[go: up one dir, main page]

CN112779198B - A kind of method for improving L-histidine production - Google Patents

A kind of method for improving L-histidine production Download PDF

Info

Publication number
CN112779198B
CN112779198B CN202011639584.9A CN202011639584A CN112779198B CN 112779198 B CN112779198 B CN 112779198B CN 202011639584 A CN202011639584 A CN 202011639584A CN 112779198 B CN112779198 B CN 112779198B
Authority
CN
China
Prior art keywords
histidine
leu
ala
prs
hisg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011639584.9A
Other languages
Chinese (zh)
Other versions
CN112779198A (en
Inventor
刘龙
陈坚
王淼
吕雪芹
堵国成
李江华
刘延峰
李梦莹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangnan University
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University filed Critical Jiangnan University
Priority to CN202011639584.9A priority Critical patent/CN112779198B/en
Publication of CN112779198A publication Critical patent/CN112779198A/en
Application granted granted Critical
Publication of CN112779198B publication Critical patent/CN112779198B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1235Diphosphotransferases (2.7.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1077Pentosyltransferases (2.4.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/24Proline; Hydroxyproline; Histidine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y204/00Glycosyltransferases (2.4)
    • C12Y204/02Pentosyltransferases (2.4.2)
    • C12Y204/02017ATP phosphoribosyltransferase (2.4.2.17)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/06Diphosphotransferases (2.7.6)
    • C12Y207/06001Ribose-phosphate diphosphokinase (2.7.6.1)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The invention relates to a method for improving L-histidine yield. According to the invention, an ARTP mutagenesis method with safe, mild and strong controllability is used to obtain a mutation library with higher mutation rate, L-histidine structural analogue screening is combined, a stable L-histidine high-yield mutant strain is obtained after ten passages, the mutation condition of L-histidine synthesis related genes of a mutagenized high-yield strain is further analyzed, 5-phosphoribosyl-1-pyrophosphoric acid synthesis related gene Prs and an ATP transphosphoribosyl enzyme coding gene hisG mutant which can promote the L-histidine yield to be improved are obtained through comparison screening, and one or two of the Prs and hisG genes are expressed in a host bacterium for producing L-histidine, so that the L-histidine yield can be effectively improved. Lays a foundation for further metabolic engineering transformation of the serratia marcescens or other strains to produce the L-histidine.

Description

一种提高L-组氨酸产量的方法A kind of method for improving L-histidine production

技术领域technical field

本发明涉及代谢工程技术领域,尤其涉及一种提高L-组氨酸产量的方法。The invention relates to the technical field of metabolic engineering, in particular to a method for improving the production of L-histidine.

背景技术Background technique

L-组氨酸,又名α-氨基-β-咪唑基丙酸,是分子中含有咪唑核的碱性氨基酸。在营养学的范畴里,组氨酸被认为是婴幼儿必需的氨基酸。L-组氨酸具有多种生理功能,对生长、组织修复以及治疗溃疡和胃酸过多等均具有重要的作用,还可以作为添加剂用于治疗过敏、风湿性关节炎以及贫血等疾病,因此,其被广泛应用于医药食品等行业。L-histidine, also known as α-amino-β-imidazolyl propionic acid, is a basic amino acid containing an imidazole nucleus in the molecule. In the field of nutrition, histidine is considered an essential amino acid for infants and young children. L-histidine has a variety of physiological functions, and plays an important role in growth, tissue repair, and the treatment of ulcers and hyperacidity. It can also be used as an additive for the treatment of allergies, rheumatoid arthritis, and anemia. It is widely used in pharmaceutical and food industries.

生产组氨酸的方法主要有蛋白水解法、化学合成法和微生物发酵法。其中水解蛋白质是组氨酸生产最为传统的方法,但是,这种方法主要取决于富含天然蛋白质的资源(如血粉或大豆)的可用性,很难满足人们对组氨酸日益增长的需求;而通过化学合成法生产组氨酸容易产生外消旋混合物,通常被认为是“非天然”化合物,难以获得食品药品监督管理局的批准,也较难被消费者接受;微生物发酵法是目前生产L-组氨酸的主流方法,因此L-组氨酸高产菌的选育成为当前的研究热点。The methods of producing histidine mainly include proteolysis, chemical synthesis and microbial fermentation. Among them, hydrolyzed protein is the most traditional method for histidine production. However, this method mainly depends on the availability of natural protein-rich resources (such as blood meal or soybean), and it is difficult to meet the growing demand for histidine; The production of histidine by chemical synthesis tends to produce a racemic mixture, which is generally considered to be a "non-natural" compound, which is difficult to obtain approval from the Food and Drug Administration and is difficult to be accepted by consumers; - The mainstream method of histidine, so the breeding of L-histidine high-producing bacteria has become a current research hotspot.

发明内容SUMMARY OF THE INVENTION

为解决上述技术问题,本发明提供了一种提高L-组氨酸产量的方法,通过使用操作条件安全、温和、可控性强的ARTP诱变方法,获得了突变率更高的突变库,结合L-组氨酸结构类似物筛选,经过十次传代后,获得了稳定的L-组氨酸高产突变株,进一步分析了诱变后高产菌株的L-组氨酸合成相关基因的突变情况,比对筛选得到能够促进L-组氨酸产量提高的突变基因。In order to solve the above-mentioned technical problems, the present invention provides a method for improving the production of L-histidine. By using the ARTP mutagenesis method with safe, mild and controllable operating conditions, a mutation library with a higher mutation rate is obtained, Combined with the screening of L-histidine structural analogs, after ten passages, a stable L-histidine high-yielding mutant was obtained, and the mutation of L-histidine synthesis-related genes in the high-yield strain after mutagenesis was further analyzed. , the mutated genes that can promote the production of L-histidine were obtained by comparison and screening.

本发明的第一个目的是提供一种提高L-组氨酸产量的方法,所述方法是在生产L-组氨酸的宿主菌中表达5-磷酸核糖-1-焦磷酸合成基因Prs和/或ATP转磷酸核糖基酶编码基因hisG,所述的5-磷酸核糖-1-焦磷酸合成基因Prs的氨基酸序列如SEQ ID NO.1所示,ATP转磷酸核糖基酶编码基因hisG的氨基酸序列如SEQ ID NO.3所示。The first object of the present invention is to provide a method for improving the production of L-histidine by expressing the 5-phosphoribose-1-pyrophosphate synthesis gene Prs and /or ATP phosphoribosylase encoding gene hisG, the amino acid sequence of the 5-phosphoribose-1-pyrophosphate synthesis gene Prs is shown in SEQ ID NO.1, and the amino acid sequence of the ATP phosphoribosylase encoding gene hisG The sequence is shown in SEQ ID NO.3.

进一步地,所述的生产L-组氨酸的宿主菌为肠杆菌科菌株。Further, the L-histidine-producing host bacteria are Enterobacteriaceae strains.

进一步地,所述的肠杆菌科菌株为大肠杆菌或粘质沙雷氏菌。Further, the Enterobacteriaceae strain is Escherichia coli or Serratia marcescens.

进一步地,所述的大肠杆菌为E.coli BL21。Further, the Escherichia coli is E.coli BL21.

进一步地,表达5-磷酸核糖-1-焦磷酸合成基因Prs和/或ATP转磷酸核糖基酶编码基因hisG是通过质粒表达或基因组表达。Further, the expression of the 5-phosphoribose-1-pyrophosphate synthesis gene Prs and/or the ATP phosphoribosylase encoding gene hisG is expressed through plasmid expression or genome expression.

进一步地,所述的质粒表达,是将5-磷酸核糖-1-焦磷酸合成基因Prs或ATP转磷酸核糖基酶编码基因hisG连接到pET28a载体上进行表达;或者是将5-磷酸核糖-1-焦磷酸合成基因Prs和ATP转磷酸核糖基酶编码基因hisG同时连接到pETDuet载体上进行表达。Further, the plasmid expression is to connect the 5-phosphoribose-1-pyrophosphate synthesis gene Prs or the ATP phosphoribosylase encoding gene hisG to the pET28a carrier for expression; or to express the 5-phosphoribose-1 - The pyrophosphate synthesis gene Prs and the ATP-phosphoribosylase encoding gene hisG are simultaneously connected to the pETDuet vector for expression.

本发明的第二个目的是提供一种L-组氨酸产量提高的重组菌,所述的重组菌表达了5-磷酸核糖-1-焦磷酸合成基因Prs和/或ATP转磷酸核糖基酶编码基因hisG,所述的5-磷酸核糖-1-焦磷酸合成基因Prs的氨基酸序列如SEQ ID NO.1所示,ATP转磷酸核糖基酶编码基因hisG的氨基酸序列如SEQ ID NO.3所示。The second object of the present invention is to provide a recombinant bacterium with improved L-histidine production, the recombinant bacterium expresses the 5-phosphoribose-1-pyrophosphate synthesis gene Prs and/or ATP phosphoribosyltransferase Encoding gene hisG, the amino acid sequence of described 5-phosphoribose-1-pyrophosphate synthesis gene Prs is shown in SEQ ID NO.1, and the amino acid sequence of ATP phosphorylation ribosylase encoding gene hisG is shown in SEQ ID NO.3 Show.

进一步地,所述的重组菌是以大肠杆菌或粘质沙雷氏菌为宿主菌,以pET28a或pETDuet为载体。Further, the recombinant bacteria use Escherichia coli or Serratia marcescens as the host bacteria, and use pET28a or pETDuet as the carrier.

本发明的第三个目的是提供一种所述的重组菌发酵生产L-组氨酸的方法,是将所述的重组菌接种至发酵培养基中,在28~32℃进行培养。The third object of the present invention is to provide a method for producing L-histidine by fermentation of the recombinant bacteria, which is to inoculate the recombinant bacteria into a fermentation medium and culture at 28-32°C.

进一步地,所述的发酵培养基为葡萄糖35~45g/L,酵母粉1~3g/L,(NH4)2SO4 14~18g/L,K2HPO4.3H2O 0.5~0.7g/L,FeSO4.7H2O 0.004~0.006g/L,MnSO4.5H2O 0.004~0.006g/L,CaCO325~35g/L。Further, the fermentation medium is glucose 35-45 g/L, yeast powder 1-3 g/L, (NH 4 ) 2 SO 4 14-18 g/L, K 2 HPO 4 .3H 2 O 0.5-0.7 g /L, FeSO 4 .7H 2 O 0.004~0.006g/L, MnSO 4 .5H 2 O 0.004~0.006g/L, CaCO 3 25~35g/L.

借由上述方案,本发明至少具有以下优点:By means of the above scheme, the present invention has at least the following advantages:

本发明通过使用操作条件安全、温和、可控性强的ARTP诱变方法,获得了突变率更高的突变库,结合L-组氨酸结构类似物筛选,经过十次传代后,获得了稳定的L-组氨酸高产突变株,进一步分析了诱变后高产菌株的L-组氨酸合成相关基因的突变情况,比对筛选得到能够促进L-组氨酸产量提高的5-磷酸核糖-1-焦磷酸合成基因Prs和L-组氨酸合成的操纵子基因hisG突变体,在生产L-组氨酸的宿主菌中表达Prs和hisG基因中的一种或两种,能够有效提高L-组氨酸的产量。为进一步代谢工程改造粘质沙雷氏菌或其他菌株生产L-组氨酸奠定了基础。The invention obtains a mutation library with a higher mutation rate by using the ARTP mutagenesis method with safe, mild and controllable operating conditions. Combined with the screening of L-histidine structural analogs, after ten passages, a stable The L-histidine high-yielding mutant strain was further analyzed, and the mutation of L-histidine synthesis-related genes in the high-yielding strain after mutagenesis was further analyzed, and the 5-phosphoribose- 1-pyrophosphate synthesis gene Prs and L-histidine synthesis operon gene hisG mutant, expressing one or both of Prs and hisG genes in L-histidine-producing host bacteria, can effectively increase L-histidine - Production of histidine. It lays a foundation for further metabolic engineering of Serratia marcescens or other strains to produce L-histidine.

上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合详细附图说明如后。The above description is only an overview of the technical solution of the present invention. In order to understand the technical means of the present invention more clearly and implement it according to the content of the description, the following description is given with the preferred embodiments of the present invention and the detailed drawings.

附图说明Description of drawings

图1为ARTP对S.marcescens ATCC 31026的致死率曲线;Figure 1 shows the lethality curve of ARTP to S. marcescens ATCC 31026;

图2为6-MP抗性突变株的筛选结果;Fig. 2 is the screening result of 6-MP resistant mutant strain;

图3为L-组氨酸产生菌S.marcescens P12遗传稳定性;Fig. 3 is the genetic stability of L-histidine-producing strain S. marcescens P12;

图4为S.marcescens P12与S.marcescens ATCC 31026的Prs基因的序列比对;Fig. 4 is the sequence alignment of the Prs gene of S. marcescens P12 and S. marcescens ATCC 31026;

图5为S.marcescens P12与S.marcescens ATCC 31026的hisG基因的序列比对;Fig. 5 is the sequence alignment of the hisG gene of S. marcescens P12 and S. marcescens ATCC 31026;

图6为在E.coli BL21中分别表达诱变前后hisG基因的L-组氨酸产量;Figure 6 is the L-histidine production of hisG gene before and after expressing mutagenesis in E. coli BL21 respectively;

图7为在E.coli BL21中分别表达诱变前后Prs基因的L-组氨酸产量;Figure 7 is the L-histidine production of the Prs gene before and after expressing mutagenesis in E. coli BL21 respectively;

图8为在E.coli BL21中分别表达诱变前后Prs及hisG基因的L-组氨酸产量。Figure 8 shows the L-histidine production of Prs and hisG genes in E. coli BL21 before and after mutagenesis, respectively.

具体实施方式Detailed ways

下面结合实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。The specific embodiments of the present invention will be further described in detail below with reference to the examples. The following examples are intended to illustrate the present invention, but not to limit the scope of the present invention.

本发明中,5-磷酸核糖-1-焦磷酸合成基因Prs突变前的碱基序列如SEQ ID NO.6所示,氨基酸序列如SEQ ID NO.2所示,突变后的碱基序列如SEQ ID NO.5所示,氨基酸序列如SEQ ID NO.1所示;In the present invention, the base sequence of the 5-phosphoribose-1-pyrophosphate synthesis gene Prs before mutation is shown in SEQ ID NO.6, the amino acid sequence is shown in SEQ ID NO.2, and the base sequence after mutation is shown in SEQ ID NO.2 ID NO.5 is shown, and the amino acid sequence is shown as SEQ ID NO.1;

ATP转磷酸核糖基酶编码基因hisG突变前的碱基序列如SEQ ID NO.8所示,氨基酸序列如SEQ ID NO.4所示,突变后的碱基序列如SEQ ID NO.7所示,氨基酸序列如SEQ IDNO.3所示。The base sequence before the mutation of the ATP phosphoribosylase encoding gene hisG is shown in SEQ ID NO.8, the amino acid sequence is shown in SEQ ID NO.4, and the base sequence after the mutation is shown in SEQ ID NO.7, The amino acid sequence is shown in SEQ ID NO.3.

采用高效液相色谱法(HPLC)对发酵液中L-组氨酸浓度进行定量分析,以邻苯二甲醛进行发酵液柱前衍生,色谱柱为Agilent C18柱(250mm×4.6mm,5μm),紫外检测器的检测波长为338nm,柱温40℃,进样量1μL。具体的梯度洗脱程序如下表所示。The concentration of L-histidine in the fermentation broth was quantitatively analyzed by high performance liquid chromatography (HPLC). The fermentation broth was derivatized before column with o-phthalaldehyde. The chromatographic column was an Agilent C18 column (250mm×4.6mm, 5μm). The detection wavelength of the UV detector was 338 nm, the column temperature was 40 °C, and the injection volume was 1 μL. The specific gradient elution procedure is shown in the table below.

表1Table 1

Figure BDA0002879606940000031
Figure BDA0002879606940000031

实施例1:S.marcescens ATCC 31026的临界致死6-MP浓度的确定Example 1: Determination of the critical lethal 6-MP concentration of S. marcescens ATCC 31026

将诱变前的S.marcescens ATCC 31026的单菌落接种到2mL LB培养基(酵母粉5g/L,胰蛋白胨10g/L,NaCl 10g/L),37℃,220r/min,培养10-12h,离心菌体,用无菌生理盐水洗涤2-3次后,再用无菌生理盐水梯度稀释十万倍,然后取100μL菌液分别涂布到含1.5mg/mL MET及不同浓度的6-MP抗性的平板(葡萄糖5.0g/L,牛肉膏10g/L,蛋白胨10g/L,酵母膏5.0g/L,氯化钠2.5g/L,琼脂20g/L,pH调至7.0,121℃灭菌15min),确定6-MP的临界致死浓度为1.5mg/mL,故选用1.5mg/mL作为实验浓度。如表2所示。A single colony of S. marcescens ATCC 31026 before mutagenesis was inoculated into 2mL LB medium (yeast powder 5g/L, tryptone 10g/L, NaCl 10g/L), 37°C, 220r/min, cultured for 10-12h, Centrifuge the bacteria, wash 2-3 times with sterile physiological saline, then dilute 100,000-fold gradient with sterile physiological saline, and then take 100 μL of the bacterial solution and apply it to 6-MP containing 1.5 mg/mL MET and different concentrations. Resistant plates (glucose 5.0g/L, beef extract 10g/L, peptone 10g/L, yeast extract 5.0g/L, sodium chloride 2.5g/L, agar 20g/L, pH adjusted to 7.0, sterilized at 121°C bacteria for 15 min), the critical lethal concentration of 6-MP was determined to be 1.5 mg/mL, so 1.5 mg/mL was selected as the experimental concentration. As shown in table 2.

表2Table 2

Figure BDA0002879606940000041
Figure BDA0002879606940000041

注:++表示有较多单菌落;+表示有少量单菌落;-表示无单菌落Note: ++ means more single colonies; + means few single colonies; - means no single colonies

实施例2:利用ARTP诱变S.marcescens ATCC 31026Example 2: Mutagenesis of S. marcescens ATCC 31026 using ARTP

选择S.marcescens ATCC 31026进行ARTP诱变,首先是制备菌悬液,S.marcescensATCC 31026单菌落接LB培养基至14mL摇菌管,37℃,220r/min,过夜培养后,按1%接种量转接至LB摇瓶,37℃,220r/min,培养4-6h。离心收集培养好的菌体,无菌生理盐水洗涤2-3次后,再用无菌生理盐水适量稀释成OD600值在0.6-0.8的菌悬液,取10μL菌悬液涂在载玻片上处理。ARTP诱变处理的参数为:载片处于气流端口2mm处,功率为120W,气流量为10SLM,作用时间为35s。Select S. marcescens ATCC 31026 for ARTP mutagenesis. The first step is to prepare a bacterial suspension. A single colony of S. marcescens ATCC 31026 is placed in LB medium to a 14 mL shaker tube at 37°C, 220 r/min. After overnight culture, the inoculum is 1%. Transfer to LB shake flask, 37 ℃, 220r/min, cultivate 4-6h. The cultured cells were collected by centrifugation, washed 2-3 times with sterile physiological saline, and then diluted with sterile physiological saline to form a bacterial suspension with an OD 600 value of 0.6-0.8, and 10 μL of the bacterial suspension was spread on a glass slide. deal with. The parameters of ARTP mutagenesis are as follows: the slide is at 2mm of the airflow port, the power is 120W, the airflow rate is 10SLM, and the action time is 35s.

将经过ARTP诱变处理后的菌悬液涂布到MET(1.5mg/mL)、6-MP(1.5mg/mL)抗性平板上,30℃培养36h后,获得三十个单菌落。The ARTP mutagenized bacterial suspension was spread on MET (1.5 mg/mL) and 6-MP (1.5 mg/mL) resistant plates, and after culturing at 30°C for 36 hours, thirty single colonies were obtained.

实施例3:发酵合成L-组氨酸Example 3: Fermentative synthesis of L-histidine

将获得的三十株诱变后的菌株S.marcescens P1--30挑取单菌落接种至500mL锥形瓶,装液量为500mL,30℃,220r/min,培养18h,种子培养基的配方为:葡萄糖25g/L,玉米浆20g/L,尿素1.25g/L,磷酸二氢钾1.0g/L,硫酸镁0.5g/L,pH调至7.0,121℃灭菌15min,其中葡萄糖分开灭菌(115℃,15min);以10%的接种量吸取种子培养基1.5mL接入250mL锥形瓶,装液量15mL,30℃,220r/min,培养72h,发酵培养基的配方为:葡萄糖130g/L,硫酸铵35g/L,玉米浆15g/L,磷酸二氢钾1.0g/L,硫酸镁0.5g/L,碳酸钙20g/L(分消),pH调至7.0,115℃灭菌,15min。Pick a single colony of the obtained 30 mutant strains of S. marcescens P1--30 and inoculate it into a 500mL conical flask, the filling volume is 500mL, 30℃, 220r/min, cultured for 18h, the formula of the seed medium It is: glucose 25g/L, corn steep liquor 20g/L, urea 1.25g/L, potassium dihydrogen phosphate 1.0g/L, magnesium sulfate 0.5g/L, pH adjusted to 7.0, sterilized at 121°C for 15min, glucose was sterilized separately Bacteria (115°C, 15min); pipette 1.5mL of seed medium at 10% of the inoculum into a 250mL conical flask, fill 15mL, 30°C, 220r/min, cultivate for 72h, the formula of the fermentation medium is: glucose 130g/L, ammonium sulfate 35g/L, corn steep liquor 15g/L, potassium dihydrogen phosphate 1.0g/L, magnesium sulfate 0.5g/L, calcium carbonate 20g/L (dissolved), pH adjusted to 7.0, sterilized at 115°C bacteria, 15min.

液相分析发酵液上清中L-组氨酸产量,得到四株高产菌株,如图2中的S.marcescens P5、S.marcescens P12、S.marcescens P20、S.marcescens P23。在这些突变株中,选择L-组氨酸产量最高的突变株S.marcescens P12进行传代培养,如图3,结果表明菌体生长良好,平均产酸5.3g/L,得到了稳定高产突变株,可进行进一步研究。The L-histidine production in the supernatant of the fermentation broth was analyzed by liquid phase, and four high-yielding strains were obtained, such as S. Among these mutants, the mutant S. marcescens P12 with the highest L-histidine production was selected for subculture, as shown in Figure 3. The results showed that the cells grew well, with an average acid production of 5.3 g/L, and a stable and high-yielding mutant was obtained. , for further research.

实施例4:L-组氨酸合成相关基因的扩增与比对Example 4: Amplification and alignment of genes related to L-histidine synthesis

根据本发明所测得的S.marcescens ATCC 31026,设计如表1中所示引物。使用上述引物以S.marcescens P12基因组为模板,PCR扩增出Prs基因、hisLGDCBHAFI基因簇,片段长度分别为939bp、7287bp。将扩增获得的片段与S.marcescens ATCC 31026对应基因进行比对,发现Prs、hisG基因均有氨基酸发生突变,如图4、图5所示。The primers shown in Table 1 were designed according to S. marcescens ATCC 31026 measured in the present invention. Using the above primers and S. marcescens P12 genome as a template, the Prs gene and hisLGDCBHAFI gene clusters were amplified by PCR, and the fragment lengths were 939 bp and 7287 bp, respectively. The amplified fragments were compared with the corresponding genes of S. marcescens ATCC 31026, and it was found that both Prs and hisG genes had amino acid mutations, as shown in Figure 4 and Figure 5.

表3table 3

Figure BDA0002879606940000051
Figure BDA0002879606940000051

实施例5:Prs及hisG相关质粒的构建及转化Example 5: Construction and transformation of Prs and hisG related plasmids

为了验证本发明中的突变后基因Prs及hisG在大肠杆菌中能否提高L-组氨酸产量,使用突变前的Prs及hisG基因构建质粒pET28a-Prs、pET28a-hisG,利用突变后的Prs及hisG基因构建质粒pET28a-Prs’、pET28a-hisG’。以S.marcescens ATCC 3102、S.marcescens P12的基因组和pET28a质粒为模板,使用表4中引物,经PCR扩增分别获取、hisG、hisG’、Prs、Prs’序列和相应的线性化质粒,进一步通过Gibson组装获取重组质粒pET28a-hisG、pET28a-hisG’、pET28a-Prs,pET28a-Prs’,42℃热激90s后,分别将其转化至E.coli BL21感受态细胞中,获得菌株E.coli B1、E.coli B2、E.coli B3、E.coli B4。In order to verify whether the mutated genes Prs and hisG in the present invention can increase L-histidine production in Escherichia coli, plasmids pET28a-Prs and pET28a-hisG were constructed using the Prs and hisG genes before the mutation, and the mutated Prs and hisG genes were used to construct plasmids pET28a-Prs and pET28a-hisG. HisG gene constructs plasmids pET28a-Prs', pET28a-hisG'. Using the genome of S. marcescens ATCC 3102, S. marcescens P12 and pET28a plasmid as templates, using primers in Table 4, the sequences of hisG, hisG', Prs, Prs' and corresponding linearized plasmids were obtained through PCR amplification, and further Recombinant plasmids pET28a-hisG, pET28a-hisG', pET28a-Prs, pET28a-Prs' were obtained by Gibson assembly. After heat shock at 42°C for 90s, they were transformed into E.coli BL21 competent cells to obtain strain E.coli B1, E.coli B2, E.coli B3, E.coli B4.

表4Table 4

Figure BDA0002879606940000052
Figure BDA0002879606940000052

实施例6:大肠杆菌发酵合成L-组氨酸Example 6: Escherichia coli fermentation to synthesize L-histidine

将菌株E.coli B1、E.coli B2、E.coli B3、E.coli B4挑取单菌落接种于2mL液体LB培养基(酵母粉5g/L,胰蛋白胨10g/L,NaCl 10g/L)中,37℃、220r/min过夜培养。按4%(V/V)将种子液接种于含有15mL发酵培养基(葡萄糖40g/L,酵母粉2g/L,(NH4)2SO4 16g/L,K2HPO4.3H2O 0.6g/L,FeSO4.7H2O 0.005g/L,MnSO4.5H2O 0.005g/L,CaCO3 30g/L)的250mL摇瓶中,30℃、220r/min培养72h。液相分析发酵液上清中L-组氨酸产量,结果如图6及图7所示。发酵结果表明在E.coli BL21中表达诱变前的hisG序列,产量为0.2g/L,而表达诱变后的hisG序列,可将产量提高为1.5g/L;在E.coli BL21中表达诱变前的Prs序列,产量为0.4g/L,而表达诱变后的hisG序列,可将产量提高为1g/L。Single colonies of strains E.coli B1, E.coli B2, E.coli B3 and E.coli B4 were picked and inoculated into 2mL liquid LB medium (yeast powder 5g/L, tryptone 10g/L, NaCl 10g/L) medium, cultured overnight at 37°C and 220 r/min. At 4% (V/V), the seed liquid was inoculated into 15mL fermentation medium (glucose 40g/L, yeast powder 2g/L, (NH 4 ) 2 SO 4 16g/L, K 2 HPO 4 .3H 2 O 0.6 g/L, FeSO 4 .7H 2 O 0.005g/L, MnSO 4 .5H 2 O 0.005g/L, CaCO 3 30g/L) in a 250mL shaker flask, cultured at 30°C, 220r/min for 72h. The production of L-histidine in the supernatant of the fermentation broth was analyzed by liquid phase, and the results are shown in FIG. 6 and FIG. 7 . The fermentation results showed that the yield of hisG sequence before mutagenesis was 0.2g/L in E.coli BL21, while the yield of hisG sequence after mutagenesis could be increased to 1.5g/L; when expressed in E.coli BL21 The yield of the Prs sequence before mutagenesis was 0.4 g/L, while the expression of the hisG sequence after mutagenesis could increase the yield to 1 g/L.

实施例7:Prs及hisG双基因表达质粒的构建及转化Example 7: Construction and transformation of Prs and hisG double gene expression plasmids

为了验证本发明中的突变后基因Prs及hisG在大肠杆菌中共同表达能否进一步提高L-组氨酸产量,使用突变前的Prs及hisG基因构建质粒pETDuet-Prs-hisG,利用突变后的Prs及hisG基因构建质粒pETDuet-Prs’-hisG’。以S.marcescens ATCC 3102、S.marcescensP12的基因组和pETDuet质粒为模板,使用表5中引物,经PCR扩增分别获取、hisG、Prs、hisG’、Prs’序列和相应的线性化质粒,进一步通过Gibson组装获取重组质粒pETDuet-Prs-hisG、pETDuet-Prs’-hisG’,42℃热激90s后,分别将其转化至E.coli BL21感受态细胞中,获得菌株E.coli B5、E.coli B6。In order to verify whether the co-expression of the mutated genes Prs and hisG in the present invention in Escherichia coli can further improve the L-histidine production, the plasmid pETDuet-Prs-hisG was constructed using the Prs and hisG genes before the mutation, and the mutated Prs was used to construct a plasmid pETDuet-Prs-hisG. and hisG gene to construct plasmid pETDuet-Prs'-hisG'. Taking the genome of S. marcescens ATCC 3102 and S. marcescens P12 and the pETDuet plasmid as templates, using the primers in Table 5, the sequences of hisG, Prs, hisG', Prs' and the corresponding linearized plasmids were obtained by PCR amplification, and further passed through The recombinant plasmids pETDuet-Prs-hisG and pETDuet-Prs'-hisG' were obtained by Gibson assembly. After heat shock at 42°C for 90s, they were transformed into E.coli BL21 competent cells to obtain strains E.coli B5, E.coli B6.

表5table 5

Figure BDA0002879606940000061
Figure BDA0002879606940000061

实施例8:大肠杆菌发酵合成L-组氨酸Example 8: Escherichia coli fermentation to synthesize L-histidine

将菌株E.coli B5、E.coli B6挑取单菌落接种于2mL液体LB培养基(酵母粉5g/L,胰蛋白胨10g/L,NaCl 10g/L)中,37℃、220r/min过夜培养。按4%(V/V)将种子液接种于含有15mL发酵培养基(葡萄糖40g/L,酵母粉2g/L,(NH4)2SO4 16g/L,K2HPO4.3H2O 0.6g/L,FeSO4.7H2O 0.005g/L,MnSO4.5H2O 0.005g/L,CaCO3 30g/L)的250mL摇瓶中,30℃、220r/min培养72h。液相分析发酵液上清中L-组氨酸产量,结果如图8所示。发酵结果表明在E.coliBL21中同时表达诱变前的Prs及hisG序列,产量为1.2g/L,而表达诱变后的Prs及hisG序列,可将产量提高为3.5g/L。Single colonies of strains E.coli B5 and E.coli B6 were picked and inoculated in 2mL liquid LB medium (5g/L yeast powder, 10g/L tryptone, 10g/L NaCl), and cultured overnight at 37°C and 220r/min. . At 4% (V/V), the seed liquid was inoculated into 15mL fermentation medium (glucose 40g/L, yeast powder 2g/L, (NH 4 ) 2 SO 4 16g/L, K 2 HPO 4 .3H 2 O 0.6 g/L, FeSO 4 .7H 2 O 0.005g/L, MnSO 4 .5H 2 O 0.005g/L, CaCO 3 30g/L) in a 250mL shaker flask, cultured at 30°C, 220r/min for 72h. The production of L-histidine in the supernatant of the fermentation broth was analyzed by liquid phase, and the results are shown in FIG. 8 . The fermentation results showed that the yield of Prs and hisG sequences before mutagenesis was simultaneously expressed in E. coliBL21, and the yield was 1.2 g/L, while the yield of Prs and hisG sequences after mutagenesis could be increased to 3.5 g/L.

以上仅是本发明的优选实施方式,并不用于限制本发明,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变型,这些改进和变型也应视为本发明的保护范围。The above are only the preferred embodiments of the present invention and are not intended to limit the present invention. It should be pointed out that for those skilled in the art, some improvements and modifications can be made without departing from the technical principles of the present invention. , these improvements and modifications should also be regarded as the protection scope of the present invention.

序列表sequence listing

<110> 江南大学<110> Jiangnan University

<120> 一种提高L-组氨酸产量的方法<120> A kind of method for improving L-histidine production

<160> 26<160> 26

<170> PatentIn version 3.3<170> PatentIn version 3.3

<210> 1<210> 1

<211> 312<211> 312

<212> PRT<212> PRT

<213> (人工序列)<213> (artificial sequence)

<400> 1<400> 1

Met Lys Leu Phe Ala Gly Asn Ala Thr Pro Glu Leu Ala Gln Arg IleMet Lys Leu Phe Ala Gly Asn Ala Thr Pro Glu Leu Ala Gln Arg Ile

1 5 10 151 5 10 15

Ala Asn Arg Leu Tyr Thr Ser Leu Gly Asp Ala Ala Val Gly Arg PheAla Asn Arg Leu Tyr Thr Ser Leu Gly Asp Ala Ala Val Gly Arg Phe

20 25 30 20 25 30

Ser Asp Gly Glu Val Ser Val Gln Ile Asn Glu Asn Val Arg Gly GlySer Asp Gly Glu Val Ser Val Gln Ile Asn Glu Asn Val Arg Gly Gly

35 40 45 35 40 45

Asp Ile Phe Ile Ile Gln Ser Thr Cys Ala Pro Thr Asn Asp Asn LeuAsp Ile Phe Ile Ile Gln Ser Thr Cys Ala Pro Thr Asn Asp Asn Leu

50 55 60 50 55 60

Met Glu Leu Val Val Met Val Asp Ala Leu Arg Arg Ala Ser Ala GlyMet Glu Leu Val Val Met Val Asp Ala Leu Arg Arg Ala Ser Ala Gly

65 70 75 8065 70 75 80

Arg Ile Thr Ala Val Ile Pro Tyr Phe Gly Tyr Ala Arg Gln Asp ArgArg Ile Thr Ala Val Ile Pro Tyr Phe Gly Tyr Ala Arg Gln Asp Arg

85 90 95 85 90 95

Arg Val Arg Ser Ala Arg Val Pro Ile Thr Ala Lys Val Val Ala AspArg Val Arg Ser Ala Arg Val Pro Ile Thr Ala Lys Val Val Ala Asp

100 105 110 100 105 110

Phe Leu Ser Ser Val Gly Val Asp Arg Val Leu Thr Val Asp Leu HisPhe Leu Ser Ser Val Gly Val Asp Arg Val Leu Thr Val Asp Leu His

115 120 125 115 120 125

Ala Glu Gln Ile Gln Gly Phe Phe Asp Val Pro Val Asp Asn Val PheAla Glu Gln Ile Gln Gly Phe Phe Asp Val Pro Val Asp Asn Val Phe

130 135 140 130 135 140

Gly Ser Pro Ile Leu Leu Glu Asp Met Leu Gln Gln Asn Leu Glu AsnGly Ser Pro Ile Leu Leu Glu Asp Met Leu Gln Gln Asn Leu Glu Asn

145 150 155 160145 150 155 160

Pro Ile Val Val Ser Pro Asp Ile Gly Gly Val Val Arg Ala Arg AlaPro Ile Val Val Ser Pro Asp Ile Gly Gly Val Val Arg Ala Arg Ala

165 170 175 165 170 175

Ile Ala Lys Leu Leu Asn Asp Thr Asp Met Ala Ile Ile Asp Lys ArgIle Ala Lys Leu Leu Asn Asp Thr Asp Met Ala Ile Ile Asp Lys Arg

180 185 190 180 185 190

Arg Pro Arg Ala Asn Val Ser Gln Val Met His Ile Ile Gly Asp ValArg Pro Arg Ala Asn Val Ser Gln Val Met His Ile Ile Gly Asp Val

195 200 205 195 200 205

Ala Gly Arg Asp Cys Val Leu Val Asp Asp Met Ile Asp Thr Gly GlyAla Gly Arg Asp Cys Val Leu Val Asp Asp Met Ile Asp Thr Gly Gly

210 215 220 210 215 220

Thr Leu Cys Lys Ala Ala Glu Ala Leu Lys Glu Arg Gly Ala Lys ArgThr Leu Cys Lys Ala Ala Glu Ala Leu Lys Glu Arg Gly Ala Lys Arg

225 230 235 240225 230 235 240

Val Phe Ala Tyr Ala Thr His Pro Ile Phe Ser Gly Asn Ala Val AspVal Phe Ala Tyr Ala Thr His Pro Ile Phe Ser Gly Asn Ala Val Asp

245 250 255 245 250 255

Asn Ile Lys Asn Ser Val Ile Asp Glu Val Ile Val Cys Asp Thr IleAsn Ile Lys Asn Ser Val Ile Asp Glu Val Ile Val Cys Asp Thr Ile

260 265 270 260 265 270

Pro Leu Ser Pro Glu Ile Lys Ala Leu Lys Asn Val Arg Thr Leu ThrPro Leu Ser Pro Glu Ile Lys Ala Leu Lys Asn Val Arg Thr Leu Thr

275 280 285 275 280 285

Leu Ser Gly Met Leu Ala Glu Ala Ile Arg Arg Ile Ser Asn Glu GluLeu Ser Gly Met Leu Ala Glu Ala Ile Arg Arg Ile Ser Asn Glu Glu

290 295 300 290 295 300

Ser Ile Ser Ala Met Phe Glu HisSer Ile Ser Ala Met Phe Glu His

305 310305 310

<210> 2<210> 2

<211> 312<211> 312

<212> PRT<212> PRT

<213> (人工序列)<213> (artificial sequence)

<400> 2<400> 2

Met Lys Leu Phe Ala Gly Asn Ala Thr Pro Glu Leu Ala Gln Arg IleMet Lys Leu Phe Ala Gly Asn Ala Thr Pro Glu Leu Ala Gln Arg Ile

1 5 10 151 5 10 15

Ala Asn Arg Leu Tyr Thr Ser Leu Gly Asp Ala Ala Val Gly Arg PheAla Asn Arg Leu Tyr Thr Ser Leu Gly Asp Ala Ala Val Gly Arg Phe

20 25 30 20 25 30

Ser Asp Gly Glu Val Ser Val Gln Ile Asn Gln Asn Val Arg Gly GlySer Asp Gly Glu Val Ser Val Gln Ile Asn Gln Asn Val Arg Gly Gly

35 40 45 35 40 45

Asp Ile Phe Ile Ile Gln Ser Thr Cys Ala Pro Thr Asn Asp Asn LeuAsp Ile Phe Ile Ile Gln Ser Thr Cys Ala Pro Thr Asn Asp Asn Leu

50 55 60 50 55 60

Met Glu Leu Val Val Met Val Asp Ala Leu Arg Arg Ala Ser Ala GlyMet Glu Leu Val Val Met Val Asp Ala Leu Arg Arg Ala Ser Ala Gly

65 70 75 8065 70 75 80

Arg Ile Thr Ala Val Ile Pro Tyr Phe Gly Tyr Ala Arg Gln Asp ArgArg Ile Thr Ala Val Ile Pro Tyr Phe Gly Tyr Ala Arg Gln Asp Arg

85 90 95 85 90 95

Arg Val Arg Ser Ala Arg Val Pro Ile Thr Ala Lys Val Val Ala AspArg Val Arg Ser Ala Arg Val Pro Ile Thr Ala Lys Val Val Ala Asp

100 105 110 100 105 110

Phe Leu Ser Ser Val Gly Val Asp Arg Val Leu Thr Val Asp Leu HisPhe Leu Ser Ser Val Gly Val Asp Arg Val Leu Thr Val Asp Leu His

115 120 125 115 120 125

Ala Glu Gln Ile Gln Gly Phe Phe Asp Val Pro Val Asp Asn Val PheAla Glu Gln Ile Gln Gly Phe Phe Asp Val Pro Val Asp Asn Val Phe

130 135 140 130 135 140

Gly Ser Pro Ile Leu Leu Glu Asp Met Leu Gln Leu Asn Leu Asp AsnGly Ser Pro Ile Leu Leu Glu Asp Met Leu Gln Leu Asn Leu Asp Asn

145 150 155 160145 150 155 160

Pro Ile Val Val Ser Pro Asp Ile Gly Gly Val Val Arg Ala Arg AlaPro Ile Val Val Ser Pro Asp Ile Gly Gly Val Val Arg Ala Arg Ala

165 170 175 165 170 175

Ile Ala Lys Leu Leu Asn Asp Thr Asp Met Ala Ile Ile Asp Lys ArgIle Ala Lys Leu Leu Asn Asp Thr Asp Met Ala Ile Ile Asp Lys Arg

180 185 190 180 185 190

Arg Pro Arg Ala Asn Val Ser Gln Val Met His Ile Ile Gly Asp ValArg Pro Arg Ala Asn Val Ser Gln Val Met His Ile Ile Gly Asp Val

195 200 205 195 200 205

Ala Gly Arg Asp Cys Val Leu Val Asp Asp Met Ile Asp Thr Gly GlyAla Gly Arg Asp Cys Val Leu Val Asp Asp Met Ile Asp Thr Gly Gly

210 215 220 210 215 220

Thr Leu Cys Lys Ala Ala Glu Ala Leu Lys Glu Arg Gly Ala Lys ArgThr Leu Cys Lys Ala Ala Glu Ala Leu Lys Glu Arg Gly Ala Lys Arg

225 230 235 240225 230 235 240

Val Phe Ala Tyr Ala Thr His Pro Ile Phe Ser Gly Asn Ala Ala AspVal Phe Ala Tyr Ala Thr His Pro Ile Phe Ser Gly Asn Ala Ala Asp

245 250 255 245 250 255

Asn Ile Lys Asn Ser Val Ile Asp Glu Val Ile Val Cys Asp Thr IleAsn Ile Lys Asn Ser Val Ile Asp Glu Val Ile Val Cys Asp Thr Ile

260 265 270 260 265 270

Pro Leu Ser Asp Glu Ile Lys Ser Leu Pro Asn Val Arg Thr Leu ThrPro Leu Ser Asp Glu Ile Lys Ser Leu Pro Asn Val Arg Thr Leu Thr

275 280 285 275 280 285

Leu Ser Gly Met Leu Ala Glu Ala Ile Arg Ala Ile Ser Asn Glu GluLeu Ser Gly Met Leu Ala Glu Ala Ile Arg Ala Ile Ser Asn Glu Glu

290 295 300 290 295 300

Ser Ile Ser Ala Met Phe Glu HisSer Ile Ser Ala Met Phe Glu His

305 310305 310

<210> 3<210> 3

<211> 298<211> 298

<212> PRT<212> PRT

<213> (人工序列)<213> (artificial sequence)

<400> 3<400> 3

Met Leu Asp Lys Thr Arg Leu Ile Thr Met Gln Lys Ser Gly Arg LeuMet Leu Asp Lys Thr Arg Leu Ile Thr Met Gln Lys Ser Gly Arg Leu

1 5 10 151 5 10 15

Ser Asp Glu Ser Gln Glu Leu Leu Ala Arg Cys Gly Ile Lys Ile AsnSer Asp Glu Ser Gln Glu Leu Leu Ala Arg Cys Gly Ile Lys Ile Asn

20 25 30 20 25 30

Leu Gln Gln Gln Arg Leu Ile Ala Phe Ala Glu Asn Met Pro Ile AspLeu Gln Gln Gln Arg Leu Ile Ala Phe Ala Glu Asn Met Pro Ile Asp

35 40 45 35 40 45

Ile Leu Arg Val Arg Asp Asp Asp Ile Pro Gly Leu Val Met Asp GlyIle Leu Arg Val Arg Asp Asp Asp Ile Pro Gly Leu Val Met Asp Gly

50 55 60 50 55 60

Val Val Asp Leu Gly Ile Ile Gly Glu Asn Val Leu Glu Glu Glu LeuVal Val Asp Leu Gly Ile Ile Gly Glu Asn Val Leu Glu Glu Glu Leu

65 70 75 8065 70 75 80

Leu Ser Arg Arg Ala Gln Gly Glu Asp Pro Arg Tyr Phe Thr Leu ArgLeu Ser Arg Arg Ala Gln Gly Glu Asp Pro Arg Tyr Phe Thr Leu Arg

85 90 95 85 90 95

Arg Leu Asp Phe Gly Gly Cys Arg Leu Ser Leu Ala Thr Pro Leu AspArg Leu Asp Phe Gly Gly Cys Arg Leu Ser Leu Ala Thr Pro Leu Asp

100 105 110 100 105 110

Ala Glu Tyr Ala Gly Pro Gln Ser Leu Gln Asp Ala Arg Ile Ala ThrAla Glu Tyr Ala Gly Pro Gln Ser Leu Gln Asp Ala Arg Ile Ala Thr

115 120 125 115 120 125

Ser Tyr Pro His Leu Leu Lys Gln Tyr Leu Asp Lys Gln Gly Val ArgSer Tyr Pro His Leu Leu Lys Gln Tyr Leu Asp Lys Gln Gly Val Arg

130 135 140 130 135 140

Phe Lys Ser Tyr Leu Leu Asn Gly Ser Val Glu Val Ala Pro Arg AlaPhe Lys Ser Tyr Leu Leu Asn Gly Ser Val Glu Val Ala Pro Arg Ala

145 150 155 160145 150 155 160

Gly Leu Ala Asp Ala Ile Cys Asp Leu Val Ser Thr Gly Ala Thr LeuGly Leu Ala Asp Ala Ile Cys Asp Leu Val Ser Thr Gly Ala Thr Leu

165 170 175 165 170 175

Glu Ala Asn Gly Leu Arg Glu Val Glu Val Ile Tyr Arg Ser Lys AlaGlu Ala Asn Gly Leu Arg Glu Val Glu Val Ile Tyr Arg Ser Lys Ala

180 185 190 180 185 190

Cys Leu Ile Gln Arg Asp Gly Glu Met Pro Glu Ala Lys Gln Gln LeuCys Leu Ile Gln Arg Asp Gly Glu Met Pro Glu Ala Lys Gln Gln Leu

195 200 205 195 200 205

Ile Asp Arg Leu Met Thr Arg Ile Gln Gly Val Ile Gln Ala Arg GluIle Asp Arg Leu Met Thr Arg Ile Gln Gly Val Ile Gln Ala Arg Glu

210 215 220 210 215 220

Ser Lys Tyr Ile Met Leu His Ala Pro Ser Glu Lys Leu Asp Glu IleSer Lys Tyr Ile Met Leu His Ala Pro Ser Glu Lys Leu Asp Glu Ile

225 230 235 240225 230 235 240

Val Ala Leu Leu Pro Gly Ala Glu Arg Pro Thr Ile Leu Pro Leu AlaVal Ala Leu Leu Pro Gly Ala Glu Arg Pro Thr Ile Leu Pro Leu Ala

245 250 255 245 250 255

Gly Ala Gln Asn Arg Val Ala Met His Met Val Ser Ser Glu Thr LeuGly Ala Gln Asn Arg Val Ala Met His Met Val Ser Ser Glu Thr Leu

260 265 270 260 265 270

Phe Trp Glu Thr Met Glu Lys Leu Lys Ala Leu Gly Ala Ser Ser IlePhe Trp Glu Thr Met Glu Lys Leu Lys Ala Leu Gly Ala Ser Ser Ile

275 280 285 275 280 285

Leu Val Leu Pro Ile Glu Lys Met Met GluLeu Val Leu Pro Ile Glu Lys Met Met Glu

290 295 290 295

<210> 4<210> 4

<211> 299<211> 299

<212> PRT<212> PRT

<213> (人工序列)<213> (artificial sequence)

<400> 4<400> 4

Met Leu Asp Lys Thr Arg Leu Arg Ile Ala Met Gln Lys Ser Gly ArgMet Leu Asp Lys Thr Arg Leu Arg Ile Ala Met Gln Lys Ser Gly Arg

1 5 10 151 5 10 15

Leu Ser Asp Glu Ser Gln Glu Leu Leu Ala Arg Cys Gly Ile Lys IleLeu Ser Asp Glu Ser Gln Glu Leu Leu Ala Arg Cys Gly Ile Lys Ile

20 25 30 20 25 30

Asn Leu Gln Gln Gln Arg Leu Ile Ala Phe Ala Glu Asn Met Pro IleAsn Leu Gln Gln Gln Arg Leu Ile Ala Phe Ala Glu Asn Met Pro Ile

35 40 45 35 40 45

Asp Ile Leu Arg Val Arg Asp Asp Asp Ile Pro Gly Leu Val Met AspAsp Ile Leu Arg Val Arg Asp Asp Asp Asp Ile Pro Gly Leu Val Met Asp

50 55 60 50 55 60

Gly Val Val Asp Leu Gly Ile Ile Gly Glu Asn Val Leu Glu Glu GluGly Val Val Asp Leu Gly Ile Ile Gly Glu Asn Val Leu Glu Glu Glu

65 70 75 8065 70 75 80

Leu Leu Ser Arg Arg Ala Gln Gly Glu Asp Pro Arg Tyr Phe Thr LeuLeu Leu Ser Arg Arg Ala Gln Gly Glu Asp Pro Arg Tyr Phe Thr Leu

85 90 95 85 90 95

Arg Arg Leu Asp Phe Gly Gly Cys Arg Leu Ser Leu Ala Thr Pro LeuArg Arg Leu Asp Phe Gly Gly Cys Arg Leu Ser Leu Ala Thr Pro Leu

100 105 110 100 105 110

Asp Ala Glu Tyr Ala Gly Pro Gln Ser Leu Gln Asp Ala Arg Ile AlaAsp Ala Glu Tyr Ala Gly Pro Gln Ser Leu Gln Asp Ala Arg Ile Ala

115 120 125 115 120 125

Thr Ser Tyr Pro His Leu Leu Lys Gln Tyr Leu Asp Lys Gln Gly ValThr Ser Tyr Pro His Leu Leu Lys Gln Tyr Leu Asp Lys Gln Gly Val

130 135 140 130 135 140

Arg Phe Lys Ser Cys Leu Leu Asn Gly Ser Val Glu Val Ala Pro ArgArg Phe Lys Ser Cys Leu Leu Asn Gly Ser Val Glu Val Ala Pro Arg

145 150 155 160145 150 155 160

Ala Gly Leu Ala Asp Ala Ile Cys Asp Leu Val Ser Thr Gly Ala ThrAla Gly Leu Ala Asp Ala Ile Cys Asp Leu Val Ser Thr Gly Ala Thr

165 170 175 165 170 175

Leu Glu Ala Asn Gly Leu Arg Glu Val Glu Val Ile Tyr Arg Ser LysLeu Glu Ala Asn Gly Leu Arg Glu Val Glu Val Ile Tyr Arg Ser Lys

180 185 190 180 185 190

Ala Cys Leu Ile Gln Arg Asp Gly Glu Met Pro Glu Ala Lys Gln GlnAla Cys Leu Ile Gln Arg Asp Gly Glu Met Pro Glu Ala Lys Gln Gln

195 200 205 195 200 205

Leu Ile Asp Arg Leu Met Thr Arg Ile Gln Gly Val Ile Gln Ala ArgLeu Ile Asp Arg Leu Met Thr Arg Ile Gln Gly Val Ile Gln Ala Arg

210 215 220 210 215 220

Glu Ser Lys Tyr Ile Met Leu His Ala Pro Ser Glu Lys Leu Asp GluGlu Ser Lys Tyr Ile Met Leu His Ala Pro Ser Glu Lys Leu Asp Glu

225 230 235 240225 230 235 240

Ile Val Ala Leu Leu Pro Gly Ala Glu Arg Pro Thr Ile Leu Pro LeuIle Val Ala Leu Leu Pro Gly Ala Glu Arg Pro Thr Ile Leu Pro Leu

245 250 255 245 250 255

Ala Gly Ala Gln Asn Arg Val Ala Met His Met Val Ser Ser Glu ThrAla Gly Ala Gln Asn Arg Val Ala Met His Met Val Ser Ser Glu Thr

260 265 270 260 265 270

Leu Phe Trp Glu Thr Met Glu Lys Leu Lys Ala Leu Gly Ala Ser SerLeu Phe Trp Glu Thr Met Glu Lys Leu Lys Ala Leu Gly Ala Ser Ser

275 280 285 275 280 285

Ile Leu Val Leu Pro Ile Glu Lys Met Met GluIle Leu Val Leu Pro Ile Glu Lys Met Met Glu

290 295 290 295

<210> 5<210> 5

<211> 939<211> 939

<212> DNA<212> DNA

<213> (人工序列)<213> (artificial sequence)

<400> 5<400> 5

atgaagcttt ttgctggtaa cgccaccccg gaactagcac aacgtattgc caaccgtttg 60atgaagcttt ttgctggtaa cgccaccccg gaactagcac aacgtattgc caaccgtttg 60

tacaccagcc ttggtgacgc cgctgtaggt cgttttagcg acggcgaagt gagcgtgcaa 120tacaccagcc ttggtgacgc cgctgtaggt cgttttagcg acggcgaagt gagcgtgcaa 120

atcaacgaaa atgtacgcgg cggtgatatt ttcatcatcc agtccacctg tgccccgacc 180atcaacgaaa atgtacgcgg cggtgatatt ttcatcatcc agtccacctg tgccccgacc 180

aacgacaacc tgatggaact ggttgtgatg gtcgacgccc tgcgtcgcgc ctccgcaggt 240aacgacaacc tgatggaact ggttgtgatg gtcgacgccc tgcgtcgcgc ctccgcaggt 240

cgtattaccg ccgttatccc ttacttcggc tatgcccgcc aggatcgccg cgtgcgttcc 300cgtattaccg ccgttatccc ttacttcggc tatgcccgcc aggatcgccg cgtgcgttcc 300

gcgcgtgtgc caatcaccgc caaggttgtc gccgatttcc tctccagcgt aggggttgac 360gcgcgtgtgc caatcaccgc caaggttgtc gccgatttcc tctccagcgt aggggttgac 360

cgcgttctga cggtggatct gcatgctgag cagattcaag gcttcttcga cgtaccggta 420cgcgttctga cggtggatct gcatgctgag cagattcaag gcttcttcga cgtaccggta 420

gacaacgtgt tcggcagccc gatcctgctg gaagacatgc tgcagcaaaa tctggaaaac 480gacaacgtgt tcggcagccc gatcctgctg gaagacatgc tgcagcaaaa tctggaaaac 480

ccgatcgtgg tttctccgga tatcggcggc gtggtgcgtg cccgcgctat cgccaaactg 540ccgatcgtgg tttctccgga tatcggcggc gtggtgcgtg cccgcgctat cgccaaactg 540

ctgaacgaca ccgatatggc catcatcgac aaacgtcgcc cgcgcgcgaa cgtttctcag 600ctgaacgaca ccgatatggc catcatcgac aaacgtcgcc cgcgcgcgaa cgtttctcag 600

gtgatgcaca tcatcggtga cgtggcaggc cgcgattgcg tgctggtcga cgacatgatc 660gtgatgcaca tcatcggtga cgtggcaggc cgcgattgcg tgctggtcga cgacatgatc 660

gacaccggcg gcaccttgtg taaagcggct gaagcgttga aagaacgcgg tgccaagcgc 720gacaccggcg gcaccttgtg taaagcggct gaagcgttga aagaacgcgg tgccaagcgc 720

gtattcgcct acgcgacgca cccgatcttc tccggcaacg ccgtggacaa catcaagaac 780gtattcgcct acgcgacgca cccgatcttc tccggcaacg ccgtggacaa catcaagaac 780

tcggtgattg atgaagtgat cgtctgcgac accattccgc tgtcgccgga aatcaaggca 840tcggtgattg atgaagtgat cgtctgcgac accattccgc tgtcgccgga aatcaaggca 840

ctgaaaaacg ttcgcactct gaccctgtcc ggcatgctgg ctgaagccat ccgccgcatc 900ctgaaaaacg ttcgcactct gaccctgtcc ggcatgctgg ctgaagccat ccgccgcatc 900

agcaacgaag agtcgatctc tgcgatgttc gagcattga 939agcaacgaag agtcgatctc tgcgatgttc gagcattga 939

<210> 6<210> 6

<211> 939<211> 939

<212> DNA<212> DNA

<213> (人工序列)<213> (artificial sequence)

<400> 6<400> 6

atgaagcttt ttgctggtaa cgccaccccg gaactagcac aacgtattgc caaccgtttg 60atgaagcttt ttgctggtaa cgccaccccg gaactagcac aacgtattgc caaccgtttg 60

tacaccagcc ttggtgacgc cgctgtaggt cgttttagcg acggcgaagt gagcgtgcaa 120tacaccagcc ttggtgacgc cgctgtaggt cgttttagcg acggcgaagt gagcgtgcaa 120

atcaaccaaa atgtacgcgg cggtgatatt ttcatcatcc agtccacctg tgccccgacc 180atcaaccaaa atgtacgcgg cggtgatatt ttcatcatcc agtccacctg tgccccgacc 180

aacgacaacc tgatggaact ggttgtgatg gtcgacgccc tgcgtcgcgc ctccgcaggt 240aacgacaacc tgatggaact ggttgtgatg gtcgacgccc tgcgtcgcgc ctccgcaggt 240

cgtattaccg ccgttatccc ttacttcggc tatgcccgcc aggatcgccg cgtgcgttcc 300cgtattaccg ccgttatccc ttacttcggc tatgcccgcc aggatcgccg cgtgcgttcc 300

gcgcgtgtac ccatcaccgc caaggtggtt gccgatttcc tctccagcgt aggggttgac 360gcgcgtgtac ccatcaccgc caaggtggtt gccgatttcc tctccagcgt aggggttgac 360

cgcgttctga cggtggatct gcatgctgag cagattcaag gcttcttcga cgtaccggta 420cgcgttctga cggtggatct gcatgctgag cagattcaag gcttcttcga cgtaccggta 420

gacaacgtgt tcggcagccc gatcctgctg gaagacatgc tgcagctgaa tctggataac 480gacaacgtgt tcggcagccc gatcctgctg gaagacatgc tgcagctgaa tctggataac 480

ccgatcgtgg tttccccgga catcggcggc gtagtgcgtg ctcgcgccat cgccaaactg 540ccgatcgtgg tttccccgga catcggcggc gtagtgcgtg ctcgcgccat cgccaaactg 540

ctgaacgaca ccgacatggc catcatcgac aaacgccgcc cgcgcgcgaa cgtttctcag 600ctgaacgaca ccgacatggc catcatcgac aaacgccgcc cgcgcgcgaa cgtttctcag 600

gtgatgcaca tcatcggtga cgtggcaggc cgcgactgcg tgctggtcga cgacatgatc 660gtgatgcaca tcatcggtga cgtggcaggc cgcgactgcg tgctggtcga cgacatgatc 660

gacaccggcg gtaccttgtg taaagcggct gaagcgttga aagaacgcgg tgccaagcgc 720gacaccggcg gtaccttgtg taaagcggct gaagcgttga aagaacgcgg tgccaagcgc 720

gtattcgcct acgcgacgca cccgatcttc tccggcaacg ccgcggacaa catcaagaac 780gtattcgcct acgcgacgca cccgatcttc tccggcaacg ccgcggacaa catcaagaac 780

tcggtgattg atgaagtgat cgtctgcgac accattccgc tgtcggatga aatcaagtca 840tcggtgattg atgaagtgat cgtctgcgac accattccgc tgtcggatga aatcaagtca 840

ctgccgaacg ttcgcactct gaccctgtcc ggcatgctgg ctgaagccat ccgcgccatc 900ctgccgaacg ttcgcactct gaccctgtcc ggcatgctgg ctgaagccat ccgcgccatc 900

agcaacgaag agtcgatctc tgcgatgttc gagcattga 939agcaacgaag agtcgatctc tgcgatgttc gagcattga 939

<210> 7<210> 7

<211> 900<211> 900

<212> DNA<212> DNA

<213> (人工序列)<213> (artificial sequence)

<400> 7<400> 7

atgctggaca agacacgttt acggatcaca atgcagaagt cgggccgcct gagcgatgaa 60atgctggaca agacacgttt acggatcaca atgcagaagt cgggccgcct gagcgatgaa 60

tcccaggaat tgctggcgcg ctgcggcatc aagattaacc tgcagcagca gcgtctgatc 120tcccaggaat tgctggcgcg ctgcggcatc aagattaacc tgcagcagca gcgtctgatc 120

gccttcgccg aaaacatgcc gatcgatatc ctgcgcgtgc gcgacgacga cattccgggt 180gccttcgccg aaaacatgcc gatcgatatc ctgcgcgtgc gcgacgacga cattccgggt 180

ctggtgatgg acggcgtggt cgatctcggc atcatcggcg agaacgtgct ggaagaagag 240ctggtgatgg acggcgtggt cgatctcggc atcatcggcg agaacgtgct ggaagaagag 240

ctgctcagcc gccgcgcaca gggtgaagac ccgcgctact tcaccctgcg ccgcctcgat 300ctgctcagcc gccgcgcaca gggtgaagac ccgcgctact tcaccctgcg ccgcctcgat 300

ttcggcggct gccgcctgtc gctggccacc ccgctcgacg ccgaatacgc cggcccgcaa 360ttcggcggct gccgcctgtc gctggccacc ccgctcgacg ccgaatacgc cggcccgcaa 360

agcctgcagg acgcccgcat cgccacttct tacccgcacc tgctgaagca atacctcgac 420agcctgcagg acgcccgcat cgccacttct tacccgcacc tgctgaagca atacctcgac 420

aaacagggcg tgcgcttcaa atcttacctg ctgaacggct cggtggaagt ggcgccgcgc 480aaacagggcg tgcgcttcaa atcttacctg ctgaacggct cggtggaagt ggcgccgcgc 480

gccggcctgg ccgacgccat ctgcgatctg gtctctaccg gcgccacgct ggaggccaac 540gccggcctgg ccgacgccat ctgcgatctg gtctctaccg gcgccacgct ggaggccaac 540

ggcctgcgcg aagtggaggt gatctaccgc tccaaagctt gcctgatcca gcgcgacggc 600ggcctgcgcg aagtggaggt gatctaccgc tccaaagctt gcctgatcca gcgcgacggc 600

gaaatgcctg aagccaaaca gcagctgatt gaccgcctga tgacccgcat tcagggcgtg 660gaaatgcctg aagccaaaca gcagctgatt gaccgcctga tgacccgcat tcagggcgtg 660

atccaggcgc gcgaatccaa atacatcatg ctgcacgcgc cgagcgagaa actggatgag 720atccaggcgc gcgaatccaa atacatcatg ctgcacgcgc cgagcgagaa actggatgag 720

atcgtcgcgc tgctgccggg cgccgaacgc ccgaccattc tgccgctggc cggtgcgcag 780atcgtcgcgc tgctgccggg cgccgaacgc ccgaccattc tgccgctggc cggtgcgcag 780

aaccgcgtgg cgatgcacat ggtcagcagc gaaaccctgt tctgggaaac catggaaaaa 840aaccgcgtgg cgatgcacat ggtcagcagc gaaaccctgt tctgggaaac catggaaaaa 840

ctgaaagcgc tcggcgccag ctcgattctg gtgctgccga ttgaaaagat gatggagtaa 900ctgaaagcgc tcggcgccag ctcgattctg gtgctgccga ttgaaaagat gatggagtaa 900

<210> 8<210> 8

<211> 900<211> 900

<212> DNA<212> DNA

<213> (人工序列)<213> (artificial sequence)

<400> 8<400> 8

atgctggaca agacacgttt acggatcgca atgcagaagt cgggccgcct gagcgatgaa 60atgctggaca agacacgttt acggatcgca atgcagaagt cgggccgcct gagcgatgaa 60

tcccaggaac tgctggcacg ctgcggcatc aagatcaacc tgcagcagca gcgtctgatc 120tcccaggaac tgctggcacg ctgcggcatc aagatcaacc tgcagcagca gcgtctgatc 120

gccttcgccg aaaacatgcc gatcgatatc ctgcgcgtgc gcgacgacga catcccgggc 180gccttcgccg aaaacatgcc gatcgatatc ctgcgcgtgc gcgacgacga catcccgggc 180

ctggtgatgg acggcgtggt cgatctcggc atcatcggcg agaacgtgct ggaagaagag 240ctggtgatgg acggcgtggt cgatctcggc atcatcggcg agaacgtgct ggaagaagag 240

ctgctcagcc gccgcgccca gggtgaagac ccgcgttact tcaccctgcg ccgcctcgat 300ctgctcagcc gccgcgccca gggtgaagac ccgcgttact tcaccctgcg ccgcctcgat 300

ttcggcggct gccgcctgtc gctggccacc ccgctcgacg ccgaatacgc cggcccgcaa 360ttcggcggct gccgcctgtc gctggccacc ccgctcgacg ccgaatacgc cggcccgcaa 360

agcctgcagg acgcccgcat cgccacctct tatccgcacc tgctgaagca atacctcgac 420agcctgcagg acgcccgcat cgccacctct tatccgcacc tgctgaagca atacctcgac 420

aaacaaggcg tgcgcttcaa atcttgcctg ctgaacggct cggtggaagt cgcgccgcgc 480aaacaaggcg tgcgcttcaa atcttgcctg ctgaacggct cggtggaagt cgcgccgcgc 480

gccggcctgg ccgacgccat ctgcgatctg gtctctaccg gcgccacgct ggaggccaac 540gccggcctgg ccgacgccat ctgcgatctg gtctctaccg gcgccacgct ggaggccaac 540

ggcctgcgcg aagtggaggt gatctaccgc tccaaagctt gcttgatcca gcgcgacggc 600ggcctgcgcg aagtggaggt gatctaccgc tccaaagctt gcttgatcca gcgcgacggc 600

gaaatgcctg aagccaaaca gcagctgatt gaccgcctga tgacccgcat tcagggcgtg 660gaaatgcctg aagccaaaca gcagctgatt gaccgcctga tgacccgcat tcagggcgtg 660

atccaggcgc gcgaatccaa atacatcatg ctgcacgcgc cgagcgagaa gctggacgag 720atccaggcgc gcgaatccaa atacatcatg ctgcacgcgc cgagcgagaa gctggacgag 720

atcgtcgcgc tgctgccggg cgccgaacgc ccgaccattc tgccgctggc cggcgcgcag 780atcgtcgcgc tgctgccggg cgccgaacgc ccgaccattc tgccgctggc cggcgcgcag 780

aatcgcgtgg cgatgcacat ggtcagcagc gaaaccctgt tctgggaaac catggaaaaa 840aatcgcgtgg cgatgcacat ggtcagcagc gaaaccctgt tctgggaaac catggaaaaa 840

ctgaaagcgc tcggcgccag ctcgattctg gtgctgccga ttgaaaagat gatggagtaa 900ctgaaagcgc tcggcgccag ctcgattctg gtgctgccga ttgaaaagat gatggagtaa 900

<210> 9<210> 9

<211> 24<211> 24

<212> DNA<212> DNA

<213> (人工序列)<213> (artificial sequence)

<400> 9<400> 9

atgaagcttt ttgctggtaa cgcc 24atgaagcttt ttgctggtaa cgcc 24

<210> 10<210> 10

<211> 25<211> 25

<212> DNA<212> DNA

<213> (人工序列)<213> (artificial sequence)

<400> 10<400> 10

tcaatgctcg aacatcgcag agatc 25tcaatgctcg aacatcgcag agatc 25

<210> 11<210> 11

<211> 22<211> 22

<212> DNA<212> DNA

<213> (人工序列)<213> (artificial sequence)

<400> 11<400> 11

atgacacgcg ttcagttcaa cc 22atgacacgcg ttcagttcaa cc 22

<210> 12<210> 12

<211> 22<211> 22

<212> DNA<212> DNA

<213> (人工序列)<213> (artificial sequence)

<400> 12<400> 12

tcacgctttt ttctgatgcc gc 22tcacgctttt ttctgatgcc gc 22

<210> 13<210> 13

<211> 23<211> 23

<212> DNA<212> DNA

<213> (人工序列)<213> (artificial sequence)

<400> 13<400> 13

ggcagcagcc atcatcatca tca 23ggcagcagcc atcatcatca tca 23

<210> 14<210> 14

<211> 45<211> 45

<212> DNA<212> DNA

<213> (人工序列)<213> (artificial sequence)

<400> 14<400> 14

ggtatatctc cttcttaaag ttaaacaaaa ttatttctag agggg 45ggtatatctc cttcttaaag ttaaacaaaa ttatttctag agggg 45

<210> 15<210> 15

<211> 43<211> 43

<212> DNA<212> DNA

<213> (人工序列)<213> (artificial sequence)

<400> 15<400> 15

ctttaagaag gagatatacc atgctggaca agacacgttt acg 43ctttaagaag gagatatacc atgctggaca agacacgttt acg 43

<210> 16<210> 16

<211> 49<211> 49

<212> DNA<212> DNA

<213> (人工序列)<213> (artificial sequence)

<400> 16<400> 16

tgatgatgat ggctgctgcc ttactccatc atcttttcaa tcggcagca 49tgatgatgat ggctgctgcc ttactccatc atcttttcaa tcggcagca 49

<210> 17<210> 17

<211> 45<211> 45

<212> DNA<212> DNA

<213> (人工序列)<213> (artificial sequence)

<400> 17<400> 17

ctttaagaag gagatatacc atgaagcttt ttgctggtaa cgcca 45ctttaagaag gagatatacc atgaagcttt ttgctggtaa cgcca 45

<210> 18<210> 18

<211> 44<211> 44

<212> DNA<212> DNA

<213> (人工序列)<213> (artificial sequence)

<400> 18<400> 18

tgatgatgat ggctgctgcc tcaatgctcg aacatcgcag agat 44tgatgatgat ggctgctgcc tcaatgctcg aacatcgcag agat 44

<210> 19<210> 19

<211> 21<211> 21

<212> DNA<212> DNA

<213> (人工序列)<213> (artificial sequence)

<400> 19<400> 19

ttaacctagg ctgctgccac c 21ttaacctagg ctgctgccac c 21

<210> 20<210> 20

<211> 44<211> 44

<212> DNA<212> DNA

<213> (人工序列)<213> (artificial sequence)

<400> 20<400> 20

ggtatatctc cttcttaaag ttaaacaaaa ttatttctag aggg 44ggtatatctc cttcttaaag ttaaacaaaa ttatttctag aggg 44

<210> 21<210> 21

<211> 44<211> 44

<212> DNA<212> DNA

<213> (人工序列)<213> (artificial sequence)

<400> 21<400> 21

ctttaagaag gagatatacc atgaagcttt ttgctggtaa cgcc 44ctttaagaag gagatatacc atgaagcttt ttgctggtaa cgcc 44

<210> 22<210> 22

<211> 23<211> 23

<212> DNA<212> DNA

<213> (人工序列)<213> (artificial sequence)

<400> 22<400> 22

tcaatgctcg aacatcgcag aga 23tcaatgctcg aacatcgcag aga 23

<210> 23<210> 23

<211> 51<211> 51

<212> DNA<212> DNA

<213> (人工序列)<213> (artificial sequence)

<400> 23<400> 23

tgcgatgttc gagcattgat gcttaagtcg aacagaaagt aatcgtattg t 51tgcgatgttc gagcattgat gcttaagtcg aacagaaagt aatcgtattg t 51

<210> 24<210> 24

<211> 44<211> 44

<212> DNA<212> DNA

<213> (人工序列)<213> (artificial sequence)

<400> 24<400> 24

atgtatatct ccttcttata cttaactaat atactaagat gggg 44atgtatatct ccttcttata cttaactaat atactaagat gggg 44

<210> 25<210> 25

<211> 43<211> 43

<212> DNA<212> DNA

<213> (人工序列)<213> (artificial sequence)

<400> 25<400> 25

tataagaagg agatatacat atgctggaca agacacgttt acg 43tataagaagg agatatacat atgctggaca agacacgttt acg 43

<210> 26<210> 26

<211> 47<211> 47

<212> DNA<212> DNA

<213> (人工序列)<213> (artificial sequence)

<400> 26<400> 26

ggcagcagcc taggttaatt actccatcat cttttcaatc ggcagca 47ggcagcagcc taggttaatt actccatcat cttttcaatc ggcagca 47

Claims (10)

1. A method for improving the yield of L-histidine is characterized in that 5-phosphoribosyl-1-pyrophosphate synthesis gene Prs and/or ATP-phosphoribosyl-transferase coding gene hisG are expressed in a host bacterium for producing L-histidine, the amino acid sequence of the 5-phosphoribosyl-1-pyrophosphate synthesis gene Prs is shown as SEQ ID NO.1, and the amino acid sequence of the ATP-phosphoribosyl-transferase coding gene hisG is shown as SEQ ID NO. 3.
2. The method of claim 1, wherein the L-histidine-producing host bacterium is a strain of the family enterobacteriaceae.
3. The method of claim 2, wherein the Enterobacteriaceae strain is Escherichia coli or Serratia marcescens.
4. The method of claim 3, wherein the Escherichia coli is E.coli BL21.
5. The method according to claim 1, wherein the expression of the 5-phosphoribosyl-1-pyrophosphate synthesis gene Prs and/or the ATP-transphosphoribosylase encoding gene hisG is by plasmid expression or genomic expression.
6. The method of claim 5, wherein the plasmid expression is performed by ligating 5-phosphoribosyl-1-pyrophosphate synthesis gene Prs or ATP phosphoribosyl transferase encoding gene hisG to pET28a vector; or 5-phosphoribosyl-1-pyrophosphate synthesis gene Prs and ATP transphosphoribosyl enzyme coding gene hisG are simultaneously connected to pETDuet vector for expression.
7. A recombinant bacterium with improved L-histidine yield is characterized in that the recombinant bacterium expresses a 5-phosphoribosyl-1-pyrophosphate synthetic gene Prs and/or an ATP-phosphoribosyl transferase coding gene hisG, the amino acid sequence of the 5-phosphoribosyl-1-pyrophosphate synthetic gene Prs is shown as SEQ ID No.1, and the amino acid sequence of the ATP-phosphoribosyl transferase coding gene hisG is shown as SEQ ID No. 3.
8. The recombinant strain of claim 7, wherein the recombinant strain is a host strain selected from Escherichia coli or Serratia marcescens, and the vector is pET28a or pETDuet.
9. A method for producing L-histidine by fermentation of the recombinant bacterium according to claim 7, characterized in that the recombinant bacterium is inoculated into a fermentation medium and cultured at 28-32 ℃.
10. The method of claim 9, wherein the fermentation medium comprises glucose 35-45 g/L, yeast powder 1-3 g/L, (NH) 4 ) 2 SO 4 14~18g/L,K 2 HPO 4 .3H 2 O 0.5~0.7g/L,FeSO 4 .7H 2 O 0.004~0.006g/L,MnSO 4 .5H 2 O 0.004~0.006g/L,CaCO 3 25~35g/L。
CN202011639584.9A 2020-12-31 2020-12-31 A kind of method for improving L-histidine production Active CN112779198B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011639584.9A CN112779198B (en) 2020-12-31 2020-12-31 A kind of method for improving L-histidine production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011639584.9A CN112779198B (en) 2020-12-31 2020-12-31 A kind of method for improving L-histidine production

Publications (2)

Publication Number Publication Date
CN112779198A CN112779198A (en) 2021-05-11
CN112779198B true CN112779198B (en) 2022-10-04

Family

ID=75753375

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011639584.9A Active CN112779198B (en) 2020-12-31 2020-12-31 A kind of method for improving L-histidine production

Country Status (1)

Country Link
CN (1) CN112779198B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111154704B (en) * 2020-03-30 2023-04-11 河南巨龙生物工程股份有限公司 Serratia marcescens mutant strain and method for producing histidine by fermentation
CN116254242B (en) * 2022-12-21 2024-01-30 江南大学 An ATP phosphonucleoside transferase mutant and L-histidine-producing Corynebacterium glutamicum

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111154704A (en) * 2020-03-30 2020-05-15 河南巨龙生物工程股份有限公司 Serratia marcescens mutant strain and method for producing histidine by fermentation
CN111996155A (en) * 2020-09-08 2020-11-27 浙江华睿生物技术有限公司 Method for improving production capacity of L-histidine producing strain

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111154704A (en) * 2020-03-30 2020-05-15 河南巨龙生物工程股份有限公司 Serratia marcescens mutant strain and method for producing histidine by fermentation
CN111996155A (en) * 2020-09-08 2020-11-27 浙江华睿生物技术有限公司 Method for improving production capacity of L-histidine producing strain

Also Published As

Publication number Publication date
CN112779198A (en) 2021-05-11

Similar Documents

Publication Publication Date Title
CN113684165B (en) Recombinant corynebacterium glutamicum and application thereof in production of L-glutamine
US9816124B2 (en) Recombinant microorganism for preparing terpenoid and method for constructing recombinant microorganism
CN109652351B (en) A high-yielding 5-methyltetrahydrofolate recombinant Bacillus subtilis and its application
CN112779198B (en) A kind of method for improving L-histidine production
ES2820583T3 (en) Microorganism with improved productivity of l-threonine, and method of production of L-threonine by using it
CN104611396B (en) A method of producing glutathione
CN111548979B (en) Recombinant escherichia coli for synthesizing lactoyl N-neotetraose and construction method and application thereof
CN111172091B (en) Bacillus subtilis with improved 5-methyltetrahydrofolate yield and application thereof
CN111073822B (en) A kind of Saccharomyces cerevisiae engineering bacteria for producing dihydroartemisinic acid and its construction method and application
CN114891712B (en) Recombinant escherichia coli for improving yield of N-acetylneuraminic acid
CN115011538B (en) Escherichia coli for producing L-citrulline and construction method and application thereof
CN114874962B (en) Gene for synthesizing spermidine and construction of high-yield spermidine strain
KR101608734B1 (en) Microorganisms producing L-amino acids and process for producing L-amino acids using the same
CN103695364B (en) 5 amino-laevulic acid superior strains and its application are obtained by weakening 5 aminolevulinate dehydratases activity
CN102776217A (en) Biosynthesis method for increasing accumulation of L-5-methyltetrahydrofolate
CN110846333B (en) Recombinant strain modified by deoB gene and construction method and application thereof
CN115197954A (en) Recombinant DNA for fermentation production of 1, 5-pentanediamine, strain and application thereof
CN118147103A (en) Alpha 1,3/4-fucosyltransferase mutant and method for biosynthesizing difucosyllactose
CN108977455B (en) Recombinant plasmid for producing oxalate decarboxylase, Escherichia coli expression system and method and application
CN114317583B (en) Method for constructing recombinant microorganism producing L-valine and nucleic acid molecule used in method
CN114854660B (en) Genetically engineered bacterium for high-yield ergothioneine
CN114181288B (en) Method for preparing L-valine and gene used therefor and protein encoded by the gene
CN114540399B (en) Method for preparing L-valine, and gene mutant and biological material used by same
CN116286759A (en) Amino acid production-related protein cynT and its biomaterials and applications
CN116515785A (en) Sulfoxide synthase and application thereof in preparation of ergothioneine or intermediate thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Liu Long

Inventor after: Chen Jian

Inventor after: Wang Miao

Inventor after: Lv Xueqin

Inventor after: Du Guocheng

Inventor after: Li Jianghua

Inventor after: Liu Yanfeng

Inventor after: Li Mengying

Inventor before: Liu Long

Inventor before: Chen Jian

Inventor before: Lv Xueqin

Inventor before: Du Guocheng

Inventor before: Li Jianghua

Inventor before: Liu Yanfeng

Inventor before: Li Mengying

CB03 Change of inventor or designer information
GR01 Patent grant
GR01 Patent grant