CN112863244B - Method and device for promoting safe driving of vehicle - Google Patents
Method and device for promoting safe driving of vehicle Download PDFInfo
- Publication number
- CN112863244B CN112863244B CN201911188008.4A CN201911188008A CN112863244B CN 112863244 B CN112863244 B CN 112863244B CN 201911188008 A CN201911188008 A CN 201911188008A CN 112863244 B CN112863244 B CN 112863244B
- Authority
- CN
- China
- Prior art keywords
- vehicle
- accident
- scene
- data
- vehicle accident
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/16—Anti-collision systems
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/01—Detecting movement of traffic to be counted or controlled
- G08G1/0104—Measuring and analyzing of parameters relative to traffic conditions
- G08G1/0108—Measuring and analyzing of parameters relative to traffic conditions based on the source of data
- G08G1/0112—Measuring and analyzing of parameters relative to traffic conditions based on the source of data from the vehicle, e.g. floating car data [FCD]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/22—Matching criteria, e.g. proximity measures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/56—Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/01—Detecting movement of traffic to be counted or controlled
- G08G1/0104—Measuring and analyzing of parameters relative to traffic conditions
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/01—Detecting movement of traffic to be counted or controlled
- G08G1/0104—Measuring and analyzing of parameters relative to traffic conditions
- G08G1/0125—Traffic data processing
- G08G1/0129—Traffic data processing for creating historical data or processing based on historical data
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/01—Detecting movement of traffic to be counted or controlled
- G08G1/0104—Measuring and analyzing of parameters relative to traffic conditions
- G08G1/0125—Traffic data processing
- G08G1/0133—Traffic data processing for classifying traffic situation
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/01—Detecting movement of traffic to be counted or controlled
- G08G1/0104—Measuring and analyzing of parameters relative to traffic conditions
- G08G1/0137—Measuring and analyzing of parameters relative to traffic conditions for specific applications
- G08G1/0141—Measuring and analyzing of parameters relative to traffic conditions for specific applications for traffic information dissemination
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/09—Arrangements for giving variable traffic instructions
- G08G1/0962—Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
- G08G1/0967—Systems involving transmission of highway information, e.g. weather, speed limits
- G08G1/096708—Systems involving transmission of highway information, e.g. weather, speed limits where the received information might be used to generate an automatic action on the vehicle control
- G08G1/096716—Systems involving transmission of highway information, e.g. weather, speed limits where the received information might be used to generate an automatic action on the vehicle control where the received information does not generate an automatic action on the vehicle control
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/09—Arrangements for giving variable traffic instructions
- G08G1/0962—Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
- G08G1/0967—Systems involving transmission of highway information, e.g. weather, speed limits
- G08G1/096708—Systems involving transmission of highway information, e.g. weather, speed limits where the received information might be used to generate an automatic action on the vehicle control
- G08G1/096725—Systems involving transmission of highway information, e.g. weather, speed limits where the received information might be used to generate an automatic action on the vehicle control where the received information generates an automatic action on the vehicle control
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/09—Arrangements for giving variable traffic instructions
- G08G1/0962—Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
- G08G1/0967—Systems involving transmission of highway information, e.g. weather, speed limits
- G08G1/096766—Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission
- G08G1/096775—Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission where the origin of the information is a central station
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W2050/0001—Details of the control system
- B60W2050/0019—Control system elements or transfer functions
- B60W2050/0028—Mathematical models, e.g. for simulation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W2050/0062—Adapting control system settings
- B60W2050/0075—Automatic parameter input, automatic initialising or calibrating means
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Theoretical Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Atmospheric Sciences (AREA)
- Multimedia (AREA)
- Data Mining & Analysis (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Biology (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Automation & Control Theory (AREA)
- Human Computer Interaction (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Traffic Control Systems (AREA)
Abstract
本发明涉及一种用于促进车辆的安全行驶的方法和装置,所述方法包括:确定车辆的当前行驶场景;从数据库获得至少一个车辆事故场景;判断所述车辆的当前行驶场景是否与所述至少一个车辆事故场景相匹配;以及如果所述车辆的当前行驶场景与所述至少一个车辆事故场景相匹配,则自动执行动作以避免所述车辆进入所述至少一个车辆事故场景。
The present invention relates to a method and device for promoting safe driving of a vehicle, the method comprising: determining the current driving scene of the vehicle; obtaining at least one vehicle accident scene from a database; judging whether the current driving scene of the vehicle is consistent with the at least one vehicle accident scenario matches; and if the vehicle's current driving scenario matches the at least one vehicle accident scenario, automatically performing an action to avoid the vehicle from entering the at least one vehicle accident scenario.
Description
技术领域technical field
本发明涉及一种用于促进车辆的安全行驶的方法和装置。The present invention relates to a method and a device for promoting safe driving of a vehicle.
背景技术Background technique
在汽车自动驾驶领域,车辆安全行驶是重点需要考虑的。当前的自动驾驶汽车通过搭载各种传感器和控制器在道路上行驶,并且通过车辆自然行驶过程中收集的安全行驶数据来不断优化自动驾驶算法。通过这种方法收集的数据属于正常或非极端情况下的安全行驶数据。此类安全行驶数据通过训练智能车辆使其得知什么是好的安全的行驶方式,从而使得智能车辆仅学习非事故情况下的行驶方式。然而,在真实的行驶过程中,通常还会发生不好的情况,即会发生事故。由于通过车辆自身的自然行驶情况来收集极端(例如事故)情况下的行驶数据往往非常困难且成本高昂,因此人们通常无法基于极端情况下的数据来训练当前的自动驾驶汽车如何处理事故场景。In the field of automotive autonomous driving, vehicle safety is the key to be considered. The current self-driving car drives on the road with various sensors and controllers, and continuously optimizes the self-driving algorithm through the safe driving data collected during the natural driving process of the vehicle. Data collected in this way is safe driving data for normal or non-extreme situations. This kind of safe driving data trains the smart vehicle to know what is a good and safe driving way, so that the smart vehicle can only learn the driving way in non-accident situations. However, in a real driving process, bad situations usually occur, that is, an accident occurs. Because it is often very difficult and costly to collect driving data in extreme situations (such as accidents) through the natural driving conditions of the vehicle itself, it is usually not possible to train current self-driving cars on how to deal with accident scenarios based on extreme situation data.
因此,为了促进自动驾驶车辆的安全行驶,希望能够使得结合安全行驶数据和车辆事故数据来教会车辆的自动驾驶系统知道什么是安全的行驶方式,什么是危险的行驶方式,从而提高车辆的智能学习水平和效率。Therefore, in order to promote the safe driving of self-driving vehicles, it is hoped that the combination of safe driving data and vehicle accident data can teach the vehicle's automatic driving system to know what is a safe driving method and what is a dangerous driving method, thereby improving the vehicle's intelligent learning level and efficiency.
发明内容Contents of the invention
提供本发明内容以便介绍一组概念,这组概念将在以下的具体实施方式中做进一步描述。本发明内容并非旨在标识所保护主题的关键特征或必要特征,也不旨在用于限制所保护主题的范围。This Summary is provided to introduce a set of concepts that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter.
本发明的目的在于提供用于促进车辆的安全行驶的方法和装置,用以至少部分地克服现有技术存在的缺陷。The object of the present invention is to provide a method and a device for promoting safe driving of a vehicle to at least partly overcome the disadvantages of the prior art.
本发明的实施例提供一种用于促进车辆的安全行驶的方法,包括:确定车辆的当前行驶场景;从数据库获得至少一个车辆事故场景;判断所述车辆的当前行驶场景是否与所述至少一个车辆事故场景相匹配;以及如果所述车辆的当前行驶场景与所述至少一个车辆事故场景相匹配,则自动执行动作以避免所述车辆进入所述至少一个车辆事故场景。An embodiment of the present invention provides a method for promoting safe driving of a vehicle, including: determining the current driving scene of the vehicle; obtaining at least one vehicle accident scene from a database; judging whether the current driving scene of the vehicle is consistent with the at least one A vehicle accident scenario matches; and if the current driving scenario of the vehicle matches the at least one vehicle accident scenario, automatically performing an action to avoid the vehicle from entering the at least one vehicle accident scenario.
本发明的实施例还提供一种用于促进车辆的安全行驶的装置,包括:确定模块,用于确定车辆的当前行驶场景;获得模块,用于从数据库获得至少一个车辆事故场景;判断模块,用于判断所述车辆的当前行驶场景是否与所述至少一个车辆事故场景相匹配;以及执行模块,用于如果所述车辆的当前行驶场景与所述至少一个车辆事故场景相匹配,则自动执行动作以避免所述车辆进入所述至少一个车辆事故场景。An embodiment of the present invention also provides a device for promoting safe driving of a vehicle, including: a determination module, used to determine the current driving scene of the vehicle; an obtaining module, used to obtain at least one vehicle accident scene from a database; a judging module, for judging whether the current driving scene of the vehicle matches the at least one vehicle accident scene; and an execution module for automatically executing if the current driving scene of the vehicle matches the at least one vehicle accident scene an action to avoid entry of the vehicle into the at least one vehicle accident scenario.
按照本发明实施例的一种用于促进车辆的安全行驶的设备,包括:处理器;以及存储器,用于存储可执行指令,其中,所述可执行指令当被执行时使得所述处理器执行前述的方法。An apparatus for promoting safe driving of a vehicle according to an embodiment of the present invention includes: a processor; and a memory for storing executable instructions, wherein the executable instructions, when executed, cause the processor to perform the aforementioned method.
按照本发明实施例的一种机器可读介质,其上存储有可执行指令,其中,所述可执行指令当被执行时,使得机器执行前述的方法。According to a machine-readable medium according to an embodiment of the present invention, executable instructions are stored thereon, wherein, when executed, the executable instructions cause a machine to execute the aforementioned method.
按照本发明实施例的一种用于促进车辆的安全行驶的系统,包括:传感器,用于感测车辆的行驶状况信息和车辆周边环境信息;以及控制设备,用于执行前述的方法。A system for promoting safe driving of a vehicle according to an embodiment of the present invention includes: a sensor for sensing driving condition information of the vehicle and surrounding environment information of the vehicle; and a control device for executing the aforementioned method.
其中,所述系统还包括执行设备,用于基于所述控制设备的输出来对所述车辆执行操作。Wherein, the system further includes an execution device, configured to perform operations on the vehicle based on the output of the control device.
从以上的描述可以看出,本发明实施例的方案通过利用训练模型基于自然行驶数据中的事故数据来针对自动驾驶车辆的一些错误的或危险的驾驶行为进行惩罚性训练,从而使得自动驾驶车辆能够避免进入可能会发生事故的事故场景。As can be seen from the above description, the solution of the embodiment of the present invention uses the training model to conduct punitive training for some erroneous or dangerous driving behaviors of the self-driving vehicle based on the accident data in the natural driving data, so that the self-driving vehicle Ability to avoid entering accident scenarios where accidents could occur.
应当注意,以上一个或多个方面包括以下详细描述以及在权利要求中具体指出的特征。下面的说明书及附图详细阐述了所述一个或多个方面的某些说明性特征。这些特征仅仅指示可以实施各个方面的原理的多种方式,并且本公开内容旨在包括所有这些方面和其等同变换。It should be noted that one or more aspects above include the features described in the following detailed description as well as those particularly pointed out in the claims. Certain illustrative features of the one or more aspects are set forth in the following description and accompanying drawings. These features are merely indicative of the various ways in which the principles of various aspects can be implemented and this disclosure is intended to include all such aspects and their equivalents.
附图说明Description of drawings
以下将结合附图描述所公开的多个方面,这些附图被提供用以说明而非限制所公开的多个方面。The disclosed aspects will be described below with reference to the accompanying drawings, which are provided to illustrate but not limit the disclosed aspects.
图1示出了按照本发明的一个实施例的用于促进车辆的安全行驶的系统的架构示意图;Fig. 1 shows a schematic architecture diagram of a system for promoting safe driving of a vehicle according to an embodiment of the present invention;
图2示出了按照本发明的一个实施例的用于促进车辆的安全行驶的方法的流程示意图;Fig. 2 shows a schematic flowchart of a method for promoting safe driving of a vehicle according to an embodiment of the present invention;
图3示出了按照本发明的另一个实施例的用于促进车辆的安全行驶的方法的流程示意图;Fig. 3 shows a schematic flowchart of a method for promoting safe driving of a vehicle according to another embodiment of the present invention;
图4示出了按照本发明的一个实施例的用于生成车辆事故场景的方法的示例图;FIG. 4 shows an example diagram of a method for generating a vehicle accident scene according to an embodiment of the present invention;
图5示出了按照本发明的一个实施例的用于促进车辆的安全行驶的装置的示意图;Fig. 5 shows a schematic diagram of a device for promoting safe driving of a vehicle according to an embodiment of the present invention;
图6示出了按照本发明的一个实施例的用于促进车辆的安全行驶的设备的示意图。FIG. 6 shows a schematic diagram of a device for promoting safe driving of a vehicle according to an embodiment of the present invention.
具体实施方式Detailed ways
现在将参考多种示例性实施方式来讨论本公开内容。应当理解,这些实施方式的讨论仅仅用于使得本领域技术人员能够更好地理解并从而实施本公开内容的实施例,而并非教导对本公开内容的范围的任何限制。The present disclosure will now be discussed with reference to various exemplary embodiments. It should be understood that the discussion of these embodiments is only for the purpose of enabling those skilled in the art to better understand and thus implement the embodiments of the present disclosure, rather than teaching any limitation to the scope of the present disclosure.
下面给将结合附图详细描述本发明的各个实施例。Various embodiments of the present invention will be described in detail below with reference to the accompanying drawings.
图1示出了按照本发明的一个实施例的用于促进车辆的安全行驶的系统100的架构示意图。如图1所示,用于促进车辆的安全行驶的示例性系统100可以包括传感器102、处理器104、控制设备106、数据库108和执行设备110。FIG. 1 shows a schematic structural diagram of a
传感器102可以包括用于感测车辆的行驶状况信息和车辆周边环境信息的各种类型的传感器,例如,用于检测车辆本身的速度和/或加速度的速度传感器,用于检测车辆附近的物体大小、距离和移动速度等的雷达传感器,用于检测发动机温度的温度传感器,用于捕获车辆周边环境的图像传感器、亮度传感器、声音传感器等等。为简便起见,在此仅列出一些应用于车辆的传感器例子,在实际应用中,可以存在适用于车辆的任何可用的传感器。传感器102可以将检测到的数据或信息传递给处理器104和/或控制设备106。The
处理器104可以对传感器102检测到的数据进行分析,用以确定车辆的当前行驶场景。在一些实施例中,车辆的当前行驶场景可以通过特征集合的方式来表示,其中特征集合中的特征包括但不限于以下中的至少一项:车辆的固有信息、当前车速、当前时间、车辆所处的地点、周边环境信息、车辆的自动驾驶系统或驾驶者的基本信息等等。在一些例子中,车辆的固有信息包括但不限于车型、品牌、生产商、排量、变速器、发动机信息、出厂时间、总的行驶距离和时间、损耗情况、驱动方式等;车辆的自动驾驶系统的基本信息包括但不限于系统的开发公司、系统的版本、系统的软硬件参数等等;车辆的驾驶者的基本信息包括但不限于性别、年龄、驾龄、身体状况、驾驶风格(如喜欢开快车、喜欢开慢车、喜欢并线超车等等)等。在一些例子中,周边环境信息包括但不限于周边环境的温度、亮度、声音、天气、周边其他物体的大小、相对本车的距离、速度、该路段的最低和最高限制速度、路况、路面质量等等。举例而言,车辆的当前行驶场景可以通过下列示例性特征集合F1来表示:[晚上8点、县道、雨天、路况畅通、路面质量差、最高限速100、车速100、前方100米有其他车辆、后方100米有其他车辆、车型A、已行驶10年、轮胎老化、自动驾驶系统版本1]。需要理解的是,为了便于说明,此处仅列出了一些示例性的特征;在实践中,表示车辆的当前行驶场景的特征集合可以包括多于、少于、不同于上述示例的特征。The
处理器104将经过分析的数据提供给控制设备106,以使得控制设备106可以将在处理器104确定的车辆的当前行驶场景与从数据库108获得的车辆事故场景进行比较。在本文中,车辆事故场景可以通过特征集合的方式来表示,其中特征集合中的特征可以包括但不限于以下中的至少一项:事故发生的类型、时间、地点、原因、周边环境、车速、车辆受损情况、人员伤亡情况、以及可选的车辆的固有信息等。在一些例子中,事故发生的原因包括但不限于:车速超过或低于预定车速、与附近车辆或物体之间的距离低于预定距离、方向盘旋转角度超过或低于预定角度、方向盘旋转方向错误、制动力度或程度超过或低于预定值、车辆故障等;车辆的固有信息包括但不限于车辆的车型、品牌、生产商、排量、变速器、发动机信息、出厂时间、总的行驶距离和时间、损耗情况、驱动方式等;周边环境包括但不限于事故发生时的周边环境的温度、亮度、声音、天气、周边其他物体的大小、相对本车的距离、速度、该路段的最低和最高限制速度、路况、路面质量等。举例而言,一个示例性的车辆事故场景可以通过如下特征集合F’来表示:[追尾、晚上8点、县道、雨天、路况畅通、路面质量差、最高限速100、车速120、超过预定车速20%、车型A、已行驶10年、轮胎老化、自动驾驶系统版本1、前保险杠严重受损、车内人员受轻伤]。需要理解的是,为了便于说明,此处仅列出了一些示例性的特征;在实践中,表示车辆事故场景的特征集合可以包括多于、少于、不同于上述示例的特征。The
在一些实施例中,控制设备106可以通过特征比对的方式对车辆的当前行驶场景与车辆事故场景进行匹配。如果二者相匹配或者匹配程度达到阈值,则控制设备106可以指示执行设备110自动执行动作以避免车辆进入事故场景。需要理解的是,可以采用任何适当的匹配或比对方式来执行辆的当前行驶场景与车辆事故场景的匹配操作。In some embodiments, the
在一些例子中,自动执行动作可以包括由车辆的自动驾驶系统调整车辆的当前操作状态,例如从车辆的匀速行驶操作调整为执行包括以下各项的至少一个动作:刹车、停车、转弯、加速、减速、并线等等。在另一些例子中,自动执行操作可以包括向车辆的用户发送提示信号,例如,诸如“加速并且并线,当前行驶情况符合追尾事故场景”之类的声音信号、在车载显示器的屏幕上显示出警告信息、在用户前方的玻璃上投影出警告信息等等。在本文中,车辆的用户包括车辆的自动驾驶系统或人类驾驶者中的至少一者。在一些可选例子中,控制设备106也可以向本车附近的其他车辆提供指示信号,以指示其他车辆的用户执行动作以避免进入事故场景。在一些例子中,指示信号可以包括声音信号、灯光信号、图像信号等等。In some examples, automatically performing an action may include adjusting the current operating state of the vehicle by the vehicle's automatic driving system, for example, adjusting from the vehicle's constant speed driving operation to performing at least one action including: braking, parking, turning, accelerating, Slow down, merge, etc. In other examples, the automatic execution operation may include sending a prompt signal to the user of the vehicle, for example, an audio signal such as "accelerate and merge, the current driving situation is consistent with a rear-end collision scenario", displayed on the screen of the vehicle display Warning messages, projected warning messages on the glass in front of the user, etc. Herein, the user of the vehicle includes at least one of the vehicle's automated driving system or a human driver. In some optional examples, the
举例而言,当将上述的车辆当前行驶场景F1的特征集合中的特征与车辆事故场景的特征集合F’中的相应特征相匹配时,可以判断二者相匹配或者匹配程度达到阈值,从而控制设备可以判断该车辆可能会进入追尾事故场景,并指示执行设备调整车辆的当前行驶状态,例如使得车辆减速和/或转至其他车道。可选地,控制设备还可以向后方的车辆提供指示信号,例如指示后方车辆减速的语音信号、图像信号等等。再举一个例子,假设车辆的当前行驶场景F2为[下午2点、高速公路、晴天、路况畅通、路面质量佳、最高限速120、车速100、周围200米内无其他物体、车型A、已行驶0.5年、新轮胎、自动驾驶系统版本10],当控制设备将当前行驶场景F2与事故场景F’相匹配时,可以判断二者不匹配或者匹配程度未达到阈值,则控制设备不指示执行设备调整车辆的当前行驶状态,以及可选地,继续从处理器104获得新的当前行驶场景。For example, when the above-mentioned features in the feature set of the current driving scene F1 of the vehicle are matched with the corresponding features in the feature set F' of the vehicle accident scene, it can be judged that the two match or the matching degree reaches a threshold, so as to control The device can judge that the vehicle may enter a rear-end collision accident scene, and instruct the execution device to adjust the current driving state of the vehicle, for example, to slow down the vehicle and/or turn to another lane. Optionally, the control device may also provide an indication signal to the vehicle behind, such as a voice signal, an image signal, etc. indicating that the vehicle behind slows down. To give another example, suppose the current driving scene F2 of the vehicle is [2:00 p.m., highway, sunny day, smooth road conditions, good road surface quality, maximum speed limit 120,
需要理解的是,虽然在图1中处理器104被示出为与控制设备106分离开,但在一些实施例中,处理器104也可以被合并入控制设备106中。此外,虽然在图1中数据库108被示为包括在系统100中,在一些例子中,数据库108也可以位于系统100外部且可以通过有线或者无线的通信方式与系统100传送数据。另外,系统100包括的各个部件可以通过无线或有线的任意方式相连接。It should be understood that although
图2示出了按照本发明的一个实施例的用于促进车辆的安全行驶的方法200的流程示意图。图2所示的方法200例如可以由系统100来实现。FIG. 2 shows a schematic flowchart of a
如图2所示,在方框202,确定当前行驶场景,例如正在行驶中的车辆的当前行驶场景。As shown in FIG. 2 , at
在方框204,从数据库获得车辆事故场景。在一些例子中,数据库可以是置于车辆内的本地数据库或者是与车辆的自动驾驶系统可通信的外部数据库、云端数据库等。At
在方框206,可以判断车辆的当前行驶场景与车辆事故场景之间的匹配情况,例如完全匹配、部分匹配、匹配程度达到阈值等等。In
在方框208,如果车辆的当前行驶场景与从数据库获得某个或某些事故场景相符合或匹配,或者匹配程度达到阈值,则自动执行动作以避免所述车辆进入车辆事故场景。In
图3示出了按照本发明的另一个实施例的用于促进车辆的安全行驶的方法300的示意图。图3所示的方法300例如可以由系统100来实现。FIG. 3 shows a schematic diagram of a
如图3所示,方法300可以包括,在方框302,感测行驶状况和周边环境信息,例如,这可以由系统100中的传感器102来执行。As shown in FIG. 3 , the
在方框304,可以确定当前行驶场景,例如根据在302处感测到的行驶状况和周边环境信息来确定车辆的当前行驶场景。例如,这可以由系统100中的处理器104来执行。In
在方框306,可以从数据库获得车辆事故场景。在一些例子中,车辆事故场景可以是通过训练模型基于真实的事故数据而生成并预先存储在数据库中的。例如,这可以由系统100中的控制设备106来执行。At
在方框308,可以判断在方框304确定的车辆的当前行驶场景是否与在方框306获得的车辆事故场景中的至少一个事故场景相匹配。如果为否,即不匹配或者匹配程度低于阈值,则可选地,系统可以继续确定车辆的当前行驶场景。如果为是,即相匹配或者匹配程度高于阈值,则方法可以前进至方框310,自动执行动作以避免车辆进入车辆事故场景。At
可选地,方法300还可以包括,在方框312,还可以向车辆附近的其他车辆的提供指示信号以指示其他车辆的用户执行动作以避免进入车辆事故场景。Optionally, the
图4示出了按照本发明的一个实施例的用于获得车辆事故场景的示例过程400。例如,该过程可以是针对方法200中的方框204和方法300中的方框306中的操作的一个示例。在该示例性过程中,车辆事故场景可以通过训练模型基于采集的真实车辆事故数据来生成。FIG. 4 illustrates an
在方框402,可以采集车辆事故数据。在一些例子中,车辆事故数据是关于已发生的真实事故的数据。在本文中,该车辆事故数据可以由第三方或者云端服务器从已发生的一起或多起车辆事故中采集。举例而言,第三方可以包括以下中的至少一个:交通管理局、保险公司、行车记录仪数据收集公司等等。At
在方框404,对采集的车辆事故数据进行分析,以至少基于事故发生的原因将事故数据分类为有效事故数据和无效事故数据。例如,由于驾驶者的操作导致的、且在自动驾驶情况下可避免的事故通常可被认为是无效事故,例如驾驶者打瞌睡或看手机导致的事故,而由于非驾驶者的操作导致的、且在自动驾驶情况下不可避免的事故通常可被认为是有效事故,例如被后车碰撞导致的事故。At
举例而言,当车辆在正常行驶过程中,由于车辆附近突然出现的其他物体(例如,行人、其他车辆、动物、投掷物品等等)而导致车辆避让不及发生的事故所涉及的数据可以被认为是有效事故数据。在这种事故原因下,不管是由人手动驾驶还是由自动驾驶系统自动驾驶车辆,此类事故可能都无法完全避免。因此,通过采集该类事故数据并通过训练模型基于这些有效事故数据来生成事故场景,并将事故场景提供给车辆的自动驾驶系统,能够使得自动驾驶系统在后续的行驶过程中促使车辆避免此类事故。For example, when the vehicle is running normally, the data involved in the accident caused by the sudden appearance of other objects (such as pedestrians, other vehicles, animals, thrown objects, etc.) near the vehicle can be regarded as is valid accident data. Under such accident reasons, such accidents may not be completely avoidable, regardless of whether the vehicle is driven manually by a human or by an automatic driving system. Therefore, by collecting such accident data and training the model to generate accident scenarios based on these valid accident data, and providing the accident scenarios to the vehicle's automatic driving system, the automatic driving system can prompt the vehicle to avoid such accidents during subsequent driving. ACCIDENT.
在另一些例子中,对于由于驾驶者打瞌睡或者不注意周边环境导致的事故,处于自动驾驶状态下的车辆可以避免此类事故。因此,涉及这类事故的数据可以被认为是无效事故数据。In other examples, a vehicle operating autonomously can avoid accidents caused by a driver dozing off or not paying attention to their surroundings. Therefore, data related to such accidents can be considered invalid accident data.
上述举例仅仅是示例性的,在实践中针对事故数据的分类可以用已知的任何适当方式来进行。The above examples are only exemplary, and in practice, the classification of accident data can be performed in any known suitable manner.
在方框406,从所分类的事故数据中提取有效事故数据。At
在方框408,可以根据提取的有效事故数据来生成车辆事故场景,以用于与车辆行驶过程中的当前行驶场景作比较或匹配。In
可选地,随着采集的车辆事故数据发生变化,生成的事故场景可以被更新。在一些例子中,由于真实的事故数据可能随着时间过去在增加且事故发生的原因也在发生变化,因此从最新发生的一起或多起事故中采集的车辆事故数据中的有效事故数据也会随之被更新。例如,随着时间过去以及自动驾驶系统采用本发明的技术被训练后,某些有效事故数据可能会被更新变成无效事故数据。举例而言,起初追尾事故可被认为是非驾驶者的操作导致的、且在自动驾驶情况下不可避免的有效事故;在采用本发明的技术后,自动驾驶系统可以在判断车辆的当前行驶场景与事故场景相匹配(例如,前后两车相距不足50米)时自动执行加速和/或并线动作以使得避免追尾事故。因此,在采用本发明的技术后采集的事故数据中,此类追尾事故可被更新为无效事故。Optionally, as the collected vehicle accident data changes, the generated accident scenarios may be updated. In some instances, valid accident data in vehicle accident data collected from the most recent accident or accidents may also will be updated accordingly. For example, some valid accident data may be updated to become invalid accident data as time goes by and after the automatic driving system is trained using the technique of the present invention. For example, initially, a rear-end collision accident can be considered as an unavoidable effective accident caused by non-driver's operation; after adopting the technology of the present invention, the automatic driving system can judge the current driving scene of the vehicle and When the accident scene matches (for example, the distance between the two vehicles in front and behind is less than 50 meters), the acceleration and/or merging actions are automatically performed to avoid rear-end collision accidents. Therefore, in the accident data collected after adopting the technology of the present invention, such rear-end collision accidents can be updated as invalid accidents.
本领域技术人员应当理解的是,上述例子仅是示例性的,在其它实施例中,可以以任何其它方式来对车辆事故数据分类并据此生成事故场景。Those skilled in the art should understand that the above examples are only illustrative, and in other embodiments, vehicle accident data can be classified in any other manner and accident scenarios can be generated accordingly.
图5示出了按照本发明的一个实施例的用于促进车辆的安全行驶的装置500的示意图。图5所示的装置500可以利用软件、硬件或软硬件结合的方式来实现。FIG. 5 shows a schematic diagram of a
如图5所示,装置500可以包括确定模块502、获得模块504、判断模块506和执行模块508。As shown in FIG. 5 , the
确定模块502可以用于确定车辆的当前行驶场景。The
获得模块504可以用于从数据库获得至少一个车辆事故场景,其中,所述至少一个车辆事故场景是通过训练模型基于采集的车辆事故数据来生成的。在一些例子中,车辆事故数据至少基于事故发生的原因被分类为有效事故数据和无效事故数据,以及其中,所述至少一个车辆事故场景是通过训练模型基于所述有效事故数据来生成的。在一些实现中,车辆事故数据是由第三方或者由云端服务器从已发生的一起或多起车辆事故中采集的。在本文中,所述车辆事故场景通过包括以下特征中的至少一者的特征集合来表示:事故发生的类型、时间、地点、原因、周边环境、车速、车辆受损情况、人员伤亡情况以及车辆的固有信息等等。The obtaining
判断模块506可以用于判断所述车辆的当前行驶场景是否与所述至少一个车辆事故场景相匹配。The judging
执行模块508可以用于如果所述车辆的当前行驶场景与所述至少一个车辆事故场景相匹配,例如匹配程度达到阈值,则自动执行动作以避免所述车辆进入所述至少一个车辆事故场景。The
进一步地,获得模块504还被配置用于:获得更新后的至少一个车辆事故场景。在一些实施例中,更新后的至少一个车辆事故场景是进一步基于更新的车辆事故数据中的有效事故数据来生成的,以及其中,更新的车辆事故数据是基于所述第三方或者所述云端服务器从最新发生的一起或多起车辆事故中采集的车辆事故数据来得到的。Further, the obtaining
此外,可选地,装置500还可以包括发送模块,其用于向所述车辆附近的其他车辆发送指示信号,其中,所述指示信号用于指示所述其他车辆的用户执行动作以避免进入所述至少一个车辆事故场景。In addition, optionally, the
图6示出了按照本发明的一个实施例的用于促进车辆的安全行驶的设备600的示意图。FIG. 6 shows a schematic diagram of an
如图6所示,设备600可以包括处理器602和存储器604,其中,存储器604用于存储可执行指令,所述可执行指令当被执行时使得处理器602执行图2所示的方法200和/或图3所示的方法300。As shown in FIG. 6, the
本发明实施例还提供一种机器可读介质,其上存储有可执行指令,当所述可执行指令被执行时,使得机器执行图2所示的方法200和/或图3所示的方法300。The embodiment of the present invention also provides a machine-readable medium on which executable instructions are stored, and when the executable instructions are executed, the machine executes the
应当理解,以上描述的方法中的所有操作都仅仅是示例性的,本公开并不限制于方法中的任何操作或这些操作的顺序,而是应当涵盖在相同或相似构思下的所有其它等同变换。It should be understood that all operations in the method described above are exemplary only, and the present disclosure is not limited to any operation in the method or the order of these operations, but should cover all other equivalent transformations under the same or similar concept .
还应当理解,以上描述的装置中的所有模块都可以通过各种方式来实施。这些模块可以被实施为硬件、软件、或其组合。此外,这些模块中的任何模块可以在功能上被进一步划分成子模块或组合在一起。It should also be understood that all modules in the apparatus described above may be implemented in various ways. These modules may be implemented as hardware, software, or a combination thereof. Furthermore, any of these modules may be functionally further divided into sub-modules or grouped together.
已经结合各种装置和方法描述了处理器。这些处理器可以使用电子硬件、计算机软件或其任意组合来实施。这些处理器是实施为硬件还是软件将取决于具体的应用以及施加在系统上的总体设计约束。作为示例,本公开中给出的处理器、处理器的任意部分、或者处理器的任意组合可以实施为微处理器、微控制器、数字信号处理器(DSP)、现场可编程门阵列(FPGA)、可编程逻辑器件(PLD)、状态机、门逻辑、分立硬件电路、以及配置用于执行在本公开中描述的各种功能的其它适合的处理部件。本公开给出的处理器、处理器的任意部分、或者处理器的任意组合的功能可以实施为由微处理器、微控制器、DSP或其它适合的平台所执行的软件。Processors have been described in connection with various apparatus and methods. These processors may be implemented using electronic hardware, computer software, or any combination thereof. Whether such processors are implemented as hardware or software will depend upon the particular application and overall design constraints imposed on the system. As examples, a processor, any portion of a processor, or any combination of processors presented in this disclosure may be implemented as a microprocessor, microcontroller, digital signal processor (DSP), field programmable gate array (FPGA) ), programmable logic devices (PLDs), state machines, gate logic, discrete hardware circuits, and other suitable processing components configured to perform the various functions described in this disclosure. The functionality of a processor, any portion of a processor, or any combination of processors given in this disclosure may be implemented as software executed by a microprocessor, microcontroller, DSP, or other suitable platform.
以上描述被提供用于使得本领域任何技术人员可以实施本文所描述的各个方面。这些方面的各种修改对于本领域技术人员是显而易见的,本文限定的一般性原理可以应用于其它方面。因此,权利要求并非旨在被局限于本文示出的方面。关于本领域技术人员已知或即将获知的、对本公开所描述各个方面的元素的所有结构和功能上的等同变换,都将通过引用而明确地包含到本文中,并且旨在由权利要求所覆盖。The above description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects. Accordingly, the claims are not intended to be limited to the aspects shown herein. All structural and functional equivalents to the elements of the various aspects described in this disclosure that are known or come to be known to those skilled in the art are expressly incorporated herein by reference and are intended to be covered by the claims .
本领域技术人员应当理解,以上公开的各个实施例可以在不偏离发明实质的情况下做出各种修改和变形,这些修改和变形都应当落入本发明的保护范围之内,并且,本发明的保护范围应当由权利要求书来限定。Those skilled in the art should understand that various modifications and variations can be made to the embodiments disclosed above without departing from the essence of the invention, and these modifications and variations should fall within the protection scope of the present invention, and the present invention The scope of protection should be defined by the claims.
Claims (18)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911188008.4A CN112863244B (en) | 2019-11-28 | 2019-11-28 | Method and device for promoting safe driving of vehicle |
PCT/EP2020/081258 WO2021104833A1 (en) | 2019-11-28 | 2020-11-06 | Method and device for promoting driving safety of vehicle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911188008.4A CN112863244B (en) | 2019-11-28 | 2019-11-28 | Method and device for promoting safe driving of vehicle |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112863244A CN112863244A (en) | 2021-05-28 |
CN112863244B true CN112863244B (en) | 2023-03-14 |
Family
ID=73344014
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911188008.4A Active CN112863244B (en) | 2019-11-28 | 2019-11-28 | Method and device for promoting safe driving of vehicle |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112863244B (en) |
WO (1) | WO2021104833A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11697370B2 (en) * | 2021-01-28 | 2023-07-11 | GM Global Technology Operations LLC | Augmented audio output by an electric vehicle |
JP7615952B2 (en) * | 2021-08-03 | 2025-01-17 | トヨタ自動車株式会社 | Server, method, and program |
GB2615290B (en) * | 2021-10-22 | 2024-12-18 | Calamus Group Ltd | Blindspot assist system for a vehicle |
CN116778720B (en) * | 2023-08-25 | 2023-11-24 | 中汽传媒(天津)有限公司 | Traffic condition scene library construction and application method, system and electronic equipment |
Citations (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009042435A (en) * | 2007-08-08 | 2009-02-26 | Toyota Central R&D Labs Inc | Safe driving education device and program |
KR20090107845A (en) * | 2008-04-10 | 2009-10-14 | 엘지전자 주식회사 | Vehicle navigation method and apparatus |
CN101819718A (en) * | 2010-04-26 | 2010-09-01 | 招商局重庆交通科研设计院有限公司 | Identifying and early warning method for traffic accidents |
CN107024927A (en) * | 2016-02-01 | 2017-08-08 | 上海无线通信研究中心 | A kind of automated driving system and method |
CN107077780A (en) * | 2014-10-30 | 2017-08-18 | 三菱电机株式会社 | Mobile unit, automatic driving vehicle, automatic Pilot accessory system, Autopilot Monitor Unit, road management device and automatic Pilot information collection apparatus |
US9805601B1 (en) * | 2015-08-28 | 2017-10-31 | State Farm Mutual Automobile Insurance Company | Vehicular traffic alerts for avoidance of abnormal traffic conditions |
CN107531244A (en) * | 2015-04-21 | 2018-01-02 | 松下知识产权经营株式会社 | Information processing system, information processing method and program |
US9886841B1 (en) * | 2016-04-27 | 2018-02-06 | State Farm Mutual Automobile Insurance Company | Systems and methods for reconstruction of a vehicular crash |
CN107730028A (en) * | 2017-09-18 | 2018-02-23 | 广东翼卡车联网服务有限公司 | A kind of car accident recognition methods, car-mounted terminal and storage medium |
CN108569296A (en) * | 2017-12-15 | 2018-09-25 | 蔚来汽车有限公司 | Method for self-adaptively matching auxiliary driving system and implementation module thereof |
CN108595901A (en) * | 2018-07-09 | 2018-09-28 | 黄梓钥 | A kind of autonomous driving vehicle normalized security simulating, verifying model data base system |
CN108665757A (en) * | 2018-03-29 | 2018-10-16 | 斑马网络技术有限公司 | Simulating vehicle emergency system and its application |
CN108715165A (en) * | 2018-04-08 | 2018-10-30 | 江西优特汽车技术有限公司 | A kind of ride safety of automobile control method and system |
CN108860165A (en) * | 2018-05-11 | 2018-11-23 | 深圳市图灵奇点智能科技有限公司 | Vehicle assistant drive method and system |
CN109249937A (en) * | 2017-07-14 | 2019-01-22 | Ccc信息服务股份有限公司 | Drive Computer Aided Design analysis system |
CN109358591A (en) * | 2018-08-30 | 2019-02-19 | 百度在线网络技术(北京)有限公司 | Vehicle trouble processing method, device, equipment and storage medium |
CN109520744A (en) * | 2018-11-12 | 2019-03-26 | 百度在线网络技术(北京)有限公司 | The driving performance test method and device of automatic driving vehicle |
WO2019088989A1 (en) * | 2017-10-31 | 2019-05-09 | Nissan North America, Inc. | Reinforcement and model learning for vehicle operation |
CN109747659A (en) * | 2018-11-26 | 2019-05-14 | 北京汽车集团有限公司 | The control method and device of vehicle drive |
CN109935077A (en) * | 2017-12-15 | 2019-06-25 | 百度(美国)有限责任公司 | System for constructing vehicle and cloud real-time traffic map for automatic driving vehicle |
CN110009903A (en) * | 2019-03-05 | 2019-07-12 | 同济大学 | A kind of scene of a traffic accident restoring method |
DE102018000999A1 (en) * | 2018-02-07 | 2019-08-08 | Daimler Ag | Method for operating an unmanned aerial vehicle |
CN110356401A (en) * | 2018-04-05 | 2019-10-22 | 北京图森未来科技有限公司 | A kind of automatic driving vehicle and its lane change control method and system |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9868393B2 (en) * | 2015-12-10 | 2018-01-16 | International Business Machines Corporation | Vehicle accident avoidance system |
CN107153363B (en) * | 2017-05-08 | 2020-11-03 | 百度在线网络技术(北京)有限公司 | Simulation test method, device, equipment and readable medium for unmanned vehicle |
-
2019
- 2019-11-28 CN CN201911188008.4A patent/CN112863244B/en active Active
-
2020
- 2020-11-06 WO PCT/EP2020/081258 patent/WO2021104833A1/en active Application Filing
Patent Citations (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009042435A (en) * | 2007-08-08 | 2009-02-26 | Toyota Central R&D Labs Inc | Safe driving education device and program |
KR20090107845A (en) * | 2008-04-10 | 2009-10-14 | 엘지전자 주식회사 | Vehicle navigation method and apparatus |
CN101819718A (en) * | 2010-04-26 | 2010-09-01 | 招商局重庆交通科研设计院有限公司 | Identifying and early warning method for traffic accidents |
CN107077780A (en) * | 2014-10-30 | 2017-08-18 | 三菱电机株式会社 | Mobile unit, automatic driving vehicle, automatic Pilot accessory system, Autopilot Monitor Unit, road management device and automatic Pilot information collection apparatus |
CN107531244A (en) * | 2015-04-21 | 2018-01-02 | 松下知识产权经营株式会社 | Information processing system, information processing method and program |
US9805601B1 (en) * | 2015-08-28 | 2017-10-31 | State Farm Mutual Automobile Insurance Company | Vehicular traffic alerts for avoidance of abnormal traffic conditions |
CN107024927A (en) * | 2016-02-01 | 2017-08-08 | 上海无线通信研究中心 | A kind of automated driving system and method |
US9886841B1 (en) * | 2016-04-27 | 2018-02-06 | State Farm Mutual Automobile Insurance Company | Systems and methods for reconstruction of a vehicular crash |
CN109249937A (en) * | 2017-07-14 | 2019-01-22 | Ccc信息服务股份有限公司 | Drive Computer Aided Design analysis system |
CN107730028A (en) * | 2017-09-18 | 2018-02-23 | 广东翼卡车联网服务有限公司 | A kind of car accident recognition methods, car-mounted terminal and storage medium |
WO2019088989A1 (en) * | 2017-10-31 | 2019-05-09 | Nissan North America, Inc. | Reinforcement and model learning for vehicle operation |
CN108569296A (en) * | 2017-12-15 | 2018-09-25 | 蔚来汽车有限公司 | Method for self-adaptively matching auxiliary driving system and implementation module thereof |
CN109935077A (en) * | 2017-12-15 | 2019-06-25 | 百度(美国)有限责任公司 | System for constructing vehicle and cloud real-time traffic map for automatic driving vehicle |
DE102018000999A1 (en) * | 2018-02-07 | 2019-08-08 | Daimler Ag | Method for operating an unmanned aerial vehicle |
CN108665757A (en) * | 2018-03-29 | 2018-10-16 | 斑马网络技术有限公司 | Simulating vehicle emergency system and its application |
CN110356401A (en) * | 2018-04-05 | 2019-10-22 | 北京图森未来科技有限公司 | A kind of automatic driving vehicle and its lane change control method and system |
CN108715165A (en) * | 2018-04-08 | 2018-10-30 | 江西优特汽车技术有限公司 | A kind of ride safety of automobile control method and system |
CN108860165A (en) * | 2018-05-11 | 2018-11-23 | 深圳市图灵奇点智能科技有限公司 | Vehicle assistant drive method and system |
CN108595901A (en) * | 2018-07-09 | 2018-09-28 | 黄梓钥 | A kind of autonomous driving vehicle normalized security simulating, verifying model data base system |
CN109358591A (en) * | 2018-08-30 | 2019-02-19 | 百度在线网络技术(北京)有限公司 | Vehicle trouble processing method, device, equipment and storage medium |
CN109520744A (en) * | 2018-11-12 | 2019-03-26 | 百度在线网络技术(北京)有限公司 | The driving performance test method and device of automatic driving vehicle |
CN109747659A (en) * | 2018-11-26 | 2019-05-14 | 北京汽车集团有限公司 | The control method and device of vehicle drive |
CN110009903A (en) * | 2019-03-05 | 2019-07-12 | 同济大学 | A kind of scene of a traffic accident restoring method |
Also Published As
Publication number | Publication date |
---|---|
CN112863244A (en) | 2021-05-28 |
WO2021104833A1 (en) | 2021-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112863244B (en) | Method and device for promoting safe driving of vehicle | |
US10336252B2 (en) | Long term driving danger prediction system | |
JP2016146162A (en) | Driving determination device, driving determination program, calculation system, detection device, detection system, and detection method and program | |
CN108058705B (en) | Vehicle driving assistance system and method | |
JP7251629B2 (en) | Running memory system and running memory method | |
CN104773177A (en) | Aided driving method and aided driving device | |
CN112334370A (en) | Automated vehicle actions such as lane departure alerts and associated systems and methods | |
US11034293B2 (en) | System for generating warnings for road users | |
US20210244326A1 (en) | System, information processing apparatus, and information processing method | |
US20240127694A1 (en) | Method for collision warning, electronic device, and storage medium | |
JP7434882B2 (en) | Dangerous driving determination device, dangerous driving determination method, and dangerous driving determination program | |
US20210300354A1 (en) | Systems and Methods for Controlling Operation of a Vehicle Feature According to a Learned Risk Preference | |
CN118865741B (en) | Driving prompting method, driving prompting device, computer equipment, storage medium and program product | |
CN109878535A (en) | Driving assistance system and method | |
US20220398463A1 (en) | Ultrasonic system and method for reconfiguring a machine learning model used within a vehicle | |
US20220398414A1 (en) | Ultrasonic system and method for tuning a machine learning classifier used within a machine learning algorithm | |
CN114103966A (en) | Control method, device and system for driving assistance | |
CN112272630B (en) | Detecting a collision event | |
US11840265B1 (en) | Variable safe steering hands-off time and warning | |
CN109774702B (en) | Vehicle driving assistance system and method | |
US20240046779A1 (en) | Driving determination system, driving determination method, and recording medium | |
US20220397666A1 (en) | Ultrasonic system and method for classifying obstacles using a machine learning algorithm | |
KR102724377B1 (en) | Apparatus and method for providing information on fixed hazardous objects | |
CN114333414A (en) | Parking yield detection device, parking yield detection system, and recording medium | |
SE541256C2 (en) | Method and system for controlling a starting sequence of a vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |