CN112798971B - Soft-package type lithium ion battery coupling electric thermal model - Google Patents
Soft-package type lithium ion battery coupling electric thermal model Download PDFInfo
- Publication number
- CN112798971B CN112798971B CN202011618490.3A CN202011618490A CN112798971B CN 112798971 B CN112798971 B CN 112798971B CN 202011618490 A CN202011618490 A CN 202011618490A CN 112798971 B CN112798971 B CN 112798971B
- Authority
- CN
- China
- Prior art keywords
- ion battery
- lithium
- thermal
- battery
- model
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 116
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 115
- 230000008878 coupling Effects 0.000 title claims abstract description 15
- 238000010168 coupling process Methods 0.000 title claims abstract description 15
- 238000005859 coupling reaction Methods 0.000 title claims abstract description 15
- 238000000034 method Methods 0.000 claims abstract description 15
- 229920000642 polymer Polymers 0.000 claims abstract description 5
- 238000012795 verification Methods 0.000 claims abstract description 4
- 239000003990 capacitor Substances 0.000 claims description 34
- 238000009529 body temperature measurement Methods 0.000 claims description 27
- 238000004364 calculation method Methods 0.000 claims description 26
- 238000012360 testing method Methods 0.000 claims description 22
- 230000020169 heat generation Effects 0.000 claims description 13
- 238000004088 simulation Methods 0.000 claims description 12
- 230000002427 irreversible effect Effects 0.000 claims description 9
- 230000002441 reversible effect Effects 0.000 claims description 9
- 238000002474 experimental method Methods 0.000 claims description 6
- 239000011159 matrix material Substances 0.000 claims description 6
- 125000004122 cyclic group Chemical group 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 3
- 239000004065 semiconductor Substances 0.000 claims description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 abstract description 9
- 229910052744 lithium Inorganic materials 0.000 abstract description 9
- 230000008569 process Effects 0.000 abstract description 8
- 230000001052 transient effect Effects 0.000 abstract description 4
- 230000009286 beneficial effect Effects 0.000 abstract description 2
- 238000000265 homogenisation Methods 0.000 abstract 1
- 239000000178 monomer Substances 0.000 abstract 1
- 238000006243 chemical reaction Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 230000008859 change Effects 0.000 description 4
- 230000010287 polarization Effects 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 238000007599 discharging Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 1
- 238000004141 dimensional analysis Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/385—Arrangements for measuring battery or accumulator variables
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/367—Software therefor, e.g. for battery testing using modelling or look-up tables
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2119/00—Details relating to the type or aim of the analysis or the optimisation
- G06F2119/08—Thermal analysis or thermal optimisation
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- Secondary Cells (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
Description
技术领域technical field
本发明属于锂离子电池充放电领域,尤其涉及一种软包式锂离子电池耦合电气热模型;更具体地说,涉及一种适用于软包式锂离子电池的电气模型、热生成模型和热模型建立,以及电气模型参数、热性能参数和热容量参数测试。The invention belongs to the field of charging and discharging of lithium ion batteries, and in particular relates to a coupled electrical thermal model of a soft pack lithium ion battery; more particularly, to an electrical model, a heat generation model and a thermal Model establishment and testing of electrical model parameters, thermal performance parameters and heat capacity parameters.
背景技术Background technique
随着全球对环境保护的日益重视,新能源电动汽车得到了各国的大力推动,软包式锂离子电池已经成为首选动力电池。锂离子电池在充放电时,内部发生复杂的化学反应,化学反应产热和电流流经电池时因内阻产生的欧姆热以及电池的比热容和导热系数等参数共同影响着电池单体的温度分布,对锂离子电池单体进行工作原理和热特性的研究能够为电池组热管理系统的设计提供理论依据。电池的内阻在放电过程中并非定值,它随环境温度和电池自身放电深度(DOD)的变化而变化。李哲等人对动力型电池的温度特性进行了实验研究,实验表明,环境温度对电池容量影响很大,环境温度越低,容量衰减越快。与极化内阻相比,欧姆内阻随温度的变化更大。任保福通过对电池热特性进行分析发现,反应热是在电池生热分析中不可或缺,电池在充电过程中表现为吸热反应,放电过程表现为放热反应。With the increasing emphasis on environmental protection in the world, new energy electric vehicles have been vigorously promoted by various countries, and soft-pack lithium-ion batteries have become the first choice for power batteries. When a lithium-ion battery is charged and discharged, a complex chemical reaction occurs inside. The chemical reaction generates heat and the ohmic heat generated by the internal resistance when the current flows through the battery, as well as the specific heat capacity and thermal conductivity of the battery. , The research on the working principle and thermal characteristics of the lithium-ion battery cell can provide a theoretical basis for the design of the thermal management system of the battery pack. The internal resistance of the battery is not constant during the discharge process, it varies with the ambient temperature and the depth of discharge (DOD) of the battery itself. Li Zhe et al. conducted experimental research on the temperature characteristics of power batteries. The experiments showed that the ambient temperature has a great influence on the battery capacity. The lower the ambient temperature, the faster the capacity decay. The ohmic internal resistance varies more with temperature than the polarization internal resistance. By analyzing the thermal characteristics of the battery, Ren Baofu found that the heat of reaction is indispensable in the analysis of the heat generation of the battery. The battery exhibits an endothermic reaction during the charging process and an exothermic reaction during the discharging process.
目前关于软包式锂离子电池热模型方面的研究,多数学者通过对理论模型进行一系列简化,进行电池生热研究。通过对Bernardi生热速率模型进行分析研究可以构建不同的生热模型,按照不同维度划分有集中质量模型、一维模型、二维模型、三维模型,按照产热原理可分为电化学-热耦合模型、电气-热耦合模型和热滥用模型等。电气-热耦合模型在电池研究中比较常见,主要是基于电池内部的电流密度分布或者RC电路阻抗模型建立的电热耦合模型。但是,前者需要得到电池内部的电流密度分布,多使用在二维或三维温度场分析,后者需要得到电池内阻及其变化曲线,可用于零维、一维、多维分析。At present, most scholars conduct a series of simplifications on the theoretical model to study the heat generation of the battery in the research on the thermal model of the pouch lithium-ion battery. By analyzing and studying the Bernardi heat generation rate model, different heat generation models can be constructed. According to different dimensions, there are concentrated mass model, one-dimensional model, two-dimensional model, and three-dimensional model. According to the principle of heat generation, it can be divided into electrochemical-thermal coupling model, electrical-thermal coupling model, thermal abuse model, etc. The electrical-thermal coupling model is relatively common in battery research, mainly based on the current density distribution inside the battery or the electrical-thermal coupling model established by the RC circuit impedance model. However, the former needs to obtain the current density distribution inside the battery, which is mostly used in two-dimensional or three-dimensional temperature field analysis. The latter needs to obtain the internal resistance of the battery and its change curve, which can be used for zero-dimensional, one-dimensional, and multi-dimensional analysis.
发明内容SUMMARY OF THE INVENTION
本发明的目的是克服现有技术中的不足,提供一种软包式锂离子电池耦合电气热模型。The purpose of the present invention is to overcome the deficiencies in the prior art and provide a coupling electric thermal model of a soft-pack lithium-ion battery.
这种软包式锂离子电池耦合电气热模型,包括以下步骤:This pouch-type Li-ion battery coupled electrical thermal model includes the following steps:
步骤1、建立锂离子电池热模型:建立锂离子电池热模型等效电路,定义锂离子电池热模型参数,计算空气热阻;
步骤2、建立锂离子电池电气模型:设置结构对称且取值相同的四个纵向电阻Re1,设置两个结构对称且取值相同的横向电阻Re2;其中一个横向电阻Re2两端各连接一个纵向电阻Re1后,与另一个横向电阻Re2并联;另一个横向电阻Re2的两端还连接剩余两个纵向电阻Re1的一端,剩余两个纵向电阻Re1的另一端分别接入电池外部正负极连接点;电池输入总电流i分流成分支电流i1和分支电流i3,分支电流i1继续分流成分支电流i2和分支电流i4;上支路生成热为Qa,下支路生成热为Qb;
步骤3、建立锂离子电池热生成模型,将总发热量Qtotal分解为不可逆热分量Qir和可逆热分量Qr,计算总发热量Qtotal:Step 3. Establish a heat generation model for the lithium-ion battery, decompose the total calorific value Q total into an irreversible thermal component Q ir and a reversible thermal component Q r , and calculate the total calorific value Q total :
上式中,Qir为不可逆热分量,Qr为可逆热分量,Rb为锂离子电池欧姆内阻,i为电池输入总电流,Ts为锂离子电池表面温度,E为锂离子电池总能量;In the above formula, Q ir is the irreversible thermal component, Q r is the reversible thermal component, R b is the ohmic internal resistance of the lithium-ion battery, i is the total battery input current, T s is the surface temperature of the lithium-ion battery, and E is the total lithium-ion battery. energy;
根据步骤2建立的锂离子电池电气模型,计算热生成模型参数,生成热Qa和Qb的计算公式为:According to the electrical model of the lithium-ion battery established in
上式中,Qa和Qb均为生成热,Re1为纵向电阻,Re2为横向电阻,i1,i2,i3,i4为分支电流,T13为T1和T3的数学平均值,T1和T3分别为锂离子电池热模型等效电路中温度测点一和温度测点三的温度;T24为T2和T4的数学平均值,T2和T4分别为锂离子电池热模型等效电路中温度测点二和温度测点四的温度;锂离子电池电气模型中横向电阻Re2在左右支路之间平均分配;In the above formula, Q a and Q b are generated heat, R e1 is the vertical resistance, R e2 is the lateral resistance, i 1 , i 2 , i 3 , i 4 are the branch currents, and T 13 is the difference between T 1 and T 3 Mathematical average value, T1 and T3 are the temperatures of temperature measurement point 1 and temperature measurement point 3 in the equivalent circuit of the thermal model of the lithium - ion battery respectively ; T24 is the mathematical average value of T2 and T4, T2 and T4 are the temperature of
步骤4、计算耦合电气热模型特征参数,耦合电气热模型特征参数包括热电阻、热容量和电气模型参数;
步骤5、实验验证:对软包式电池进行循环充放电实验,将相同的电流分布输入到电气热模型中,并进行仿真计算。Step 5. Experimental verification: cyclic charge and discharge experiments are performed on the soft pack battery, the same current distribution is input into the electrical thermal model, and simulation calculations are performed.
作为优选,步骤1具体包括如下步骤:Preferably,
步骤1-1、建立锂离子电池热模型等效电路,热模型等效电路中设有五个RC并联电路,四个连接电阻Rt1将锂离子电池的中心与外部进行连接,连接电阻Rt1之间两两串联后分为两组,两组连接电阻Rt1位于锂离子电池两侧且关于锂离子电池对称,每组连接电阻Rt1两端均连接有一个空气热阻Rta;热电阻Rt2与电容Ct2并联后,两端分别接入两组连接电阻Rt1内的两个串联的连接电阻Rt1之间;两个电容Ct1串联形成一组电容组,两个电容组关于锂离子电池两侧对称,且两个电容组两端并联连接;热电阻Rt2与电容Ct2并联后,两端还接入两个串联的电容Ct1之间;Step 1-1. Establish an equivalent circuit of the thermal model of the lithium ion battery. There are five RC parallel circuits in the thermal model equivalent circuit, and four connecting resistors R t1 connect the center of the lithium ion battery to the outside, and the connecting resistor R t1 The two groups are connected in series and then divided into two groups. The two groups of connection resistances R t1 are located on both sides of the lithium-ion battery and are symmetrical with respect to the lithium-ion battery. Each group of connection resistances R t1 is connected to both ends of an air thermal resistance R ta ; the thermal resistance After R t2 is connected in parallel with the capacitor C t2 , the two ends are respectively connected between the two series connection resistors R t1 in the two groups of connection resistors R t1 ; the two capacitors C t1 are connected in series to form a group of capacitors, and the two capacitor groups are The two sides of the lithium-ion battery are symmetrical, and the two ends of the two capacitor groups are connected in parallel; after the thermal resistance R t2 is connected in parallel with the capacitor C t2 , the two ends are also connected between two series-connected capacitors C t1 ;
步骤1-2:定义锂离子电池热模型参数:Rt1为热电阻,用于将锂离子电池的中心与外部进行连接;Rta为空气热阻,锂离子电池两侧的热电阻Rt1和空气热阻Rta对称且阻值相同;Ct1为电容,四个等价电容Ct1表示垂直热电容;Rt2为热电阻,Ct2为电容,热电阻Rt2和电容Ct2连接两个垂直分支;Step 1-2: Define the thermal model parameters of the lithium-ion battery: R t1 is the thermal resistance, which is used to connect the center of the lithium-ion battery with the outside; R ta is the air thermal resistance, and the thermal resistances R t1 and The air thermal resistance R ta is symmetrical and has the same resistance value; C t1 is a capacitor, and the four equivalent capacitors C t1 represent vertical thermal capacitors; R t2 is a thermal resistance, C t2 is a capacitor, and two thermal resistance R t2 and capacitor C t2 are connected vertical branch;
步骤1-3、根据空气热系数h(h=30W/m2K)和1/2锂离子电池表面积来计算空气热阻Rta:Step 1-3. Calculate the air thermal resistance R ta according to the air thermal coefficient h (h=30W/m 2 K) and the surface area of 1/2 lithium ion battery:
上式中,W为单体锂离子电池的宽度,L为单体锂离子电池的长度,h为空气热系数,Rta为空气热阻。In the above formula, W is the width of the single lithium-ion battery, L is the length of the single lithium-ion battery, h is the air thermal coefficient, and R ta is the air thermal resistance.
作为优选,步骤4具体包括如下步骤:Preferably,
步骤4-1、建立热电阻模型,通过测试电路测试与计算热电阻:利用N个电池贴片作为热源(2≤N≤5),每个电池贴片产生的热量计算公式为:Step 4-1. Establish a thermal resistance model, test and calculate the thermal resistance through the test circuit: using N battery patches as a heat source (2≤N≤5), the calculation formula for the heat generated by each battery patch is:
上式中,Q为每个电池贴片产生的热量,α为半导体材料的Seebeck系数,Tc为电池贴片的测量温度,Tc对应锂离子电池热模型等效电路中温度测点三的温度T3和温度测点四的温度T4;Td为电池侧边温度,Td对应散热器温度;Rp为电池贴片电阻,θ为电池贴片热阻,ip为电池贴片内部电流;In the above formula, Q is the heat generated by each battery patch, α is the Seebeck coefficient of the semiconductor material, T c is the measured temperature of the battery patch, and T c corresponds to the temperature measurement point 3 in the equivalent circuit of the thermal model of the lithium-ion battery. Temperature T 3 and
同时使用N个电池贴片,满足其中Qpa和Qpb为电池贴片的生成热;根据式(4)计算电池贴片的生成热Qpa和Qpb,然后计算热电阻Rt1:Use N battery patches at the same time to meet the Among them, Q pa and Q pb are the heat of generation of the battery patch; calculate the heat of generation Q pa and Q pb of the battery patch according to formula (4), and then calculate the thermal resistance R t1 :
上式中,T1和T3分别为锂离子电池热模型等效电路中温度测点一和温度测点三的温度;T2和T4分别为锂离子电池热模型等效电路中温度测点二和温度测点四的温度;Qpa和Qpb为电池贴片的生成热;In the above formula, T 1 and T 3 are the temperatures of
步骤4-2、热容量测试与计算:建立简化热模型电路:将热电阻Rt1与空气热阻Rta串联,计算两个支路并联后的等效电阻Rt,Rt=(Rt1+Rta)/2,建立热容量计算公式的状态矩阵公式:Step 4-2. Thermal capacity test and calculation: establish a simplified thermal model circuit: connect the thermal resistance R t1 and the air thermal resistance R ta in series, calculate the equivalent resistance R t after the two branches are connected in parallel, R t = (R t1 + R ta )/2, establish the state matrix formula of the heat capacity calculation formula:
状态矩阵公式(6)中的特征值λ1和λ2计算如下:The eigenvalues λ 1 and λ 2 in the state matrix formula (6) are calculated as follows:
上式(6)和上式(7)中,Ct1为电容,Ct为两个Ct1的并联电容,Ct=2Ct1;Ct2为电容;Tm1和Tm2为简化热模型电路左右两个支路垂直中点的温度值;Rt为两个支路并联后的等效电阻,Qa和Qb均为锂离子电池电气模型的生成热,λ1和λ2为式(6)的特征值;In the above formula (6) and the above formula (7), C t1 is a capacitor, C t is a parallel capacitor of two C t1 , C t =2C t1 ; C t2 is a capacitor; T m1 and T m2 are simplified thermal model circuits The temperature value of the vertical midpoint of the left and right branches; R t is the equivalent resistance after the two branches are connected in parallel, Q a and Q b are the heat generated by the electrical model of the lithium-ion battery, λ 1 and λ 2 are the formula ( 6) eigenvalues;
利用滑动窗滤波器,进行平均零相位温度二阶指数函数拟合,得到式(7)中的特征值:Using the sliding window filter, the average zero-phase temperature second-order exponential function is fitted, and the eigenvalues in equation (7) are obtained:
上式中,a、b、c为拟合系数,取决于初始条件和温度输入值;λ1和λ2为式(6)的特征值;热容量Ct1和Ct2的计算公式为:In the above formula, a, b and c are fitting coefficients, which depend on the initial conditions and temperature input values; λ 1 and λ 2 are the eigenvalues of formula (6); the calculation formulas of heat capacity C t1 and C t2 are:
步骤4-3、测试并计算电气模型参数:求出电池等效内阻Ro和熵系数其中E为电池总能量,Ts为锂离子电池表面温度;假设Re1=Re2=Re,则电池等效内阻Ro与Re之间的关系表示为:Step 4-3, test and calculate the electrical model parameters: find the equivalent internal resistance R o and entropy coefficient of the battery Among them, E is the total energy of the battery, and T s is the surface temperature of the lithium-ion battery. Assuming that Re1 = Re2 = Re , the relationship between the battery equivalent internal resistance Ro and Re is expressed as:
由于电池等效内阻值Ro与温度有关,通过以下指数函数插值计算与温度有关的内阻值Ro(T):Since the equivalent internal resistance value R o of the battery is related to temperature, the internal resistance value R o (T) related to temperature is calculated by the following exponential function interpolation:
上式中,k1,k2,k3为插值系数;建立温度值空间分布模型来计算熵系数温度值空间分布模型中,锂离子电池单个内阻Re与Tm1、Tm2具有相关性,Tm3为Tm1和Tm2的数学平均值;Tm1为温度值空间分布模型中上支路的温度值,Tm2为温度值空间分布模型中下支路的温度值;In the above formula, k 1 , k 2 , and k 3 are interpolation coefficients; a spatial distribution model of temperature values is established to calculate the entropy coefficient In the temperature value spatial distribution model, the single internal resistance Re of the lithium-ion battery has a correlation with T m1 and T m2 , and T m3 is the mathematical average of T m1 and T m2 ; T m1 is the upper branch in the temperature value spatial distribution model. The temperature value of , T m2 is the temperature value of the lower branch in the temperature value spatial distribution model;
熵系数作为SOC的函数,将熵系数表示为:The entropy coefficient as a function of SOC, the entropy coefficient is expressed as:
上式中,参数k4和k5为温度校准值,SOC值在0到1之间。In the above formula, parameters k 4 and k 5 are temperature calibration values, and the SOC value is between 0 and 1.
作为优选,步骤1至步骤5所述锂离子电池为聚合物软包式锂离子电池。Preferably, the lithium ion battery described in
作为优选,步骤5中采用Matlab/Simulink进行仿真计算。Preferably, in step 5, Matlab/Simulink is used for simulation calculation.
本发明的有益效果是:The beneficial effects of the present invention are:
(1)本发明提出一种适用于软包式锂离子电池的耦合电气热模型,基于锂电池电流值和热交换的环境条件,计算电池表面和电池内部不同点的温度值。(1) The present invention proposes a coupled electrical thermal model suitable for a soft-pack lithium-ion battery. Based on the current value of the lithium battery and the environmental conditions of heat exchange, the temperature values at different points on the battery surface and inside the battery are calculated.
(2)适用于软包式锂离子电池的耦合电气热模型考虑非均匀电流分布特征,并估计电流对表面温度的影响。(2) The coupled electrical-thermal model suitable for pouch-type lithium-ion batteries considers the non-uniform current distribution characteristics and estimates the effect of current on the surface temperature.
(3)本发明将软包式锂离子电池的耦合电气热模型应用于锂聚合物软包式锂离子电池,实验测试与仿真结果表明,电流瞬变过程中预测实际平均温度的误差小于2K,电流稳定状态下误差小于1.5K。(3) The present invention applies the coupled electrical thermal model of the pouch type lithium ion battery to the lithium polymer pouch type lithium ion battery. The experimental test and simulation results show that the error of predicting the actual average temperature in the current transient process is less than 2K, The error is less than 1.5K under the current steady state.
(4)软包式锂离子电池的耦合电气热模型可以在不使用温度传感器的情况下,为锂电池管理系统提供有效的温度信息,实现单体电池温度分布均匀化。(4) The coupled electrical thermal model of the soft-pack lithium-ion battery can provide effective temperature information for the lithium battery management system without using a temperature sensor, and realize the uniform temperature distribution of the single battery.
(5)本发明提出的耦合电气热模型可以应用于圆柱形锂电池单体,建立锂电池全参数模型。(5) The coupled electrical thermal model proposed by the present invention can be applied to a cylindrical lithium battery cell to establish a full parameter model of the lithium battery.
附图说明Description of drawings
图1为软包式锂离子电池热模型图;Figure 1 is a thermal model diagram of a soft-pack lithium-ion battery;
图2为电气模型的正面视图;Figure 2 is a front view of the electrical model;
图3为热电阻模型图;Figure 3 is a thermal resistance model diagram;
图4为Rt2测试模型图;Figure 4 is a diagram of the R t2 test model;
图5为热容量估计实验中的电池温度分布趋势图;Fig. 5 is the battery temperature distribution trend diagram in the heat capacity estimation experiment;
图6为简化热模型电路图;Figure 6 is a simplified thermal model circuit diagram;
图7为温度值空间分布图;Figure 7 is a spatial distribution diagram of temperature values;
图8(a)为电气热模型在T1点的温度值曲线,图8(b)为电气热模型在T2点的温度值曲线,图8(c)为电气热模型在T3点的温度值曲线,图8(d)为电气热模型在T4点的温度值曲线;Figure 8(a) is the temperature value curve of the electrical thermal model at point T1, Figure 8 (b) is the temperature value curve of the electrical thermal model at point T2, and Figure 8 ( c ) is the temperature value curve of the electrical thermal model at point T3 Temperature value curve, Figure 8( d ) is the temperature value curve of the electrical thermal model at point T4;
图9(a)为50A充放电电流下实验测试和仿真计算的温度平均误差曲线图,图9(b)为40A充放电电流下实验测试和仿真计算的温度平均误差曲线图,图9(c)为20A充放电电流下实验测试和仿真计算的温度平均误差曲线图。Fig. 9(a) is the temperature average error curve of experimental test and simulation calculation under 50A charge and discharge current, Fig. 9(b) is the temperature average error curve of experimental test and simulation calculation under 40A charge and discharge current, Fig. 9(c) ) is the temperature average error curve of experimental test and simulation calculation under 20A charge-discharge current.
具体实施方式Detailed ways
下面结合实施例对本发明做进一步描述。下述实施例的说明只是用于帮助理解本发明。应当指出,对于本技术领域的普通人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干修饰,这些改进和修饰也落入本发明权利要求的保护范围内。The present invention will be further described below in conjunction with the embodiments. The following examples are illustrative only to aid in the understanding of the present invention. It should be pointed out that for those skilled in the art, without departing from the principle of the present invention, the present invention can also be modified several times, and these improvements and modifications also fall within the protection scope of the claims of the present invention.
本发明提供一种适用于软包式锂离子电池的耦合电气-热模型,根据环境温度识别锂离子电池表面温度和内部温度。The invention provides a coupled electrical-thermal model suitable for a soft-pack type lithium ion battery, and identifies the surface temperature and the internal temperature of the lithium ion battery according to the ambient temperature.
作为一种实施例,一种软包式锂离子电池耦合电气热模型的工作方法,包括以下步骤步骤1、建立软包式锂离子电池热模型;锂离子电池样本为聚合物软包式锂离子电池。As an embodiment, a working method for coupling an electrical thermal model of a pouch-type lithium-ion battery includes the following steps: Step 1: Establish a thermal model of a pouch-type lithium-ion battery; the lithium-ion battery sample is a polymer pouch-type lithium-ion battery Battery.
步骤1-1、锂离子电池热模型等效电路如图1所示,H表示单体电池高度,L表示单体电池长度,Qa和Qb表示基于输入电流的生热值,Ta为环境温度;与现有热模型不同,本实施例建立的热模型等效电路可以计算内部中间级温度和上下表面不同点的温度值(T1,T2,T3,T4),同时保持较低的计算复杂度。Step 1-1. The equivalent circuit of the thermal model of the lithium-ion battery is shown in Figure 1. H represents the height of the single battery, L represents the length of the single battery, Q a and Q b represent the heat generation value based on the input current, and T a is Ambient temperature; different from the existing thermal model, the thermal model equivalent circuit established in this embodiment can calculate the internal intermediate temperature and the temperature values (T 1 , T 2 , T 3 , T 4 ) at different points on the upper and lower surfaces, while maintaining Lower computational complexity.
步骤1-2:定义软包式锂离子电池热模型参数:热模型分为五个RC并联电路,能够较好地表示瞬态热行为;具体参数定义如下:Rt1为连接电阻,用于将软包式锂离子电池的中心与外部进行连接;Rta为空气热阻,软包式锂离子电池两侧的空气热阻Rta对称且阻值相同,软包式锂离子电池两侧的空气热阻Rta与软包式锂离子电池在垂直方向上的热导率有关;Ct1为电容,四个等价电容Ct1表示垂直热电容;Rt2为连接电阻,Ct2为电容,连接电阻Rt2和电容Ct2连接两个垂直分支,与水平方向的导热系数和热电容相关;Step 1-2: Define the thermal model parameters of the soft-pack lithium-ion battery: The thermal model is divided into five RC parallel circuits, which can better represent the transient thermal behavior; the specific parameters are defined as follows: R t1 is the connection resistance, used to connect The center of the pouch-type lithium-ion battery is connected to the outside; R ta is the air thermal resistance, the air thermal resistance R ta on both sides of the pouch-type lithium-ion battery is symmetrical and has the same resistance value, and the air on both sides of the pouch-type lithium-ion battery The thermal resistance R ta is related to the thermal conductivity of the pouch type lithium-ion battery in the vertical direction; C t1 is the capacitance, and the four equivalent capacitances C t1 represent the vertical thermal capacitance; R t2 is the connection resistance, C t2 is the capacitance, connected The resistor R t2 and the capacitor C t2 connect the two vertical branches and are related to the thermal conductivity and thermal capacitance in the horizontal direction;
步骤1-3、根据空气热系数h(h=30W/m2K)和1/2软包式锂离子电池表面积来计算空气热阻Rta:Step 1-3. Calculate the air thermal resistance R ta according to the air thermal coefficient h (h=30W/m 2 K) and the surface area of the 1/2 soft-pack lithium-ion battery:
上式中,W为软包式单体锂离子电池的宽度,L为软包式单体锂离子电池的长度,h为空气热系数,Rta为空气热阻;In the above formula, W is the width of the soft-pack single-cell lithium-ion battery, L is the length of the soft-pack single-cell lithium-ion battery, h is the air thermal coefficient, and R ta is the air thermal resistance;
步骤2、建立软包式锂离子电池电气模型:图2为软包式锂离子电池电气模型的正面视图,设置结构对称且取值相同的四个纵向电阻Re1,设置两个结构对称且取值相同的横向电阻Re2;其中一个横向电阻Re2两端各连接一个纵向电阻Re1后,与另一个横向电阻Re2并联;另一个横向电阻Re2的两端还连接剩余两个纵向电阻Re1的一端,剩余两个纵向电阻Re1的另一端分别接入电池外部正负极连接点;纵向电阻Re1和横向电阻Re2与焦耳效应和极化效应产生的热量有关,焦耳效应和极化效应产生的热量对应于电池内部不可逆热量值;电池输入总电流i分流成分支电流i1和分支电流i3,分支电流i1继续分流成分支电流i2和分支电流i4;上支路生成热为Qa,下支路生成热为Qb;
步骤3、建立软包式锂离子电池热生成模型,将总发热量Qtotal分解为不可逆热分量Qir和可逆热分量Qr,两者均与电量有关;计算总发热量Qtotal:Step 3. Establish a heat generation model of the pouch type lithium-ion battery, decompose the total calorific value Q total into an irreversible thermal component Q ir and a reversible thermal component Q r , both of which are related to the amount of electricity; calculate the total calorific value Q total :
上式中,Qir为不可逆热分量,Qr为可逆热分量,Rb为软包式锂离子电池欧姆内阻,i为电池输入总电流,Ts为软包式锂离子电池表面温度,E为软包式锂离子电池总能量;In the above formula, Q ir is the irreversible thermal component, Q r is the reversible thermal component, R b is the ohmic internal resistance of the pouch type lithium ion battery, i is the total input current of the battery, T s is the surface temperature of the pouch type lithium ion battery, E is the total energy of the soft-pack lithium-ion battery;
不可逆热分量Qir与焦耳效应和极化效应有关,根据步骤2建立的软包式锂离子电池电气模型(见图2),计算热生成模型参数,生成热Qa和Qb的计算公式为:The irreversible thermal component Q ir is related to the Joule effect and polarization effect. According to the electrical model of the pouch lithium-ion battery established in step 2 (see Figure 2), the parameters of the heat generation model are calculated. The calculation formulas of the generated heats Q a and Q b are: :
上式中,Qa和Qb均为生成热,Re1为纵向电阻,Re2为横向电阻,i1,i2,i3,i4为分支电流,T13为T1和T3的数学平均值,T1和T3分别为锂离子电池热模型等效电路中温度测点一和温度测点三的温度;T24为T2和T4的数学平均值,T2和T4分别为锂离子电池热模型等效电路中温度测点二和温度测点四的温度;软包式锂离子电池电气模型中横向电阻Re2在左右支路之间平均分配;上式(3)表明,与总电流i有关的可逆热分量Qr在Qa和Qb之间平均分配;In the above formula, Q a and Q b are generated heat, R e1 is the vertical resistance, R e2 is the lateral resistance, i 1 , i 2 , i 3 , i 4 are the branch currents, and T 13 is the difference between T 1 and T 3 Mathematical average value, T1 and T3 are the temperatures of temperature measurement point 1 and temperature measurement point 3 in the equivalent circuit of the thermal model of the lithium - ion battery respectively ; T24 is the mathematical average value of T2 and T4, T2 and T4 are the temperature of
步骤4、计算耦合电气热模型特征参数,耦合电气热模型特征参数包括热电阻、热容量和电气模型参数;
步骤4-1、建立如图3所示热电阻模型,通过图4所示测试电路测试与计算热电阻:为了表征电池的热阻特性,利用N个电池贴片作为热源(2≤N≤5),每个电池贴片产生的热量计算公式为:Step 4-1. Establish the thermal resistance model shown in Figure 3, and test and calculate the thermal resistance through the test circuit shown in Figure 4: In order to characterize the thermal resistance characteristics of the battery, use N battery patches as the heat source (2≤N≤5 ), the calculation formula for the heat generated by each battery patch is:
上式中,Q为每个电池贴片产生的热量,α为半导体材料的Seebeck系数,Tc为Peltier电池贴片的测量温度,Tc对应锂离子电池热模型等效电路中温度测点三的温度T3和温度测点四的温度T4;Td为电池侧边温度,Td对应散热器温度;Rp为电池贴片电阻,θ为电池贴片热阻,ip为电池贴片内部电流;In the above formula, Q is the heat generated by each battery patch, α is the Seebeck coefficient of the semiconductor material, T c is the measured temperature of the Peltier battery patch, and T c corresponds to the temperature measurement point 3 in the equivalent circuit of the thermal model of the lithium-ion battery. The temperature T 3 and the
本发明的实验过程中,同时使用N个电池贴片,热电阻模型如图3所示,满足其中Qpa和Qpb为Peltier电池贴片的生成热;根据式(4)计算Peltier电池贴片的生成热Qpa和Qpb,然后计算热电阻Rt1:In the experimental process of the present invention, N battery patches are used at the same time, and the thermal resistance model is shown in FIG. Among them, Q pa and Q pb are the generated heat of the Peltier battery patch; calculate the generated heat Q pa and Q pb of the Peltier battery patch according to formula (4), and then calculate the thermal resistance R t1 :
上式中,T1和T3分别为锂离子电池热模型等效电路中温度测点一和温度测点三的温度;T2和T4分别为锂离子电池热模型等效电路中温度测点二和温度测点四的温度;Qpa和Qpb为电池贴片的生成热;图4为Rt2测试电路,利用实际测量温度,计算得到Rt2电阻值。In the above formula, T 1 and T 3 are the temperatures of
步骤4-2、热容量测试与计算:图5为热容量测试实验中的电池温度分布趋势,由图可知:(1)电流稳态状态下,由于可逆热量分量的存在,电池温度变化频率与电流变化频率相同;(2)充电阶段,电池发生的化学反应是吸热反应,放电阶段发生放热反应,引起温度值振荡。建立简化热模型电路如图6所示:将热电阻Rt1与空气热阻Rta串联,计算两个支路并联后的等效电阻Rt,Rt=(Rt1+Rta)/2,建立热容量计算公式的状态矩阵公式:Step 4-2, heat capacity test and calculation: Figure 5 shows the battery temperature distribution trend in the heat capacity test experiment. It can be seen from the figure: (1) In the steady state of the current, due to the existence of the reversible heat component, the battery temperature changes frequency and current change The frequency is the same; (2) In the charging stage, the chemical reaction in the battery is an endothermic reaction, and in the discharging stage, an exothermic reaction occurs, causing the temperature value to oscillate. A simplified thermal model circuit is established as shown in Figure 6: connect the thermal resistance R t1 and the air thermal resistance R ta in series, and calculate the equivalent resistance R t after the two branches are connected in parallel, R t =(R t1 +R ta )/2 , establish the state matrix formula of the heat capacity calculation formula:
状态矩阵公式(6)中的特征值λ1和λ2计算如下:The eigenvalues λ 1 and λ 2 in the state matrix formula (6) are calculated as follows:
上式(6)和上式(7)中,Ct1为电容,Ct为两个Ct1的并联电容,Ct=2Ct1;Ct2为电容;Tm1和Tm2为简化热模型电路左右两个支路垂直中点的温度值;Rt为两个支路并联后的等效电阻,Qa和Qb均为软包式锂离子电池电气模型的生成热,λ1和λ2为式(6)的特征值;In the above formula (6) and the above formula (7), C t1 is a capacitor, C t is a parallel capacitor of two C t1 , C t =2C t1 ; C t2 is a capacitor; T m1 and T m2 are simplified thermal model circuits The temperature value of the vertical midpoint of the left and right branches; R t is the equivalent resistance of the two branches in parallel, Q a and Q b are the heat generated by the electrical model of the pouch lithium-ion battery, λ 1 and λ 2 is the eigenvalue of formula (6);
根据图5所示的温度变化波形,利用滑动窗滤波器,进行平均零相位温度二阶指数函数拟合,得到式(7)中的特征值:According to the temperature change waveform shown in Figure 5, the sliding window filter is used to fit the average zero-phase temperature second-order exponential function, and the eigenvalues in equation (7) are obtained:
上式中,a、b、c为拟合系数,取决于初始条件和温度输入值;λ1和λ2为式(6)的特征值;热容量Ct1和Ct2的计算公式为:In the above formula, a, b and c are fitting coefficients, which depend on the initial conditions and temperature input values; λ 1 and λ 2 are the eigenvalues of formula (6); the calculation formulas of heat capacity C t1 and C t2 are:
步骤4-3、测试并计算电气模型参数:为了表征电气模型参数,必须求出电池等效内阻Ro和熵系数其中E为电池总能量,Ts为软包式锂离子电池表面温度;假设Re1=Re2=Re,则电池等效内阻Ro与Re之间的关系表示为:Step 4-3, test and calculate the electrical model parameters: in order to characterize the electrical model parameters, the equivalent internal resistance R o and entropy coefficient of the battery must be obtained Among them, E is the total energy of the battery, and T s is the surface temperature of the soft-pack lithium-ion battery. Assuming Re1 = Re2 = Re , the relationship between the battery equivalent internal resistance Ro and Re is expressed as:
由于电池等效内阻值Ro与温度有关,通过以下指数函数插值计算与温度有关的内阻值Ro(T):Since the equivalent internal resistance value R o of the battery is related to temperature, the internal resistance value R o (T) related to temperature is calculated by the following exponential function interpolation:
上式中,k1,k2,k3为插值系数;建立如图7所示的温度值空间分布模型来计算熵系数温度值空间分布模型中,软包式锂离子电池单个内阻Re与Tm1、Tm2具有相关性,Tm3为Tm1和Tm2的数学平均值;Tm1为温度值空间分布模型中上支路的温度值,Tm2为温度值空间分布模型中下支路的温度值;In the above formula, k 1 , k 2 , and k 3 are interpolation coefficients; establish the spatial distribution model of temperature values as shown in Figure 7 to calculate the entropy coefficient In the temperature value spatial distribution model, the single internal resistance Re of the soft-pack lithium-ion battery has a correlation with T m1 and T m2 , and T m3 is the mathematical average of T m1 and T m2 ; T m1 is the temperature value in the spatial distribution model. The temperature value of the upper branch, T m2 is the temperature value of the lower branch in the temperature value spatial distribution model;
根据图5所示的温度变化趋势,熵系数作为SOC的函数,将熵系数表示为:According to the temperature change trend shown in Figure 5, the entropy coefficient is used as a function of SOC, and the entropy coefficient is expressed as:
上式中,参数k4和k5为温度校准值,用于校准图5中的温度值波动,SOC值在0到1之间;In the above formula, parameters k 4 and k 5 are temperature calibration values, which are used to calibrate the temperature value fluctuation in Figure 5, and the SOC value is between 0 and 1;
步骤5、实验验证:为了验证耦合电气热模型的可行性和有效性,本实施例对软包式电池进行循环充放电实验,电流值为50A、40A和20A,将相同的电流分布输入到电气热模型中,并利用Matlab/Simulink进行仿真计算。Step 5. Experimental verification: In order to verify the feasibility and effectiveness of the coupled electrical thermal model, in this example, a cyclic charge-discharge experiment was performed on the pouch type battery, the current values were 50A, 40A and 20A, and the same current distribution was input to the electrical In the thermal model, and use Matlab/Simulink for simulation calculation.
实验结果1:Experimental result 1:
图8为充放电电流值20A的电气热模型温度值的测量值(加粗实曲线)和仿真计算值(常规实曲线)。其中,实线表示测量值和仿真值的原始数据,虚线表示过滤后的平均数据。由图8可知:(1)未滤波的实验值和仿真值存在振荡现象,与可逆热分量有关;(2)T3实验测试值和仿真计算值误差最小,两条实线吻合度较好;(3)T1温度值最大,达到316K左右,并且在4000s-5000s时间范围内,产生温度值峰值;(4)4个温度测试点得到的实验结果,实验测试值均大于仿真计算值;(5)滤波平均值与不可逆热分量有关,控制在300K-308K范围内。FIG. 8 shows the measured value (bold solid curve) and the simulation calculation value (regular solid curve) of the electrical thermal model temperature value of the charge and discharge current value of 20A. Among them, the solid line represents the raw data of measured and simulated values, and the dashed line represents the filtered average data. It can be seen from Fig. 8 that: (1) the unfiltered experimental value and the simulated value have oscillation phenomenon, which is related to the reversible thermal component; ( 2 ) the error between the experimental test value and the simulated calculated value of T3 is the smallest, and the two solid lines are in good agreement; (3) The temperature value of T1 is the largest, reaching about 316K, and in the time range of 4000s-5000s, the peak temperature value is generated; (4) The experimental results obtained from the 4 temperature test points are all larger than the simulation calculation values; ( 5) The average value of the filter is related to the irreversible thermal component and is controlled within the range of 300K-308K.
实验结果2:Experimental result 2:
图9为实验测量和仿真计算得到的平均温度之间的误差值,充放电电流分别为50A,40A和20A。实验结果可知:(1)瞬态过程中的最大误差为2K左右,稳态过程中的最大误差为1.5K左右;(2)根据图8和图9的结果分析,集成电气热模可以向电池管理系统提供信息,无需为电池组中的所有电池安装温度传感器;(3)在电池组之间的温度分布更加均匀的条件下实现软包式电池组设计;(4)新模型可以根据电池组中不同电池的温度来分配电流,从而优化电池组的工作效率,延长单体电池的使用寿命。Fig. 9 shows the error value between the average temperature obtained by experimental measurement and simulation calculation, and the charge and discharge currents are 50A, 40A and 20A respectively. The experimental results show that: (1) the maximum error in the transient process is about 2K, and the maximum error in the steady state process is about 1.5K; (2) according to the results of Figure 8 and Figure 9, the integrated electrical thermal mode can The management system provides information without the need to install temperature sensors for all cells in the battery pack; (3) the pouch type battery pack design is realized under the condition that the temperature distribution between the battery packs is more uniform; (4) the new model can be based on the battery pack The temperature of the different batteries in the middle to distribute the current, so as to optimize the working efficiency of the battery pack and prolong the service life of the single battery.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011618490.3A CN112798971B (en) | 2020-12-30 | 2020-12-30 | Soft-package type lithium ion battery coupling electric thermal model |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011618490.3A CN112798971B (en) | 2020-12-30 | 2020-12-30 | Soft-package type lithium ion battery coupling electric thermal model |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112798971A CN112798971A (en) | 2021-05-14 |
CN112798971B true CN112798971B (en) | 2022-08-02 |
Family
ID=75805942
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011618490.3A Active CN112798971B (en) | 2020-12-30 | 2020-12-30 | Soft-package type lithium ion battery coupling electric thermal model |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112798971B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114563722B (en) * | 2022-03-01 | 2024-09-13 | 重庆大学 | Method for online reconstruction of internal three-dimensional temperature field of lithium ion battery |
CN114355201B (en) * | 2022-03-21 | 2022-06-10 | 北京理工大学 | An Online Estimation Method of Internal Temperature Field of Li-ion Battery Based on Electrothermal Coupling Model |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4802945B2 (en) * | 2006-08-31 | 2011-10-26 | トヨタ自動車株式会社 | Secondary battery control system and hybrid vehicle equipped with the same |
WO2013177442A1 (en) * | 2012-05-23 | 2013-11-28 | The Regents Of The University Of Michigan | Estimating core temperatures of battery cells in a battery pack |
JP5971477B2 (en) * | 2012-12-25 | 2016-08-17 | トヨタ自動車株式会社 | Secondary battery state estimation device |
US9864016B2 (en) * | 2014-10-31 | 2018-01-09 | GM Global Technology Operations LLC | Battery system pack life estimation systems and methods |
CN104849675B (en) * | 2015-06-17 | 2018-03-27 | 哈尔滨工业大学 | The acquisition methods of lithium ion battery battery chemically and thermally coupling model |
US10367235B2 (en) * | 2016-02-19 | 2019-07-30 | Cps Technology Holdings Llc | Systems and methods for real-time parameter estimation of a rechargeable battery |
CN108681619B (en) * | 2018-04-03 | 2022-03-04 | 哈尔滨工业大学 | Identification method of thermophysical parameters for square soft-pack lithium-ion battery |
CN108646186B (en) * | 2018-04-19 | 2020-06-16 | 浙江大学城市学院 | Three-dimensional thermal model of single lithium ion battery based on electrochemical characteristics |
CN110110358B (en) * | 2019-03-27 | 2020-12-04 | 北京航空航天大学 | A method and device for simulating thermal runaway spread of lithium ion battery |
CN110703114B (en) * | 2019-10-28 | 2022-03-11 | 重庆大学 | A joint state estimation method of power battery SOC and SOT based on electric-thermal-neural network coupling model |
CN111144029B (en) * | 2020-01-02 | 2021-12-07 | 北京理工大学 | Modeling method for thermoelectric coupling characteristics of lithium ion power battery |
CN111555275A (en) * | 2020-05-12 | 2020-08-18 | 全球能源互联网研究院有限公司 | A method and system for processing residual power in an active distribution network |
CN111929581B (en) * | 2020-06-05 | 2022-10-21 | 西安理工大学 | A method for predicting internal and external temperature of power lithium battery |
CN111914503B (en) * | 2020-08-04 | 2023-10-20 | 重庆大学 | Method for establishing electric heating coupling model for power input of lithium ion battery |
CN112068004A (en) * | 2020-09-16 | 2020-12-11 | 北京嘀嘀无限科技发展有限公司 | Method and device for determining battery abnormity and battery charging remaining time |
-
2020
- 2020-12-30 CN CN202011618490.3A patent/CN112798971B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN112798971A (en) | 2021-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109786878B (en) | Charging/heating control method for power battery of electric automobile | |
CN108363009B (en) | Method for realizing online estimation of maximum allowable power of lithium ion battery | |
Yang et al. | Electrothermal modeling of lithium-ion batteries for electric vehicles | |
CN112005124B (en) | Battery state evaluation method | |
CN109031145A (en) | A kind of series-parallel battery pack model and implementation method considering inconsistency | |
CN109900937B (en) | A state-of-charge estimation method for lithium batteries with temperature compensation | |
CN109950661B (en) | A device and method for simultaneously heating the inside and outside of a power battery pack | |
Samad et al. | Parameterization and validation of a distributed coupled electro-thermal model for prismatic cells | |
CN108646186B (en) | Three-dimensional thermal model of single lithium ion battery based on electrochemical characteristics | |
CN108333528A (en) | SOC and SOT united state methods of estimation based on power battery electric-thermal coupling model | |
CN104991980A (en) | Electrochemical mechanism modeling method for lithium-ion battery | |
CN111914503A (en) | A method for establishing an electrothermal coupling model of lithium-ion battery power input | |
CN107843847A (en) | A kind of battery SOC estimation online methods based on EKF algorithms | |
CN115267539B (en) | Joint estimation method of lithium battery state of charge and temperature for vehicle applications | |
Guo et al. | A three-heat-source electro-thermal coupled model for fast estimation of the temperature distribution of a lithium-ion battery cell | |
CN112798971B (en) | Soft-package type lithium ion battery coupling electric thermal model | |
CN109950659B (en) | An internal heating method suitable for power battery pack | |
Ma et al. | Electro-thermal modeling of a lithium-ion battery system | |
CN107171035A (en) | The charging method of lithium ion battery | |
Kharisma et al. | Modeling and simulation of lithium-ion battery pack using modified battery cell model | |
Yazdanpour et al. | A circuit-based approach for electro-thermal modeling of lithium-ion batteries | |
Huang et al. | A co-simulation method based on coupled thermoelectric model for electrical and thermal behavior of the lithium-ion battery | |
CN104537166A (en) | Equivalent circuit model method for power battery | |
CN114091404A (en) | Electricity-heat model of lithium ion battery | |
Wang et al. | Thermal behavior analysis of Pouch Lithium ion Battery using distributed electro-thermal model |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240129 Address after: Building 2, 3rd Floor, No. 188 Jili Avenue, Lunan Street, Luqiao District, Taizhou City, Zhejiang Province, 318050 Patentee after: Zhejiang Xingyao Lithium Battery Technology Co.,Ltd. Country or region after: China Address before: 310015 No. 51 Huzhou street, Hangzhou, Zhejiang, Gongshu District Patentee before: HANGZHOU City University Country or region before: China |