2020-05-12 中南大学 一种三维多孔石墨烯/蜜胺泡沫复合电磁屏蔽材料及其制备方法
WO2021067538A1 (en) * 2019-10-01 2021-04-08 Xg Sciences, Inc. Graphene-modified polymeric foams
CN112919928B (zh) * 2021-04-14 2022-06-24 浙江大学 一种多级泡沫吸声黑体材料

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104097357A (zh) * 2013-04-07 2014-10-15 宁波汇洲新材料科技发展有限公司 一种多孔吸声材料及其加工方法
CN104627995A (zh) * 2015-02-09 2015-05-20 哈尔滨工程大学 泡状石墨烯材料及其制备方法
CN106243379A (zh) * 2016-07-23 2016-12-21 天津大学 一种基于氧化石墨烯和聚合物的电磁屏蔽泡沫复合材料及制备方法
CN110582532A (zh) * 2017-03-01 2019-12-17 阿德莱德大学 包含石墨烯的声学组合物/材料及其制备方法
WO2018157208A1 (en) * 2017-03-01 2018-09-07 The University Of Adelaide Acoustic graphene-containing compositions/materials and methods of formation
US20200071480A1 (en) * 2017-03-01 2020-03-05 The University Of Adelaide Acoustic graphene-containing compositions/materials and methods of formation
CN108250728A (zh) * 2018-03-09 2018-07-06 四川大学 一种聚合物/石墨烯气凝胶复合泡沫材料及其制备方法
WO2019210051A1 (en) * 2018-04-25 2019-10-31 Massachusetts Institute Of Technology Energy efficient soundproofing window retrofits
CN108615519A (zh) * 2018-04-27 2018-10-02 中国航发北京航空材料研究院 一种石墨烯多孔隔声降噪材料
CN109081633A (zh) * 2018-08-13 2018-12-25 苏州华龙化工有限公司 一种玻璃棉基高强度防水吸声材料及其制备方法
CN110002434A (zh) * 2019-03-26 2019-07-12 北京理工大学 一种吸声降噪超轻石墨烯泡沫材料及其制备方法
CN210288758U (zh) * 2019-05-12 2020-04-10 山西建投晋东南建筑产业有限公司 一种节能环保隔声轻质墙体
CN112399289A (zh) * 2020-12-02 2021-02-23 镇江贝斯特新材料有限公司 具有高散热效率的微型扬声器模组及包含其的智能手机

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
HYEON JUN CHOI等: ""Sound absorption improvement of polyurethane foam through sequential arrangement of its cellular morphology"", 《KOREAN J. CHEM. ENG.》, 21 January 2022 (2022-01-21), pages 1072 - 1077, XP037789248, DOI: 10.1007/s11814-021-0974-2 *
JAEHYUK LEE等: ""Tuning sound absorbing properties of open cell polyurethane foam by impregnating graphene oxide"", 《APPLIED ACOUSTICS》 *
JAEHYUK LEE等: ""Tuning sound absorbing properties of open cell polyurethane foam by impregnating graphene oxide"", 《APPLIED ACOUSTICS》, 5 March 2019 (2019-03-05), pages 10 - 21 *
JI MUN KIM等: ""Effect of Graphene on the Sound Damping Properties of Flexible Polyurethane Foams"", 《MACROMOLECULAR RESEARCH》, 31 December 2016 (2016-12-31), pages 190 - 196 *
JUNG-HWAN OH等: ""Self-aligned and hierarchically porous graphene-polyurethane foams for acoustic wave absorption"", 《CARBON》 *
JUNG-HWAN OH等: ""Self-aligned and hierarchically porous graphene-polyurethane foams for acoustic wave absorption"", 《CARBON》, 12 March 2019 (2019-03-12), pages 510 - 518 *
LI, ZENGLING等: ""Custom-Built Graphene Acoustic-Absorbing Aerogel for Audio Signal Recognition"", 《ADVANCED MATERIALS INTERFACES》 *
LI, ZENGLING等: ""Custom-Built Graphene Acoustic-Absorbing Aerogel for Audio Signal Recognition"", 《ADVANCED MATERIALS INTERFACES》, 31 August 2021 (2021-08-31), pages 2100227 *
谢毓: ""功能化氧化石墨烯/聚氨酯泡沫材料的制备及性能研究"", 《万方知识凭条》 *
谢毓: ""功能化氧化石墨烯/聚氨酯泡沫材料的制备及性能研究"", 《万方知识凭条》, 15 August 2017 (2017-08-15), pages 1 - 68 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022218354A1 (zh) * 2021-04-14 2022-10-20 浙江大学 一种多级泡沫吸声黑体材料及其制备方法
US12215211B2 (en) 2021-04-14 2025-02-04 Zhejiang University Multi-stage foam sound-absorbing black body material and preparation method thereof

Also Published As

Publication number Publication date
WO2022218354A1 (zh) 2022-10-20
EP4177300A4 (en) 2024-04-24
US20230203267A1 (en) 2023-06-29
EP4177300A1 (en) 2023-05-10
CN112919928B (zh) 2022-06-24
US12215211B2 (en) 2025-02-04

Similar Documents

Publication Publication Date Title
Liu et al. A graphene oxide and functionalized carbon nanotube based semi-open cellular network for sound absorption
Nine et al. Graphene oxide‐based lamella network for enhanced sound absorption
Lu et al. High performance broadband acoustic absorption and sound sensing of a bubbled graphene monolith
Lee et al. Widening the sound absorption bandwidths of flexible micro-perforated curved absorbers using structural and acoustic resonances
Zhao et al. Polyacrylonitrile nanofiber reinforced polyimide composite aerogels with fiber-pore interpenetrating structures for sound absorption, air filtration and thermal insulation
CN110582532A (zh) 包含石墨烯的声学组合物/材料及其制备方法
Li et al. Air flow resistance and sound absorption behavior of open-celled aluminum foams with spherical cells
Xu et al. Lightweight Low‐Frequency Sound‐Absorbing Composites of Graphene Network Reinforced by Honeycomb Structure
CN102646414A (zh) 基于微穿孔和腔内共振系统的组合吸声结构
Lan et al. Ultra-thin Zr-MOF/PVA/Melamine composites with remarkable sound attenuation effects
CN112919928A (zh) 一种吸声黑体泡沫材料及其制备方法
Zhang et al. Sound absorption performance of micro-perforated plate sandwich structure based on triply periodic minimal surface
Wang et al. Microperforated metasurface panel backed by aerogel-filled cavities for broadband low frequency sound absorption
Shen et al. Design of microperforated nanofibrous membrane coated nonwoven structure for acoustic applications
Zhang et al. A controllable foaming approach for the fabrication of “rattan-like” graphene-based composite aerogel with desirable microwave absorption capacity
Shao et al. Investigation on low-frequency sound absorption properties of PVB micro-/nanofiber membranes
Huang et al. Research progress of noise reduction of composite structures of porous materials and acoustic metamaterials
Li et al. Rational design of a polypropylene composite foam with open-cell structure via graphite conductive network for sound absorption
Li et al. Custom‐Built Graphene Acoustic‐Absorbing Aerogel for Audio Signal Recognition
Lou et al. Effects of structure design on resilience and acoustic absorption properties of porous flexible-foam based perforated composites
Jiang et al. Study on Sound Absorption Performance of Aluminum Foam Combination
CN110783084A (zh) 一种宽频带复合共振吸隔声结构
Sakagami et al. Absorption characteristics of a space absorber using a microperforated panel and a permeable membrane
CN212542153U (zh) 一种电力变压器低频噪声抑制用吸隔声一体化装置
CN204463811U (zh) 一种磁力负刚度吸声装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant