CN112877459B - Probes for Absolute Quantification of Pichia kuderi Azwiya - Google Patents
Probes for Absolute Quantification of Pichia kuderi Azwiya Download PDFInfo
- Publication number
- CN112877459B CN112877459B CN202110162970.1A CN202110162970A CN112877459B CN 112877459 B CN112877459 B CN 112877459B CN 202110162970 A CN202110162970 A CN 202110162970A CN 112877459 B CN112877459 B CN 112877459B
- Authority
- CN
- China
- Prior art keywords
- sample
- probe
- pichia kudriavzevii
- fermented
- sequence
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000523 sample Substances 0.000 title claims abstract description 294
- 238000011002 quantification Methods 0.000 title claims abstract description 34
- 241000235648 Pichia Species 0.000 title abstract description 4
- 241000235645 Pichia kudriavzevii Species 0.000 claims abstract description 109
- 238000001514 detection method Methods 0.000 claims abstract description 40
- 238000000855 fermentation Methods 0.000 claims abstract description 13
- 230000004151 fermentation Effects 0.000 claims abstract description 12
- 238000006243 chemical reaction Methods 0.000 claims description 64
- 108020004414 DNA Proteins 0.000 claims description 57
- 108091081406 G-quadruplex Proteins 0.000 claims description 49
- 150000003278 haem Chemical class 0.000 claims description 43
- 238000000034 method Methods 0.000 claims description 37
- 238000002835 absorbance Methods 0.000 claims description 36
- 238000010791 quenching Methods 0.000 claims description 35
- 230000000171 quenching effect Effects 0.000 claims description 34
- OHDRQQURAXLVGJ-HLVWOLMTSA-N azane;(2e)-3-ethyl-2-[(e)-(3-ethyl-6-sulfo-1,3-benzothiazol-2-ylidene)hydrazinylidene]-1,3-benzothiazole-6-sulfonic acid Chemical compound [NH4+].[NH4+].S/1C2=CC(S([O-])(=O)=O)=CC=C2N(CC)C\1=N/N=C1/SC2=CC(S([O-])(=O)=O)=CC=C2N1CC OHDRQQURAXLVGJ-HLVWOLMTSA-N 0.000 claims description 25
- 238000004445 quantitative analysis Methods 0.000 claims description 25
- 230000000694 effects Effects 0.000 claims description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 19
- 241000894006 Bacteria Species 0.000 claims description 18
- 102000016938 Catalase Human genes 0.000 claims description 18
- 108010053835 Catalase Proteins 0.000 claims description 18
- 235000021107 fermented food Nutrition 0.000 claims description 18
- 239000000872 buffer Substances 0.000 claims description 14
- 239000002028 Biomass Substances 0.000 claims description 12
- 230000015572 biosynthetic process Effects 0.000 claims description 12
- 230000007613 environmental effect Effects 0.000 claims description 11
- 150000003839 salts Chemical class 0.000 claims description 8
- 102000004190 Enzymes Human genes 0.000 claims description 7
- 108090000790 Enzymes Proteins 0.000 claims description 7
- 240000007594 Oryza sativa Species 0.000 claims description 6
- 235000007164 Oryza sativa Nutrition 0.000 claims description 6
- 239000012634 fragment Substances 0.000 claims description 6
- 239000000376 reactant Substances 0.000 claims description 6
- 235000009566 rice Nutrition 0.000 claims description 6
- 235000021419 vinegar Nutrition 0.000 claims description 6
- 239000000052 vinegar Substances 0.000 claims description 6
- 230000011664 signaling Effects 0.000 claims description 5
- 235000013334 alcoholic beverage Nutrition 0.000 claims description 4
- 235000013351 cheese Nutrition 0.000 claims description 4
- 235000019985 fermented beverage Nutrition 0.000 claims description 4
- 235000021121 fermented vegetables Nutrition 0.000 claims description 4
- 235000013305 food Nutrition 0.000 claims description 4
- 210000001035 gastrointestinal tract Anatomy 0.000 claims description 4
- 235000012149 noodles Nutrition 0.000 claims description 4
- 239000002773 nucleotide Substances 0.000 claims description 4
- 125000003729 nucleotide group Chemical group 0.000 claims description 4
- 239000002689 soil Substances 0.000 claims description 4
- 235000013555 soy sauce Nutrition 0.000 claims description 4
- 239000000155 melt Substances 0.000 claims description 3
- 241000894007 species Species 0.000 claims description 3
- 235000013548 tempeh Nutrition 0.000 claims description 3
- 230000002596 correlated effect Effects 0.000 claims description 2
- 235000013527 bean curd Nutrition 0.000 claims 2
- 238000000605 extraction Methods 0.000 abstract description 13
- 108020004707 nucleic acids Proteins 0.000 abstract description 2
- 102000039446 nucleic acids Human genes 0.000 abstract description 2
- 150000007523 nucleic acids Chemical class 0.000 abstract description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 75
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 19
- 230000001580 bacterial effect Effects 0.000 description 16
- 238000002474 experimental method Methods 0.000 description 12
- 230000000813 microbial effect Effects 0.000 description 12
- 244000005700 microbiome Species 0.000 description 12
- 239000000243 solution Substances 0.000 description 12
- 235000013339 cereals Nutrition 0.000 description 11
- 235000014101 wine Nutrition 0.000 description 9
- 238000011529 RT qPCR Methods 0.000 description 8
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 8
- 239000007788 liquid Substances 0.000 description 7
- 239000000463 material Substances 0.000 description 6
- 238000002844 melting Methods 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- 238000003753 real-time PCR Methods 0.000 description 6
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 5
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 5
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 5
- 238000005119 centrifugation Methods 0.000 description 5
- 238000011144 upstream manufacturing Methods 0.000 description 5
- 241000186660 Lactobacillus Species 0.000 description 4
- 238000009835 boiling Methods 0.000 description 4
- 238000012364 cultivation method Methods 0.000 description 4
- 229940039696 lactobacillus Drugs 0.000 description 4
- 239000002609 medium Substances 0.000 description 4
- 230000003278 mimic effect Effects 0.000 description 4
- 239000008363 phosphate buffer Substances 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- 241000690372 Fusarium proliferatum Species 0.000 description 3
- 108010076504 Protein Sorting Signals Proteins 0.000 description 3
- 230000002538 fungal effect Effects 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 239000008223 sterile water Substances 0.000 description 3
- 241000589212 Acetobacter pasteurianus Species 0.000 description 2
- 241000228232 Aspergillus tubingensis Species 0.000 description 2
- 241000193744 Bacillus amyloliquefaciens Species 0.000 description 2
- 241000193749 Bacillus coagulans Species 0.000 description 2
- 241000194108 Bacillus licheniformis Species 0.000 description 2
- 244000063299 Bacillus subtilis Species 0.000 description 2
- 235000014469 Bacillus subtilis Nutrition 0.000 description 2
- 241000315694 Bacillus tequilensis Species 0.000 description 2
- 102000053602 DNA Human genes 0.000 description 2
- 241000194031 Enterococcus faecium Species 0.000 description 2
- 241001026002 Enterococcus italicus Species 0.000 description 2
- 241001106597 Enterococcus lactis Species 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- 240000001929 Lactobacillus brevis Species 0.000 description 2
- 235000013957 Lactobacillus brevis Nutrition 0.000 description 2
- 241000186679 Lactobacillus buchneri Species 0.000 description 2
- 244000199866 Lactobacillus casei Species 0.000 description 2
- 235000013958 Lactobacillus casei Nutrition 0.000 description 2
- 241000861211 Lactobacillus crustorum Species 0.000 description 2
- 241001134659 Lactobacillus curvatus Species 0.000 description 2
- 241000186673 Lactobacillus delbrueckii Species 0.000 description 2
- 241000186840 Lactobacillus fermentum Species 0.000 description 2
- 241000925032 Lactobacillus harbinensis Species 0.000 description 2
- 241001468157 Lactobacillus johnsonii Species 0.000 description 2
- 241000186871 Lactobacillus murinus Species 0.000 description 2
- 241000216456 Lactobacillus panis Species 0.000 description 2
- 240000006024 Lactobacillus plantarum Species 0.000 description 2
- 235000013965 Lactobacillus plantarum Nutrition 0.000 description 2
- 241000186604 Lactobacillus reuteri Species 0.000 description 2
- 241001468192 Leuconostoc citreum Species 0.000 description 2
- 241000192129 Leuconostoc lactis Species 0.000 description 2
- 241000192130 Leuconostoc mesenteroides Species 0.000 description 2
- 241001468196 Leuconostoc pseudomesenteroides Species 0.000 description 2
- 241000235395 Mucor Species 0.000 description 2
- 241000191998 Pediococcus acidilactici Species 0.000 description 2
- 241001331797 Pediococcus ethanolidurans Species 0.000 description 2
- 241000191996 Pediococcus pentosaceus Species 0.000 description 2
- 239000001888 Peptone Substances 0.000 description 2
- 108010080698 Peptones Proteins 0.000 description 2
- 241000235004 Saccharomycopsis fibuligera Species 0.000 description 2
- 241000235347 Schizosaccharomyces pombe Species 0.000 description 2
- 244000057717 Streptococcus lactis Species 0.000 description 2
- 235000014897 Streptococcus lactis Nutrition 0.000 description 2
- 241000186675 Weissella confusa Species 0.000 description 2
- 241000192133 Weissella paramesenteroides Species 0.000 description 2
- 241000186882 Weissella viridescens Species 0.000 description 2
- 241000235029 Zygosaccharomyces bailii Species 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 229940054340 bacillus coagulans Drugs 0.000 description 2
- 235000013405 beer Nutrition 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- 229940041514 candida albicans extract Drugs 0.000 description 2
- 230000000875 corresponding effect Effects 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 239000000539 dimer Substances 0.000 description 2
- 235000013399 edible fruits Nutrition 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 229940017800 lactobacillus casei Drugs 0.000 description 2
- 229940012969 lactobacillus fermentum Drugs 0.000 description 2
- 229940072205 lactobacillus plantarum Drugs 0.000 description 2
- 229940001882 lactobacillus reuteri Drugs 0.000 description 2
- 238000010309 melting process Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 235000019319 peptone Nutrition 0.000 description 2
- 239000008055 phosphate buffer solution Substances 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 235000019991 rice wine Nutrition 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 239000012138 yeast extract Substances 0.000 description 2
- 235000013618 yogurt Nutrition 0.000 description 2
- BDKLKNJTMLIAFE-UHFFFAOYSA-N 2-(3-fluorophenyl)-1,3-oxazole-4-carbaldehyde Chemical compound FC1=CC=CC(C=2OC=C(C=O)N=2)=C1 BDKLKNJTMLIAFE-UHFFFAOYSA-N 0.000 description 1
- 108091093088 Amplicon Proteins 0.000 description 1
- 108091027757 Deoxyribozyme Proteins 0.000 description 1
- 241000194033 Enterococcus Species 0.000 description 1
- 241000194032 Enterococcus faecalis Species 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 241000736262 Microbiota Species 0.000 description 1
- 108010091086 Recombinases Proteins 0.000 description 1
- 102000018120 Recombinases Human genes 0.000 description 1
- 108020004682 Single-Stranded DNA Proteins 0.000 description 1
- NWGKJDSIEKMTRX-AAZCQSIUSA-N Sorbitan monooleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O NWGKJDSIEKMTRX-AAZCQSIUSA-N 0.000 description 1
- 235000009754 Vitis X bourquina Nutrition 0.000 description 1
- 235000012333 Vitis X labruscana Nutrition 0.000 description 1
- 240000006365 Vitis vinifera Species 0.000 description 1
- 235000014787 Vitis vinifera Nutrition 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 235000015278 beef Nutrition 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 238000004737 colorimetric analysis Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 229940032049 enterococcus faecalis Drugs 0.000 description 1
- 238000001952 enzyme assay Methods 0.000 description 1
- 235000019225 fermented tea Nutrition 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000002906 microbiologic effect Effects 0.000 description 1
- 239000006872 mrs medium Substances 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 238000012257 pre-denaturation Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 229940087562 sodium acetate trihydrate Drugs 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000010563 solid-state fermentation Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229950004959 sorbitan oleate Drugs 0.000 description 1
- 238000011895 specific detection Methods 0.000 description 1
- 235000013616 tea Nutrition 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- YWYZEGXAUVWDED-UHFFFAOYSA-N triammonium citrate Chemical compound [NH4+].[NH4+].[NH4+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O YWYZEGXAUVWDED-UHFFFAOYSA-N 0.000 description 1
- 239000001393 triammonium citrate Substances 0.000 description 1
- 235000011046 triammonium citrate Nutrition 0.000 description 1
- 239000012137 tryptone Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 235000020097 white wine Nutrition 0.000 description 1
- 239000007222 ypd medium Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6888—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
- C12Q1/6895—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6813—Hybridisation assays
- C12Q1/6816—Hybridisation assays characterised by the detection means
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Biotechnology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Immunology (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Botany (AREA)
- Mycology (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
本发明公开了用于库德里阿兹威毕赤酵母绝对定量的探针,属于生物领域、发酵领域、检测领域。本发明的Pichia kudriavzevii定量探针和试剂盒,能够实现Pichia kudriavzevii的总量检测,用于检测和Pichia kudriavzevii定量时不需要使用昂贵仪器,可在2.5h内快速完成定量工作。同时,本发明所使用的样品不必须进行核酸提取。基于本发明的探针、检测试剂盒用于Pichia kudriavzevii定量,具有快速、方便、便宜、准确的特点。
The invention discloses a probe for absolute quantification of Pichia kudriazvii, belonging to the fields of biology, fermentation and detection. The Pichia kudriavzevii quantitative probe and kit of the present invention can realize the detection of the total amount of Pichia kudriavzevii, do not need to use expensive instruments for the detection and quantification of Pichia kudriavzevii, and can quickly complete the quantitative work within 2.5 hours. At the same time, the samples used in the present invention do not necessarily undergo nucleic acid extraction. The probe and detection kit based on the present invention are used for Pichia kudriavzevii quantification, and have the characteristics of fast, convenient, cheap and accurate.
Description
技术领域technical field
本发明涉及用于库德里阿兹威毕赤酵母绝对定量的探针,属于生物领域、发酵领域、检测领域。The invention relates to a probe for absolute quantification of Pichia kudriazvii, belonging to the fields of biology, fermentation and detection.
背景技术Background technique
库德里阿兹威毕赤酵母(Pichia kudriavzevii)是传统发酵食品酿造系统中重要的功能微生物,例如在白酒酿造系统中,Pichia kudriavzevii是高丰度的真菌微生物,同时可以代谢产生白酒的主体成分-酒精,该菌能够调控微生物相互作用以及发酵微生物菌群结构,对食品正常发酵具有重要作用。因此实时跟踪Pichia kudriavzevii的生物量对判断发酵批次稳定性、判定发酵过程正常与否、以及实时发酵参数调控具有重要的指导意义。但目前传统发酵食品体系多多数是多菌种共发酵体系,通过简单的OD比色法无法判断样本中Pichia kudriavzevii的含量,虽然荧光定量PCR法结合特异性引物或探针可以实现混菌系统中Pichia kudriavzevii的定量,但是需要高额的设备和高要求的操作环境。因此,为方便、快速、准确地跟踪样本中Pichia kudriavzevii的生长变化趋势,有必要开发相应的Pichia kudriavzevii定量方法以及试剂盒。 Pichia kudriavzevii is an important functional microorganism in the traditional fermented food brewing system. For example, in the liquor brewing system, Pichia kudriavzevii is a high-abundance fungal microorganism that can metabolize the main components of liquor- Alcohol, the bacteria can regulate the microbial interaction and the structure of the fermenting microbial flora, which plays an important role in the normal fermentation of food. Therefore, real-time tracking of the biomass of Pichia kudriavzevii has important guiding significance for judging the stability of fermentation batches, judging whether the fermentation process is normal or not, and regulating real-time fermentation parameters. However, at present, most traditional fermented food systems are multi-strain co-fermentation systems, and the content of Pichia kudriavzevii in samples cannot be judged by simple OD colorimetry, although fluorescent quantitative PCR combined with specific primers or probes can achieve The quantification of Pichia kudriavzevii requires expensive equipment and a demanding operating environment. Therefore, in order to track the growth trend of Pichia kudriavzevii in samples conveniently, quickly and accurately, it is necessary to develop corresponding quantitative methods and kits for Pichia kudriavzevii .
G四链体/血红素模拟酶活检测的原理在于G四链体可以与血红素形成具有过氧化氢酶活性的DNA模拟酶,可催化过氧化氢氧化ABTS生成ABTS+,呈现绿色的显色反应,可在波长420 nm下检测特征吸光值。G四链体结构的稳定性对整个检测过程至关重要,如果设计不当,当G四链体序列与其他碱基形成二聚体时,会导致G四链体序列无法形成G四链体,以此原理为基础的定量方法在使用中会导致低估样本中目标基因的含量,降低检测方法的灵敏度和准确性。The principle of G quadruplex/heme mimic enzyme activity detection is that G quadruplex can form a DNA mimic enzyme with catalase activity with heme, which can catalyze the oxidation of ABTS by hydrogen peroxide to generate ABTS+, showing a green color reaction , the characteristic absorbance value can be detected at a wavelength of 420 nm. The stability of the G quadruplex structure is crucial to the entire detection process. If the design is improper, when the G quadruplex sequence forms a dimer with other bases, it will cause the G quadruplex sequence to fail to form a G quadruplex. The use of quantitative methods based on this principle will lead to underestimation of the content of the target gene in the sample, reducing the sensitivity and accuracy of the detection method.
目前,基于G四链体/血红素模拟酶活检测的原理有被用于微生物的特异性检测的报道;例如文献Wang Y, Li X, Xi D, Wang X. Visual detection of Fusariumproliferatum based on asymmetric recombinase polymerase amplification andhemin/G-quadruplex DNAzyme. Rsc Advances 2019;9:37144-37147.中,使用了不对称特异性引物(上游引物添加G四链体的反向序列修饰,下游不修饰),该方法只能适用于样本中特定细菌Fusarium proliferatum的检测,无法实现Pichia kudriavzevii的总量检测;此外,该文献利用该不对称特异性引物进行检测时,是在PCR体系中添加不同浓度的上下游引物(上游引物浓度低,下游引物浓度高),通过重组聚合酶扩增(RPA)扩增形成双链产物,随着PCR反应的进行,上游引物被消耗殆尽,下游引物使用新合成的双链DNA为模板扩增,从而形成带有G四链体末端的单链DNA,从而使用G四链体/血红素模拟酶活检测检测样本中的Fusarium proliferatum。但该定量方法依然需要PCR步骤产生G四链体,而PCR过程依然需要高额PCR设备以及严格的操作环境。At present, the principle of G-quadruplex/heme-mimetic enzyme activity detection has been reported to be used for the specific detection of microorganisms; for example, the literature Wang Y, Li X, Xi D, Wang X. Visual detection of Fusariumproliferatum based on asymmetric recombinase In polymerase amplification andhemin/G-quadruplex DNAzyme. Rsc Advances 2019;9:37144-37147., asymmetric specific primers are used (the upstream primer adds the reverse sequence modification of the G quadruplex, and the downstream does not modify), this method only It can be applied to the detection of the specific bacteria Fusarium proliferatum in the sample, and the total detection of Pichia kudriavzevii cannot be realized; in addition, when the literature uses the asymmetric specific primers for detection, it adds different concentrations of upstream and downstream primers (upstream and downstream primers) to the PCR system. Low primer concentration, high concentration of downstream primers), amplified by recombinant polymerase amplification (RPA) to form double-stranded products, as the PCR reaction proceeds, the upstream primers are exhausted, and the downstream primers use newly synthesized double-stranded DNA as The template is amplified to form single-stranded DNA with G-quadruplex ends for the detection of Fusarium proliferatum in samples using the G-quadruplex/heme mimic enzyme assay. However, this quantitative method still requires a PCR step to generate a G quadruplex, and the PCR process still requires high-cost PCR equipment and a strict operating environment.
发明内容Contents of the invention
本发明的一种用于Pichia kudriavzevii绝对定量的探针、试剂盒及应用,解决了如下的至少一个技术问题:(1)现有的方法无法实现所有Pichia kudriavzevii的总量检测;(2)现有定量方法在物种分辨率较低和/或检测准确性不足;(3)现有定量方法需要高额的仪器设备和/或严格的操作环境,不适用于生产采样后的及时检测;(4)现有定量方法操作繁琐等。A probe, kit and application for the absolute quantification of Pichia kudriavzevii of the present invention solve at least one of the following technical problems: (1) the existing method cannot realize the total amount detection of all Pichia kudriavzevii ; (2) the current Some quantitative methods have low species resolution and/or insufficient detection accuracy; (3) Existing quantitative methods require high-cost instruments and/or strict operating environments, and are not suitable for timely detection after production sampling; (4) ) Existing quantitative methods are cumbersome to operate, etc.
本发明的第一个目的是提供一组探针,包括信号探针和淬灭探针;信号探针序列为SEQ ID NO.1所示(GGGTGGGTGGGTGGGTGTTTGAGCGTCGTTTCCATC)。The first object of the present invention is to provide a set of probes, including a signal probe and a quencher probe; the sequence of the signal probe is shown in SEQ ID NO.1 (GGGTGGGTGGGTGGGTGTTTGAGCGTCGTTTCCATC).
在一种实施方式中,淬灭探针序列为SEQ ID NO.2所示(GATGGAAACGACGCTCAAACACCCA)。In one embodiment, the quenching probe sequence is shown in SEQ ID NO.2 (GATGGAAACGACGCTCCAAACACCCA).
本发明的第二个目的是提供Pichia kudriavzevii定量方法,所述方法包括使用本发明的探针。A second object of the present invention is to provide a Pichia kudriavzevii quantification method comprising the use of the probes of the present invention.
所述方法包括:待测样品中DNA发生解链;加入过量信号探针(序列如SEQ IDNO.1),与待测样本的目标核苷酸片段结合形成双链,使G四链体裸漏在序列之外;加入足量淬灭探针(序列如SEQ ID NO.2)与未结合的信号探针形成双链,破坏G四链体结构;利用裸漏在外G四链体与血红素反应形成具有过氧化氢酶活性的G四链体/血红素模拟酶,结合过氧化氢酶的活性表征Pichia kudriavzevii的生物量。The method comprises: melting of DNA in the sample to be tested; adding an excess signal probe (sequence such as SEQ ID NO.1) to combine with the target nucleotide fragment of the sample to be tested to form a double strand, so that the G quadruplex is exposed Outside the sequence; adding a sufficient amount of quenching probe (sequence such as SEQ ID NO.2) to form a double strand with the unbound signal probe, destroying the G quadruplex structure; using the naked G quadruplex and heme The reaction forms a G-quadruplex/heme mimetic enzyme with catalase activity, which in combination with catalase activity characterizes the biomass of Pichia kudriavzevii .
在一种实施方式中,所述方法为绝对定量方法,还包括:建立过氧化氢酶活性(或者与过氧化氢酶活性呈相关性的指标,比如催化过氧化氢氧化ABTS生成ABTS+后溶液在波长420 nm下的吸光值)与Pichia kudriavzevii的生物量的标准曲线;检测待测样品时,将检测到的过氧化氢酶活性代入标准曲线,即获得待测样品中的Pichia kudriavzevii的生物量。In one embodiment, the method is an absolute quantitative method, further comprising: establishing catalase activity (or an index correlated with catalase activity, such as catalyzing hydrogen peroxide to oxidize ABTS to generate ABTS+ after the solution is The absorbance value at a wavelength of 420 nm) and the standard curve of the biomass of Pichia kudriavzevii ; when detecting the sample to be tested, the detected catalase activity was substituted into the standard curve to obtain the biomass of Pichia kudriavzevii in the sample to be tested.
在一种实施方式中,所述方法为相对定量方法,还包括:检测多个样品,根据不同样本检测得到的过氧化氢酶活性的相对比值确定该多个不同样本中Pichia kudriavzevii的生物量的相对值。In one embodiment, the method is a relative quantitative method, further comprising: detecting a plurality of samples, and determining the ratio of the biomass of Pichia kudriavzevii in the plurality of different samples according to the relative ratio of the catalase activity detected by different samples relative value.
在一种实施方式中,所述待测样品为含有菌体、基因组或宏基因组等的样品。可选地,所述待测样品为发酵食品成品或者取自发酵食品发酵过程中的样品;可选地,待测样本进行离心、收集菌体等预处理后再进行后续测定。优选地,收集该样品中的菌体后不经基因组提取,直接进行DNA解链处理。In one embodiment, the sample to be tested is a sample containing bacteria, genome or metagenomics. Optionally, the sample to be tested is a finished product of fermented food or a sample taken from the fermentation process of fermented food; optionally, the sample to be tested is subjected to pretreatment such as centrifugation and collection of bacteria before subsequent determination. Preferably, after the bacteria in the sample are collected, the DNA melting process is directly performed without genome extraction.
在一种实施方式中,所述样品为发酵食品或者取自发酵食品发酵过程中的样品或环境样本。In one embodiment, the sample is a fermented food or a sample taken from a fermentation process of a fermented food or an environmental sample.
在一种实施方式中,所述发酵食品为以下任意一种以上:白酒、黄酒、酱油、啤酒、葡萄酒、食醋、发酵茶、传统发酵蔬菜、发酵饮料、酒精饮品、酸奶、干酪、果醋、酒酿、豆豉、乳腐、发酵米面食品等;所述环境样本为选自肠道、土壤、水体的环境样本。In one embodiment, the fermented food is any one or more of the following: liquor, rice wine, soy sauce, beer, wine, vinegar, fermented tea, traditional fermented vegetables, fermented beverage, alcoholic beverage, yogurt, cheese, fruit vinegar , fermented glutinous rice, fermented soya bean, curd, fermented rice noodle food, etc.; the environmental sample is an environmental sample selected from intestinal tract, soil, and water body.
在一种实施方式中,所述待测样品中DNA发生解链,是采用高温方式进行。可选地,是将待测样品在高于90℃温度下处理。可以是金属浴、水浴、烘箱、保温仪等任意一种能提供对应温度的环境。In one embodiment, the melting of the DNA in the sample to be tested is carried out in a high temperature manner. Optionally, the sample to be tested is processed at a temperature higher than 90°C. It can be any environment that can provide the corresponding temperature, such as a metal bath, a water bath, an oven, or an incubator.
在一种实施方式中,所述解链是在缓冲液中进行。可选地,所述缓冲液可以是Tris-HCl缓冲液,还含有KCl、NH4Cl、NaCl中的任意一种或者多种。可选地,所述缓冲液为Tris-HCl,KCl,pH=7.9。In one embodiment, said melting is performed in a buffer. Optionally, the buffer may be a Tris-HCl buffer, further containing any one or more of KCl, NH 4 Cl, and NaCl. Optionally, the buffer is Tris-HCl, KCl, pH=7.9.
在一种实施方式中,所述过量是指,加入量高于能与待测样本的目标核苷酸片段全部结合形成双链时所需要的信号探针的量。具体用量,本领域技术人员可以结合本领域常识或具体的待测样本来确定,或者通过预实验来确定。In one embodiment, the excess refers to that the added amount is higher than the amount of the signal probe required to combine with all the target nucleotide fragments of the sample to be tested to form a double strand. The specific dosage can be determined by those skilled in the art in combination with common knowledge in the field or specific samples to be tested, or through preliminary experiments.
在一种实施方式中,所述过量是指,超过1010个拷贝的信号探针。In one embodiment, the excess refers to more than 10 10 copies of the signaling probe.
在一种实施方式中,所述信号探针与待测样本的目标核苷酸片段结合形成双链,是在50-60℃温度范围下进行的。In one embodiment, the combination of the signal probe with the target nucleotide fragment of the sample to be tested to form a double strand is carried out at a temperature range of 50-60°C.
在一种实施方式中,所述足量是指,加入量足以与全部未结合的信号探针形成双链时所需要的淬灭探针的量。具体用量,本领域技术人员可以结合本领域常识来确定或具体的待测样本来确定,或者通过预实验来确定。In one embodiment, the sufficient amount refers to the amount of the quenching probe required when the added amount is sufficient to form double strands with all unbound signal probes. The specific dosage can be determined by those skilled in the art in combination with common knowledge in the field or specific samples to be tested, or determined through preliminary experiments.
在一种实施方式中,所述足量是指,信号探针的双倍量。In one embodiment, the sufficient amount refers to double the amount of signaling probes.
在一种实施方式中,所述加入足量淬灭探针与未结合的信号探针形成双链,是在能使淬灭探针与未结合的信号探针形成双链的温度下进行;本领域技术人员可以结合本领域常识来确定或具体的待测样本来确定。In one embodiment, the addition of a sufficient amount of the quenching probe to form a double strand with the unbound signal probe is performed at a temperature that enables the quencher probe to form a double strand with the unbound signal probe; Those skilled in the art can determine in combination with common knowledge in the field or a specific sample to be tested.
在一种实施方式中,所述利用裸漏在外G四链体与血红素反应形成具有过氧化氢酶活性的G四链体/血红素模拟酶,结合过氧化氢酶的活性表征Pichia kudriavzevii的生物量,是指在体系中加入血红素反应后,再加入ABTS和H2O2,然后通过反应物的吸光值来表征过氧化氢酶活性。In one embodiment, the use of naked G quadruplexes to react with heme to form G quadruplexes/heme mimetic enzymes with catalase activity, combined with the activity of catalase to characterize Pichia kudriavzevii Biomass refers to adding ABTS and H 2 O 2 to the system after adding heme for reaction, and then characterizing the catalase activity by the light absorbance value of the reactants.
在一种实施方式中,所述吸光值是在波长420 nm下的吸光值。In one embodiment, the absorbance value is the absorbance value at a wavelength of 420 nm.
在一种实施方式中,所述定量方法,具体是:In one embodiment, the quantitative method is specifically:
(1)待测样品进行DNA解链处理;(1) The sample to be tested is subjected to DNA melting treatment;
(2)加入信号探针,于55 ℃反应30 min;(2) Add the signal probe and react at 55 °C for 30 min;
(3)加入淬灭探针,于55 ℃反应30 min;(3) Add a quenching probe and react at 55 °C for 30 min;
(4)加入血红素,于37 ℃反应30 min;(4) Add heme and react at 37 °C for 30 min;
(5)加入2,2-连氮基-双-(3-乙基苯并二氢噻唑啉-6-磺酸)二铵盐(ABTS)和H2O2,于37℃温度反应30 min;(5) Add 2,2-azino-bis-(3-ethylbenzodihydrothiazoline-6-sulfonic acid) diammonium salt (ABTS) and H 2 O 2 , react at 37°C for 30 min ;
(6)检测反应物在波长420 nm下的吸光值;(6) Detect the absorbance value of the reactant at a wavelength of 420 nm;
(7)结合吸光值对样品中Pichia kudriavzevii进行定量。(7) Quantify Pichia kudriavzevii in the sample by combining the absorbance value.
在一种实施方式中,所述定量方法,还包括:配置不同已知Pichia kudriavzevii含量的样品,测定不同样品经上述方法处理后得到的吸光值;绘制吸光值与不同Pichia kudriavzevii含量的标准曲线;将待测样品经经上述方法处理后得到的吸光值代入标准曲线,即获得待测样品中Pichia kudriavzevii含量。In one embodiment, the quantitative method further includes: configuring samples with different known Pichia kudriavzevii contents, and measuring the absorbance values of different samples after being processed by the above method; drawing a standard curve between absorbance values and different Pichia kudriavzevii contents; Substitute the absorbance value obtained after the sample to be tested through the above method into the standard curve to obtain the content of Pichia kudriavzevii in the sample to be tested.
本发明的第三个目的是提供一种用于Pichia kudriavzevii绝对定量的检测试剂盒,含有本发明的序列如SEQ ID NO.1的信号探针。The third object of the present invention is to provide a detection kit for absolute quantification of Pichia kudriavzevii , which contains a signal probe of the sequence of the present invention such as SEQ ID NO.1.
在一种实施方式中,所述检测试剂盒还含有序列如SEQ ID NO.2的淬灭探针。In one embodiment, the detection kit further contains a quencher probe with a sequence such as SEQ ID NO.2.
在一种实施方式中,所述检测试剂盒还含有如下任意一种或多种:血红素、缓冲液、2,2-连氮基-双-(3-乙基苯并二氢噻唑啉-6-磺酸)二铵盐(ABTS)、H2O2。也可以不含有这些试剂,在使用试剂盒时,有操作人员另行准备。In one embodiment, the detection kit also contains any one or more of the following: heme, buffer, 2,2-azino-bis-(3-ethylbenzodihydrothiazoline- 6-sulfonic acid) diammonium salt (ABTS), H 2 O 2 . These reagents may not be included, and the operator must prepare them separately when using the kit.
在一种实施方式中,所述检测试剂盒中,缓冲液可以是Tris-HCl缓冲液,还含有KCl、NH4Cl、NaCl中的任意一种或者多种。可选地,所述缓冲液为Tris-HCl,KCl,pH=7.9。In one embodiment, in the detection kit, the buffer may be Tris-HCl buffer, and may also contain any one or more of KCl, NH 4 Cl, and NaCl. Optionally, the buffer is Tris-HCl, KCl, pH=7.9.
在一种实施方式中,所述检测试剂盒是Pichia kudriavzevii绝对定量试剂盒,所述试剂盒同时包括四种试剂(试剂1,试剂2,试剂3,试剂4)和一套Pichia kudriavzevii定量探针(信号探针,淬灭探针);所述的试剂1包括血红素;所述的试剂2包括缓冲液(Tris-HCl,KCl,pH=7.9;其中KCl可替换为NH4Cl、NaCl);所述的试剂3包括2,2-连氮基-双-(3-乙基苯并二氢噻唑啉-6-磺酸)二铵盐(ABTS);所述的试剂4包括H2O2。In one embodiment, the detection kit is a Pichia kudriavzevii absolute quantification kit, which includes four reagents (reagent 1, reagent 2, reagent 3, reagent 4) and a set of Pichia kudriavzevii quantitative probes (signal probe, quenching probe); the reagent 1 includes heme; the reagent 2 includes buffer (Tris-HCl, KCl, pH=7.9; KCl can be replaced by NH 4 Cl, NaCl) ; The reagent 3 includes 2,2-azino-bis-(3-ethylbenzodihydrothiazoline-6-sulfonic acid) diammonium salt (ABTS); the reagent 4 includes H 2 O 2 .
在一种实施方式中,所述检测试剂盒中,试剂或探针可以是液体状态或者固体状态,使用时本领域技术人员可以常规地调整到适合的浓度。In one embodiment, in the detection kit, the reagent or probe may be in a liquid state or a solid state, and those skilled in the art can routinely adjust to an appropriate concentration during use.
本发明的第四个目的是提供所述试剂盒的使用方法。The fourth object of the present invention is to provide a method for using the kit.
在一种实施方式中,所述使用方法包括:在DNA解链的待测样本中加入过量的信号探针反应一段时间,使信号探针与待测样本中的目标片段结合;然后在加入足量淬灭探针使之与未结合的信号探针的形成双链;再加入血红素,反应一段时间后加入ABTS和H2O2,反应一段时间,检测反应物的吸光值,结合吸光值对样品中Pichia kudriavzevii进行定量。In one embodiment, the method of use comprises: adding an excess signal probe to the sample to be tested in which the DNA melts and reacting for a period of time, so that the signal probe binds to the target fragment in the sample to be tested; Quantitatively quench the probe to form a double strand with the unbound signal probe; then add heme, add ABTS and H 2 O 2 after a period of reaction, react for a period of time, detect the absorbance value of the reactant, and combine the absorbance value Quantification of Pichia kudriavzevii in samples.
在一种实施方式中,所述方法包括,将试剂和探针调整到适合使用的浓度。In one embodiment, the method includes adjusting reagents and probes to concentrations suitable for use.
(1)待测样品进行DNA解链处理;(2)加入信号探针,于55 ℃反应30 min;(3)加入淬灭探针,于55 ℃反应30 min;(4)加入血红素,于37℃反应30 min;(5)加入2,2-连氮基-双-(3-乙基苯并二氢噻唑啉-6-磺酸)二铵盐(ABTS)和H2O2,于37℃温度反应30 min;(6)检测反应物在波长420 nm下的吸光值;(7)结合吸光值对样品中Pichia kudriavzevii进行定量。(1) The sample to be tested was subjected to DNA melting treatment; (2) Signal probe was added and reacted at 55 °C for 30 min; (3) Quenching probe was added and reacted at 55 °C for 30 min; (4) Heme was added, React at 37°C for 30 min; (5) Add 2,2-azino-bis-(3-ethylbenzodihydrothiazoline-6-sulfonic acid) diammonium salt (ABTS) and H 2 O 2 , React at 37°C for 30 min; (6) Detect the absorbance of the reactants at a wavelength of 420 nm; (7) Quantify Pichia kudriavzevii in the sample based on the absorbance.
本发明的第五个目的是提供所述试剂盒在Pichia kudriavzevii定量中的应用。The fifth object of the present invention is to provide the application of said kit in Pichia kudriavzevii quantification.
在一种实施方式中,所述应用是用于发酵食品技术领域或环境领域;可选地,所述发酵食品为以下任意一种以上:白酒、黄酒、酱油、啤酒、葡萄酒、食醋、发酵茶、传统发酵蔬菜、发酵饮料、酒精饮品、酸奶、干酪、果醋、酒酿、豆豉、乳腐、发酵米面食品等;所述环境样本为选自肠道、土壤、水体的环境样本。In one embodiment, the application is in the field of fermented food technology or the environment; optionally, the fermented food is any one or more of the following: white wine, rice wine, soy sauce, beer, wine, vinegar, fermented food Tea, traditional fermented vegetables, fermented beverages, alcoholic beverages, yogurt, cheese, fruit vinegar, fermented rice, tempeh, curd, fermented rice noodles, etc.; the environmental samples are selected from the intestinal tract, soil, and water.
在一种实施方式中,所述应用时,待测样本可以为含有菌体、基因组或宏基因组等的样品。可选地,所述待测样品为发酵食品成品或者取自发酵食品发酵过程中的样品或环境样本;可选地,待测样本进行离心、收集菌体等预处理后再进行后续测定。优选地,收集该样品中的菌体后不经基因组提取,直接进行DNA解链处理。In one embodiment, during the application, the sample to be tested may be a sample containing bacteria, genome or metagenomics. Optionally, the sample to be tested is a finished product of fermented food or a sample taken from the fermentation process of fermented food or an environmental sample; optionally, the sample to be tested is subjected to pretreatment such as centrifugation and collection of bacteria before subsequent determination. Preferably, after the bacteria in the sample are collected, the DNA melting process is directly performed without genome extraction.
有益效果:Beneficial effect:
本发明将G四链体与特异性性序列结合形成信号探针,信号探针与目标序列结合使得G四链体裸漏在序列之外,加入足量淬灭探针与未反应信号探针形成双链,破坏G四链体结构,通过与血红素反应形成G四链体/血红素模拟酶,表现出过氧化氢酶活性,以过氧化氢酶活性表征微生物的生物量。本发明的Pichia kudriavzevii定量探针,能够实现Pichia kudriavzevii的总量检测;进一步地,对信号探针进行优化,信号探针序列为GGGTGGGTGGGTGGGTGTTTGAGCGTCGTTTCCATC(SEQ ID NO.1),淬灭探针为GATGGAAACGACGCTCAAACACCCA(SEQ ID NO.2)。与SEQ ID NO.3的信号序列相比,SEQ ID NO.1的信号探针中G四链体序列不与特异性序列产生额外的空间结构(图1),检测的准确性更高、最低检出限改善。In the present invention, the G quadruplex is combined with a specific sequence to form a signal probe, and the signal probe is combined with the target sequence so that the G quadruplex is exposed outside the sequence, and a sufficient amount of quenched probe and unreacted signal probe are added Form a double chain, destroy the G quadruplex structure, form a G quadruplex/heme mimic enzyme by reacting with heme, exhibit catalase activity, and use catalase activity to characterize the biomass of microorganisms. The Pichia kudriavzevii quantitative probe of the present invention can realize the total detection of Pichia kudriavzevii ; further, the signal probe is optimized, the signal probe sequence is GGGTGGGTGGGTGGGTGTTTGAGCGTCGTTTCCATC (SEQ ID NO.1), and the quenching probe is GATGGAAACGACGCTCCAAACACCCA (SEQ ID NO.2). Compared with the signal sequence of SEQ ID NO.3, the G quadruplex sequence in the signal probe of SEQ ID NO.1 does not produce an additional spatial structure with the specific sequence (Figure 1), and the detection accuracy is higher and the lowest The detection limit is improved.
本发明的探针用于检测和Pichia kudriavzevii定量时,不需要昂贵仪器的检测流程。还首次提供一种用于微生物绝对定量试剂盒,可在2.5 h内完成定量工作。本发明为避免使用高额设备,如PCR仪,通过信号探针和淬灭探针组合的方式实现微生物定量。本发明解决了目前的微生物定量手段均依赖较昂贵的仪器,在实际用于过程中十分受限制的问题。When the probe of the present invention is used for detection and quantification of Pichia kudriavzevii , the detection process of expensive instruments is not required. It also provides a kit for absolute quantification of microorganisms for the first time, which can complete the quantitative work within 2.5 hours. In order to avoid the use of high-cost equipment, such as a PCR instrument, the present invention realizes microbial quantification by combining signal probes and quenching probes. The invention solves the problem that the current microbiological quantification means rely on relatively expensive instruments and are very limited in the actual application process.
进一步,本发明能够实现快速Pichia kudriavzevii检测,样品不必须进行核酸提取,仅需要将样本中的微生物洗脱于缓冲液中,直接进行后续实验。同时,与荧光定量PCR定量结果相比,本发明所得到的定量结果无显著性差异。Further, the present invention can realize rapid Pichia kudriavzevii detection, the sample does not need to be subjected to nucleic acid extraction, and only the microorganisms in the sample need to be eluted in the buffer, and subsequent experiments can be directly performed. At the same time, compared with the quantitative results of fluorescent quantitative PCR, the quantitative results obtained by the present invention have no significant difference.
综上,基于本发明所提供的探针及检测试剂盒,用于Pichia kudriavzevii定量,具有快速、便宜、准确的特点。In conclusion, the probe and detection kit provided by the present invention are fast, cheap and accurate for the quantification of Pichia kudriavzevii .
附图说明Description of drawings
图1:信号探针二聚体结构。(A)SEQ ID NO.1的G四链体序列不与特异性序列自成环;(B)已报道的SEQ ID NO.3用于微生物定量的G四链体序列与特异性序列自成环。Figure 1: Signaling probe dimer structure. (A) The G-quadruplex sequence of SEQ ID NO.1 does not form a loop with the specific sequence; (B) The reported G-quadruplex sequence of SEQ ID NO.3 used for microbial quantification forms a self-contained sequence with the specific sequence ring.
图2:Pichia kudriavzevii探针的特异性。Figure 2: Specificity of Pichia kudriavzevii probes.
图3:基于基因组提取的Pichia kudriavzevii定量探针的标准曲线。Figure 3: Standard curve of Pichia kudriavzevii quantitative probes based on genome extraction.
图4:基于不提取样本基因组的Pichia kudriavzevii定量探针的标准曲线。Figure 4: Standard curve based on Pichia kudriavzevii quantitative probes without extracting the sample genome.
图5:qPCR标准曲线。Figure 5: qPCR standard curve.
图6:比较基于基因组提取的Pichia kudriavzevii探针定量实验、基于不提取样本基因组的Pichia kudriavzevii探针定量实验和qPCRPichia kudriavzevii定量实验;其中,(A)基于不提取样本基因组的Pichia kudriavzevii探针定量实验,(B)基于基因组提取的Pichia kudriavzevii探针定量实验,(C)qPCRPichia kudriavzevii定量实验。Figure 6: Comparison of Pichia kudriavzevii probe quantification experiments based on genome extraction, Pichia kudriavzevii probe quantification experiments based on non-extracted sample genomes, and qPCR Pichia kudriavzevii quantitative experiments; among them, (A) Pichia kudriavzevii probe quantification experiments based on non-extracted sample genomes Experiment, (B) Pichia kudriavzevii probe quantitative experiment based on genome extraction, (C) qPCR Pichia kudriavzevii quantitative experiment.
图7:比较基于SEQ ID NO.1/SEQ ID NO.2的探针(A)和SEQ ID NO.3/SEQ ID NO.4探针(B)的检测结果的稳定性。Figure 7: Comparison of the stability of detection results based on the probe of SEQ ID NO.1/SEQ ID NO.2 (A) and the probe of SEQ ID NO.3/SEQ ID NO.4 (B).
具体实施方式:Detailed ways:
实施例1:Pichia kudriavzevii定量探针组合试剂Example 1: Pichia kudriavzevii quantitative probe combination reagent
探针组合试剂;含有独立包装的信号探针试剂和淬灭探针试剂;其中,信号探针序列如SEQ ID NO.1所示的,淬灭探针序列为SEQ ID NO.2所示的。Probe combination reagent; containing independently packaged signal probe reagent and quenching probe reagent; wherein, the signal probe sequence is as shown in SEQ ID NO.1, and the quenching probe sequence is as shown in SEQ ID NO.2 .
信号探针试剂和淬灭探针试剂,为干粉或者液体状;为干粉时,可以在实验之前稀释到合适的浓度,比如,使用无菌水或者缓冲液稀释至浓度为20 μM;为液体状时,浓度可以是20-200 μM,试剂使用前可以进行稀释,或者直接使用。Signaling probe reagents and quenching probe reagents are in dry powder or liquid form; in dry powder form, they can be diluted to an appropriate concentration before the experiment, for example, diluted with sterile water or buffer solution to a concentration of 20 μM; in liquid form When used, the concentration can be 20-200 μM, and the reagent can be diluted before use, or used directly.
实施例2:Pichia kudriavzevii定量试剂盒及其使用Embodiment 2: Pichia kudriavzevii quantitative kit and its use
Pichia kudriavzevii定量试剂盒,含有独立包装的信号探针试剂和淬灭探针试剂;其中,信号探针序列如SEQ ID NO.1所示,淬灭探针序列为SEQ ID NO.2所示。 The Pichia kudriavzevii quantitative kit contains independently packaged signal probe reagents and quenching probe reagents; wherein, the signal probe sequence is shown in SEQ ID NO.1, and the quenching probe sequence is shown in SEQ ID NO.2.
该试剂盒使用时,可以与血红素、缓冲液、2,2-连氮基-双-(3-乙基苯并二氢噻唑啉-6-磺酸)二铵盐(ABTS)、H2O2配合使用。When this kit is used, it can be mixed with heme, buffer, 2,2-azino-bis-(3-ethylbenzodihydrothiazoline-6-sulfonic acid) diammonium salt (ABTS), H 2 Use with O2 .
使用方法是:The method of use is:
(1)溶液配置。配置100 nM的血红素溶液(试剂1);配置终浓度为50 mM的Tris-HCL,终浓度为50 mM的KCl,最终pH为7.9(试剂2);7 mM的2,2-连氮基-双-(3-乙基苯并二氢噻唑啉-6-磺酸)二铵盐(ABTS)(试剂3)以及7 mM的H2O2溶液(试剂4);溶剂均为无菌水。(1) Solution configuration. Prepare 100 nM heme solution (Reagent 1); prepare Tris-HCL with a final concentration of 50 mM, KCl with a final concentration of 50 mM, and a final pH of 7.9 (Reagent 2); 7 mM 2,2-azino - Bis-(3-ethylbenzodihydrothiazoline-6-sulfonic acid) diammonium salt (ABTS) (Reagent 3) and 7 mM H2O2 solution (Reagent 4); solvents are sterile water .
(2)信号探针与样本DNA形成双链。向2 mL的试剂2加入4 μL的样本基因组DNA,于90 ℃下水浴处理10 min。加入4 μL 20 μM的信号探针之后于55 ℃下反应30 min。(2) The signal probe forms a double strand with the sample DNA. Add 4 μL of sample genomic DNA to 2 mL of reagent 2, and treat in a water bath at 90 °C for 10 min. After adding 4 μL of 20 μM signal probe, react at 55 °C for 30 min.
(3)淬灭探针与未结合的信号探针形成双链。淬灭探针与未结合的信号探针形成双链,破坏G四链体结构。向(2)步骤反应之后的体系中加入8 μL 20 μM的淬灭探针,55 ℃下反应30 min。(3) The quencher probe forms a double strand with the unbound signal probe. The quencher probe doubles with the unbound signal probe, disrupting the G quadruplex structure. Add 8 μL of 20 μM quenching probe to the system after the reaction in step (2), and react at 55 °C for 30 min.
(4)形成血红素/G四链体结构。向(3)步骤反应之后的体系中加入终浓度为100 nM试剂1,37 ℃处理30 min。(4) Formation of heme/G quadruplex structure. Add reagent 1 at a final concentration of 100 nM to the system after the reaction in step (3), and treat at 37 °C for 30 min.
(5)显色反应。向(4)反应结束的体系中加入终浓度为7 mM的试剂(ABTS)和终浓度为7 mM的试剂4,37℃处理30 min,进行显示反应(绿色)。(5) Color reaction. Add reagent (ABTS) with a final concentration of 7 mM and reagent 4 with a final concentration of 7 mM to the system after the reaction in (4), and treat at 37°C for 30 min to perform a display reaction (green).
检测反应物在波长420 nm下的吸光值;结合吸光值对样品中Pichia kudriavzevii进行定量。Detect the absorbance value of the reactant at a wavelength of 420 nm; combine the absorbance value to quantify Pichia kudriavzevii in the sample.
当然,在进行绝对定量时,可以自行绘制吸光值与Pichia kudriavzevii生物量的标准曲线,或者根据试剂盒推荐的使用方法和标准曲线直接换算得到Pichia kudriavzevii的生物量。Of course, when performing absolute quantification, you can draw the standard curve between the absorbance value and the biomass of Pichia kudriavzevii by yourself, or directly convert the biomass of Pichia kudriavzevii according to the method recommended by the kit and the standard curve.
实施例3:Pichia kudriavzevii定量试剂盒Example 3: Pichia kudriavzevii Quantification Kit
Pichia kudriavzevii定量试剂盒,含有独立包装的信号探针试剂和淬灭探针试剂;其中,信号探针序列如SEQ ID NO.1所示的,淬灭探针序列为SEQ ID NO.2所示。 The Pichia kudriavzevii quantitative kit contains independently packaged signal probe reagents and quenching probe reagents; wherein, the signal probe sequence is as shown in SEQ ID NO.1, and the quenching probe sequence is as shown in SEQ ID NO.2 .
该试剂盒中还含有100 nM的血红素溶液(试剂1)、Tris-HCL缓冲液、7 mM的2,2-连氮基-双-(3-乙基苯并二氢噻唑啉-6-磺酸)二铵盐(ABTS)、7 mM的H2O2溶液。The kit also contains 100 nM heme solution (Reagent 1), Tris-HCL buffer, 7 mM 2,2-azino-bis-(3-ethylbenzodihydrothiazoline-6- sulfonic acid) diammonium salt (ABTS), 7 mM H 2 O 2 solution.
实施例4:Pichia kudriavzevii定量试剂盒的特异性Example 4: Specificity of the Pichia kudriavzevii Quantification Kit
(1)选择来源于发酵谷物中的Pichia kudriavzevii作为阳性对照,选择发酵食品样本中广泛存在的36个细菌种微生物和6个真菌种微生物作为阴性对照,细菌微生物分别为Lactobacillus buchneri,Lactobacillus dioilvorans,Lactobacillus brevis,Lactobacillus crustorum,Lactobacillus plantarum,Lactobacillus harbinensis,Lactobacillus acidiliscis,Pediococcus ethanolidurans,Pediococcus acidilactici,Pediococcus pentosaceus,Lactobacillus murinus,Lactobacillus curvatus,Lactobacillus casei,Lactobacillus reuteri,Lactobacillus panis,Lactobacillus fermentum,Lactobacillus johnsonii,Lactobacillus delbrueckii,Lactococcus lactis,Weissella confusa,Weissella paramesenteroides,Weissella viridescens,Leuconostoc citreum,Leuconostoc lactis,Leuconostoc mesenteroides,Leuconostoc pseudomesenteroides,Enterococcus italicus,Enterococcus lactis,Enterococcus faecalis,Bacillus coagulans,Bacillus licheniformis,Bacillus tequilensis,Bacillus subtilis,Bacillus velezensis,Acetobacter pasteurianus,Enterococcus faecium。真菌微生物分别为Aspergillus tubingensis,Mucor rouxianus,Schizosaccharomyces pombe,Zygosaccharomyces bailii,Saccharomycopsis fibuligera,Saccharomyces cerevisiae。(1) Pichia kudriavzevii from fermented grains was selected as a positive control, and 36 bacterial species and 6 fungal microorganisms widely present in fermented food samples were selected as negative controls. The bacterial microorganisms were Lactobacillus buchneri , Lactobacillus dioilvorans , Lactobacillus brevis , Lactobacillus crustorum , Lactobacillus plantarum , Lactobacillus harbinensis , Lactobacillus acidiliscis , Pediococcus ethanolidurans , Pediococcus acidilactici , Pediococcus pentosaceus , Lactobacillus murinus , Lactobacillus curvatus , Lactobacillus casei , Lactobacillus reuteri , Lactobacillus panis , Lactobacillus fermentum , Lactobacillus johnsonii , Lactobacillus delbrueckii , Lactococcus lactis , Weissella confusa , Weissella paramesenteroides , Weissella viridescens , Leuconostoc citreum , Leuconostoc lactis , Leuconostoc mesenteroides , Leuconostoc pseudomesenteroides , Enterococcus italicus , Enterococcus lactis , Enterococcus faecal is , Bacillus coagulans , Bacillus licheniformis , Bacillus tequilensis , Bacillus subtilis , Bacillus velezensis , Acetobacter pasteurianus , Enterococcus faecium . The fungal microorganisms are Aspergillus tubingensis , Mucor rouxianus , Schizosaccharomyces pombe , Zygosaccharomyces bailii , Saccharomycopsis fibuligera , Saccharomyces cerevisiae .
(2)以上微生物选择不同的培养基进行培养,其中Lactobacillus buchneri,Lactobacillus dioilvorans,Lactobacillus brevis,Lactobacillus crustorum,Lactobacillus plantarum,Lactobacillus harbinensis,Lactobacillus acidiliscis,Pediococcus ethanolidurans,Pediococcus acidilactici,Pediococcus pentosaceus,Lactobacillus murinus,Lactobacillus curvatus,Lactobacillus casei,Lactobacillus reuteri,Lactobacillus panis,Lactobacillus fermentum,Lactobacillus johnsonii,Lactobacillus delbrueckii,Lactococcus lactis,Weissella confusa,Weissella paramesenteroides,Weissella viridescens,Leuconostoc citreum,Leuconostoc lactis,Leuconostoc mesenteroides,Leuconostoc pseudomesenteroides使用MRS培养基,培养基配方为胰蛋白胨10.0 g/L,牛肉浸膏8.0 g/L,酵母提取物4.0 g/L,葡萄糖18.0 g/L,无水山梨醇油酸酯0.8 mL/L,K2HPO42.5 g/L,三水合乙酸钠6.0 g/L,柠檬酸三铵2.0 g/L,MgSO4·7H2O 0.3 g/L,MnSO4·4H2O 0.08 g/L。培养条件为30 ℃ 48 h。Enterococcus italicus,Enterococcus lactis,Enterococcus faecalis,Bacillus coagulans,Bacillus licheniformis,Bacillus tequilensis,Bacillus subtilis,Bacillus velezensis,Acetobacter pasteurianus,Enterococcus faecium使用LB培养基,培养基配方为蛋白胨10.0 g/L,酵母粉5 g/L,氯化钠10 g/L。培养条件为37 ℃ 24 h。Aspergillus tubingensis,Mucor rouxianus,Schizosaccharomyces pombe,Zygosaccharomyces bailii,Pichia kudriavzevii,Saccharomycopsis fibuligera,Saccharomyces cerevisiae使用YPD培养基,培养基配方为酵母膏10 g/L,蛋白胨20 g/L,葡萄糖20 g/L。培养条件为:霉菌30 ℃下培养5天,酵母菌30 ℃条件下培养2天。(2) The above microorganisms were cultured in different media, among which Lactobacillus buchneri , Lactobacillus dioilvorans , Lactobacillus brevis , Lactobacillus crustorum , Lactobacillus plantarum , Lactobacillus harbinensis , Lactobacillus acidiliscis , Pediococcus ethanolidurans , Pediococ cus acidilactici , Pediococcus pentosaceus , Lactobacillus murinus , Lactobacillus curvatus , Lactobacillus casei , Lactobacillus reuteri , Lactobacillus panis , Lactobacillus fermentum , Lactobacillus johnsonii , Lactobacillus delbrueckii , Lactococcus lactis , Weissella confusa , Weissella paramesenteroides , Weissella viridescens , Leuconostoc citreum , Leuconostoc lactis , Leuconostoc mesenteroides , Leuconostoc pseudomesenteroides use MRS medium, the medium formula is Tryptone 10.0 g/L, beef extract 8.0 g/L, yeast extract 4.0 g/L, glucose 18.0 g/L, anhydrous sorbitan oleate 0.8 mL/L, K 2 HPO 4 2.5 g/L, Sodium acetate trihydrate 6.0 g/L, triammonium citrate 2.0 g/L, MgSO 4 ·7H 2 O 0.3 g/L, MnSO 4 ·4H 2 O 0.08 g/L. The culture condition was 30°C for 48 h. Enterococcus italicus , Enterococcus lactis , Enterococcus faecalis , Bacillus coagulans , Bacillus licheniformis , Bacillus tequilensis , Bacillus subtilis , Bacillus velezensis , Acetobacter pasteurianus , Enterococcus faecium use LB medium, The medium formula is peptone 10.0 g/L, yeast powder 5 g/L , sodium chloride 10 g/L. The culture condition was 37°C for 24 h. Aspergillus tubingensis , Mucor rouxianus , Schizosaccharomyces pombe , Zygosaccharomyces bailii , Pichia kudriavzevii , Saccharomycopsis fibuligera , Saccharomyces cerevisiae use YPD medium, the medium formula is yeast extract 10 g/L, peptone 20 g/L, glucose 20 g/L L. The culture conditions were as follows: the mold was cultured at 30°C for 5 days, and the yeast was cultured at 30°C for 2 days.
(3)单菌基因组提取。上述菌液在12000 rpm条件下处理2 min,收集沉淀。43种微生物纯培养物的基因组使用基因抽提试剂盒DNeasy Tissue Kit提取。(3) Single bacterial genome extraction. The above bacterial solution was treated at 12000 rpm for 2 min, and the precipitate was collected. The genomes of 43 microbial pure cultures were extracted using the gene extraction kit DNeasy Tissue Kit.
(4)探针选择为Pichia kudriavzevii特异性探针,信号探针的序列为GGGTGGGTGGGTGGGTGTTTGAGCGTCGTTTCCATC(SEQ ID NO.1),淬灭探针的序列为GATGGAAACGACGCTCAAACACCCA(SEQ ID NO.2)。(4) The probe was selected as a Pichia kudriavzevii specific probe, the sequence of the signal probe was GGGTGGGTGGGTGGGTGTTTGAGCGTCGTTTCCATC (SEQ ID NO.1), and the sequence of the quenching probe was GATGGAAACGACGCTCAAACACCCA (SEQ ID NO.2).
(4)信号探针与样本DNA形成双链。分别向2 mL的试剂2(包括终浓度为50 mM的Tris-HCL,终浓度为50 mM的KCl,最终pH为7.9)加入4 μL不同微生物的基因组DNA,于90 ℃下水浴处理10 min。加入4 μL 20 μM的信号探针之后于55 ℃下反应30 min。(4) The signal probe forms a double strand with the sample DNA. Add 4 μL of genomic DNA of different microorganisms to 2 mL of reagent 2 (including Tris-HCL at a final concentration of 50 mM, KCl at a final concentration of 50 mM, and a final pH of 7.9), and treat in a water bath at 90 °C for 10 min. After adding 4 μL of 20 μM signal probe, react at 55 °C for 30 min.
(5)淬灭探针与未结合的信号探针形成双链,破坏G四链体结构。向(4)步骤反应之后的体系中加入8 μL 20 μM的淬灭探针,55 ℃下反应30 min。(5) The quencher probe forms a double strand with the unbound signal probe, destroying the G quadruplex structure. Add 8 μL of 20 μM quenching probe to the system after the reaction in step (4), and react at 55 °C for 30 min.
(6)形成血红素/G四链体结构。向(5)步骤反应之后的体系中加入终浓度为100 nM试剂1(血红素),37 ℃处理30 min。(6) Formation of heme/G quadruplex structure. Add reagent 1 (heme) at a final concentration of 100 nM to the system after the reaction in step (5), and treat at 37 °C for 30 min.
(7)显色反应。向(6)反应结束的体系中加入终浓度为7 mM的试剂3(ABTS)和终浓度为7 mM的试剂4(H2O2),37℃处理30 min。结果如图2所示,添加Pichia kudriavzevii基因组的实验组出现显色反应,添加非Pichia kudriavzevii的实验组和空白对照组没有出现显色反应,证明本试剂盒中检测Pichia kudriavzevii的特异性。(7) Color reaction. Add reagent 3 (ABTS) with a final concentration of 7 mM and reagent 4 (H 2 O 2 ) with a final concentration of 7 mM to the system after the reaction in (6), and treat at 37°C for 30 min. The results are shown in Figure 2, the experimental group added Pichia kudriavzevii genome showed a color reaction, and the experimental group added non- Pichia kudriavzevii and the blank control group did not appear color reaction, proving the specificity of detecting Pichia kudriavzevii in this kit.
实施例5:定量方法准确性评估Example 5: Quantitative method accuracy assessment
(1)Pichia kudriavzevii菌液根据实施例4中的培养方法获得,微生物菌浓通过平板计数法测定,基因组的提取同实施例4。(1) The Pichia kudriavzevii bacterial liquid was obtained according to the cultivation method in Example 4, the microbial concentration was determined by plate counting method, and the genome extraction was the same as in Example 4.
(2)通过10倍梯度稀释Pichia kudriavzevii基因组DNA。(2) Pichia kudriavzevii genomic DNA was diluted by 10-fold gradient.
(3)使用Pichia kudriavzevii的探针,以不同浓度的Pichia kudriavzevii基因组DNA进行显色反应。信号探针的序列为GGGTGGGTGGGTGGGTGTTTGAGCGTCGTTTCCATC(SEQ IDNO.1),淬灭探针的序列为GATGGAAACGACGCTCAAACACCCA(SEQ ID NO.2)。(3) Using the probe of Pichia kudriavzevii , perform color reaction with different concentrations of Pichia kudriavzevii genomic DNA. The sequence of the signal probe is GGGTGGGTGGGTGGGTGTTTGAGCGTCGTTTCCATC (SEQ ID NO.1), and the sequence of the quencher probe is GATGGAAACGACGCTCAAACACCCA (SEQ ID NO.2).
(4)信号探针与样本DNA形成双链。将向2 mL的试剂2(包括终浓度为50 mM的Tris-HCL,终浓度为50 mM的KCl,最终pH为7.9)加入4 μL不同稀释度的基因组DNA(不加样本DNA为空白对照)。于90 ℃下水浴处理10 min。加入4μL 20 μM的信号探针之后于55 ℃下反应30 min。(4) The signal probe forms a double strand with the sample DNA. Add 4 μL of different dilutions of genomic DNA to 2 mL of reagent 2 (including Tris-HCL at a final concentration of 50 mM, KCl at a final concentration of 50 mM, and a final pH of 7.9) (no sample DNA is used as a blank control) . Incubate in a water bath at 90°C for 10 min. After adding 4 μL of 20 μM signal probe, react at 55 °C for 30 min.
(5)淬灭探针与未结合的信号探针形成双链,破坏G四链体结构。向(4)步骤反应之后的体系中加入8 μL 20 μM的淬灭探针,55 ℃下反应30 min。(5) The quencher probe forms a double strand with the unbound signal probe, destroying the G quadruplex structure. Add 8 μL of 20 μM quenching probe to the system after the reaction in step (4), and react at 55 °C for 30 min.
(6)形成血红素/G四链体结构。向(5)步骤反应之后的体系中加入终浓度为100 nM的试剂1(血红素),37 ℃处理30 min。(6) Formation of heme/G quadruplex structure. Add reagent 1 (heme) at a final concentration of 100 nM to the system after the reaction in step (5), and treat at 37 °C for 30 min.
(7)显色反应。向(6)反应结束的体系中加入终浓度为7 mM的试剂3(ABTS)和终浓度为7 mM的试剂4(H2O2),37℃处理30 min。利用紫外分光光度计测定在波长420 nm下的吸光值,以不加样本DNA的实验组作为空白对照。(7) Color reaction. Add reagent 3 (ABTS) with a final concentration of 7 mM and reagent 4 (H 2 O 2 ) with a final concentration of 7 mM to the system after the reaction in (6), and treat at 37°C for 30 min. The absorbance value at a wavelength of 420 nm was measured by an ultraviolet spectrophotometer, and the experimental group without sample DNA was used as a blank control.
(8)通过计算吸光值与菌液浓度之间的线性关系构建标准曲线,如图3所示,R2=0.99(x的单位是log10 CFU/mL,y的单位是OD420,线性范围为103~107)。证明本发明所提供的试剂盒定量方法的准确性。(8) Construct a standard curve by calculating the linear relationship between the absorbance value and the concentration of the bacterial solution, as shown in Figure 3, R 2 =0.99 (the unit of x is log10 CFU/mL, the unit of y is OD 420 , and the linear range is 10 3 ~10 7 ). Prove the accuracy of the kit quantitative method provided by the present invention.
实施例6:葡萄酒样本中Pichia kudriavzevii的定量实验Example 6: Quantitative experiment of Pichia kudriavzevii in wine samples
(1)参考Gayevskiy, V.,&Goddard, M.(2012). Geographic delineations ofyeast communities and populations associated with vines and wines in NewZealand. ISME J, 6(7), 1281-1290.的Materials and methods方法,样本采集于山东烟台某知名葡萄酒生产厂家。基因组浓度为658.39 ng/μL。(1) Refer to Gayevskiy, V.,&Goddard, M.(2012). Geographic delineations of yeast communities and populations associated with vines and wines in New Zealand. ISME J, 6(7), 1281-1290. Materials and methods method, sample Collected from a well-known wine manufacturer in Yantai, Shandong. Genome concentration was 658.39 ng/μL.
(2)使用Pichia kudriavzevii的探针进行显色反应。信号探针的序列为GGGTGGGTGGGTGGGTGTTTGAGCGTCGTTTCCATC(SEQ ID NO.1),淬灭探针的序列为GATGGAAACGACGCTCAAACACCCA(SEQ ID NO.2)。(2) Color reaction using the probe of Pichia kudriavzevii . The sequence of the signal probe is GGGTGGGTGGGTGGGTGTTTGAGCGTCGTTTCCATC (SEQ ID NO.1), and the sequence of the quencher probe is GATGGAAACGACGCTCAAACACCCA (SEQ ID NO.2).
(4)信号探针与样本DNA形成双链。向2 mL的试剂2(包括终浓度为50 mM的Tris-HCL,终浓度为50 mM的KCl,最终pH为7.9)加入4 μL样本宏基因组DNA(不加样本DNA为空白对照)。于90 ℃下水浴处理10 min。加入4μL 20 μM的信号探针之后于55 ℃下反应30 min。(4) The signal probe forms a double strand with the sample DNA. To 2 mL of Reagent 2 (including Tris-HCL at a final concentration of 50 mM, KCl at a final concentration of 50 mM, and a final pH of 7.9), add 4 μL of sample metagenomic DNA (without sample DNA as a blank control). Incubate in a water bath at 90°C for 10 min. After adding 4 μL of 20 μM signal probe, react at 55 °C for 30 min.
(5)淬灭探针与未结合的信号探针形成双链,破坏G四链体结构。向(4)步骤反应之后的体系中加入8 μL 20 μM的淬灭探针,55 ℃下反应30 min。(5) The quencher probe forms a double strand with the unbound signal probe, destroying the G quadruplex structure. Add 8 μL of 20 μM quenching probe to the system after the reaction in step (4), and react at 55 °C for 30 min.
(6)形成血红素/G四链体结构。向(5)步骤反应之后的体系中加入终浓度为100 nM试剂1(血红素),37 ℃处理30 min。(6) Formation of heme/G quadruplex structure. Add reagent 1 (heme) at a final concentration of 100 nM to the system after the reaction in step (5), and treat at 37 °C for 30 min.
(7)显色反应。向(6)反应结束的体系中加入终浓度为7 mM的试剂3(ABTS)和终浓度为7 mM的试剂4(7 mM H2O2),37℃处理30 min。利用紫外分光光度计测定在波长420 nm下的吸光值,以不加样本DNA的实验组作为空白对照,显示吸光值是0.44。(7) Color reaction. Add reagent 3 (ABTS) with a final concentration of 7 mM and reagent 4 (7 mM H 2 O 2 ) with a final concentration of 7 mM to the system after the reaction in (6), and treat at 37°C for 30 min. The absorbance value at a wavelength of 420 nm was measured by an ultraviolet spectrophotometer, and the experimental group without sample DNA was used as a blank control, and the absorbance value was 0.44.
(8)根据实施例5所得的标准曲线,计算得样本中Pichia kudriavzevii总量为5.92 log10CFU/mL。(8) According to the standard curve obtained in Example 5, the total amount of Pichia kudriavzevii in the sample was calculated to be 5.92 log 10 CFU/mL.
(9)通过荧光定量PCR法(定量步骤和材料同实施例11(6))对上述同一样本中的Pichia kudriavzevii进行定量,结果显示Pichia kudriavzevii总量为5.92 log10CFU/mL,与上述方法测定的定量结果基本一致(变异系数,CV=0.0005)。(9) Quantify Pichia kudriavzevii in the same sample above by fluorescent quantitative PCR (quantification steps and materials are the same as in Example 11 (6)), and the results show that the total amount of Pichia kudriavzevii is 5.92 log 10 CFU/mL, which is the same as that determined by the above method The quantitative results were basically consistent (coefficient of variation, CV=0.0005).
实施例7:酒醅样本中Pichia kudriavzevii的绝对定量Example 7: Absolute quantification of Pichia kudriavzevii in a sample of fermented grains
(1)参考Song Z W, Du H, Zhang Y, Xu Y. Unraveling core functionalmicrobiota in traditional solid-state fermentation by high-throughputamplicons and metatranscriptomics sequencing. Frontiers in microbiology 2017;8:1294的MATERIALS AND METHODS中的方法,提取来源于山东省的酒醅样本中的宏基因组,基因组浓度为100.02 ng/μL。(1) Refer to Song Z W, Du H, Zhang Y, Xu Y. Unraveling core functional microbiota in traditional solid-state fermentation by high-throughput amplicons and metatranscriptomics sequencing. Frontiers in microbiology 2017;8:1294 MATERIALS AND METHODS method, extract The metagenomics in the fermented grains samples from Shandong Province, the genome concentration was 100.02 ng/μL.
(2)使用Pichia kudriavzevii的探针进行显色反应。信号探针的序列为GGGTGGGTGGGTGGGTGTTTGAGCGTCGTTTCCATC(SEQ ID NO.1),淬灭探针的序列为GATGGAAACGACGCTCAAACACCCA(SEQ ID NO.2)。(2) Color reaction using the probe of Pichia kudriavzevii . The sequence of the signal probe is GGGTGGGTGGGTGGGTGTTTGAGCGTCGTTTCCATC (SEQ ID NO.1), and the sequence of the quencher probe is GATGGAAACGACGCTCAAACACCCA (SEQ ID NO.2).
(3)信号探针与样本DNA形成双链。向2 mL的试剂2(包括终浓度为50 mM的Tris-HCL,终浓度为50 mM的KCl,最终pH为7.9)加入4 μL酒醅宏基因组DNA(不加样本DNA为空白对照)。于90 ℃下水浴处理10 min。加入4μL 20 μM的信号探针之后于55 ℃下反应30 min。(3) The signal probe forms a double strand with the sample DNA. To 2 mL of reagent 2 (including Tris-HCL at a final concentration of 50 mM, KCl at a final concentration of 50 mM, and a final pH of 7.9), add 4 μL of fermented grain metagenomic DNA (no sample DNA was added as a blank control). Incubate in a water bath at 90°C for 10 min. After adding 4 μL of 20 μM signal probe, react at 55 °C for 30 min.
(4)淬灭探针与未结合的信号探针形成双链,破坏G四链体结构。向(3)步骤反应之后的体系中加入8 μL 20 μM的淬灭探针,55 ℃下反应30 min。(4) The quencher probe forms a double strand with the unbound signal probe, destroying the G quadruplex structure. Add 8 μL of 20 μM quenching probe to the system after the reaction in step (3), and react at 55 °C for 30 min.
(5)形成血红素/G四链体结构。向(4)步骤反应之后的体系中加入终浓度为100 nM试剂1(血红素),37 ℃处理30 min。(5) Formation of heme/G quadruplex structure. Add reagent 1 (heme) at a final concentration of 100 nM to the system after the reaction in step (4), and treat at 37 °C for 30 min.
(6)显色反应。向(5)反应结束的体系中加入终浓度为7 mM的试剂3(ABTS)和终浓度为7 mM的试剂4(H2O2),37℃处理30 min。利用紫外分光光度计测定在波长420 nm下的吸光值,以不加样本DNA的实验组作为空白对照,显示吸光值是0.612。(6) Color reaction. Add reagent 3 (ABTS) with a final concentration of 7 mM and reagent 4 (H 2 O 2 ) with a final concentration of 7 mM to the system after the reaction in (5), and treat at 37°C for 30 min. The absorbance value at a wavelength of 420 nm was measured by an ultraviolet spectrophotometer, and the experimental group without sample DNA was used as a blank control, and the absorbance value was 0.612.
(7)根据实施例2所得的标准曲线,计算得样本中Pichia kudriavzevii的微生物总量为6.78 log10CFU/mL。(7) According to the standard curve obtained in Example 2, the total microbial count of Pichia kudriavzevii in the sample was calculated to be 6.78 log 10 CFU/mL.
(8)通过荧光定量法(定量步骤和材料同实施例11(6))对上述同一酒醅样本中的Pichia kudriavzevii进行定量,结果显示Pichia kudriavzevii的微生物总量为6.71log10CFU/mL,与上述方法测定的定量结果基本一致(变异系数,CV=0.008)。(8) Quantify Pichia kudriavzevii in the same fermented grain sample above by fluorescence quantification (quantification steps and materials are the same as in Example 11 (6)), and the results show that the total microbial load of Pichia kudriavzevii is 6.71log 10 CFU/mL, which is the same as The quantitative results determined by the above methods were basically consistent (coefficient of variation, CV=0.008).
实施例8:基于不提取样本基因组的Pichia kudriavzevii绝对定量方法Embodiment 8: Absolute quantitative method based on Pichia kudriavzevii without extracting sample genome
(1)Pichia kudriavzevii菌液根据实施例4中的培养方法获得,微生物菌浓通过平板计数法测定。(1) The Pichia kudriavzevii bacterial liquid was obtained according to the cultivation method in Example 4, and the microbial concentration was determined by the plate count method.
(2)通过10倍梯度稀释(1)中的Pichia kudriavzevii菌液(2) Dilute the Pichia kudriavzevii bacterial solution in (1) by 10 times
(3)使用Pichia kudriavzevii的探针进行显色反应。信号探针的序列为GGGTGGGTGGGTGGGTGTTTGAGCGTCGTTTCCATC(SEQ ID NO.1),淬灭探针的序列为GATGGAAACGACGCTCAAACACCCA(SEQ ID NO.2)。(3) Color reaction using the probe of Pichia kudriavzevii . The sequence of the signal probe is GGGTGGGTGGGTGGGTGTTTGAGCGTCGTTTCCATC (SEQ ID NO.1), and the sequence of the quencher probe is GATGGAAACGACGCTCAAACACCCA (SEQ ID NO.2).
(4)信号探针与样本DNA形成双链。将向2 mL的试剂2(包括终浓度为50 mM的Tris-HCL,终浓度为50 mM的KCl,最终pH为7.9)加入10 μL不同稀释度的菌液(不加样本菌液为空白对照)。于沸水浴中处理20 min。加入4μL 20 μM的信号探针之后于55 ℃下反应30 min。(4) The signal probe forms a double strand with the sample DNA. To 2 mL of reagent 2 (including Tris-HCL with a final concentration of 50 mM, KCl with a final concentration of 50 mM, and a final pH of 7.9), add 10 μL of bacterial solutions of different dilutions (no sample bacterial solution is used as a blank control) ). Treat in a boiling water bath for 20 min. After adding 4 μL of 20 μM signal probe, react at 55 °C for 30 min.
(5)淬灭探针与未结合的信号探针形成双链,破坏G四链体结构。向(4)步骤反应之后的体系中加入8 μL 20 μM的淬灭探针,55 ℃下反应30 min。(5) The quencher probe forms a double strand with the unbound signal probe, destroying the G quadruplex structure. Add 8 μL of 20 μM quenching probe to the system after the reaction in step (4), and react at 55 °C for 30 min.
(6)形成血红素/G四链体结构。向(5)步骤反应之后的体系中加入终浓度为100 nM的试剂1(血红素),37 ℃处理30 min。(6) Formation of heme/G quadruplex structure. Add reagent 1 (heme) at a final concentration of 100 nM to the system after the reaction in step (5), and treat at 37 °C for 30 min.
(7)显色反应。向(6)反应结束的体系中加入终浓度为7 mM的试剂3(ABTS)和终浓度为7 mM的试剂4(H2O2),37℃处理30 min。利用紫外分光光度计测定在波长420 nm下的吸光值,以不加样本DNA的实验组作为空白对照。(7) Color reaction. Add reagent 3 (ABTS) with a final concentration of 7 mM and reagent 4 (H 2 O 2 ) with a final concentration of 7 mM to the system after the reaction in (6), and treat at 37°C for 30 min. The absorbance value at a wavelength of 420 nm was measured by an ultraviolet spectrophotometer, and the experimental group without sample DNA was used as a blank control.
(8)通过计算吸光值与菌液浓度之间的线性关系构建标准曲线,如图4所示,R2=0.99(x的单位是log10 CFU/mL,y的单位是OD420,线性范围为103~107)。证明本发明所提供的试剂盒定量方法的准确性(8) Construct a standard curve by calculating the linear relationship between the absorbance value and the concentration of the bacterial solution, as shown in Figure 4, R 2 =0.99 (the unit of x is log10 CFU/mL, the unit of y is OD 420 , and the linear range is 10 3 ~10 7 ). Prove the accuracy of the kit quantitative method provided by the present invention
实施例9:基于不提取样本基因组的微生物绝对定量方法测定葡萄酒样本中Pichia kudriavzevii的含量Example 9: Determination of the content of Pichia kudriavzevii in wine samples based on the absolute quantitative method of microorganisms without extracting the sample genome
(1)样本采集于山东烟台某知名葡萄酒生产厂家,样本处理方法如下:1 mL样本中加入5 mL磷酸缓冲液,3000 ×g离心10 min收集菌体。(1) The samples were collected from a well-known wine manufacturer in Yantai, Shandong. The sample processing method was as follows: 5 mL of phosphate buffer was added to 1 mL of the sample, and the bacteria were collected by centrifugation at 3000 × g for 10 min.
(2)洗涤。向(1)中所获得的菌体中加入5 mL磷酸缓冲液,12000 ×g离心2 min收集菌体,重复一次。(2) Washing. Add 5 mL of phosphate buffer solution to the cells obtained in (1), centrifuge at 12,000 × g for 2 min to collect the cells, and repeat once.
(3)菌体重悬,将向(2)中所获得的菌体中加入1 mL试剂2(包括终浓度为50 mM的Tris-HCL,终浓度为50 mM的KCl,最终pH为7.9),吹吸混匀。(3) To resuspend the bacteria, add 1 mL of reagent 2 (including Tris-HCL at a final concentration of 50 mM, KCl at a final concentration of 50 mM, and a final pH of 7.9) to the bacterial cells obtained in (2), Mix by blowing and aspirating.
(4)使用Pichia kudriavzevii的探针进行显色反应。信号探针的序列为GGGTGGGTGGGTGGGTGTTTGAGCGTCGTTTCCATC(SEQ ID NO.1),淬灭探针的序列为GATGGAAACGACGCTCAAACACCCA(SEQ ID NO.2)。(4) Use the probe of Pichia kudriavzevii for color reaction. The sequence of the signal probe is GGGTGGGTGGGTGGGTGTTTGAGCGTCGTTTCCATC (SEQ ID NO.1), and the sequence of the quencher probe is GATGGAAACGACGCTCAAACACCCA (SEQ ID NO.2).
(5)信号探针与样本DNA形成双链。将向2 mL的试剂2(包括终浓度为50 mM的Tris-HCL,终浓度为50 mM的KCl,最终pH为7.9)加入10 μL葡萄发酵菌液(不加样本菌液为空白对照)。于沸水水浴下处理20 min。加入4μL 20 μM的信号探针之后于55 ℃下反应30 min。(5) The signal probe forms a double strand with the sample DNA. Add 10 μL of grape fermentation broth to 2 mL of Reagent 2 (including Tris-HCL at a final concentration of 50 mM, KCl at a final concentration of 50 mM, and a final pH of 7.9) (no sample broth is used as a blank control). Incubate in a boiling water bath for 20 min. After adding 4 μL of 20 μM signal probe, react at 55 °C for 30 min.
(6)淬灭探针与未结合的信号探针形成双链,破坏G四链体结构。向(5)步骤反应之后的体系中加入8 μL 20 μM的淬灭探针,55 ℃下反应30 min。(6) The quencher probe forms a double strand with the unbound signal probe, destroying the G quadruplex structure. Add 8 μL of 20 μM quenching probe to the system after the reaction in step (5), and react at 55 °C for 30 min.
(7)形成血红素/G四链体结构。向(6)步骤反应之后的体系中加入终浓度为100 nM的试剂1(血红素),37 ℃处理30 min。(7) Formation of heme/G quadruplex structure. Add reagent 1 (heme) at a final concentration of 100 nM to the system after the reaction in step (6), and treat at 37 °C for 30 min.
(8)显色反应。向(7)反应结束的体系中加入终浓度为7 mM的试剂3(ABTS)和终浓度为7 mM的试剂4(H2O2),37℃处理30 min。利用紫外分光光度计测定在波长420 nm下的吸光值,以不加样本DNA的实验组作为空白对照,显示吸光值是0.512。(8) Color reaction. Add reagent 3 (ABTS) with a final concentration of 7 mM and reagent 4 (H 2 O 2 ) with a final concentration of 7 mM to the system after the reaction in (7), and treat at 37°C for 30 min. The absorbance value at a wavelength of 420 nm was measured by an ultraviolet spectrophotometer, and the experimental group without sample DNA was used as a blank control, and the absorbance value was 0.512.
(9)根据实施例8所得的标准曲线,计算得样本中Pichia kudriavzevii总量为5.89 log10CFU/mL。(9) According to the standard curve obtained in Example 8, the total amount of Pichia kudriavzevii in the sample was calculated to be 5.89 log 10 CFU/mL.
(10)通过荧光定量PCR(定量步骤和材料同实施例11(6))对上述同一样本中的Pichia kudriavzevii进行定量,结果显示Pichia kudriavzevii总量为5.92 log10CFU/mL,与上述方法测定的定量结果基本一致(变异系数,CV=0.003)。(10) Quantify Pichia kudriavzevii in the same sample above by fluorescent quantitative PCR (quantification steps and materials are the same as in Example 11 (6)), the results show that the total amount of Pichia kudriavzevii is 5.92 log 10 CFU/mL, which is the same as that determined by the above method The quantitative results were basically consistent (coefficient of variation, CV=0.003).
实施例10:基于不提取样本基因组的绝对定量方法测定酒醅样本中Pichia kudriavzevii的含量Example 10: Determination of the content of Pichia kudriavzevii in the fermented grains sample based on the absolute quantitative method without extracting the sample genome
(1)样本来源于山东某酒厂的发酵酒醅,样本处理方法如下:1 g样本中加入5 mL磷酸缓冲液,3000 ×g离心10 min收集菌体。(1) The samples came from the fermented grains of a winery in Shandong. The sample processing method was as follows: 5 mL of phosphate buffer was added to 1 g of the sample, and the bacteria were collected by centrifugation at 3000 × g for 10 min.
(2)洗涤。向(1)中所获得的菌体中加入5 mL磷酸缓冲液,12000 ×g离心2 min收集菌体,重复一次。(2) Washing. Add 5 mL of phosphate buffer solution to the cells obtained in (1), centrifuge at 12,000 × g for 2 min to collect the cells, and repeat once.
(3)菌体重悬,将向(2)中所获得的菌体中加入1 mL试剂2(包括终浓度为50 mM的Tris-HCL,终浓度为50 mM的KCl,最终pH为7.9),吹吸混匀。(3) To resuspend the bacteria, add 1 mL of reagent 2 (including Tris-HCL at a final concentration of 50 mM, KCl at a final concentration of 50 mM, and a final pH of 7.9) to the bacterial cells obtained in (2), Mix by blowing and aspirating.
(4)使用Pichia kudriavzevii的探针进行显色反应。信号探针的序列为GGGTGGGTGGGTGGGTGTTTGAGCGTCGTTTCCATC(SEQ ID NO.1),淬灭探针的序列为GATGGAAACGACGCTCAAACACCCA(SEQ ID NO.2)。(4) Use the probe of Pichia kudriavzevii for color reaction. The sequence of the signal probe is GGGTGGGTGGGTGGGTGTTTGAGCGTCGTTTCCATC (SEQ ID NO.1), and the sequence of the quencher probe is GATGGAAACGACGCTCAAACACCCA (SEQ ID NO.2).
(5)信号探针与样本DNA形成双链。将向2 mL的试剂2(包括终浓度为50 mM的Tris-HCL,终浓度为50 mM的KCl,最终pH为7.9)加入10 μL酒醅菌液(不加样本菌液为空白对照)。于沸水水浴下处理20 min。加入4μL 20 μM的信号探针之后于55 ℃下反应30 min。(5) The signal probe forms a double strand with the sample DNA. To 2 mL of Reagent 2 (including Tris-HCL at a final concentration of 50 mM, KCl at a final concentration of 50 mM, and a final pH of 7.9), add 10 μL of wine fermented grains (without sample bacteria as a blank control). Incubate in a boiling water bath for 20 min. After adding 4 μL of 20 μM signal probe, react at 55 °C for 30 min.
(6)淬灭探针与未结合的信号探针形成双链,破坏G四链体结构。向(5)步骤反应之后的体系中加入8 μL 20 μM的淬灭探针,55 ℃下反应30 min。(6) The quencher probe forms a double strand with the unbound signal probe, destroying the G quadruplex structure. Add 8 μL of 20 μM quenching probe to the system after the reaction in step (5), and react at 55 °C for 30 min.
(7)形成血红素/G四链体结构。向(6)步骤反应之后的体系中加入终浓度为100 nM的试剂1(血红素),37 ℃处理30 min。(7) Formation of heme/G quadruplex structure. Add reagent 1 (heme) at a final concentration of 100 nM to the system after the reaction in step (6), and treat at 37 °C for 30 min.
(8)显色反应。向(7)反应结束的体系中加入终浓度为7 mM的试剂3(ABTS)和终浓度为7 mM的试剂4(H2O2),37℃处理30 min。利用紫外分光光度计测定在波长420 nm下的吸光值,以不加样本DNA的实验组作为空白对照,显示吸光值是0.592。(8) Color reaction. Add reagent 3 (ABTS) with a final concentration of 7 mM and reagent 4 (H 2 O 2 ) with a final concentration of 7 mM to the system after the reaction in (7), and treat at 37°C for 30 min. The absorbance value at a wavelength of 420 nm was measured by an ultraviolet spectrophotometer, and the experimental group without sample DNA was used as a blank control, and the absorbance value was 0.592.
(9)根据实施例8所得的标准曲线,计算得样本中Pichia kudriavzevii总量为6.69 log10CFU/mL,(9) According to the standard curve obtained in Example 8, the total amount of Pichia kudriavzevii in the sample was calculated to be 6.69 log 10 CFU/mL,
(10)通过荧光定量PCR(定量步骤和材料同实施例11(6))对上述同一样本中的Pichia kudriavzevii进行定量,结果显示Pichia kudriavzevii总量为6.71 log10CFU/mL,与上述方法测定的两组数据基本一致(变异系数,CV=0.0017)。(10) Quantify Pichia kudriavzevii in the same sample above by fluorescent quantitative PCR (quantification steps and materials are the same as in Example 11 (6)), the results show that the total amount of Pichia kudriavzevii is 6.71 log 10 CFU/mL, which is the same as that determined by the above method The two groups of data were basically consistent (coefficient of variation, CV=0.0017).
实施例11:微生物定量检测试剂盒与荧光定量PCR检测的结果比较Embodiment 11: Microbial Quantitative Detection Kit and Fluorescent Quantitative PCR Detection Result Comparison
(1)样本选择来自山东某酒厂发酵终点的三个白酒酒醅样本。(1) The samples were selected from three samples of liquor fermented grains from a winery in Shandong at the end of fermentation.
(2)样本处理:(2) Sample processing:
(i)提取三个样本中的总基因组,基因组浓度分别为369 ng/μL、590 ng/μL、321.89 ng/μL。(i) The total genomes in the three samples were extracted, and the genome concentrations were 369 ng/μL, 590 ng/μL, and 321.89 ng/μL, respectively.
(ii)1 g样本中加入5 mL磷酸缓冲液,3000 ×g离心10 min收集菌体。向所获得的菌体中加入5 mL磷酸缓冲液,12000 ×g离心2 min收集菌体,重复一次。菌体重悬,将向所获得的菌体中加入1 mL试剂2缓冲液,吹吸混匀。(ii) Add 5 mL of phosphate buffer to 1 g of sample, and centrifuge at 3000 × g for 10 min to collect the bacteria. Add 5 mL of phosphate buffer to the obtained cells, collect the cells by centrifugation at 12000 × g for 2 min, and repeat once. The bacteria were resuspended, and 1 mL of reagent 2 buffer was added to the obtained bacteria, and mixed by pipetting.
(3)使用Pichia kudriavzevii的探针进行显色反应。信号探针的序列为GGGTGGGTGGGTGGGTGTTTGAGCGTCGTTTCCATC(SEQ ID NO.1),淬灭探针的序列为GATGGAAACGACGCTCAAACACCCA(SEQ ID NO.2)。(3) Color reaction using the probe of Pichia kudriavzevii . The sequence of the signal probe is GGGTGGGTGGGTGGGTGTTTGAGCGTCGTTTCCATC (SEQ ID NO.1), and the sequence of the quencher probe is GATGGAAACGACGCTCAAACACCCA (SEQ ID NO.2).
(4)基于不提取基因组的试剂盒定量方法测定。(4) Determination based on the quantitative method of the kit without extracting the genome.
(i)信号探针与样本DNA形成双链。将向2 mL的试剂2(包括终浓度为50 mM的Tris-HCL,终浓度为50 mM的KCl,最终pH为7.9)加入10 μL酒醅菌液(不加样本菌液为空白对照)。于沸水浴中处理20 min。加入4μL 20 μM的信号探针之后于55 ℃下反应30 min。(i) The signal probe forms a double strand with the sample DNA. To 2 mL of Reagent 2 (including Tris-HCL at a final concentration of 50 mM, KCl at a final concentration of 50 mM, and a final pH of 7.9), add 10 μL of wine fermented grains (without sample bacteria as a blank control). Treat in a boiling water bath for 20 min. After adding 4 μL of 20 μM signal probe, react at 55 °C for 30 min.
(ii)淬灭探针与未结合的信号探针形成双链,破坏G四链体结构。向(i)步骤反应之后的体系中加入8 μL 20 μM的淬灭探针,55 ℃下反应30 min。(ii) The quencher probe forms a duplex with the unbound signal probe, disrupting the G quadruplex structure. Add 8 μL of 20 μM quenching probe to the system after the reaction in step (i), and react at 55 °C for 30 min.
(iii)形成血红素/G四链体结构。向(ii)步骤反应之后的体系中加入终浓度为100mM的试剂1(血红素),37 ℃处理30 min。(iii) Formation of a heme/G quadruplex structure. Add reagent 1 (heme) with a final concentration of 100 mM to the system after the reaction in step (ii), and treat at 37 °C for 30 min.
(iv)显色反应。向(iii)反应结束的体系中加入终浓度为7 mM的试剂3(ABTS)和终浓度为7 mM的试剂4(H2O2),37℃处理30 min。利用紫外分光光度计测定在波长420 nm下的吸光值,以不加样本DNA的实验组作为空白对照,显示吸光值是0.598,0.595,0.620。(iv) Color reaction. Add reagent 3 (ABTS) with a final concentration of 7 mM and reagent 4 (H 2 O 2 ) with a final concentration of 7 mM to the system after the reaction in (iii), and treat at 37°C for 30 min. The absorbance value at a wavelength of 420 nm was measured by an ultraviolet spectrophotometer, and the experimental group without sample DNA was used as a blank control, and the absorbance values were 0.598, 0.595, and 0.620.
(v)根据实施例8所得的标准曲线,计算得样本中Pichia kudriavzevii总量为6.82 ± 0.14 log10CFU/mL。(v) According to the standard curve obtained in Example 8, the total amount of Pichia kudriavzevii in the sample was calculated to be 6.82 ± 0.14 log 10 CFU/mL.
(5)基于提基因组的试剂盒定量方法测定(5) Determination of kit quantitative method based on genome extraction
(i)信号探针与样本DNA形成双链。向2 mL的试剂2(包括终浓度为50 mM的Tris-HCL,终浓度为50 mM的KCl,最终pH为7.9)加入4 μL酒醅宏基因组DNA(不加样本DNA为空白对照)。于90 ℃下水浴处理10 min。加入4μL 20 μM的信号探针之后于55 ℃下反应30 min。(i) The signal probe forms a double strand with the sample DNA. To 2 mL of reagent 2 (including Tris-HCL at a final concentration of 50 mM, KCl at a final concentration of 50 mM, and a final pH of 7.9), add 4 μL of fermented grain metagenomic DNA (no sample DNA was added as a blank control). Incubate in a water bath at 90°C for 10 min. After adding 4 μL of 20 μM signal probe, react at 55 °C for 30 min.
(ii)淬灭探针与未结合的信号探针形成双链,破坏G四链体结构。向(i)步骤反应之后的体系中加入8 μL 20 μM的淬灭探针,55 ℃下反应30 min。(ii) The quencher probe forms a duplex with the unbound signal probe, disrupting the G quadruplex structure. Add 8 μL of 20 μM quenching probe to the system after the reaction in step (i), and react at 55 °C for 30 min.
(iii)形成血红素/G四链体结构。向(ii)步骤反应之后的体系中加入终浓度为100nM试剂1(血红素),37 ℃处理30 min。(iii) Formation of a heme/G quadruplex structure. Add reagent 1 (heme) at a final concentration of 100 nM to the system after the reaction in step (ii), and treat at 37 °C for 30 min.
(iv)显色反应。向(5)反应结束的体系中加入终浓度为7 mM的试剂3(ABTS)和终浓度为7 mM的试剂4(H2O2),37℃处理30 min。利用紫外分光光度计测定在波长420 nm下的吸光值,以不加样本DNA的实验组作为空白对照,显示吸光值是0.613,0.625,0.612。(iv) Color reaction. Add reagent 3 (ABTS) with a final concentration of 7 mM and reagent 4 (H 2 O 2 ) with a final concentration of 7 mM to the system after the reaction in (5), and treat at 37°C for 30 min. The absorbance value at a wavelength of 420 nm was measured by an ultraviolet spectrophotometer, and the experimental group without sample DNA was used as a blank control, and the absorbance values were 0.613, 0.625, and 0.612.
(v)根据实施例5所得的标准曲线,计算得样本中Pichia kudriavzevii总量为6.83 ± 0.071 log10CFU/mL。(v) According to the standard curve obtained in Example 5, the total amount of Pichia kudriavzevii in the sample was calculated to be 6.83 ± 0.071 log 10 CFU/mL.
(6)qPCR定量样本中Pichia kudriavzevii含量(6) Pichia kudriavzevii content in quantitative samples by qPCR
(i)Pichia kudriavzevii菌液根据实施例4中的培养方法获得,微生物菌浓通过平板计数法测定,基因组的提取同实施例4。(i) The Pichia kudriavzevii bacterial liquid was obtained according to the cultivation method in Example 4, the microbial concentration was determined by the plate counting method, and the extraction of the genome was the same as in Example 4.
(ii)通过10倍梯度稀释Pichia kudriavzevii基因组DNA。(ii) Pichia kudriavzevii genomic DNA was diluted by a 10-fold gradient.
(iii)qPCR的体系为SYBR Green 10 μL,上下游引物20 μM,模板DNA 0.5 μL,无菌水补齐20 μL。(iii) The qPCR system is 10 μL of SYBR Green, 20 μM of upstream and downstream primers, 0.5 μL of template DNA, and 20 μL of sterile water.
(iv)qPCR的反应程序:预变性95 °C 5 min,循环阶段:95 °C 5 s,60 °C 20 s;循环数40,溶解曲线从65 °C升温到95 °C,每5 s升高0.5 °C。(iv) Reaction program for qPCR: pre-denaturation at 95 °C for 5 min, cycle phase: 95 °C for 5 s, 60 °C for 20 s; cycle number 40, melting curve from 65 °C to 95 °C, every 5 s Increase by 0.5 °C.
(v)使用Pichia kudriavzevii特异性引物对提取的基因组进行qPCR,引物序列下游序列为GTTTGAGCGTCGTTTCCATC(SEQ ID NO.5),下游序列为ATACCCTTCTTAACACCTGGC(SEQID NO.6)。(v) qPCR was performed on the extracted genome using Pichia kudriavzevii specific primers, the downstream sequence of the primer sequence was GTTTGAGCGTCGTTTCCATC (SEQ ID NO.5), and the downstream sequence was ATACCCTTCTAACACCTGGC (SEQ ID NO.6).
(vi)通过10倍梯度稀释基因组DNA,建立CT值与Pichia kudriavzevii菌浓的标准曲线,如图4所示,R2=0.99。(vi) Genomic DNA was serially diluted 10 times to establish a standard curve between CT value and bacterial concentration of Pichia kudriavzevii , as shown in Figure 4, R 2 =0.99.
(vii)qPCR体系和反应条件同(iii),(iv)。根据反应结束的CT值,通过所建立的标准曲线计算Pichia kudriavzevii在样本中的浓度为6.799 ± 0.122 log10CFU/g。(vii) The qPCR system and reaction conditions are the same as (iii) and (iv). According to the CT value at the end of the reaction, the concentration of Pichia kudriavzevii in the sample was calculated by the established standard curve to be 6.799 ± 0.122 log 10 CFU/g.
(7)通过显著性差异分析,结果如图6所示,三种定量方法之间无显著性差异(P<0.05)(7) Through significant difference analysis, the results are shown in Figure 6, there is no significant difference among the three quantitative methods ( P <0.05)
实施例12:应用两种不同序列信号探针进行检测的检出限Example 12: Detection limit of detection using two different sequence signal probes
(1)Pichia kudriavzevii菌液根据实施例4中的培养方法获得,微生物菌浓通过平板计数法测定,浓度为7.49 log10 CFU/mL基因组的提取同实施例4。(1) The Pichia kudriavzevii bacterial liquid was obtained according to the cultivation method in Example 4, and the microbial concentration was determined by plate counting method, and the concentration was 7.49 log10 CFU/mL. The extraction of the genome was the same as in Example 4.
(2)通过10倍梯度稀释Pichia kudriavzevii基因组DNA,得到2.1 log10 CFU/mL的DNA模板。(2) Genomic DNA of Pichia kudriavzevii was serially diluted 10 times to obtain 2.1 log10 CFU/mL DNA template.
(3)本发明所提供的Pichia kudriavzevii信号探针的序列为GGGTGGGTGGGTGGGTGTTTGAGCGTCGTTTCCATC(SEQ ID NO.1),淬灭探针的序列为GATGGAAACGACGCTCAAACACCCA(SEQ ID NO.2)。加入(2)中得到的3.2 log10CFU/mLPichia kudriavzevii基因组DNA进行显色反应。(3) The sequence of the Pichia kudriavzevii signal probe provided by the present invention is GGGTGGGTGGGTGGGTGTTTGAGCGTCGTTTCCATC (SEQ ID NO.1), and the sequence of the quenching probe is GATGGAAACGACGCTCAAACACCCA (SEQ ID NO.2). Add 3.2 log 10 CFU/mL Pichia kudriavzevii genomic DNA obtained in (2) for color reaction.
(4)利用Pichia kudriavzevii信号探针序列为(SEQ ID NO.3)GGGATTGGGATTGGGATTGGGGTTTGAGCGTCGTTTCCATC,淬灭探针序列为GATGGAAACGACGCTCAAACCCCAA(SEQ IDNO.4)。加入(2)中得到的3.2 log10 CFU/mLPichia kudriavzevii基因组DNA进行显色反应。(4) The Pichia kudriavzevii signal probe sequence is (SEQ ID NO.3) GGGATTGGGATTGGGATTGGGGTTTGAGCGTCGTTTCCATC, and the quenching probe sequence is GATGGAAACGACGCTCAAACCCCAA (SEQ ID NO.4). Add 3.2 log10 CFU/mL Pichia kudriavzevii genomic DNA obtained in (2) for color reaction.
(5)信号探针与样本DNA形成双链。将向2 mL的试剂2(包括终浓度为50 mM的Tris-HCL,终浓度为50 mM的KCl,最终pH为7.9)加入4 μLPichia kudriavzevii基因组DNA(不加样本DNA为空白对照)。于90 ℃下水浴处理10 min。分别加入4μL 20 μM的不同信号探针之后于55 ℃下反应30 min。(5) The signal probe forms a double strand with the sample DNA. 4 μL of Pichia kudriavzevii genomic DNA will be added to 2 mL of Reagent 2 (including Tris-HCL at a final concentration of 50 mM, KCl at a final concentration of 50 mM, and a final pH of 7.9) (no sample DNA is added as a blank control). Incubate in a water bath at 90°C for 10 min. After adding 4 μL of 20 μM different signal probes, react at 55 °C for 30 min.
(6)淬灭探针与未结合的信号探针形成双链,破坏G四链体结构。向(5)步骤反应之后的体系中加入分别8 μL 20 μM的淬灭探针,55 ℃下反应30 min。(6) The quencher probe forms a double strand with the unbound signal probe, destroying the G quadruplex structure. Add 8 μL of 20 μM quenching probes to the system after the reaction in step (5), and react at 55 °C for 30 min.
(7)形成血红素/G四链体结构。向(6)步骤反应之后的体系中加入终浓度为100 nM的试剂1(血红素),37 ℃处理30 min。(7) Formation of heme/G quadruplex structure. Add reagent 1 (heme) at a final concentration of 100 nM to the system after the reaction in step (6), and treat at 37 °C for 30 min.
(8)显色反应。向(7)反应结束的体系中分别加入终浓度为7 mM的试剂3(ABTS)和终浓度为7 mM的试剂4(H2O2),37℃处理30 min。利用紫外分光光度计测定在波长420 nm下的吸光值,以不加样本DNA的实验组作为空白对照。(8) Color reaction. Reagent 3 (ABTS) with a final concentration of 7 mM and reagent 4 (H 2 O 2 ) with a final concentration of 7 mM were added to the system after the reaction in (7), and treated at 37°C for 30 min. The absorbance value at a wavelength of 420 nm was measured by an ultraviolet spectrophotometer, and the experimental group without sample DNA was used as a blank control.
(9)重复(5)(6)(7)(8)步骤9次,比较检测结果的稳定性,如图7所示。基于SEQ IDNO.3的信号序列定量结果的变异系数(CV)为1.04;基于SEQ ID NO.1的信号序列的定量结果变异系数为0.02,检测效果稳定。(9) Repeat steps (5) (6) (7) (8) 9 times to compare the stability of the test results, as shown in Figure 7. The coefficient of variation (CV) of the quantitative result of the signal sequence based on SEQ ID NO.3 is 1.04; the coefficient of variation of the quantitative result of the signal sequence based on SEQ ID NO.1 is 0.02, and the detection effect is stable.
虽然本发明已以较佳实施例公开如上,但其并非用以限定本发明,任何熟悉此技术的人,在不脱离本发明的精神和范围内,都可做各种的改动与修饰,因此本发明的保护范围应该以权利要求书所界定的为准。Although the present invention has been disclosed above with preferred embodiments, it is not intended to limit the present invention. Any person familiar with this technology can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore The scope of protection of the present invention should be defined by the claims.
SEQUENCE LISTINGSEQUENCE LISTING
<110> 江南大学<110> Jiangnan University
<120> 用于库德里阿兹威毕赤酵母绝对定量的探针<120> Probes for Absolute Quantification of Pichia Kudriazvii
<160> 4<160> 4
<170> PatentIn version 3.3<170> PatentIn version 3.3
<210> 1<210> 1
<211> 36<211> 36
<212> DNA<212>DNA
<213> 人工合成<213> Synthetic
<400> 1<400> 1
gggtgggtgg gtgggtgttt gagcgtcgtt tccatc 36gggtgggtgg gtgggtgttt gagcgtcgtt tccatc 36
<210> 2<210> 2
<211> 25<211> 25
<212> DNA<212>DNA
<213> 人工合成<213> Synthetic
<400> 2<400> 2
gatggaaacg acgctcaaac accca 25gatggaaacg acgctcaaac acccca 25
<210> 3<210> 3
<211> 41<211> 41
<212> DNA<212>DNA
<213> 人工合成<213> Synthetic
<400> 3<400> 3
gggattggga ttgggattgg ggtttgagcg tcgtttccat c 41gggattggga ttgggattgg ggtttgagcg tcgtttccat c 41
<210> 4<210> 4
<211> 25<211> 25
<212> DNA<212> DNA
<213> 人工合成<213> Synthetic
<400> 4<400> 4
gatggaaacg acgctcaaac cccaa 25gatggaaacg acgctcaaac cccaa 25
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110162970.1A CN112877459B (en) | 2021-02-05 | 2021-02-05 | Probes for Absolute Quantification of Pichia kuderi Azwiya |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110162970.1A CN112877459B (en) | 2021-02-05 | 2021-02-05 | Probes for Absolute Quantification of Pichia kuderi Azwiya |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112877459A CN112877459A (en) | 2021-06-01 |
CN112877459B true CN112877459B (en) | 2023-08-25 |
Family
ID=76055879
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110162970.1A Active CN112877459B (en) | 2021-02-05 | 2021-02-05 | Probes for Absolute Quantification of Pichia kuderi Azwiya |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112877459B (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108588172A (en) * | 2018-05-30 | 2018-09-28 | 贵州茅台酒股份有限公司 | A kind of selective medium, preparation method and application for quantitatively detecting library Delhi A Ziweishi Pichia pastoris |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BRPI0610951A2 (en) * | 2005-06-02 | 2010-08-03 | Cargill Inc | genetically modified yeast of issatchenkia orientalis and closely related species and fermentation processes using them |
-
2021
- 2021-02-05 CN CN202110162970.1A patent/CN112877459B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108588172A (en) * | 2018-05-30 | 2018-09-28 | 贵州茅台酒股份有限公司 | A kind of selective medium, preparation method and application for quantitatively detecting library Delhi A Ziweishi Pichia pastoris |
Non-Patent Citations (1)
Title |
---|
Development and validation of a TaqMan RT-PCR method for identification of mayonnaise spoilage yeast Pichia kudriavzevii;M. Y. Syromyatnikov等;AMB Express;第1-9页 * |
Also Published As
Publication number | Publication date |
---|---|
CN112877459A (en) | 2021-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112553362B (en) | A probe for absolute quantification of Saccharomyces cerevisiae and its application | |
Cocolin et al. | Direct profiling of the yeast dynamics in wine fermentations | |
DK2430188T5 (en) | METHOD AND KIT FOR DETECTING ANTIBIOTIC RESISTANT BACTERIA | |
Randazzo et al. | Bacterial population in traditional sourdough evaluated by molecular methods | |
CN112779349B (en) | Probe for absolute quantification of schizosaccharomyces pombe, kit and application | |
CN112782145B (en) | Aspergillus tubingensis absolute quantitative probe and application thereof | |
Nejati et al. | Quantification of major bacteria and yeast species in kefir consortia by multiplex TaqMan qPCR | |
Riedl et al. | Beer enemy number one: genetic diversity, physiology and biofilm formation of Lactobacillus brevis | |
CN105524921B (en) | A kind of method of Rapid identification production urethanes yeast | |
Oldham et al. | Methods for detection and identification of beer-spoilage microbes | |
CN112899381B (en) | Absolute quantitative probes, methods and applications | |
Riedl et al. | Bavarian wheat beer, an example of a special microbe habitat–cultivation, detection, biofilm formation, characterization of selected lactic acid bacteria hygiene indicators and spoilers | |
CN112553352B (en) | Probe, method and kit for absolute quantification of bacterial microorganisms and application of probe, method and kit | |
Kim et al. | Comparing the VITEK 2 ANC card, species‐specific PCR, and MALDI‐TOF mass spectrometry methods for identification of lactic acid bacteria | |
CN112877459B (en) | Probes for Absolute Quantification of Pichia kuderi Azwiya | |
CN114561480A (en) | RPA primer pair, kit and detection method for detecting cronobacter sakazakii | |
CN112553353B (en) | Probes, methods and kits for absolute quantification of lactobacillus and application of probes, methods and kits | |
CN112458197B (en) | Kit for absolute quantification of fungi and application thereof | |
CN112924428B (en) | Probe, method and application for absolute quantification of zygosaccharomyces bailii | |
CN112924429B (en) | A probe and kit for absolute quantification of Lactobacillus jinshani | |
CN112501326B (en) | Probe, method and kit for absolute quantification of bacillus and application of probe and method and kit | |
CN112538520B (en) | Absolute quantification method for microorganisms and application thereof | |
CN106086206A (en) | Green Wei Si Salmonella loop-mediated isothermal gene amplification fast detecting kit and detection method | |
CN114317808A (en) | Quantitative detection kit, detection method and application of thermophilic fungi | |
CN113215152A (en) | Primer, probe and kit for absolute quantification of Rhizopus oryzae |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |