CN112886899B - Self-control method and device for winding unit of N x 3 phase permanent magnet synchronous motor - Google Patents
Self-control method and device for winding unit of N x 3 phase permanent magnet synchronous motor Download PDFInfo
- Publication number
- CN112886899B CN112886899B CN202110056840.XA CN202110056840A CN112886899B CN 112886899 B CN112886899 B CN 112886899B CN 202110056840 A CN202110056840 A CN 202110056840A CN 112886899 B CN112886899 B CN 112886899B
- Authority
- CN
- China
- Prior art keywords
- permanent magnet
- magnet synchronous
- phase permanent
- winding
- synchronous motor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004804 winding Methods 0.000 title claims abstract description 238
- 230000001360 synchronised effect Effects 0.000 title claims abstract description 143
- 238000000034 method Methods 0.000 title claims abstract description 53
- 230000004907 flux Effects 0.000 claims description 36
- 230000014509 gene expression Effects 0.000 claims description 27
- 230000006870 function Effects 0.000 claims description 14
- 239000011159 matrix material Substances 0.000 claims description 11
- 238000009826 distribution Methods 0.000 claims description 9
- 238000004590 computer program Methods 0.000 claims description 8
- 238000003860 storage Methods 0.000 claims description 6
- 238000005070 sampling Methods 0.000 claims description 3
- 102000002274 Matrix Metalloproteinases Human genes 0.000 claims 1
- 108010000684 Matrix Metalloproteinases Proteins 0.000 claims 1
- 230000001131 transforming effect Effects 0.000 claims 1
- 230000009466 transformation Effects 0.000 abstract description 18
- 238000004891 communication Methods 0.000 abstract description 5
- 238000013178 mathematical model Methods 0.000 abstract description 5
- 238000010168 coupling process Methods 0.000 abstract description 4
- 238000005859 coupling reaction Methods 0.000 abstract description 4
- 238000010586 diagram Methods 0.000 description 5
- 230000008878 coupling Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000003044 adaptive effect Effects 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P25/00—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
- H02P25/02—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
- H02P25/022—Synchronous motors
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/0003—Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P25/00—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
- H02P25/16—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
- H02P25/22—Multiple windings; Windings for more than three phases
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P2207/00—Indexing scheme relating to controlling arrangements characterised by the type of motor
- H02P2207/05—Synchronous machines, e.g. with permanent magnets or DC excitation
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Ac Motors In General (AREA)
Abstract
本发明公开了一种N*3相永磁同步电机绕组单元自控制方法与装置,包括针对现有多d‑q坐标变换和VSD矢量空间解耦变换的数学模型,存在各三相绕组单元之间耦合强、控制复杂、不能与三相永磁电机通用,可移植性差等问题,本发明将N*3相永磁同步电机等效变换解耦为n个等效独立的三相永磁同步电机模型;采用电机在线参数辨识方法得到每个三相永磁同步电机模型的电机参数;根据三相永磁同步电机模型及电机参数对N*3相永磁同步电机的绕组单元自控制。本发明无需控制单元之间的实时数据通信,可沿用三相永磁电机控制算法,扩展性强,能够实现对每个三相绕组单元完全独立控制。
The invention discloses a method and a device for self-controlling a winding unit of an N*3-phase permanent magnet synchronous motor, including a mathematical model for the existing multi-d-q coordinate transformation and VSD vector space decoupling transformation. Due to the problems of strong inter-coupling, complex control, inability to use with three-phase permanent magnet motors, and poor portability, the present invention decouples the equivalent transformation of N*3-phase permanent magnet synchronous motors into n equivalently independent three-phase permanent magnet synchronous motors. Motor model; the motor parameters of each three-phase permanent magnet synchronous motor model are obtained by the motor online parameter identification method; the winding unit of the N*3-phase permanent magnet synchronous motor is automatically controlled according to the three-phase permanent magnet synchronous motor model and motor parameters. The present invention does not need real-time data communication between control units, can continue to use the three-phase permanent magnet motor control algorithm, has strong expansibility, and can realize completely independent control of each three-phase winding unit.
Description
技术领域technical field
本发明涉及N*3相永磁同步电机控制技术,具体涉及一种N*3相永磁同步电机绕组单元自控制方法与装置。The invention relates to an N*3-phase permanent magnet synchronous motor control technology, in particular to an N*3-phase permanent magnet synchronous motor winding unit self-control method and device.
背景技术Background technique
N*3相永磁同步电机相对于三相永磁同步电机驱动系统具有比较多的优点,比如:在供电电压受限制的场合,N*3相电机驱动系统是解决低压大功率的有效途径;由于电机相数增加,输出转矩脉动小,脉动频率增加,所以驱动系统低速特性得到很大的改善,震动和噪音将减小;由于相数冗余,系统整体可靠性提高。基于上述N*3相永磁同步电机大量的优点,在舰船电力推进、电动汽车驱动、航空航天、风力发电等大功率、高可靠性等场合广泛应用。随着电机相数的增多,集中控制架构会降低系统的模块化程度和系统配置的灵活性,采用以每个三相绕组单元为单位的分布式控制架构,可以使每个定子三相绕组由相应的控制器进行控制,不仅可以在一定程度上避免这些问题,还会使系统的可维护性、可靠性得到提升。但目前研究的分布式控制需要各个子控制器通过高速网络实时交换数据,一旦高速网络系统失效,也会导致系统停止运行。因此,研究N*3相永磁同步电机绕组单元自控制方法显得极为重要。Compared with the three-phase permanent magnet synchronous motor drive system, the N*3-phase permanent magnet synchronous motor has many advantages. For example, in the case where the supply voltage is limited, the N*3-phase motor drive system is an effective way to solve the problem of low voltage and high power; As the number of motor phases increases, the output torque ripple is small, and the ripple frequency increases, so the low-speed characteristics of the drive system are greatly improved, and the vibration and noise will be reduced; due to the redundancy of the number of phases, the overall reliability of the system is improved. Based on the advantages of the above-mentioned N*3-phase permanent magnet synchronous motor, it is widely used in high-power and high-reliability occasions such as ship electric propulsion, electric vehicle drive, aerospace, and wind power generation. As the number of motor phases increases, the centralized control architecture will reduce the modularity of the system and the flexibility of system configuration. Using a distributed control architecture based on each three-phase winding unit can make each stator three-phase winding composed of The control by the corresponding controller can not only avoid these problems to a certain extent, but also improve the maintainability and reliability of the system. However, the distributed control currently studied requires each sub-controller to exchange data in real time through a high-speed network. Once the high-speed network system fails, the system will stop running. Therefore, it is extremely important to study the self-control method of N*3-phase permanent magnet synchronous motor winding unit.
发明内容SUMMARY OF THE INVENTION
本发明要解决的技术问题:针对现有多d-q坐标变换和VSD矢量空间解耦变换的数学模型,存在各三相绕组单元之间耦合强、控制复杂、不能与三相永磁电机通用,可移植性差等问题,提供一种N*3相永磁同步电机绕组单元自控制方法与装置,本发明无需控制单元之间的实时数据通信,可沿用三相永磁电机控制算法,扩展性强,能够实现对每个三相绕组单元完全独立控制。The technical problem to be solved by the present invention: for the existing mathematical models of multi-d-q coordinate transformation and VSD vector space decoupling transformation, there are strong coupling between three-phase winding units, complicated control, and cannot be used in common with three-phase permanent magnet motors. In order to solve the problems of poor portability and other problems, a method and device for self-controlling N*3-phase permanent magnet synchronous motor winding units are provided. The present invention does not require real-time data communication between control units, and can continue to use the three-phase permanent magnet motor control algorithm, with strong scalability. Fully independent control of each three-phase winding unit can be achieved.
为了解决上述技术问题,本发明采用的技术方案为:In order to solve the above-mentioned technical problems, the technical scheme adopted in the present invention is:
一种N*3相永磁同步电机绕组单元自控制方法,包括:An N*3-phase permanent magnet synchronous motor winding unit self-control method, comprising:
1)将N*3相永磁同步电机等效变换解耦为n个等效独立的三相永磁同步电机模型;1) Decouple the equivalent transformation of N*3-phase permanent magnet synchronous motor into n equivalently independent three-phase permanent magnet synchronous motor models;
2)采用电机在线参数辨识方法得到每个三相永磁同步电机模型的电机参数;2) Using the motor online parameter identification method to obtain the motor parameters of each three-phase permanent magnet synchronous motor model;
3)根据三相永磁同步电机模型及电机参数对N*3相永磁同步电机的绕组单元自控制。3) According to the three-phase permanent magnet synchronous motor model and motor parameters, the winding unit of the N*3-phase permanent magnet synchronous motor is self-controlled.
可选地,步骤1)得到的n个等效独立的三相永磁同步电机模型中,在绕组电流按照平均分配下,任意第i个等效独立的三相永磁同步电机模型的近似函数表达式为:Optionally, in the n equivalent independent three-phase permanent magnet synchronous motor models obtained in step 1), under the condition that the winding current is distributed evenly, the approximate function of any i-th equivalent and independent three-phase permanent magnet synchronous motor model The expression is:
上式中,udi和uqi分别为第i个绕组单元的定子电压的dq轴分量,Rsi为第i个绕组单元的电阻,idi和iqi分别为第i个绕组单元的绕组电流的dq轴分量,Ldi和Lqi分别为第i个绕组单元的电感的dq轴分量,n为绕组单元数量,Lmd和Lmq分别为相邻两个绕组单元的互感的dq轴分量,ωe为N*3相永磁同步电机的电角速度,ψf为永磁体磁链。In the above formula, u di and u qi are the dq-axis components of the stator voltage of the ith winding unit, respectively, R si is the resistance of the ith winding unit, and i di and i qi are the winding current of the ith winding unit, respectively. The dq-axis components of , L di and L qi are the dq-axis components of the inductance of the i-th winding unit, n is the number of winding units, L md and L mq are the dq-axis components of the mutual inductance of two adjacent winding units, respectively, ω e is the electrical angular velocity of the N*3-phase permanent magnet synchronous motor, and ψ f is the permanent magnet flux linkage.
可选地,步骤1)得到的n个等效独立的三相永磁同步电机模型中,在绕组电流按照任意分配下,任意第i个等效独立的三相永磁同步电机模型的近似函数表达式为:Optionally, in the n equivalent independent three-phase permanent magnet synchronous motor models obtained in step 1), under the arbitrary distribution of the winding current, the approximate function of any i-th equivalent and independent three-phase permanent magnet synchronous motor model The expression is:
上式中,udi和uqi分别为第i个绕组单元的定子电压的dq轴分量,Rsi为第i个绕组单元的电阻,idi和iqi分别为第i个绕组单元的绕组电流的dq轴分量,Ldi和Lqi分别为第i个绕组单元的电感的dq轴分量,Lmd和Lmq分别为相邻两个绕组单元的互感的dq轴分量,ωe为N*3相永磁同步电机的电角速度,ψf为永磁体磁链。In the above formula, u di and u qi are the dq-axis components of the stator voltage of the ith winding unit, respectively, R si is the resistance of the ith winding unit, and i di and i qi are the winding current of the ith winding unit, respectively. The dq-axis components of , L di and L qi are the dq-axis components of the inductance of the i-th winding unit, L md and L mq are the dq-axis components of the mutual inductance of the two adjacent winding units, respectively, ω e is N*3 The electrical angular velocity of the phase permanent magnet synchronous motor, ψ f is the permanent magnet flux linkage.
可选地,步骤1)包括:Optionally, step 1) includes:
1.1)确定N*3相永磁同步电机各个绕组单元的电压方程和磁链方程;1.1) Determine the voltage equation and flux linkage equation of each winding unit of the N*3-phase permanent magnet synchronous motor;
1.2)根据各个绕组单元间互感相等,结合电压方程和磁链方程得到各个绕组单元的绕组方程;1.2) According to the equal mutual inductance between each winding unit, the winding equation of each winding unit is obtained by combining the voltage equation and the flux linkage equation;
1.3)根据N*3相永磁同步电机各个绕组单元的电流分配情况,简化各个绕组单元的绕组方程,从而得到n个等效独立的三相永磁同步电机模型。1.3) According to the current distribution of each winding unit of the N*3-phase permanent magnet synchronous motor, simplify the winding equation of each winding unit, thereby obtaining n equivalent independent three-phase permanent magnet synchronous motor models.
可选地,步骤1.1)中确定任意第i个绕组单元的电压方程的函数表达式为:Optionally, the functional expression for determining the voltage equation of any i-th winding unit in step 1.1) is:
上式中,udi和uqi分别为第i个绕组单元的定子电压的dq轴分量,Rsi为第i个绕组单元的电阻,idi和iqi分别为第i个绕组单元的绕组电流的dq轴分量,ψdi和ψqi分别为第i个绕组单元的定子磁链的dq轴分量,ωe为N*3相永磁同步电机的电角速度,t为时间。In the above formula, u di and u qi are the dq-axis components of the stator voltage of the ith winding unit, respectively, R si is the resistance of the ith winding unit, and i di and i qi are the winding current of the ith winding unit, respectively. The dq-axis components of , ψ di and ψ qi are the dq-axis components of the stator flux linkage of the ith winding unit, respectively, ω e is the electrical angular velocity of the N*3-phase permanent magnet synchronous motor, and t is the time.
可选地,步骤1.1)中确定任意第i个绕组单元的磁链方程的函数表达式为:Optionally, the functional expression for determining the flux linkage equation of any i-th winding unit in step 1.1) is:
上式中,ψdi和ψqi分别为第i个绕组单元的定子磁链的dq轴分量,Ldi和Lqi分别为第i个绕组单元的电感的dq轴分量,idi和iqi分别为第i个绕组单元的绕组电流的dq轴分量,Lmd(i+1)toi和Lmq(i+1)toi分别为第i+1个绕组单元与第i个绕组单元的互感的dq轴分量,Lmd(i-1)toi和Lmq(i-1)toi分别为第i-1个绕组单元与第i个绕组单元的互感的dq轴分量,id(i+1)和iq(i+1)分别为第i+1个绕组单元的绕组电流的dq轴分量,id(i-1)和iq(i-1)分别为第i-1个绕组单元的绕组电流的dq轴分量,ψf为永磁体磁链。In the above formula, ψ di and ψ qi are respectively the dq-axis components of the stator flux linkage of the ith winding unit, L di and L qi are the dq-axis components of the inductance of the ith winding unit, respectively, i di and i qi are respectively is the dq axis component of the winding current of the ith winding unit, L md(i+1)toi and L mq(i+1)toi are the dq of the mutual inductance between the ith winding unit and the ith winding unit, respectively Axial components, L md(i-1)toi and L mq(i-1)toi are the dq-axis components of the mutual inductance between the i-1th winding unit and the ith winding unit, respectively, id (i+1) and i q(i+1) are the dq-axis components of the winding current of the i+1th winding unit, respectively, and id (i-1) and i q(i-1) are the windings of the i-1th winding unit, respectively The dq-axis component of the current, ψf is the permanent magnet flux linkage.
可选地,步骤1.2)中结合电压方程和磁链方程得到各个绕组单元的绕组方程的函数表达式为:Optionally, in step 1.2), the functional expression for obtaining the winding equation of each winding unit by combining the voltage equation and the flux linkage equation is:
上式中,udi和uqi分别为第i个绕组单元的定子电压的dq轴分量,Rsi为第i个绕组单元的电阻,idi和iqi分别为第i个绕组单元的绕组电流的dq轴分量,Ldi和Lqi分别为第i个绕组单元的电感的dq轴分量,Lmd和Lmq分别为相邻两个绕组单元的互感的dq轴分量,ωe为N*3相永磁同步电机的电角速度,ψf为永磁体磁链。其中:In the above formula, u di and u qi are the dq-axis components of the stator voltage of the ith winding unit, respectively, R si is the resistance of the ith winding unit, and i di and i qi are the winding current of the ith winding unit, respectively. The dq-axis components of , L di and L qi are the dq-axis components of the inductance of the i-th winding unit, L md and L mq are the dq-axis components of the mutual inductance of the two adjacent winding units, respectively, ω e is N*3 The electrical angular velocity of the phase permanent magnet synchronous motor, ψ f is the permanent magnet flux linkage. in:
两者分量占比较小,可以近似忽略。The proportion of the two components is small and can be approximately ignored.
可选地,步骤2)中采用的电机在线参数辨识方法为最小二乘法,且三相永磁同步电机模型的电压方程最小二乘法的表达形式为:Optionally, the motor online parameter identification method adopted in step 2) is the least square method, and the expression form of the voltage equation least square method of the three-phase permanent magnet synchronous motor model is:
上式中,ud和uq分别为定子电压的dq轴分量,Rs为三相永磁同步电机模型的电阻,id和iq分别为绕组电流的dq轴分量,ωe为N*3相永磁同步电机的电角速度,ψf为永磁体磁链,Ld和Lq分别为三相永磁同步电机模型的电感的dq轴分量,p为微分算子;该电压方程最小二乘法的表达形式中,输入矩阵为:In the above formula, u d and u q are the dq-axis components of the stator voltage, respectively, R s is the resistance of the three-phase permanent magnet synchronous motor model, id and i q are the dq -axis components of the winding current, respectively, and ω e is N* The electrical angular velocity of the three-phase permanent magnet synchronous motor, ψ f is the permanent magnet flux linkage, L d and L q are the dq axis components of the inductance of the three-phase permanent magnet synchronous motor model, respectively, p is the differential operator; the voltage equation is the least two In the expression for multiplication, the input matrix for:
参数矩阵为:parameter matrix for:
输出量矩阵y(k)为:The output matrix y(k) is:
且在输入矩阵中需要对pid、piq微分进行离散化处理:and in the input matrix It is necessary to discretize the pi d and pi q differentials in:
上式中,id(k)和iq(k)为k时刻的绕组电流的dq轴分量,id(k-1)和iq(k-1)为k-1时刻的绕组电流的dq轴分量,Ts为采样时间。In the above formula, id (k) and i q (k) are the dq -axis components of the winding current at time k, and id (k-1) and i q (k-1) are the winding currents at time k-1. dq axis components, T s is the sampling time.
此外,本发明还提供一种N*3相永磁同步电机绕组单元自控制装置,包括:In addition, the present invention also provides an N*3-phase permanent magnet synchronous motor winding unit self-control device, comprising:
模型解耦程序单元,用于将N*3相永磁同步电机等效变换解耦为n个等效独立的三相永磁同步电机模型;The model decoupling program unit is used to decouple the equivalent transformation of the N*3-phase permanent magnet synchronous motor into n equivalently independent three-phase permanent magnet synchronous motor models;
参数辨识程序单元,用于采用电机在线参数辨识方法得到每个三相永磁同步电机模型的电机参数;The parameter identification program unit is used to obtain the motor parameters of each three-phase permanent magnet synchronous motor model by using the motor online parameter identification method;
独立控制程序单元,用于根据三相永磁同步电机模型及电机参数对N*3相永磁同步电机的绕组单元自控制。The independent control program unit is used to self-control the winding unit of the N*3-phase permanent magnet synchronous motor according to the three-phase permanent magnet synchronous motor model and motor parameters.
此外,本发明还提供一种N*3相永磁同步电机绕组单元自控制装置,包括相互连接的微处理器和存储器,所述微处理器被编程或配置以执行所述N*3相永磁同步电机绕组单元自控制方法的步骤。In addition, the present invention also provides an N*3 phase permanent magnet synchronous motor winding unit self-control device, comprising a microprocessor and a memory connected to each other, the microprocessor being programmed or configured to execute the N*3 phase permanent magnet The steps of a method for self-controlling a winding unit of a magnetic synchronous motor.
此外,本发明还提供一种计算机可读存储介质,该计算机可读存储介质中存储有被编程或配置以执行所述N*3相永磁同步电机绕组单元自控制方法的计算机程序。In addition, the present invention also provides a computer-readable storage medium storing a computer program programmed or configured to execute the N*3-phase permanent magnet synchronous motor winding unit self-control method.
和现有技术相比,本发明具有下述优点:Compared with the prior art, the present invention has the following advantages:
1、针对现有多d-q坐标变换和VSD矢量空间解耦变换的数学模型,存在各三相绕组单元之间耦合强、控制复杂、不能与三相永磁电机通用,可移植性差等问题,本发明将N*3相永磁同步电机等效变换解耦为n个等效独立的三相永磁同步电机模型;采用电机在线参数辨识方法得到每个三相永磁同步电机模型的电机参数;根据三相永磁同步电机模型及电机参数对N*3相永磁同步电机的绕组单元自控制。本发明无需控制单元之间的实时数据通信,可沿用三相永磁电机控制算法,扩展性强,能够实现对每个三相绕组单元完全独立控制。1. In view of the existing mathematical models of multi-d-q coordinate transformation and VSD vector space decoupling transformation, there are problems such as strong coupling between three-phase winding units, complex control, incompatibility with three-phase permanent magnet motors, and poor portability. The invention decouples the equivalent transformation of the N*3-phase permanent magnet synchronous motor into n equivalent independent three-phase permanent magnet synchronous motor models; adopts the motor online parameter identification method to obtain the motor parameters of each three-phase permanent magnet synchronous motor model; According to the three-phase permanent magnet synchronous motor model and motor parameters, the winding unit of the N*3 phase permanent magnet synchronous motor is automatically controlled. The present invention does not need real-time data communication between control units, can continue to use the three-phase permanent magnet motor control algorithm, has strong expansibility, and can realize completely independent control of each three-phase winding unit.
2、本发明采用的是N*3相永磁同步电机分布式解耦控制,不同于多d-q坐标变换和矢量空间解耦变换的数学模型,变换后的电机模型不需要绕组之间交换电流进行控制,每个独立的电机三相绕组完全等同三相永磁同步电机进行控制,经过模型变换的N*3相永磁同步电机无需控制单元之间的实时数据通信,可沿用三相永磁电机控制算法,扩展性强,能够实现对每个三相绕组单元完全独立控制,对于N*3相永磁同步电机的应用具有实用价值。2. The present invention adopts the distributed decoupling control of N*3-phase permanent magnet synchronous motor, which is different from the mathematical model of multi-d-q coordinate transformation and vector space decoupling transformation. The transformed motor model does not need to exchange current between windings. Control, the three-phase winding of each independent motor is completely equivalent to the three-phase permanent magnet synchronous motor for control, the N*3-phase permanent magnet synchronous motor after model transformation does not require real-time data communication between the control units, and the three-phase permanent magnet motor can be used. The control algorithm has strong scalability and can realize complete independent control of each three-phase winding unit, which has practical value for the application of N*3-phase permanent magnet synchronous motor.
附图说明Description of drawings
图1为本发明实施例方法的基本流程示意图。FIG. 1 is a schematic diagram of a basic flow of a method according to an embodiment of the present invention.
图2为本发明实施例方法中N*3相永磁同步电机的控制模块示意图。FIG. 2 is a schematic diagram of a control module of an N*3-phase permanent magnet synchronous motor in a method according to an embodiment of the present invention.
具体实施方式Detailed ways
如图1所示,本实施例N*3相永磁同步电机绕组单元自控制方法包括:As shown in FIG. 1 , the method for self-controlling the winding unit of the N*3-phase permanent magnet synchronous motor in this embodiment includes:
1)将N*3相永磁同步电机等效变换解耦为n个等效独立的三相永磁同步电机模型;1) Decouple the equivalent transformation of N*3-phase permanent magnet synchronous motor into n equivalently independent three-phase permanent magnet synchronous motor models;
2)采用电机在线参数辨识方法得到每个三相永磁同步电机模型的电机参数;2) Using the motor online parameter identification method to obtain the motor parameters of each three-phase permanent magnet synchronous motor model;
3)根据三相永磁同步电机模型及电机参数对N*3相永磁同步电机的绕组单元自控制。3) According to the three-phase permanent magnet synchronous motor model and motor parameters, the winding unit of the N*3-phase permanent magnet synchronous motor is self-controlled.
本实施例中,步骤1)得到的n个等效独立的三相永磁同步电机模型中,在绕组电流按照平均分配下,任意第i个等效独立的三相永磁同步电机模型的近似函数表达式为:In this embodiment, in the n equivalently independent three-phase permanent magnet synchronous motor models obtained in step 1), under the condition that the winding currents are distributed evenly, the approximation of any i-th equivalent and independent three-phase permanent magnet synchronous motor model The function expression is:
上式中,udi和uqi分别为第i个绕组单元的定子电压的dq轴分量,Rsi为第i个绕组单元的电阻,idi和iqi分别为第i个绕组单元的绕组电流的dq轴分量,Ldi和Lqi分别为第i个绕组单元的电感的dq轴分量,n为绕组单元数量,Lmd和Lmq分别为相邻两个绕组单元的互感的dq轴分量,ωe为N*3相永磁同步电机的电角速度,ψf为永磁体磁链,i=1,2,...,n。In the above formula, u di and u qi are the dq-axis components of the stator voltage of the ith winding unit, respectively, R si is the resistance of the ith winding unit, and i di and i qi are the winding current of the ith winding unit, respectively. The dq-axis components of , L di and L qi are the dq-axis components of the inductance of the i-th winding unit, n is the number of winding units, L md and L mq are the dq-axis components of the mutual inductance of two adjacent winding units, respectively, ω e is the electrical angular velocity of the N*3-phase permanent magnet synchronous motor, ψ f is the permanent magnet flux linkage, i=1, 2, . . . , n.
本实施例中,步骤1)得到的n个等效独立的三相永磁同步电机模型中,在绕组电流按照任意分配下,任意第i个等效独立的三相永磁同步电机模型的近似函数表达式为:In this embodiment, in the n equivalent independent three-phase permanent magnet synchronous motor models obtained in step 1), under the arbitrary distribution of winding currents, the approximation of any i-th equivalent and independent three-phase permanent magnet synchronous motor model The function expression is:
上式中,udi和uqi分别为第i个绕组单元的定子电压的dq轴分量,Rsi为第i个绕组单元的电阻,idi和iqi分别为第i个绕组单元的绕组电流的dq轴分量,Ldi和Lqi分别为第i个绕组单元的电感的dq轴分量,Lmd和Lmq分别为相邻两个绕组单元的互感的dq轴分量,ωe为N*3相永磁同步电机的电角速度,ψf为永磁体磁链。In the above formula, u di and u qi are the dq-axis components of the stator voltage of the ith winding unit, respectively, R si is the resistance of the ith winding unit, and i di and i qi are the winding current of the ith winding unit, respectively. The dq-axis components of , L di and L qi are the dq-axis components of the inductance of the i-th winding unit, L md and L mq are the dq-axis components of the mutual inductance of the two adjacent winding units, respectively, ω e is N*3 The electrical angular velocity of the phase permanent magnet synchronous motor, ψ f is the permanent magnet flux linkage.
本实施例中N*3相永磁同步电机一共包含n个绕组单元,第1~n个绕组单元(i=1,2,...,n,下同)的电压方程的函数表达式分别为:In this embodiment, the N*3-phase permanent magnet synchronous motor includes a total of n winding units, and the functional expressions of the voltage equations of the 1st to nth winding units (i=1, 2, . . . , n, the same below) are respectively for:
……
上述n个等效独立的三相永磁同步电机模型中任意第i个等效独立的三相永磁同步电机模型的函数表达式可等效为:The functional expression of any ith equivalently independent three-phase permanent magnet synchronous motor model in the above n equivalently independent three-phase permanent magnet synchronous motor models can be equivalent to:
……
上式中,Rs1 *~Rsn *分别表示第1~n套绕组的定子电阻,Ld1 *~Ldn *表示分别表示第1~n套绕组的d轴电感,Lq1 *~Lqn *表示分别表示第1~n套绕组的q轴电感。In the above formula, R s1 * ~ R sn * respectively represent the stator resistance of the first to n sets of windings, L d1 * ~ L dn * respectively represent the d-axis inductance of the first to n sets of windings, L q1 * ~ L qn * indicates the q-axis inductance of the first to n sets of windings, respectively.
如图2所示,在得到根据三相永磁同步电机模型及电机参数的基础上,控制器1~控制器n分别控制对应的驱动器1~驱动器n来对N*3相永磁同步电机(N*3PMSM)中对应的绕组单元进行分布式控制,该控制方法为传统三相永磁电机的控制方法,闭环反馈量包括:绕组单元的三相电流iai,ibi,ici,N*3相永磁同步电机的电角速度ωe,绕组单元的相位θei,输出控制量为三相电压Vai,Vbi,Vci,i=1,2,...,n。N*3相永磁同步电机的每个绕组单元都是独立控制,有独立的控制器和驱动器。As shown in Figure 2, on the basis of obtaining the three-phase permanent magnet synchronous motor model and motor parameters, controller 1 to controller n respectively control the corresponding driver 1 to driver n to control the N*3-phase permanent magnet synchronous motor ( The corresponding winding units in N*3PMSM) perform distributed control, the control method is the control method of the traditional three-phase permanent magnet motor, and the closed-loop feedback includes: the three-phase currents of the winding units i ai , i bi , i ci , N* The electrical angular velocity ω e of the 3-phase permanent magnet synchronous motor, the phase θ ei of the winding unit, and the output control variables are the three-phase voltages V ai , V bi , V ci , i=1, 2,...,n. Each winding unit of the N*3-phase permanent magnet synchronous motor is independently controlled, with independent controllers and drivers.
本实施例中,步骤1)包括:In this embodiment, step 1) includes:
1.1)确定N*3相永磁同步电机各个绕组单元的电压方程和磁链方程;1.1) Determine the voltage equation and flux linkage equation of each winding unit of the N*3-phase permanent magnet synchronous motor;
1.2)根据各个绕组单元间互感相等,结合电压方程和磁链方程得到各个绕组单元的绕组方程;1.2) According to the equal mutual inductance between each winding unit, the winding equation of each winding unit is obtained by combining the voltage equation and the flux linkage equation;
1.3)根据N*3相永磁同步电机各个绕组单元的电流分配情况,简化各个绕组单元的绕组方程,从而得到n个等效独立的三相永磁同步电机模型。1.3) According to the current distribution of each winding unit of the N*3-phase permanent magnet synchronous motor, simplify the winding equation of each winding unit, thereby obtaining n equivalent independent three-phase permanent magnet synchronous motor models.
本实施例中,步骤1.1)中确定任意第i个绕组单元的电压方程的函数表达式为:In this embodiment, the functional expression for determining the voltage equation of any i-th winding unit in step 1.1) is:
上式中,udi和uqi分别为第i个绕组单元的定子电压的dq轴分量,Rsi为第i个绕组单元的电阻,idi和iqi分别为第i个绕组单元的绕组电流的dq轴分量,ψdi和ψqi分别为第i个绕组单元的定子磁链的dq轴分量,ωe为N*3相永磁同步电机的电角速度,t为时间。In the above formula, u di and u qi are the dq-axis components of the stator voltage of the ith winding unit, respectively, R si is the resistance of the ith winding unit, and i di and i qi are the winding current of the ith winding unit, respectively. The dq-axis components of , ψ di and ψ qi are the dq-axis components of the stator flux linkage of the ith winding unit, respectively, ω e is the electrical angular velocity of the N*3-phase permanent magnet synchronous motor, and t is the time.
本实施例中N*3相永磁同步电机一共包含n个绕组单元,第1~n个绕组单元的电压方程的函数表达式分别为:In this embodiment, the N*3-phase permanent magnet synchronous motor includes a total of n winding units, and the functional expressions of the voltage equations of the 1st to nth winding units are:
……
其中,ωe为电机的电角速度,ud1、uq1、ud2、uq2...udn、uqn为各套绕组单元的定子电压,id1、iq1、id2、iq2...idn、iqn为各套绕组单元的定子电流,ψd1、ψq1、ψd2、ψq2...ψdn、ψqn为各套绕组单元的定子磁链。Among them, ω e is the electrical angular velocity of the motor, u d1 , u q1 , u d2 , u q2 ... u dn , u qn are the stator voltages of each set of winding units, i d1 , i q1 , i d2 , i q2 . ..i dn , i qn are the stator currents of each set of winding units, ψ d1 , ψ q1 , ψ d2 , ψ q2 ... ψ dn , ψ qn are the stator flux linkages of each set of winding units.
本实施例中,步骤1.1)中确定任意第i个绕组单元的磁链方程的函数表达式为:In this embodiment, the functional expression for determining the flux linkage equation of any i-th winding unit in step 1.1) is:
上式中,ψdi和ψqi分别为第i个绕组单元的定子磁链的dq轴分量,Ldi和Lqi分别为第i个绕组单元的电感的dq轴分量,idi和iqi分别为第i个绕组单元的绕组电流的dq轴分量,Lmd(i+1)toi和Lmq(i+1)toi分别为第i+1个绕组单元与第i个绕组单元的互感的dq轴分量,Lmd(i-1)toi和Lmq(i-1)toi分别为第i-1个绕组单元与第i个绕组单元的互感的dq轴分量,id(i+1)和iq(i+1)分别为第i+1个绕组单元的绕组电流的dq轴分量,id(i-1)和iq(i-1)分别为第i-1个绕组单元的绕组电流的dq轴分量,ψf为永磁体磁链。In the above formula, ψ di and ψ qi are respectively the dq-axis components of the stator flux linkage of the ith winding unit, L di and L qi are the dq-axis components of the inductance of the ith winding unit, respectively, i di and i qi are respectively is the dq axis component of the winding current of the ith winding unit, L md(i+1)toi and L mq(i+1)toi are the dq of the mutual inductance between the ith winding unit and the ith winding unit, respectively Axial components, L md(i-1)toi and L mq(i-1)toi are the dq-axis components of the mutual inductance between the i-1th winding unit and the ith winding unit, respectively, id (i+1) and i q(i+1) are the dq-axis components of the winding current of the i+1th winding unit, respectively, and id (i-1) and i q(i-1) are the windings of the i-1th winding unit, respectively The dq-axis component of the current, ψf is the permanent magnet flux linkage.
本实施例中N*3相永磁同步电机一共包含n个绕组单元,第1~n个绕组单元的磁链方程的函数表达式分别为:In this embodiment, the N*3-phase permanent magnet synchronous motor includes a total of n winding units, and the functional expressions of the flux linkage equations of the 1st to nth winding units are:
……
其中,Ld1、Lq1、Ld2、Lq2...Ldn、Lqn为各套绕组的dq轴电感,Lmd1to2、Lmq1to2、Lmd2to1、Lmq2to1、Lmd3to2、Lmq3to2...Lmdnto1、Lmqnto1、Lmdnto2、Lmqnto2、Lmd1ton、Lmq1ton、Lmd(n-1)ton、Lmq(n-1)ton为绕套绕组d轴和q轴之间的互感,ψf为永磁体磁链。需要说明的是,本实施例中N*3相永磁同步电机一共包含n个绕组单元,第i-1个绕组单元、第i个绕组单元、第i+1个绕组单元是指相邻的三个绕组单元,由于绕组单元为环形布置,因此在边界处当i=1时,i-1为n,i+1为2;当i=n时,i-1为n-1,i+1为1。Among them, L d1 , L q1 , L d2 , L q2 ... L dn , L qn are the dq-axis inductances of each set of windings, L md1to2 , L mq1to2 , L md2to1 , L mq2to1 , L md3to2 , L mq3to2 ... L mdnto1 , L mqnto1 , L mdnto2 , L mqnto2 , L md1ton , L mq1ton , L md(n-1)ton , L mq(n-1)ton are the mutual inductances between the d-axis and the q-axis of the casing winding, ψ f is the permanent magnet flux linkage. It should be noted that in this embodiment, the N*3-phase permanent magnet synchronous motor includes a total of n winding units, and the i-1 th winding unit, the i th winding unit, and the i+1 th winding unit refer to adjacent ones. Three winding units, since the winding units are arranged in a ring, at the boundary, when i=1, i-1 is n, i+1 is 2; when i=n, i-1 is n-1, i+ 1 is 1.
结合电压方程和磁链方程,且Lmd1to2=Lmd2to1=...=Lmd1ton=Lmdnto1=Lmd,Lmq1to2=Lmq2to1=...=Lmq1ton=Lmqnto1=Lmq,可得到本实施例步骤1.2)中结合电压方程和磁链方程得到各个绕组单元的绕组方程的函数表达式为:Combining the voltage equation and the flux linkage equation, and L md1to2 =L md2to1 =...=L md1ton =L mdnto1 =L md , L mq1to2 =L mq2to1 =... =L mq1ton =L mqnto1 =L mq , we can get this In the embodiment step 1.2), the functional expression for obtaining the winding equation of each winding unit in combination with the voltage equation and the flux linkage equation is:
上式中,udi和uqi分别为第i个绕组单元的定子电压的dq轴分量,Rsi为第i个绕组单元的电阻,idi和iqi分别为第i个绕组单元的绕组电流的dq轴分量,Ldi和Lqi分别为第i个绕组单元的电感的dq轴分量,Lmd和Lmq分别为相邻两个绕组单元的互感的dq轴分量,ωe为N*3相永磁同步电机的电角速度,ψf为永磁体磁链。其中:In the above formula, u di and u qi are the dq-axis components of the stator voltage of the ith winding unit, respectively, R si is the resistance of the ith winding unit, and i di and i qi are the winding current of the ith winding unit, respectively. The dq-axis components of , L di and L qi are the dq-axis components of the inductance of the i-th winding unit, L md and L mq are the dq-axis components of the mutual inductance of the two adjacent winding units, respectively, ω e is N*3 The electrical angular velocity of the phase permanent magnet synchronous motor, ψ f is the permanent magnet flux linkage. in:
在此基础上,步骤1.3)根据N*3相永磁同步电机各个绕组单元的电流分配情况,简化各个绕组单元的绕组方程,从而得到n个等效独立的三相永磁同步电机模型。即:On this basis, step 1.3) simplifies the winding equation of each winding unit according to the current distribution of each winding unit of the N*3-phase permanent magnet synchronous motor, thereby obtaining n equivalent independent three-phase permanent magnet synchronous motor models. which is:
在绕组电流按照平均分配下,任意第i个等效独立的三相永磁同步电机模型的近似函数表达式为:The approximate function expression of any i-th equivalent independent three-phase permanent magnet synchronous motor model is:
上式中,udi和uqi分别为第i个绕组单元的定子电压的dq轴分量,Rsi为第i个绕组单元的电阻,idi和iqi分别为第i个绕组单元的绕组电流的dq轴分量,Ldi和Lqi分别为第i个绕组单元的电感的dq轴分量,n为绕组单元数量,Lmd和Lmq分别为相邻两个绕组单元的互感的dq轴分量,ωe为N*3相永磁同步电机的电角速度,ψf为永磁体磁链,i=1,2,...,n。In the above formula, u di and u qi are the dq-axis components of the stator voltage of the ith winding unit, respectively, R si is the resistance of the ith winding unit, and i di and i qi are the winding current of the ith winding unit, respectively. The dq-axis components of , L di and L qi are the dq-axis components of the inductance of the i-th winding unit, n is the number of winding units, L md and L mq are the dq-axis components of the mutual inductance of two adjacent winding units, respectively, ω e is the electrical angular velocity of the N*3-phase permanent magnet synchronous motor, ψ f is the permanent magnet flux linkage, i=1, 2, . . . , n.
在绕组电流按照任意分配下,任意第i个等效独立的三相永磁同步电机模型的近似函数表达式为:Under the arbitrary distribution of winding current, the approximate function expression of any i-th equivalent independent three-phase permanent magnet synchronous motor model is:
上式中,udi和uqi分别为第i个绕组单元的定子电压的dq轴分量,Rsi为第i个绕组单元的电阻,idi和iqi分别为第i个绕组单元的绕组电流的dq轴分量,Ldi和Lqi分别为第i个绕组单元的电感的dq轴分量,Lmd和Lmq分别为相邻两个绕组单元的互感的dq轴分量,ωe为N*3相永磁同步电机的电角速度,ψf为永磁体磁链。In the above formula, u di and u qi are the dq-axis components of the stator voltage of the ith winding unit, respectively, R si is the resistance of the ith winding unit, and i di and i qi are the winding current of the ith winding unit, respectively. The dq-axis components of , L di and L qi are the dq-axis components of the inductance of the i-th winding unit, L md and L mq are the dq-axis components of the mutual inductance of the two adjacent winding units, respectively, ω e is N*3 The electrical angular velocity of the phase permanent magnet synchronous motor, ψ f is the permanent magnet flux linkage.
步骤2)中采用的电机在线参数辨识方法可根据需要采用最小二乘法、模型参考自适应法、卡尔曼滤波算法、人工智能算法等,其得到每个三相永磁同步电机模型的电机参数是指三相永磁同步电机模型的电感的dq轴分量Ld和Lq。The motor online parameter identification method adopted in step 2) can adopt the least squares method, model reference adaptive method, Kalman filter algorithm, artificial intelligence algorithm, etc. as required, and the motor parameters obtained by each three-phase permanent magnet synchronous motor model are: Refers to the dq-axis components L d and L q of the inductance of the three-phase permanent magnet synchronous motor model.
作为一种可选的实施方式,本实施例步骤2)中采用的电机在线参数辨识方法为最小二乘法,且三相永磁同步电机模型的电压方程最小二乘法的表达形式为:As an optional implementation, the motor online parameter identification method adopted in step 2) of this embodiment is the least squares method, and the expression form of the voltage equation least squares method of the three-phase permanent magnet synchronous motor model is:
上式中,ud和uq分别为定子电压的dq轴分量,Rs为三相永磁同步电机模型的电阻,id和iq分别为绕组电流的dq轴分量,ωe为N*3相永磁同步电机的电角速度,ψf为永磁体磁链,Ld和Lq分别为三相永磁同步电机模型的电感的dq轴分量,p为微分算子;该电压方程最小二乘法的表达形式中,输入矩阵为:In the above formula, u d and u q are the dq-axis components of the stator voltage, respectively, R s is the resistance of the three-phase permanent magnet synchronous motor model, id and i q are the dq -axis components of the winding current, respectively, and ω e is N* The electrical angular velocity of the three-phase permanent magnet synchronous motor, ψ f is the permanent magnet flux linkage, L d and L q are the dq axis components of the inductance of the three-phase permanent magnet synchronous motor model, respectively, p is the differential operator; the voltage equation is the least two In the expression for multiplication, the input matrix for:
参数矩阵为:parameter matrix for:
输出量矩阵y(k)为:The output matrix y(k) is:
且在输入矩阵中需要对pid、piq微分进行离散化处理:and in the input matrix It is necessary to discretize the pi d and pi q differentials in:
上式中,id(k)和iq(k)为k时刻的绕组电流的dq轴分量,id(k-1)和iq(k-1)为k-1时刻的绕组电流的dq轴分量,Ts为采样时间。In the above formula, id (k) and i q (k) are the dq -axis components of the winding current at time k, and id (k-1) and i q (k-1) are the winding currents at time k-1. dq axis components, T s is the sampling time.
综上所述,针对现有多d-q坐标变换和VSD矢量空间解耦变换的数学模型,存在各三相绕组单元之间耦合强、控制复杂、不能与三相永磁电机通用,可移植性差等问题,本实施例方法通过模型等效变换的方法将N*3相永磁同步电机解耦成N个等效独立的三相永磁同步电机单元加以控制,再通过在线参数辨识电感参数的方法得到每个解耦后三相永磁同步电机单元的等效电机参数值,从而可完成对N*3相永磁同步电机的完全解耦控制。完全解耦后,可采用标准三相电机的控制方法,无需控制单元之间的实时数据通信,可沿用三相永磁电机控制算法,扩展性强,能够实现对每个三相绕组单元完全独立控制。To sum up, for the existing mathematical models of multi-d-q coordinate transformation and VSD vector space decoupling transformation, there are strong coupling between three-phase winding units, complicated control, incompatibility with three-phase permanent magnet motors, and poor portability. The method in this embodiment decouples the N*3-phase permanent magnet synchronous motor into N equivalently independent three-phase permanent magnet synchronous motor units through the method of model equivalent transformation, and then identifies the inductance parameters through online parameters. The equivalent motor parameter values of each decoupled three-phase permanent magnet synchronous motor unit are obtained, so that the complete decoupling control of the N*3-phase permanent magnet synchronous motor can be completed. After complete decoupling, the standard three-phase motor control method can be used, without real-time data communication between control units, and the three-phase permanent magnet motor control algorithm can be used, which has strong scalability and can achieve complete independence for each three-phase winding unit. control.
此外,本实施例还提供一种N*3相永磁同步电机绕组单元自控制装置,包括:In addition, this embodiment also provides an N*3-phase permanent magnet synchronous motor winding unit self-control device, including:
模型解耦程序单元,用于将N*3相永磁同步电机等效变换解耦为n个等效独立的三相永磁同步电机模型;The model decoupling program unit is used to decouple the equivalent transformation of the N*3-phase permanent magnet synchronous motor into n equivalently independent three-phase permanent magnet synchronous motor models;
参数辨识程序单元,用于采用电机在线参数辨识方法得到每个三相永磁同步电机模型的电机参数;The parameter identification program unit is used to obtain the motor parameters of each three-phase permanent magnet synchronous motor model by using the motor online parameter identification method;
独立控制程序单元,用于根据三相永磁同步电机模型及电机参数对N*3相永磁同步电机的绕组单元自控制。The independent control program unit is used to self-control the winding unit of the N*3-phase permanent magnet synchronous motor according to the three-phase permanent magnet synchronous motor model and motor parameters.
此外,本实施例还提供一种N*3相永磁同步电机绕组单元自控制装置,包括相互连接的微处理器和存储器,所述微处理器被编程或配置以执行前述N*3相永磁同步电机绕组单元自控制方法的步骤。In addition, the present embodiment also provides an N*3 phase permanent magnet synchronous motor winding unit self-control device, comprising a microprocessor and a memory connected to each other, the microprocessor being programmed or configured to perform the aforementioned N*3 phase permanent magnet synchronous motor. The steps of a method for self-controlling a winding unit of a magnetic synchronous motor.
此外,本实施例还提供一种计算机可读存储介质,该计算机可读存储介质中存储有被编程或配置以执行前述N*3相永磁同步电机绕组单元自控制方法的计算机程序。In addition, the present embodiment also provides a computer-readable storage medium storing a computer program programmed or configured to execute the aforementioned method for self-controlling a winding unit of an N*3-phase permanent magnet synchronous motor.
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可读存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。As will be appreciated by those skilled in the art, the embodiments of the present application may be provided as a method, a system, or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-readable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein. The present application refers to flowcharts of methods, apparatus (systems), and computer program products according to embodiments of the present application and/or processor-executed instructions generated for implementing a process or processes and/or block diagrams in a flowchart. A means for the function specified in a block or blocks. These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions The apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams. These computer program instructions can also be loaded on a computer or other programmable data processing device to cause a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented process such that The instructions provide steps for implementing the functions specified in the flow or blocks of the flowcharts and/or the block or blocks of the block diagrams.
以上所述仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above are only the preferred embodiments of the present invention, and the protection scope of the present invention is not limited to the above-mentioned embodiments, and all technical solutions under the idea of the present invention belong to the protection scope of the present invention. It should be pointed out that for those skilled in the art, some improvements and modifications without departing from the principle of the present invention should also be regarded as the protection scope of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110056840.XA CN112886899B (en) | 2021-01-15 | 2021-01-15 | Self-control method and device for winding unit of N x 3 phase permanent magnet synchronous motor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110056840.XA CN112886899B (en) | 2021-01-15 | 2021-01-15 | Self-control method and device for winding unit of N x 3 phase permanent magnet synchronous motor |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112886899A CN112886899A (en) | 2021-06-01 |
CN112886899B true CN112886899B (en) | 2022-08-02 |
Family
ID=76048297
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110056840.XA Active CN112886899B (en) | 2021-01-15 | 2021-01-15 | Self-control method and device for winding unit of N x 3 phase permanent magnet synchronous motor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112886899B (en) |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4006447A1 (en) * | 1990-03-01 | 1991-09-05 | Loher Ag | CONTROL SYSTEM FOR A PULSE INVERTER CONTROLLED ROTARY FIELD MACHINE |
JP2005328637A (en) * | 2004-05-14 | 2005-11-24 | Toshiba Mitsubishi-Electric Industrial System Corp | Parallel multiplex inverter device |
CN101588118B (en) * | 2008-05-20 | 2012-11-21 | 上海海事大学 | Method for modeling double three-phase permanent-magnetic synchronous motors |
CN101604954B (en) * | 2009-07-13 | 2011-12-28 | 山西合创电力科技有限公司 | Comprehensive method for vector or direct torque control of doubly-fed wind generator |
CN105680756B (en) * | 2016-03-17 | 2018-07-27 | 清华大学 | A kind of control method and device for dual three-phase induction machine |
JP6893293B2 (en) * | 2017-02-21 | 2021-06-23 | 有限会社シー・アンド・エス国際研究所 | Double three-phase winding permanent magnet synchronous motor drive system |
-
2021
- 2021-01-15 CN CN202110056840.XA patent/CN112886899B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN112886899A (en) | 2021-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Elbuluk et al. | Neural-network-based model reference adaptive systems for high-performance motor drives and motion controls | |
Peresada et al. | Indirect stator flux-oriented output feedback control of a doubly fed induction machine | |
CN109194219B (en) | A method and system for permanent magnet synchronous motor control based on model-free non-singular terminal sliding mode | |
Jie et al. | Adaptive decoupling control using radial basis function neural network for permanent magnet synchronous motor considering uncertain and time-varying parameters | |
CN110518850A (en) | Internal permanent magnet synchronous motor single neuron self-adaptive PID controller field weakening control method | |
Lin et al. | Adaptive backstepping control of six‐phase PMSM using functional link radial basis function network uncertainty observer | |
Liu et al. | Second-order ESO-based current sensor fault-tolerant strategy for sensorless control of PMSM with B-phase current | |
CN113839589B (en) | A decoupling linear active disturbance rejection control method for permanent magnet synchronous motor | |
CN107222138B (en) | A kind of torque pulsation minimum fault tolerant control method considering reluctance torque | |
CN109639200B (en) | Rotational inertia online identification method based on motor load torque detection | |
CN112886899B (en) | Self-control method and device for winding unit of N x 3 phase permanent magnet synchronous motor | |
CN108448971A (en) | A control system and model predictive current control method for a brushless doubly-fed generator | |
CN110212838A (en) | A kind of method for controlling position-less sensor extracting optimal rotor-position | |
CN114244216A (en) | Permanent magnet synchronous motor parameter identification method, device and system | |
CN112953330A (en) | Four-rotor multi-motor rotating speed cooperative control method based on explicit model prediction | |
CN111181460A (en) | Dynamic current predictive control method, system and medium for single-stator double-rotor disc type counter-rotating permanent magnet synchronous motor | |
CN110518629A (en) | A kind of virtual synchronous control method, device and the controller of Wind turbines | |
WO2023004618A1 (en) | Adaptive current control method and system for alternating current servo motor | |
CN110492808A (en) | Permanent magnet synchronous motor vector control system and method based on H infinity control | |
Mehrotra et al. | Speed estimation of induction motor using artificial neural networks | |
CN111555687B (en) | Control method and device for permanent magnet synchronous motor quadrature-direct axis decoupling | |
Ganjewar et al. | Novel approaches in sensorless induction motor drive for industrial applications | |
CN115395841A (en) | Mixed excitation synchronous motor current PI controller structure and parameter design method | |
Liang et al. | Dual-redundancy PMSM servo system: using single neuron PID controller | |
CN116076016A (en) | motor control unit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |