[go: up one dir, main page]

CN112833876B - Multi-robot cooperative positioning method integrating odometer and UWB - Google Patents

Multi-robot cooperative positioning method integrating odometer and UWB Download PDF

Info

Publication number
CN112833876B
CN112833876B CN202011625879.0A CN202011625879A CN112833876B CN 112833876 B CN112833876 B CN 112833876B CN 202011625879 A CN202011625879 A CN 202011625879A CN 112833876 B CN112833876 B CN 112833876B
Authority
CN
China
Prior art keywords
robot
uwb
pose
odometer
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN202011625879.0A
Other languages
Chinese (zh)
Other versions
CN112833876A (en
Inventor
刘冉
陈凯翔
肖宇峰
张华�
曹志强
张静
刘满禄
邓忠元
霍建文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest University of Science and Technology
Original Assignee
Southwest University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest University of Science and Technology filed Critical Southwest University of Science and Technology
Priority to CN202011625879.0A priority Critical patent/CN112833876B/en
Publication of CN112833876A publication Critical patent/CN112833876A/en
Application granted granted Critical
Publication of CN112833876B publication Critical patent/CN112833876B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/005Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 with correlation of navigation data from several sources, e.g. map or contour matching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C22/00Measuring distance traversed on the ground by vehicles, persons, animals or other moving solid bodies, e.g. using odometers, using pedometers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/023Services making use of location information using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Manipulator (AREA)

Abstract

本发明公开了一种融合里程计与UWB的多机器人协作定位方法,包括以下步骤:S1:利用里程计和UWB数据采集模块分别采集机器人的位姿信息和多组UWB节点之间的距离信息;S2:基于采集的多组UWB节点之间距离信息,通过非线性优化算法实现多机器人协作定位;S3:基于非线性优化后的多机器人定位信息,融合机器人里程计提供的信息,构建位姿图,并进行优化,实现多机器人协作的精确定位。UWB采集机器人之间的距离信息,通过非线性优化实现多个机器人之间协作定位,里程计提供了机器人大致的位姿变化,通过图优化算法,融合非线性优化后的位姿信息,可以使多机器人协作定位精度更高。解决了多机器人协作定位精度较差的问题。

Figure 202011625879

The invention discloses a multi-robot cooperative positioning method integrating odometer and UWB, comprising the following steps: S1: using the odometer and a UWB data acquisition module to separately collect the pose information of the robot and the distance information between multiple groups of UWB nodes; S2: Based on the collected distance information between multiple groups of UWB nodes, the multi-robot cooperative positioning is realized through a nonlinear optimization algorithm; S3: Based on the multi-robot positioning information after nonlinear optimization, the information provided by the robot odometer is fused to construct a pose graph , and optimize it to achieve precise positioning of multi-robot collaboration. UWB collects distance information between robots, and realizes cooperative positioning between multiple robots through nonlinear optimization. The multi-robot cooperative positioning accuracy is higher. The problem of poor positioning accuracy of multi-robot cooperative positioning is solved.

Figure 202011625879

Description

一种融合里程计与UWB的多机器人协作定位方法A multi-robot cooperative localization method integrating odometer and UWB

技术领域technical field

本发明属于多移动机器人协作定位技术领域,具体涉及一种融合里程计与UWB的多机器人协作定位方法。The invention belongs to the technical field of multi-mobile robot cooperative positioning, and in particular relates to a multi-robot cooperative positioning method integrating odometer and UWB.

背景技术Background technique

近年来,移动机器人技术在工业、医疗和服务等许多领域都发挥了重要作用,而且在国防和空间探测领域等有害与危险场合也得到了很好的应用。In recent years, mobile robotics has played an important role in many fields such as industry, medical and service, and it has also been well used in harmful and dangerous situations such as defense and space exploration.

在移动机器人的研究领域中,定位一直是一个热门的研究话题,它为机器人提供实时的精确位置,而这些都是机器人执行路径规划和路径跟踪的前提,因此它在移动机器人的研究中占有十分重要的位置。In the research field of mobile robots, localization has always been a hot research topic, it provides real-time precise position for the robot, and these are the prerequisites for the robot to perform path planning and path tracking, so it occupies a very important position in the research of mobile robots. important location.

超宽带定位技术在实时性能和带宽等方面具有很大的优势,并且抗干扰性能更强,低成本、低功耗,数据传输速度快。UWB可以在复杂多变环境下的进行距离的测量,提高测距的精度与效率。但是UWB测量的距离也受环境因素和机器人角度等情况的影响,通过多个机器人之间的相互测距,平均正向和反向多次测量的平均值,可以减少对偏移量的影响,从而减少测距误差,采集到较为精确的机器人之间的距离。由于UWB只能提供距离信息,不能完成对移动机器人的位姿估计,通过非线性优化可以实现多个机器人之间的协作定位。UWB positioning technology has great advantages in real-time performance and bandwidth, and has stronger anti-interference performance, low cost, low power consumption, and fast data transmission. UWB can measure distance in complex and changeable environment, and improve the accuracy and efficiency of distance measurement. However, the distance measured by UWB is also affected by environmental factors and robot angles. By measuring the distance between multiple robots and averaging the average value of multiple forward and reverse measurements, the impact on the offset can be reduced. Thereby, the distance measurement error is reduced, and a more accurate distance between robots is collected. Since UWB can only provide distance information and cannot complete the pose estimation of mobile robots, cooperative positioning between multiple robots can be achieved through nonlinear optimization.

里程计提供了机器人短时间内精确的位姿变化,尽管里程计长时间存在累计误差,但是里程计在短时间内可以给机器人提供精确定位,并且UWB提供的多个机器人之间的距离信息可以修正这些误差,提高机器人的定位精度。通过多个机器人里程计提供的位姿信息,结合非线性优化后的多个机器人之间的定位信息,通过图优化算法的进一步优化,可以得到更高精度的定位。所以本发明选择融合里程计数据和UWB数据实现多个移动机器人之间的协作精确定位。The odometer provides precise pose changes of the robot in a short time. Although the odometer has accumulated errors for a long time, the odometer can provide precise positioning for the robot in a short time, and the distance information between multiple robots provided by UWB can be used. Correct these errors and improve the positioning accuracy of the robot. Through the pose information provided by multiple robot odometers, combined with the positioning information between multiple robots after nonlinear optimization, and further optimized by the graph optimization algorithm, higher-precision positioning can be obtained. Therefore, the present invention chooses to fuse odometer data and UWB data to realize cooperative precise positioning among multiple mobile robots.

发明内容SUMMARY OF THE INVENTION

本发明的目的是为了解决现有多机器人在复杂室内环境中协作定位精度较差,精度不高的问题,提出了一种融合里程计与UWB的多机器人协作定位方法。The purpose of the present invention is to solve the problems of poor cooperative positioning accuracy and low precision of existing multi-robots in complex indoor environments, and proposes a multi-robot cooperative positioning method integrating odometer and UWB.

本发明的技术方案是:一种融合里程计与UWB的多机器人协作定位方法包括以下步骤:The technical scheme of the present invention is: a multi-robot cooperative positioning method integrating odometer and UWB comprises the following steps:

S1:通过里程计和UWB数据采集模块分别采集机器人的位姿信息和多组UWB节点之间的距离信息;S1: Collect the pose information of the robot and the distance information between multiple groups of UWB nodes through the odometer and the UWB data acquisition module respectively;

S2:基于采集的多组UWB节点之间的距离信息,通过非线性优化算法实现机器人协作定位;S2: Based on the collected distance information between multiple groups of UWB nodes, the cooperative positioning of the robot is realized through a nonlinear optimization algorithm;

S3:基于非线性优化后的多机器人定位信息,融合机器人里程计提供的位姿信息,构建位姿图,并进行优化,实现多机器人协作的精确定位。S3: Based on the multi-robot positioning information after nonlinear optimization, the pose information provided by the robot odometer is fused, the pose graph is constructed, and the optimization is carried out to realize the precise positioning of the multi-robot cooperation.

本发明的有益效果是:本发明的多机器人协作定位方法利用里程计和UWB数据采集模块进行采集,并基于非线性优化的多机器人协作定位算法与融合里程计信息的位姿图优化算法。利用环境中的里程计和UWB设备作为感知单元,实现UWB数据和里程计数据的采集。UWB采集机器人之间的距离信息,通过非线性优化实现多个机器人之间协作定位,里程计提供了机器人大致的位姿变化,通过图优化算法,融合非线性优化后的位姿信息,可以使多机器人协作定位精度更高。解决了多机器人协作定位精度较差的问题。The beneficial effects of the present invention are as follows: the multi-robot cooperative positioning method of the present invention utilizes odometer and UWB data acquisition module for collection, and is based on a nonlinear optimized multi-robot cooperative localization algorithm and a pose graph optimization algorithm fused with odometry information. Using the odometer and UWB device in the environment as the perception unit, the collection of UWB data and odometer data is realized. UWB collects distance information between robots, and realizes cooperative positioning between multiple robots through nonlinear optimization. The multi-robot cooperative positioning accuracy is higher. The problem of poor positioning accuracy of multi-robot cooperative positioning is solved.

进一步地,步骤S1中,通过里程计采集机器人的位姿信息的方法为:将编码器搭建在机器人上进行采集,得到里程计数据;Further, in step S1, the method for collecting the pose information of the robot by using the odometer is as follows: building an encoder on the robot for collection, and obtaining the odometer data;

通过UWB数据采集模块采集多组UWB节点之间的距离信息的方法为:在每个机器人不同的位置上搭载UWB标签,采集多组UWB节点之间的距离信息。The method of collecting the distance information between multiple groups of UWB nodes through the UWB data collection module is as follows: carrying UWB tags on different positions of each robot, and collecting the distance information between multiple groups of UWB nodes.

上述进一步方案的有益效果是:在本发明中,UWB在实时性能和带宽等方面具有很大的优势,并且抗干扰性能更强。通过在机器人上不同位置搭载UWB标签,每个机器人的UWB节点都会计算与其它机器人UWB节点之间的距离,这样每个机器人相对其它机器人就能够得到多组距离数据。The beneficial effects of the above-mentioned further solutions are: in the present invention, UWB has great advantages in real-time performance and bandwidth, etc., and has stronger anti-interference performance. By carrying UWB tags at different positions on the robot, the UWB node of each robot will calculate the distance between UWB nodes of other robots, so that each robot can obtain multiple sets of distance data relative to other robots.

进一步地,步骤S2包括以下子步骤:Further, step S2 includes the following sub-steps:

S21:根据多组UWB节点之间的距离信息,计算机器人i和机器人j之间距离测量值和计算值的残差函数;S21: According to the distance information between multiple groups of UWB nodes, calculate the residual function of the distance measurement value and the calculated value between robot i and robot j;

S22:根据机器人i和机器人j之间距离测量值和计算值的残差函数,利用列文伯格-马夸特法进行迭代,得到机器人的最佳位姿,实现多机器人协作定位。S22: According to the residual function of the measured value and the calculated value of the distance between robot i and robot j, use the Levenberg-Marquardt method to iterate to obtain the optimal pose of the robot to realize multi-robot cooperative positioning.

上述进一步方案的有益效果是:在本发明中,UWB虽然具有抗干扰性能强,测距精度高的优点,但是通过UWB只能获取距离信息,不能完成对移动机器人的位姿估计,里程计可以测得短时间内精确的位姿信息,两者结合可以实现精确的定位。本专利采取非线性优化算法,在UWB距离测量数据的基础上得到机器人之间的相对位姿估计。The beneficial effects of the above-mentioned further scheme are: in the present invention, although UWB has the advantages of strong anti-interference performance and high ranging accuracy, only distance information can be obtained through UWB, and the pose estimation of the mobile robot cannot be completed, and the odometer can be used. Accurate pose information is measured in a short time, and the combination of the two can achieve precise positioning. This patent adopts a nonlinear optimization algorithm to obtain the relative pose estimation between robots on the basis of UWB distance measurement data.

进一步地,步骤S21中,机器人i和机器人j之间距离测量值和计算值的残差函数的表达式为:Further, in step S21, the expression of the residual function of the measured value and the calculated value of the distance between robot i and robot j is:

Figure BDA0002874834130000031
Figure BDA0002874834130000031

其中,

Figure BDA0002874834130000032
表示机器人i和机器人j之间残差函数值最小的机器人位姿,argmin(·)表示能够使误差值最小的x的值,f(x)表示残差函数,x=(x,y,θ)表示机器人的位姿,x表示机器人i相对于机器人j的横坐标,y表示机器人i相对于机器人j的纵坐标,θ表示机器人i相对于机器人j的方向角度,K表示机器人i上的UWB节点的数量,L表示机器人j上的UWB节点的数量,
Figure BDA0002874834130000041
表示在t时刻机器人i上UWB节点k和机器人j上UWB节点l之间的实际测量值,d(·)表示给定机器人i与机器人j相对位姿的情况下计算机器人i上UWB节点k和机器人j上UWB节点l之间的距离运算,
Figure BDA0002874834130000042
表示机器人i上的UWB节点k的相对位置,
Figure BDA0002874834130000043
表示机器人j上的UWB节点l的相对位置,k∈[1,…,K],l∈[1,…,L],i∈[1,…,N],j∈[1,…,N],N代表机器人的数量。in,
Figure BDA0002874834130000032
represents the robot pose with the smallest residual function value between robot i and robot j, argmin( ) represents the value of x that can minimize the error value, f(x) represents the residual function, x=(x, y, θ ) represents the pose of the robot, x represents the abscissa of the robot i relative to the robot j, y represents the ordinate of the robot i relative to the robot j, θ represents the direction angle of the robot i relative to the robot j, and K represents the UWB on the robot i the number of nodes, L represents the number of UWB nodes on robot j,
Figure BDA0002874834130000041
represents the actual measurement value between UWB node k on robot i and UWB node l on robot j at time t, d( ) represents the calculation of UWB node k and UWB node k on robot i given the relative pose of robot i and robot j The distance calculation between UWB nodes l on robot j,
Figure BDA0002874834130000042
represents the relative position of UWB node k on robot i,
Figure BDA0002874834130000043
Represents the relative position of UWB node l on robot j, k∈[1,…,K], l∈[1,…,L], i∈[1,…,N], j∈[1,…,N ], N represents the number of robots.

上述进一步方案的有益效果是:在本发明中,利用多组UWB距离信息对移动机器人的姿态进行了优化,机器人i和机器人j之间的相对位姿估计可以通过上述方程的最小化找到最佳姿势配置来实现,其中,f(x)相当于一个残差函数,指的是实际测量值与计算值之间的差值,使差值最小的x=(x,y,θ)即是最佳位姿。The beneficial effect of the above-mentioned further scheme is: in the present invention, the posture of the mobile robot is optimized by using multiple sets of UWB distance information, and the relative posture estimation between the robot i and the robot j can find the best through the minimization of the above equation. It is realized by posture configuration, where f(x) is equivalent to a residual function, which refers to the difference between the actual measured value and the calculated value, and x=(x, y, θ) with the smallest difference is the most good posture.

进一步地,步骤S22包括以下子步骤:Further, step S22 includes the following sub-steps:

S221:根据残差函数,建立近似指标评价模型,动态调整信赖区域μ的大小;S221: According to the residual function, establish an approximate index evaluation model, and dynamically adjust the size of the trust region μ;

S222:将步长Δx限制在信赖半径为μ的区域内,计算Δx;S222: Limit the step size Δx to the region with the trust radius μ, and calculate Δx;

S223:在信赖半径为μ的区域内进行k次迭代,得到机器人的最佳位姿,实现多机器人协作定位。S223: Perform k iterations in the region with the trust radius μ to obtain the optimal pose of the robot and realize multi-robot cooperative positioning.

上述进一步方案的有益效果是:在本发明中,传统的方法需要遍历整个(x,y,θ)取值范围来得到最佳位姿估计,计算效率太低。本专利采用列文伯格-马夸特法提高了计算效率,该方法的优化思路是:在每次迭代中,先确定优化的范围,再确定该范围内的最优点。即把步长Δx=(Δx,Δy,Δθ)T限制在一个信赖半径为μ的区域内,然后在该区域内寻找最优步长,通过迭代k次,若ρ<0,说明拟合误差向着上升而非下降的趋势变化(与最优化目标方向相反),这时应该令xk+1=xk,根据经验可以设置μ=0.5μ再继续进行迭代计算。若ρ>0说明与最优化目标方向相同,这时令xk+1=xk+Δxk,当Δxk足够小时停止迭代,此时得到的位姿即是最佳位姿。The beneficial effects of the above-mentioned further solutions are: in the present invention, the traditional method needs to traverse the entire (x, y, θ) value range to obtain the best pose estimation, and the calculation efficiency is too low. The present patent uses the Levenberg-Marquardt method to improve the computational efficiency, and the optimization idea of the method is: in each iteration, the optimization range is first determined, and then the optimal point within the range is determined. That is, the step size Δx=(Δx, Δy, Δθ) T is limited to a region with a trust radius of μ, and then the optimal step size is found in this region. After k iterations, if ρ<0, it means the fitting error To the trend of rising rather than falling (opposite to the optimization target direction), x k+1 = x k should be set at this time, and μ=0.5μ can be set according to experience before continuing the iterative calculation. If ρ>0 indicates the same direction as the optimization target, then let x k+1 =x k +Δx k , stop the iteration when Δx k is small enough, and the pose obtained at this time is the best pose.

进一步地,步骤S221中,在信赖半径为μ的区域内进行k次迭代的方法为:通过建立近似指标评价模型动态调整信赖半径为μ的区域,近似指标评价模型的表达式为:Further, in step S221, the method of performing k iterations in the region with the trust radius μ is: dynamically adjust the region with the trust radius μ by establishing an approximate index evaluation model, and the expression of the approximate index evaluation model is:

Figure BDA0002874834130000051
Figure BDA0002874834130000051

其中,Δx表示步长,J(x)表示f(x)关于x的一阶导数,f(x+Δx)表示f(x)的增量,ρ表示近似指标;Among them, Δx represents the step size, J(x) represents the first derivative of f(x) with respect to x, f(x+Δx) represents the increment of f(x), and ρ represents the approximate index;

根据近似指标ρ动态调整信赖半径为μ的区域的方法为:若0<ρ≤0.25,则将信赖半径μ缩小一半,若ρ>0.75,则将信赖半径μ扩大一半,若0.25<ρ≤0.75,则不调整信赖半径μ;The method of dynamically adjusting the region of the trust radius μ according to the approximate index ρ is: if 0<ρ≤0.25, then reduce the trust radius μ by half, if ρ>0.75, then increase the trust radius μ by half, if 0.25<ρ≤0.75 , the trust radius μ is not adjusted;

在信赖半径为μ的区域内进行k次迭代,若ρ<0,则令xk+1=xk,并将信赖半径μ缩小一半继续迭代,若ρ>0,则令xk+1=xk+Δxk,当Δxk小于设定阈值时,得到机器人的初步最佳位姿xk+1,其中,Δxk表示迭代k次后步长,xk表示上一次迭代的位姿。Carry out k iterations in the region with the trust radius μ, if ρ<0, then let x k+1 = x k , and reduce the trust radius μ by half to continue the iteration, if ρ > 0, then let x k+1 = x k +Δx k , when Δx k is less than the set threshold, the initial optimal pose x k+1 of the robot is obtained, where Δx k represents the step size after k iterations, and x k represents the pose of the previous iteration.

上述进一步方案的有益效果是:在本发明中,更新迭代的过程中,信赖区域μ的范围根据近似模型与实际函数之间的差异来确定,如果差异小,就扩大信赖区域范围;如果差异大,就缩小这个范围。为了判定近似模型与实际函数差异的好坏,设定了一个近似指标评判模型拟合差异的大小,动态调整信赖域半径。在表达式中,分子是目标函数实际变化的值,分母是近似模型变化的值。在进行区域调整时,ρ太小,说明近似模型变化的值大于实际变化的值,也就是近似效果较差,需要缩小置信域范围;ρ太大,则说明近似变化的值小于实际变化的值,需要扩大μ;ρ接近1,则认为近似的效果较好,不需要更改μ值。The beneficial effect of the above-mentioned further scheme is: in the present invention, in the process of updating and iterating, the range of the trust region μ is determined according to the difference between the approximate model and the actual function, if the difference is small, the range of the trust region is expanded; if the difference is large , narrow this range. In order to judge the quality of the difference between the approximate model and the actual function, an approximate index is set to judge the size of the model fitting difference, and the trust region radius is dynamically adjusted. In the expression, the numerator is the value by which the objective function actually changes, and the denominator is the value by which the approximate model changes. When performing regional adjustment, if ρ is too small, it means that the value of the approximate model change is larger than the actual change value, that is, the approximation effect is poor, and the confidence region needs to be narrowed; if ρ is too large, it means that the approximate change value is smaller than the actual change value. , it is necessary to expand μ; when ρ is close to 1, it is considered that the approximation effect is better, and there is no need to change the value of μ.

进一步地,步骤S222中,步长Δx的计算公式为:Further, in step S222, the calculation formula of step size Δx is:

(H(x)+λI)Δx=-J(x)Tf(x)(H(x)+λI)Δx=-J(x) T f(x)

其中,H(x)表示f(x)海塞矩阵的近似,H(x)=J(x)TJ(x),I表示单位矩阵,λ表示系数因子,J(x)表示f(x)关于x的一阶导数。Among them, H(x) represents the approximation of f(x) Hessian matrix, H(x)=J(x) T J(x), I represents the identity matrix, λ represents the coefficient factor, and J(x) represents f(x) ) with respect to the first derivative of x.

上述进一步方案的有益效果是:在本发明中,列文伯格-马夸特算法中通过一个拉格朗日乘子将一个约束优化问题转化为一个无约束优化问题,将无约束优化方程泰勒展开可以得到一个计算增量的线性方程。其中,J(x)是f(x)关于x的一阶导数,其为L·K行3列的雅可比矩阵;λ是系数因子,目的是使矩阵(H+λI)正定,λ的初始值是J(x)TJ(x)对角元素的最大值。The beneficial effects of the above-mentioned further scheme are: in the present invention, a constrained optimization problem is transformed into an unconstrained optimization problem through a Lagrange multiplier in the Levenberg-Marquardt algorithm, and the unconstrained optimization equation Taylor Unfolding yields a linear equation that computes the increments. Among them, J(x) is the first derivative of f(x) with respect to x, which is the Jacobian matrix of L·K rows and 3 columns; λ is the coefficient factor, the purpose is to make the matrix (H+λI) positive definite, the initial value of λ The value is the maximum value of the diagonal elements of J(x) T J(x).

进一步地,步骤S3中,构建位姿图的方法为:将机器人的位姿作为顶点,不同时刻位姿之间的约束关系作为边;Further, in step S3, the method for constructing the pose graph is as follows: the pose of the robot is used as a vertex, and the constraint relationship between the poses at different times is used as an edge;

基于位姿图,通过最小二乘法计算约束最小情况下的位姿,其计算公式为:Based on the pose graph, the pose with the minimum constraints is calculated by the least squares method. The calculation formula is:

Figure BDA0002874834130000061
Figure BDA0002874834130000061

其中,T表示时长,

Figure BDA0002874834130000062
表示机器人i在t时刻的里程计数据,
Figure BDA0002874834130000063
表示机器人i在t+1时刻的里程计数据,
Figure BDA00028748341300000611
表示机器人i在t至t+1时刻的里程计数据,
Figure BDA0002874834130000064
表示机器人i在t至t+1时刻观察值的信息矩阵,
Figure BDA0002874834130000065
表示机器人i在t时刻的里程计约束,
Figure BDA0002874834130000066
表示机器人j在t时刻的里程计数据,
Figure BDA0002874834130000067
表示机器人i和机器人j之间残差函数值最小的机器人位姿,
Figure BDA0002874834130000068
表示机器人i和机器人j之间的位态约束,
Figure BDA0002874834130000069
是机器人i和机器人j之间在t时刻观察值的信息矩阵,
Figure BDA00028748341300000610
表示机器人j在t+1时刻的里程计数据,
Figure BDA0002874834130000071
代表机器人j在t至t+1时刻的里程计数据,
Figure BDA0002874834130000072
是机器人j在t时刻的里程计约束,
Figure BDA0002874834130000073
表示机器人j之间在t至t+1时刻观察值的信息矩阵,(i,j)∈[1,…,N],N代表机器人的数量。Among them, T represents the duration,
Figure BDA0002874834130000062
represents the odometer data of robot i at time t,
Figure BDA0002874834130000063
represents the odometer data of robot i at time t+1,
Figure BDA00028748341300000611
represents the odometer data of robot i from time t to t+1,
Figure BDA0002874834130000064
is the information matrix representing the observations of robot i from time t to t+1,
Figure BDA0002874834130000065
represents the odometry constraint of robot i at time t,
Figure BDA0002874834130000066
represents the odometer data of robot j at time t,
Figure BDA0002874834130000067
represents the robot pose with the smallest residual function value between robot i and robot j,
Figure BDA0002874834130000068
represents the positional constraints between robot i and robot j,
Figure BDA0002874834130000069
is the information matrix of observations between robot i and robot j at time t,
Figure BDA00028748341300000610
represents the odometer data of robot j at time t+1,
Figure BDA0002874834130000071
represents the odometer data of robot j from t to t+1,
Figure BDA0002874834130000072
is the odometry constraint of robot j at time t,
Figure BDA0002874834130000073
is the information matrix representing the observed values between robot j at time t to t+1, (i,j)∈[1,…,N], where N represents the number of robots.

上述进一步方案的有益效果是:在本发明中,步骤S3中基于非线性优化后的位姿信息,融合里程计提供的信息,构建位姿图,并进行优化,实现多机器人协作精确定位。尽管里程计长时间存在累计误差,但是里程计可以提供机器人短时间内精确的位姿变化。通过里程计提供的位姿信息,结合非线性优化后的位姿信息可以得到更高精度的定位。把机器人的位姿作为顶点,不同时刻的估计位姿之间的约束关系作为边,包括里程计中相邻时刻机器人的位姿变换约束,基于UWB的位置约束,通过最小二乘法求取使约束最小情况下的位姿。The beneficial effects of the above-mentioned further scheme are: in the present invention, in step S3, based on the pose information after nonlinear optimization, the information provided by the odometer is fused, the pose graph is constructed, and optimized, so as to realize precise multi-robot cooperative positioning. Although the odometer has accumulated errors for a long time, the odometer can provide accurate pose changes of the robot in a short time. Through the pose information provided by the odometer, combined with the pose information after nonlinear optimization, higher-precision positioning can be obtained. Taking the pose of the robot as a vertex, and the constraint relationship between the estimated poses at different times as edges, including the pose transformation constraints of the robot at adjacent moments in the odometer, and the position constraints based on UWB, the constraints are obtained by the least squares method. Minimum-case pose.

附图说明Description of drawings

图1为多机器人协作定位方法的流程图;Fig. 1 is the flow chart of the multi-robot cooperative positioning method;

图2为多机器人协作定位的结构图;Fig. 2 is the structure diagram of multi-robot cooperative positioning;

图3为本发明多机器人基于UWB的协作定位图;Fig. 3 is a multi-robot cooperative positioning diagram based on UWB of the present invention;

图4为本发明多机器人基于里程计的协作定位图;4 is a multi-robot based odometer-based collaborative positioning diagram of the present invention;

图5为本发明融合里程计数据与UWB数据的多机器人协作定位图。FIG. 5 is a multi-robot cooperative positioning diagram of the present invention that fuses odometer data and UWB data.

具体实施方式Detailed ways

下面结合附图对本发明的实施例作进一步的说明。The embodiments of the present invention will be further described below with reference to the accompanying drawings.

在描述本发明的具体实施例之前,为使本发明的方案更加清楚完整,首先对本发明中出现的缩略语和关键术语定义进行说明:Before describing the specific embodiments of the present invention, in order to make the solution of the present invention clearer and more complete, the definitions of abbreviations and key terms that appear in the present invention are first described:

UWB:一种使用1GHz以上频率带宽的无线载波通信技术。UWB: A wireless carrier communication technology that uses a frequency bandwidth above 1 GHz.

如图1所示,本发明提供了一种融合里程计与UWB的多机器人协作定位方法,包括以下步骤:As shown in Figure 1, the present invention provides a multi-robot cooperative positioning method integrating odometer and UWB, comprising the following steps:

S1:通过里程计和UWB数据采集模块分别采集机器人的位姿信息和多组UWB节点之间的距离信息;S1: Collect the pose information of the robot and the distance information between multiple groups of UWB nodes through the odometer and the UWB data acquisition module respectively;

S2:基于采集的多组UWB节点之间的距离信息,通过非线性优化算法实现机器人协作定位;S2: Based on the collected distance information between multiple groups of UWB nodes, the cooperative positioning of the robot is realized through a nonlinear optimization algorithm;

S3:基于非线性优化后的多机器人定位信息,融合机器人里程计提供的位姿信息,构建位姿图,并进行优化,实现多机器人协作的精确定位。S3: Based on the multi-robot positioning information after nonlinear optimization, the pose information provided by the robot odometer is fused, the pose graph is constructed, and the optimization is carried out to realize the precise positioning of the multi-robot cooperation.

在本发明实施例中,如图1所示,步骤S1中,通过里程计采集机器人的位姿信息的方法为:将编码器搭建在机器人上进行采集,得到里程计数据;In the embodiment of the present invention, as shown in FIG. 1 , in step S1, the method for collecting the pose information of the robot by using the odometer is as follows: build an encoder on the robot for collection, and obtain the odometer data;

通过UWB数据采集模块采集多组UWB节点之间的距离信息的方法为:在每个机器人不同的位置上搭载UWB标签,采集多组UWB节点之间的距离信息。The method of collecting the distance information between multiple groups of UWB nodes through the UWB data collection module is as follows: carrying UWB tags on different positions of each robot, and collecting the distance information between multiple groups of UWB nodes.

在本发明中,UWB在实时性能和带宽等方面具有很大的优势,并且抗干扰性能更强。通过在机器人上不同位置搭载UWB标签,每个机器人的UWB节点都会计算与其它机器人UWB节点之间的距离,这样每个机器人相对其它机器人就能够得到多组距离数据。In the present invention, UWB has great advantages in real-time performance and bandwidth, etc., and has stronger anti-interference performance. By carrying UWB tags at different positions on the robot, the UWB node of each robot will calculate the distance between UWB nodes of other robots, so that each robot can obtain multiple sets of distance data relative to other robots.

在本发明实施例中,如图1所示,步骤S2包括以下子步骤:In this embodiment of the present invention, as shown in FIG. 1 , step S2 includes the following sub-steps:

S21:根据多组UWB节点之间的距离信息,计算机器人i和机器人j之间距离测量值和计算值的残差函数;S21: According to the distance information between multiple groups of UWB nodes, calculate the residual function of the distance measurement value and the calculated value between robot i and robot j;

S22:根据机器人i和机器人j之间距离测量值和计算值的残差函数,利用列文伯格-马夸特法进行迭代,得到机器人的最佳位姿,实现多机器人协作定位。S22: According to the residual function of the measured value and the calculated value of the distance between robot i and robot j, use the Levenberg-Marquardt method to iterate to obtain the optimal pose of the robot to realize multi-robot cooperative positioning.

在本发明中,UWB虽然具有抗干扰性能强,测距精度高的优点,但是通过UWB只能获取距离信息,不能完成对移动机器人的位姿估计,里程计可以测得短时间内精确的位姿信息,两者结合可以实现精确的定位。本专利采取非线性优化算法,在UWB距离测量数据的基础上得到机器人之间的相对位姿估计。In the present invention, although UWB has the advantages of strong anti-interference performance and high ranging accuracy, UWB can only obtain distance information, and cannot complete the pose estimation of the mobile robot, and the odometer can measure the precise position in a short time. Attitude information, the combination of the two can achieve accurate positioning. This patent adopts a nonlinear optimization algorithm to obtain the relative pose estimation between robots on the basis of UWB distance measurement data.

在本发明实施例中,如图1所示,步骤S21中,机器人i和机器人j之间距离测量值和计算值的残差函数的表达式为:In the embodiment of the present invention, as shown in FIG. 1, in step S21, the expression of the residual function of the measured value and the calculated value of the distance between robot i and robot j is:

Figure BDA0002874834130000091
Figure BDA0002874834130000091

其中,

Figure BDA0002874834130000092
表示机器人i和机器人j之间残差函数值最小的机器人位姿,argmin(·)表示能够使误差值最小的x的值,f(x)表示残差函数,x=(x,y,θ)表示机器人的位姿,x表示机器人i相对于机器人j的横坐标,y表示机器人i相对于机器人j的纵坐标,θ表示机器人i相对于机器人j的方向角度,K表示机器人i上的UWB节点的数量,L表示机器人j上的UWB节点的数量,
Figure BDA0002874834130000093
表示在t时刻机器人i上UWB节点k和机器人j上UWB节点l之间的实际测量值,d(·)表示给定机器人i与机器人j相对位姿的情况下计算机器人i上UWB节点k和机器人j上UWB节点l之间的距离运算,
Figure BDA0002874834130000094
表示机器人i上的UWB节点k的相对位置,
Figure BDA0002874834130000095
表示机器人j上的UWB节点l的相对位置,k∈[1,…,K],l∈[1,…,L],i∈[1,…,N],j∈[1,…,N],N代表机器人的数量。in,
Figure BDA0002874834130000092
represents the robot pose with the smallest residual function value between robot i and robot j, argmin( ) represents the value of x that can minimize the error value, f(x) represents the residual function, x=(x, y, θ ) represents the pose of the robot, x represents the abscissa of the robot i relative to the robot j, y represents the ordinate of the robot i relative to the robot j, θ represents the direction angle of the robot i relative to the robot j, and K represents the UWB on the robot i the number of nodes, L represents the number of UWB nodes on robot j,
Figure BDA0002874834130000093
represents the actual measurement value between UWB node k on robot i and UWB node l on robot j at time t, d( ) represents the calculation of UWB node k and UWB node k on robot i given the relative pose of robot i and robot j The distance calculation between UWB nodes l on robot j,
Figure BDA0002874834130000094
represents the relative position of UWB node k on robot i,
Figure BDA0002874834130000095
Represents the relative position of UWB node l on robot j, k∈[1,…,K], l∈[1,…,L], i∈[1,…,N], j∈[1,…,N ], N represents the number of robots.

在本发明中,利用多组UWB距离信息对移动机器人的姿态进行了优化,机器人i和机器人j之间的相对位姿估计可以通过上述方程的最小化找到最佳姿势配置来实现,其中,f(x)相当于一个残差函数,指的是实际测量值与计算值之间的差值,使差值最小的x=(x,y,θ)即是最佳位姿。In the present invention, the pose of the mobile robot is optimized by using multiple sets of UWB distance information, and the relative pose estimation between robot i and robot j can be realized by finding the best pose configuration by minimizing the above equation, where f (x) is equivalent to a residual function, which refers to the difference between the actual measured value and the calculated value, and x=(x, y, θ) with the smallest difference is the optimal pose.

在本发明实施例中,如图1所示,步骤S22包括以下子步骤:In this embodiment of the present invention, as shown in FIG. 1 , step S22 includes the following sub-steps:

S221:根据残差函数,建立近似指标评价模型,动态调整信赖区域μ的大小;S221: According to the residual function, establish an approximate index evaluation model, and dynamically adjust the size of the trust region μ;

S222:将步长Δx限制在信赖半径为μ的区域内,计算Δx;S222: Limit the step size Δx to the region with the trust radius μ, and calculate Δx;

S223:在信赖半径为μ的区域内进行k次迭代,得到机器人的最佳位姿,实现多机器人协作定位。S223: Perform k iterations in the region with the trust radius μ to obtain the optimal pose of the robot and realize multi-robot cooperative positioning.

在本发明中,传统的方法需要遍历整个(x,y,θ)取值范围来得到最佳位姿估计,计算效率太低。本专利采用列文伯格-马夸特法提高了计算效率,该方法的优化思路是:在每次迭代中,先确定优化的范围,再确定该范围内的最优点。即把步长Δx=(Δx,Δy,Δθ)T限制在一个信赖半径为μ的区域内,然后在该区域内寻找最优步长,通过迭代k次,若ρ<0,说明拟合误差向着上升而非下降的趋势变化(与最优化目标方向相反),这时应该令xk+1=xk,根据经验可以设置μ=0.5μ再继续进行迭代计算。若ρ>0说明与最优化目标方向相同,这时令xk+1=xk+Δxk,当Δxk足够小时停止迭代,此时得到的位姿即是最佳位姿。In the present invention, the traditional method needs to traverse the entire (x, y, θ) value range to obtain the best pose estimation, and the calculation efficiency is too low. The present patent uses the Levenberg-Marquardt method to improve the computational efficiency, and the optimization idea of the method is: in each iteration, the optimization range is first determined, and then the optimal point within the range is determined. That is, the step size Δx=(Δx, Δy, Δθ) T is limited to a region with a trust radius of μ, and then the optimal step size is found in this region. After k iterations, if ρ<0, it means the fitting error To the trend of rising instead of falling (opposite to the optimization target), x k+1 = x k should be set at this time, and μ=0.5μ can be set according to experience before continuing the iterative calculation. If ρ>0 indicates the same direction as the optimization target, then let x k+1 =x k +Δx k , stop the iteration when Δx k is small enough, and the pose obtained at this time is the best pose.

在本发明实施例中,如图1所示,步骤S221中,在信赖半径为μ的区域内进行k次迭代的方法为:通过建立近似指标评价模型动态调整信赖半径为μ的区域,近似指标评价模型的表达式为:In the embodiment of the present invention, as shown in FIG. 1 , in step S221, the method of performing k iterations in the region with the trust radius μ is: dynamically adjust the region with the trust radius μ by establishing an approximate index evaluation model, and the approximate index The expression of the evaluation model is:

Figure BDA0002874834130000101
Figure BDA0002874834130000101

其中,Δx表示步长,J(x)表示f(x)关于x的一阶导数,f(x+Δx)表示f(x)的增量,ρ表示近似指标;Among them, Δx represents the step size, J(x) represents the first derivative of f(x) with respect to x, f(x+Δx) represents the increment of f(x), and ρ represents the approximate index;

根据近似指标ρ动态调整信赖半径为μ的区域的方法为:若0<ρ≤0.25,则将信赖半径μ缩小一半,若ρ>0.75,则将信赖半径μ扩大一半,若0.25<ρ≤0.75,则不调整信赖半径μ;The method of dynamically adjusting the region of the trust radius μ according to the approximate index ρ is: if 0<ρ≤0.25, then reduce the trust radius μ by half, if ρ>0.75, then increase the trust radius μ by half, if 0.25<ρ≤0.75 , the trust radius μ is not adjusted;

在信赖半径为μ的区域内进行k次迭代,若ρ<0,则令xk+1=xk,并将信赖半径μ缩小一半继续迭代,若ρ>0,则令xk+1=xk+Δxk,当Δxk小于设定阈值时,得到机器人的初步最佳位姿xk+1,其中,Δxk表示迭代k次后步长,xk表示上一次迭代的位姿。Carry out k iterations in the region with the trust radius μ, if ρ<0, then let x k+1 = x k , and reduce the trust radius μ by half to continue the iteration, if ρ > 0, then let x k+1 = x k +Δx k , when Δx k is less than the set threshold, the initial optimal pose x k+1 of the robot is obtained, where Δx k represents the step size after k iterations, and x k represents the pose of the previous iteration.

在本发明中,更新迭代的过程中,信赖区域μ的范围根据近似模型与实际函数之间的差异来确定,如果差异小,就扩大信赖区域范围;如果差异大,就缩小这个范围。为了判定近似模型与实际函数差异的好坏,设定了一个近似指标评判模型拟合差异的大小,动态调整信赖域半径。在表达式中,分子是目标函数实际变化的值,分母是近似模型变化的值。在进行区域调整时,ρ太小,说明近似模型变化的值大于实际变化的值,也就是近似效果较差,需要缩小置信域范围;ρ太大,则说明近似变化的值小于实际变化的值,需要扩大μ;ρ接近1,则认为近似的效果较好,不需要更改μ值。In the present invention, during the update iteration process, the range of the trust region μ is determined according to the difference between the approximate model and the actual function. If the difference is small, the range of the trust region is expanded; if the difference is large, the range is reduced. In order to judge the quality of the difference between the approximate model and the actual function, an approximate index is set to judge the size of the model fitting difference, and the trust region radius is dynamically adjusted. In the expression, the numerator is the value by which the objective function actually changes, and the denominator is the value by which the approximate model changes. When performing regional adjustment, if ρ is too small, it means that the value of the approximate model change is larger than the actual change value, that is, the approximation effect is poor, and the confidence region needs to be narrowed; if ρ is too large, it means that the approximate change value is smaller than the actual change value. , it is necessary to expand μ; when ρ is close to 1, it is considered that the approximation effect is better, and there is no need to change the value of μ.

在本发明实施例中,如图1所示,步骤S222中,步长Δx的计算公式为:In the embodiment of the present invention, as shown in FIG. 1 , in step S222, the calculation formula of the step size Δx is:

(H(x)+λI)Δx=-J(x)Tf(x)(H(x)+λI)Δx=-J(x) T f(x)

其中,H(x)表示f(x)海塞矩阵的近似,H(x)=J(x)TJ(x),I表示单位矩阵,λ表示系数因子,J(x)表示f(x)关于x的一阶导数。Among them, H(x) represents the approximation of f(x) Hessian matrix, H(x)=J(x) T J(x), I represents the identity matrix, λ represents the coefficient factor, and J(x) represents f(x) ) with respect to the first derivative of x.

在本发明中,列文伯格-马夸特算法中通过一个拉格朗日乘子将一个约束优化问题转化为一个无约束优化问题,将无约束优化方程泰勒展开可以得到一个计算增量的线性方程。其中,J(x)是f(x)关于x的一阶导数,其为L·K行3列的雅可比矩阵;λ是系数因子,目的是使矩阵(H+λI)正定,λ的初始值是J(x)TJ(x)对角元素的最大值。In the present invention, a constrained optimization problem is transformed into an unconstrained optimization problem through a Lagrangian multiplier in the Levenberg-Marquardt algorithm, and the Taylor expansion of the unconstrained optimization equation can obtain a calculation increment of Linear equation. Among them, J(x) is the first derivative of f(x) with respect to x, which is the Jacobian matrix of L·K rows and 3 columns; λ is the coefficient factor, the purpose is to make the matrix (H+λI) positive definite, the initial value of λ The value is the maximum value of the diagonal elements of J(x) T J(x).

在本发明实施例中,如图1所示,步骤S3中,构建位姿图的方法为:将机器人的位姿作为顶点,不同时刻位姿之间的约束关系作为边;In the embodiment of the present invention, as shown in FIG. 1 , in step S3, the method for constructing the pose graph is as follows: the pose of the robot is used as a vertex, and the constraint relationship between the poses at different times is used as an edge;

基于位姿图,通过最小二乘法计算约束最小情况下的位姿,其计算公式为:Based on the pose graph, the pose with the minimum constraints is calculated by the least squares method. The calculation formula is:

Figure BDA0002874834130000111
Figure BDA0002874834130000111

其中,T表示时长,

Figure BDA0002874834130000112
表示机器人i在t时刻的里程计数据,
Figure BDA0002874834130000113
表示机器人i在t+1时刻的里程计数据,Δxi t表示机器人i在t至t+1时刻的里程计数据,
Figure BDA0002874834130000121
表示机器人i在t至t+1时刻观察值的信息矩阵,
Figure BDA0002874834130000122
表示机器人i在t时刻的里程计约束,
Figure BDA0002874834130000123
表示机器人j在t时刻的里程计数据,
Figure BDA0002874834130000124
表示机器人i和机器人j之间残差函数值最小的机器人位姿,
Figure BDA0002874834130000125
表示机器人i和机器人j之间的位态约束,
Figure BDA0002874834130000126
是机器人i和机器人j之间在t时刻观察值的信息矩阵,
Figure BDA0002874834130000127
表示机器人j在t+1时刻的里程计数据,
Figure BDA0002874834130000128
代表机器人j在t至t+1时刻的里程计数据,
Figure BDA0002874834130000129
是机器人j在t时刻的里程计约束,
Figure BDA00028748341300001210
表示机器人j之间在t至t+1时刻观察值的信息矩阵,(i,j)∈[1,…,N],N代表机器人的数量。Among them, T represents the duration,
Figure BDA0002874834130000112
represents the odometer data of robot i at time t,
Figure BDA0002874834130000113
represents the odometer data of robot i at time t+1, Δx i t represents the odometer data of robot i from time t to t+1,
Figure BDA0002874834130000121
is the information matrix representing the observations of robot i from time t to t+1,
Figure BDA0002874834130000122
represents the odometry constraint of robot i at time t,
Figure BDA0002874834130000123
represents the odometer data of robot j at time t,
Figure BDA0002874834130000124
represents the robot pose with the smallest residual function value between robot i and robot j,
Figure BDA0002874834130000125
represents the positional constraints between robot i and robot j,
Figure BDA0002874834130000126
is the information matrix of observations between robot i and robot j at time t,
Figure BDA0002874834130000127
represents the odometer data of robot j at time t+1,
Figure BDA0002874834130000128
represents the odometer data of robot j from t to t+1,
Figure BDA0002874834130000129
is the odometry constraint of robot j at time t,
Figure BDA00028748341300001210
is the information matrix representing the observed values between robot j at time t to t+1, (i,j)∈[1,…,N], where N represents the number of robots.

在本发明中,步骤S3中基于非线性优化后的位姿信息,融合里程计提供的信息,构建位姿图,并进行优化,实现多机器人协作精确定位。尽管里程计长时间存在累计误差,但是里程计可以提供机器人短时间内精确的位姿变化。通过里程计提供的位姿信息,结合非线性优化后的位姿信息可以得到更高精度的定位。把机器人的位姿作为顶点,不同时刻的估计位姿之间的约束关系作为边,包括里程计中相邻时刻机器人的位姿变换约束,基于UWB的位置约束,通过最小二乘法求取使约束最小情况下的位姿。In the present invention, in step S3, based on the pose information after nonlinear optimization, the information provided by the odometer is fused to construct a pose graph, and optimization is performed to realize precise positioning of multi-robot cooperation. Although the odometer has accumulated errors for a long time, the odometer can provide accurate pose changes of the robot in a short time. Through the pose information provided by the odometer, combined with the pose information after nonlinear optimization, higher-precision positioning can be obtained. Taking the pose of the robot as a vertex, and the constraint relationship between the estimated poses at different times as edges, including the pose transformation constraints of the robot at adjacent moments in the odometer, and the position constraints based on UWB, the constraints are obtained by the least squares method. Minimum-case pose.

在本发明实施例中,如图2所示,多个机器人之间通过UWB测量距离信息,融合机器人的里程计信息,在机器人运动过程中实时更新位置信息,实现多机器人协作精确定位。In the embodiment of the present invention, as shown in FIG. 2 , distance information is measured between multiple robots through UWB, the odometer information of the robots is integrated, and the position information is updated in real time during the robot movement, so as to realize precise positioning of multi-robot cooperation.

在本发明实施例中,如图3所示,图中实线代表机器人1的真实轨迹,点线代表机器人2的真实轨迹,短线代表机器人2在基于UWB下的定位轨迹。从图中可以看出在基于UWB的定位中,与机器人的真实轨迹差距较大,定位精度较差。In the embodiment of the present invention, as shown in FIG. 3 , the solid line in the figure represents the real trajectory of robot 1, the dotted line represents the real trajectory of robot 2, and the short line represents the positioning trajectory of robot 2 based on UWB. It can be seen from the figure that in the positioning based on UWB, there is a large gap with the real trajectory of the robot, and the positioning accuracy is poor.

在本发明实施例中,如图4所示,图中实线代表机器人1的真实轨迹,短线代表机器人1基于里程计的轨迹,点线代表机器人2的真实轨迹,小短线代表机器人2基于里程计的轨迹。从图中可以看出,里程计在较短时间内具有较高精度,但是随着机器人的移动会有累积误差,导致机器人定位精度较差。In the embodiment of the present invention, as shown in FIG. 4 , the solid line in the figure represents the real trajectory of the robot 1, the short line represents the trajectory of the robot 1 based on the odometer, the dotted line represents the real trajectory of the robot 2, and the small short line represents the mileage-based trajectory of the robot 2 track of the meter. It can be seen from the figure that the odometer has high accuracy in a short period of time, but there will be accumulated errors as the robot moves, resulting in poor positioning accuracy of the robot.

在本发明实施例中,如图5所示,图中实线代表机器人1的真实轨迹,点线代表机器人1在UWB的基础上融合里程计信息的轨迹,短线代表机器人2的真实轨迹,小短线代表机器人2在UWB的基础上融合里程计信息的轨迹,从图中可以看出相较于前两种方法,融合里程计数据与UWB数据的多机器人协作定位精度更高,与原始轨迹更加贴合。In the embodiment of the present invention, as shown in FIG. 5 , the solid line in the figure represents the real trajectory of robot 1, the dotted line represents the trajectory of robot 1 fused with odometer information on the basis of UWB, the short line represents the real trajectory of robot 2, and the small line represents the real trajectory of robot 2. The short line represents the trajectory of robot 2 fused with odometry information on the basis of UWB. It can be seen from the figure that compared with the first two methods, the multi-robot cooperative positioning accuracy of the fusion of odometry data and UWB data is higher, and it is more accurate than the original trajectory. fit.

本发明的工作原理及过程为:利用环境中的里程计和UWB设备作为感知单元,实现UWB数据和里程计数据的采集。UWB采集机器人之间的距离信息,通过非线性优化实现多个机器人之间协作定位,里程计提供了机器人大致的位姿变化,融合多个机器人之间的定位信息能够提供更精确的位姿。The working principle and process of the present invention are as follows: using the odometer and UWB equipment in the environment as the sensing unit to realize the collection of UWB data and odometer data. UWB collects distance information between robots, and realizes cooperative positioning among multiple robots through nonlinear optimization. Odometer provides approximate pose changes of robots, and fusion of positioning information between multiple robots can provide more accurate poses.

本发明的有益效果为:本发明的多机器人协作定位方法利用里程计和UWB数据采集模块进行采集,并基于非线性优化的多机器人协作定位算法与融合里程计信息的位姿图优化算法。利用环境中的里程计和UWB设备作为感知单元,实现UWB数据和里程计数据的采集。UWB采集机器人之间的距离信息,通过非线性优化实现多个机器人之间协作定位,里程计提供了机器人大致的位姿变化,通过图优化算法,融合非线性优化后的位姿信息,可以使多机器人协作定位精度更高。解决了多机器人协作定位精度较差的问题。The beneficial effects of the present invention are as follows: the multi-robot cooperative positioning method of the present invention utilizes an odometer and a UWB data acquisition module for collection, and is based on a nonlinear optimized multi-robot cooperative positioning algorithm and a pose graph optimization algorithm fused with odometry information. Using the odometer and UWB device in the environment as the perception unit, the collection of UWB data and odometer data is realized. UWB collects distance information between robots, and realizes cooperative positioning between multiple robots through nonlinear optimization. The multi-robot cooperative positioning accuracy is higher. The problem of poor positioning accuracy of multi-robot cooperative positioning is solved.

本领域的普通技术人员将会意识到,这里所述的实施例是为了帮助读者理解本发明的原理,应被理解为本发明的保护范围并不局限于这样的特别陈述和实施例。本领域的普通技术人员可以根据本发明公开的这些技术启示做出各种不脱离本发明实质的其它各种具体变形和组合,这些变形和组合仍然在本发明的保护范围内。Those of ordinary skill in the art will appreciate that the embodiments described herein are intended to assist readers in understanding the principles of the present invention, and it should be understood that the scope of protection of the present invention is not limited to such specific statements and embodiments. Those skilled in the art can make various other specific modifications and combinations without departing from the essence of the present invention according to the technical teaching disclosed in the present invention, and these modifications and combinations still fall within the protection scope of the present invention.

Claims (2)

1.一种融合里程计与UWB的多机器人协作定位方法,其特征在于,包括以下步骤:1. a multi-robot cooperative positioning method of fusion odometer and UWB, is characterized in that, comprises the following steps: S1:通过里程计和UWB数据采集模块分别采集机器人的位姿信息和多组UWB节点之间的距离信息;S1: Collect the pose information of the robot and the distance information between multiple groups of UWB nodes through the odometer and the UWB data acquisition module respectively; S2:基于采集的多组UWB节点之间的距离信息,通过非线性优化算法实现机器人协作定位;S2: Based on the collected distance information between multiple groups of UWB nodes, the cooperative positioning of the robot is realized through a nonlinear optimization algorithm; 所述步骤S2包括以下子步骤:The step S2 includes the following sub-steps: S21:根据多组UWB节点之间的距离信息,计算机器人i和机器人j之间距离测量值和计算值的残差函数;S21: According to the distance information between multiple groups of UWB nodes, calculate the residual function of the distance measurement value and the calculated value between robot i and robot j; S22:根据机器人i和机器人j之间距离测量值和计算值的残差函数,利用列文伯格-马夸特法进行迭代,得到机器人的最佳位姿,实现多机器人协作定位;S22: According to the residual function of the measured value and the calculated value of the distance between robot i and robot j, use the Levenberg-Marquardt method to iterate to obtain the optimal pose of the robot to realize multi-robot cooperative positioning; 所述步骤S21中,机器人i和机器人j之间距离测量值和计算值的残差函数的表达式为:In the step S21, the expression of the residual function of the measured value and the calculated value of the distance between robot i and robot j is:
Figure FDA0003408733440000011
Figure FDA0003408733440000011
其中,
Figure FDA0003408733440000012
表示机器人i和机器人j之间残差函数值最小的机器人位姿,argmin(·)表示能够使误差值最小的x的值,f(x)表示残差函数,x=(x,y,θ)表示机器人的位姿,x表示机器人i相对于机器人j的横坐标,y表示机器人i相对于机器人j的纵坐标,θ表示机器人i相对于机器人j的方向角度,K表示机器人i上的UWB节点的数量,L表示机器人j上的UWB节点的数量,
Figure FDA0003408733440000013
表示在t时刻机器人i上UWB节点k和机器人j上UWB节点l之间的实际测量值,d(·)表示给定机器人i与机器人j相对位姿的情况下计算机器人i上UWB节点k和机器人j上UWB节点l之间的距离运算,
Figure FDA0003408733440000021
表示机器人i上的UWB节点k的相对位置,
Figure FDA0003408733440000022
表示机器人j上的UWB节点l的相对位置,k∈[1,…,K],l∈[1,…,L],i∈[1,…,N],j∈[1,…,N],N代表机器人的数量;
in,
Figure FDA0003408733440000012
represents the robot pose with the smallest residual function value between robot i and robot j, argmin( ) represents the value of x that can minimize the error value, f(x) represents the residual function, x=(x, y, θ ) represents the pose of the robot, x represents the abscissa of the robot i relative to the robot j, y represents the ordinate of the robot i relative to the robot j, θ represents the direction angle of the robot i relative to the robot j, and K represents the UWB on the robot i the number of nodes, L represents the number of UWB nodes on robot j,
Figure FDA0003408733440000013
represents the actual measurement value between UWB node k on robot i and UWB node l on robot j at time t, d( ) represents the calculation of UWB node k and UWB node k on robot i given the relative pose of robot i and robot j The distance calculation between UWB nodes l on robot j,
Figure FDA0003408733440000021
represents the relative position of UWB node k on robot i,
Figure FDA0003408733440000022
Represents the relative position of UWB node l on robot j, k∈[1,…,K], l∈[1,…,L], i∈[1,…,N], j∈[1,…,N ], N represents the number of robots;
所述步骤S22包括以下子步骤:The step S22 includes the following sub-steps: S221:根据残差函数,建立近似指标评价模型,动态调整信赖区域μ的大小;S221: According to the residual function, establish an approximate index evaluation model, and dynamically adjust the size of the trust region μ; S222:将步长Δx限制在信赖半径为μ的区域内,计算Δx;S222: Limit the step size Δx to the region with the trust radius μ, and calculate Δx; S223:在信赖半径为μ的区域内进行k次迭代,得到机器人的最佳位姿,实现多机器人协作定位;S223: Perform k iterations in an area with a trust radius μ to obtain the optimal pose of the robot and realize multi-robot cooperative positioning; 所述步骤S221中,在信赖半径为μ的区域内进行k次迭代的方法为:通过建立近似指标评价模型动态调整信赖半径为μ的区域,近似指标评价模型的表达式为:In the step S221, the method of performing k iterations in the region with the trust radius μ is: dynamically adjust the region with the trust radius μ by establishing an approximate index evaluation model, and the expression of the approximate index evaluation model is:
Figure FDA0003408733440000023
Figure FDA0003408733440000023
其中,Δx表示步长,J(x)表示f(x)关于x的一阶导数,f(x+Δx)表示f(x)的增量,ρ表示近似指标;Among them, Δx represents the step size, J(x) represents the first derivative of f(x) with respect to x, f(x+Δx) represents the increment of f(x), and ρ represents the approximate index; 根据近似指标ρ动态调整信赖半径为μ的区域的方法为:若0<ρ≤0.25,则将信赖半径μ缩小一半,若ρ>0.75,则将信赖半径μ扩大一半,若0.25<ρ≤0.75,则不调整信赖半径μ;The method of dynamically adjusting the region of the trust radius μ according to the approximate index ρ is: if 0<ρ≤0.25, then reduce the trust radius μ by half, if ρ>0.75, then increase the trust radius μ by half, if 0.25<ρ≤0.75 , the trust radius μ is not adjusted; 在信赖半径为μ的区域内进行k次迭代,若ρ<0,则令xk+1=xk,并将信赖半径μ缩小一半继续迭代,若ρ>0,则令xk+1=xk+Δxk,当Δxk小于设定阈值时,得到机器人的初步最佳位姿xk+1,其中,Δxk表示迭代k次后步长,xk表示上一次迭代的位姿;Carry out k iterations in the region with the trust radius μ, if ρ<0, then let x k+1 = x k , and reduce the trust radius μ by half to continue the iteration, if ρ > 0, then let x k+1 = x k +Δx k , when Δx k is less than the set threshold, the initial optimal pose x k+1 of the robot is obtained, where Δx k represents the step size after k iterations, and x k represents the pose of the previous iteration; 所述步骤S222中,步长Δx的计算公式为:In the step S222, the calculation formula of the step size Δx is: (H(x)+λI)Δx=-J(x)Tf(x)(H(x)+λI)Δx=-J(x) T f(x) 其中,H(x)表示f(x)海塞矩阵的近似,H(x)=J(x)TJ(x),I表示单位矩阵,λ表示系数因子,J(x)表示f(x)关于x的一阶导数;Among them, H(x) represents the approximation of f(x) Hessian matrix, H(x)=J(x) T J(x), I represents the identity matrix, λ represents the coefficient factor, and J(x) represents f(x) ) with respect to the first derivative of x; S3:基于非线性优化后的多机器人定位信息,融合机器人里程计提供的位姿信息,构建位姿图,并进行优化,实现多机器人协作的精确定位;S3: Based on the multi-robot positioning information after nonlinear optimization, fuse the pose information provided by the robot odometer, construct a pose graph, and optimize it to achieve precise positioning of multi-robot collaboration; 所述步骤S3中,构建位姿图的方法为:将机器人的位姿作为顶点,不同时刻位姿之间的约束关系作为边;In the step S3, the method for constructing the pose graph is as follows: the pose of the robot is used as a vertex, and the constraint relationship between the poses at different times is used as an edge; 基于位姿图,通过最小二乘法计算约束最小情况下的位姿,其计算公式为:Based on the pose graph, the pose with the minimum constraints is calculated by the least squares method. The calculation formula is:
Figure FDA0003408733440000031
Figure FDA0003408733440000031
其中,T表示时长,
Figure FDA0003408733440000032
表示机器人i在t时刻的里程计数据,
Figure FDA0003408733440000033
表示机器人i在t+1时刻的里程计数据,
Figure FDA0003408733440000034
表示机器人i在t至t+1时刻的里程计数据,
Figure FDA0003408733440000035
表示机器人i在t至t+1时刻观察值的信息矩阵,
Figure FDA0003408733440000036
表示机器人i在t时刻的里程计约束,
Figure FDA0003408733440000037
表示机器人j在t时刻的里程计数据,
Figure FDA0003408733440000038
表示机器人i和机器人j之间残差函数值最小的机器人位姿,
Figure FDA0003408733440000039
表示机器人i和机器人j之间的位态约束,
Figure FDA00034087334400000310
是机器人i和机器人j之间在t时刻观察值的信息矩阵,
Figure FDA00034087334400000311
表示机器人j在t+1时刻的里程计数据,
Figure FDA00034087334400000312
代表机器人j在t至t+1时刻的里程计数据,
Figure FDA00034087334400000313
是机器人j在t时刻的里程计约束,
Figure FDA00034087334400000314
表示机器人j之间在t至t+1时刻观察值的信息矩阵,(i,j)∈[1,…,N],N代表机器人的数量。
Among them, T represents the duration,
Figure FDA0003408733440000032
represents the odometer data of robot i at time t,
Figure FDA0003408733440000033
represents the odometer data of robot i at time t+1,
Figure FDA0003408733440000034
represents the odometer data of robot i from time t to t+1,
Figure FDA0003408733440000035
is the information matrix representing the observations of robot i from time t to t+1,
Figure FDA0003408733440000036
represents the odometry constraint of robot i at time t,
Figure FDA0003408733440000037
represents the odometer data of robot j at time t,
Figure FDA0003408733440000038
represents the robot pose with the smallest residual function value between robot i and robot j,
Figure FDA0003408733440000039
represents the positional constraints between robot i and robot j,
Figure FDA00034087334400000310
is the information matrix of observations between robot i and robot j at time t,
Figure FDA00034087334400000311
represents the odometer data of robot j at time t+1,
Figure FDA00034087334400000312
represents the odometer data of robot j from t to t+1,
Figure FDA00034087334400000313
is the odometry constraint of robot j at time t,
Figure FDA00034087334400000314
is the information matrix representing the observed values between robot j at time t to t+1, (i,j)∈[1,…,N], where N represents the number of robots.
2.根据权利要求1所述的融合里程计与UWB的多机器人协作定位方法,其特征在于,所述步骤S1中,通过里程计采集机器人的位姿信息的方法为:将编码器搭建在机器人上进行采集,得到里程计数据;2. The multi-robot cooperative positioning method of fusing odometer and UWB according to claim 1, is characterized in that, in described step S1, the method for collecting the pose information of robot by odometer is: the encoder is built on the robot to collect data on the odometer; 通过UWB数据采集模块采集多组UWB节点之间的距离信息的方法为:在每个机器人不同的位置上搭载UWB标签,采集多组UWB节点之间的距离信息。The method of collecting the distance information between multiple groups of UWB nodes through the UWB data acquisition module is as follows: carrying UWB tags on different positions of each robot, and collecting the distance information between multiple groups of UWB nodes.
CN202011625879.0A 2020-12-30 2020-12-30 Multi-robot cooperative positioning method integrating odometer and UWB Expired - Fee Related CN112833876B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011625879.0A CN112833876B (en) 2020-12-30 2020-12-30 Multi-robot cooperative positioning method integrating odometer and UWB

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011625879.0A CN112833876B (en) 2020-12-30 2020-12-30 Multi-robot cooperative positioning method integrating odometer and UWB

Publications (2)

Publication Number Publication Date
CN112833876A CN112833876A (en) 2021-05-25
CN112833876B true CN112833876B (en) 2022-02-11

Family

ID=75924539

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011625879.0A Expired - Fee Related CN112833876B (en) 2020-12-30 2020-12-30 Multi-robot cooperative positioning method integrating odometer and UWB

Country Status (1)

Country Link
CN (1) CN112833876B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113465591A (en) * 2021-07-01 2021-10-01 清华四川能源互联网研究院 Relative positioning method and system for mobile robot
CN114623823B (en) * 2022-05-16 2022-09-13 青岛慧拓智能机器有限公司 UWB (ultra wide band) multi-mode positioning system, method and device integrating odometer
CN116753963B (en) * 2023-08-16 2023-12-01 湖南大学 An indoor mobile robot positioning method based on trust region algorithm
CN118534834B (en) * 2024-07-26 2024-09-27 西南科技大学 A human-machine collaboration method and system for emergency rescue services
CN119085646B (en) * 2024-08-15 2025-04-29 同济大学 Multi-robot positioning and mapping method based on relative coordinate system uncertainty estimation

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101835265A (en) * 2010-04-16 2010-09-15 大连海事大学 Resource optimization allocation method for non-regenerative cooperative multi-band ultra-wideband system
WO2014081945A2 (en) * 2012-11-21 2014-05-30 The Trustees Of Columbia University In The City Of New York Systems, methods, and devices for image reconstruction using combined pde-constrained and simplified spherical harmonics algorithm
CN106052684A (en) * 2016-06-16 2016-10-26 济南大学 Mobile robot IMU/UWB/code disc loose combination navigation system and method adopting multi-mode description
CN106352879A (en) * 2016-09-28 2017-01-25 深圳市普渡科技有限公司 Pose estimation method with UWB positioning and coder fusion on basis of graph optimization
CN107148081A (en) * 2017-06-02 2017-09-08 重庆邮电大学 Single Station Location Method Based on Nonlinear Constrained Least Squares
WO2018170224A2 (en) * 2017-03-15 2018-09-20 The Regents Of The University Of Michigan Latent oscillator frequency estimation for ranging measurements
CN108981720A (en) * 2018-10-25 2018-12-11 哈尔滨工业大学 The indoor navigation system of UWB and inertial navigation fusion
CN109141412A (en) * 2018-08-06 2019-01-04 济南大学 Towards the UFIR filtering algorithm and system for having shortage of data INS/UWB combination pedestrian navigation
CN109946730A (en) * 2019-03-06 2019-06-28 东南大学 Ultra-wideband-based high-reliability fusion positioning method for vehicles under cooperation of vehicle and road
CN109993113A (en) * 2019-03-29 2019-07-09 东北大学 A Pose Estimation Method Based on RGB-D and IMU Information Fusion
CN110244715A (en) * 2019-05-23 2019-09-17 西安理工大学 A high-precision collaborative tracking method for multiple mobile robots based on ultra-wideband technology
CN110375730A (en) * 2019-06-12 2019-10-25 深圳大学 The indoor positioning navigation system merged based on IMU and UWB
CN110645974A (en) * 2019-09-26 2020-01-03 西南科技大学 Mobile robot indoor map construction method fusing multiple sensors
CN111381586A (en) * 2018-12-11 2020-07-07 深圳市优必选科技有限公司 Robot and movement control method and device thereof
CN111417069A (en) * 2020-03-27 2020-07-14 安徽理工大学 Positioning device and method for coal mine underground transportation robot with wheel type odometer and UWB integrated
CN111678513A (en) * 2020-06-18 2020-09-18 山东建筑大学 An ultra-wideband/inertial navigation tightly coupled indoor positioning device and system
CN111854733A (en) * 2020-07-28 2020-10-30 广东博智林机器人有限公司 A multi-source fusion positioning method and system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8639426B2 (en) * 2010-07-15 2014-01-28 George C Dedes GPS/IMU/video/radar absolute/relative positioning communication/computation sensor platform for automotive safety applications
US9606217B2 (en) * 2012-05-01 2017-03-28 5D Robotics, Inc. Collaborative spatial positioning
CN108664024B (en) * 2018-05-08 2020-09-25 清华大学 Motion planning and cooperative positioning method and device for unmanned vehicle network formation
CN110657803B (en) * 2018-06-28 2021-10-29 深圳市优必选科技有限公司 Robot positioning method, device and storage device
EP3935524A4 (en) * 2019-03-05 2022-12-07 Nvidia Corporation DISTRIBUTED PROCESSING OF AUTONOMOUS VEHICLE NAVIGATION HIGH DEFINITION MAP GENERATION POSE GRAPHICS
CN111337018B (en) * 2020-05-21 2020-09-01 上海高仙自动化科技发展有限公司 Positioning method and device, intelligent robot and computer readable storage medium

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101835265A (en) * 2010-04-16 2010-09-15 大连海事大学 Resource optimization allocation method for non-regenerative cooperative multi-band ultra-wideband system
WO2014081945A2 (en) * 2012-11-21 2014-05-30 The Trustees Of Columbia University In The City Of New York Systems, methods, and devices for image reconstruction using combined pde-constrained and simplified spherical harmonics algorithm
CN106052684A (en) * 2016-06-16 2016-10-26 济南大学 Mobile robot IMU/UWB/code disc loose combination navigation system and method adopting multi-mode description
CN106352879A (en) * 2016-09-28 2017-01-25 深圳市普渡科技有限公司 Pose estimation method with UWB positioning and coder fusion on basis of graph optimization
WO2018170224A2 (en) * 2017-03-15 2018-09-20 The Regents Of The University Of Michigan Latent oscillator frequency estimation for ranging measurements
CN107148081A (en) * 2017-06-02 2017-09-08 重庆邮电大学 Single Station Location Method Based on Nonlinear Constrained Least Squares
CN109141412A (en) * 2018-08-06 2019-01-04 济南大学 Towards the UFIR filtering algorithm and system for having shortage of data INS/UWB combination pedestrian navigation
CN108981720A (en) * 2018-10-25 2018-12-11 哈尔滨工业大学 The indoor navigation system of UWB and inertial navigation fusion
CN111381586A (en) * 2018-12-11 2020-07-07 深圳市优必选科技有限公司 Robot and movement control method and device thereof
CN109946730A (en) * 2019-03-06 2019-06-28 东南大学 Ultra-wideband-based high-reliability fusion positioning method for vehicles under cooperation of vehicle and road
CN109993113A (en) * 2019-03-29 2019-07-09 东北大学 A Pose Estimation Method Based on RGB-D and IMU Information Fusion
CN110244715A (en) * 2019-05-23 2019-09-17 西安理工大学 A high-precision collaborative tracking method for multiple mobile robots based on ultra-wideband technology
CN110375730A (en) * 2019-06-12 2019-10-25 深圳大学 The indoor positioning navigation system merged based on IMU and UWB
CN110645974A (en) * 2019-09-26 2020-01-03 西南科技大学 Mobile robot indoor map construction method fusing multiple sensors
CN111417069A (en) * 2020-03-27 2020-07-14 安徽理工大学 Positioning device and method for coal mine underground transportation robot with wheel type odometer and UWB integrated
CN111678513A (en) * 2020-06-18 2020-09-18 山东建筑大学 An ultra-wideband/inertial navigation tightly coupled indoor positioning device and system
CN111854733A (en) * 2020-07-28 2020-10-30 广东博智林机器人有限公司 A multi-source fusion positioning method and system

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Localization with Particle Filter Based on Odometer and UWB;Pınar Oğuz Ekim;《2020 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA)》;20200730;全文 *
Research of through-wall detection and location technique for multihuman targets using ultra wideband radar;Zhang YangLyu 等;《Chinese Medical Equipment Journal》;20160815;第37卷(第8期);10-13 *
基于MEMS/UWB组合的室内定位方法;郁嘉宇等;《导航定位与授时》;20181130;第5卷(第6期);73-81 *
基于UWB信号室内定位系统性能优化研究;李伟杰;《中国优秀博硕士学位论文全文数据库(硕士)信息科技辑》;20150215(第02期);I136-476 *
辐射环境下遥操作机器人防撞系统的设计;石正坤等;《中国核学会2011年学术年会》;20111231;全文 *

Also Published As

Publication number Publication date
CN112833876A (en) 2021-05-25

Similar Documents

Publication Publication Date Title
CN112833876B (en) Multi-robot cooperative positioning method integrating odometer and UWB
CN110645974B (en) An indoor map construction method for mobile robots based on fusion of multi-sensors
CN110244715B (en) Multi-mobile-robot high-precision cooperative tracking method based on ultra wide band technology
CN112230243B (en) Indoor map construction method for mobile robot
CN111536967A (en) A tracking method of multi-sensor fusion greenhouse inspection robot based on EKF
CN112584306A (en) Indoor robot positioning algorithm based on Kalman filtering
CN107741745A (en) A method for autonomous localization and map construction of mobile robots
CN103353758A (en) Indoor robot navigation device and navigation technology thereof
CN106680765A (en) INS/UWB pedestrian navigation system and method based on distributed combined filter
CN112702699B (en) Indoor positioning method fusing UWB and LiDAR
CN112881979B (en) An Initial State Adaptive Fusion Localization Method Based on EKF Filtering
CN107966142A (en) A kind of adaptive UFIR data fusion methods of indoor pedestrian based on multiwindow
CN106871893A (en) Distributed INS/UWB tight integrations navigation system and method
CN107402375A (en) A kind of indoor pedestrian of band observation time lag positions EFIR data fusion systems and method
CN114459470A (en) Inspection robot positioning method based on multi-sensor fusion
Kong et al. Hybrid indoor positioning method of BLE and monocular VINS-based smartphone
CN106767815A (en) Weighted least-squares indoor positioning algorithms based on the range finding of phase difference Euclidean distance
Wang et al. An indoor UWB NLOS correction positioning method based on anchor LOS/NLOS map
CN104535963B (en) Cooperative target positioning achievement method of multiple mobile nodes based on distance measurement
Sun et al. Smartphone user tracking by incorporating user orientation using a double-layer HMM
CN104374389B (en) A kind of IMU/WSN Combinated navigation methods towards indoor mobile robot
CN113670290B (en) Mobile robot indoor map construction method based on multi-robot cooperation
Feng et al. Novel LiDAR-assisted UWB positioning compensation for indoor robot localization
CN112068073A (en) UWB positioning error correction method, UWB positioning system, device, and storage medium
CN115183767A (en) A monocular VIO/UWB indoor combined positioning method based on ARKF

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220211