CN112779156B - Nanosecond pulse laser perforation system and method based on spatial light modulation technology - Google Patents
Nanosecond pulse laser perforation system and method based on spatial light modulation technology Download PDFInfo
- Publication number
- CN112779156B CN112779156B CN202011612112.4A CN202011612112A CN112779156B CN 112779156 B CN112779156 B CN 112779156B CN 202011612112 A CN202011612112 A CN 202011612112A CN 112779156 B CN112779156 B CN 112779156B
- Authority
- CN
- China
- Prior art keywords
- pulsed laser
- spatial light
- cell
- flow channel
- perforation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 32
- 238000005516 engineering process Methods 0.000 title claims abstract description 17
- 239000000126 substance Substances 0.000 claims abstract description 13
- 239000003153 chemical reaction reagent Substances 0.000 claims description 34
- 230000015556 catabolic process Effects 0.000 claims description 24
- 238000003384 imaging method Methods 0.000 claims description 10
- 238000005259 measurement Methods 0.000 claims description 5
- 230000002441 reversible effect Effects 0.000 claims description 3
- 210000004027 cell Anatomy 0.000 description 76
- 230000008569 process Effects 0.000 description 13
- 230000015572 biosynthetic process Effects 0.000 description 6
- 238000002406 microsurgery Methods 0.000 description 6
- 210000000170 cell membrane Anatomy 0.000 description 5
- 239000012530 fluid Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 230000002123 temporal effect Effects 0.000 description 3
- 102000004142 Trypsin Human genes 0.000 description 2
- 108090000631 Trypsin Proteins 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 239000012588 trypsin Substances 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- 108020004414 DNA Proteins 0.000 description 1
- 108020004459 Small interfering RNA Proteins 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000003833 cell viability Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 238000010921 in-depth analysis Methods 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000004853 protein function Effects 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 210000003934 vacuole Anatomy 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M23/00—Constructional details, e.g. recesses, hinges
- C12M23/02—Form or structure of the vessel
- C12M23/16—Microfluidic devices; Capillary tubes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M35/00—Means for application of stress for stimulating the growth of microorganisms or the generation of fermentation or metabolic products; Means for electroporation or cell fusion
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M41/00—Means for regulation, monitoring, measurement or control, e.g. flow regulation
- C12M41/46—Means for regulation, monitoring, measurement or control, e.g. flow regulation of cellular or enzymatic activity or functionality, e.g. cell viability
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M41/00—Means for regulation, monitoring, measurement or control, e.g. flow regulation
- C12M41/48—Automatic or computerized control
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N13/00—Treatment of microorganisms or enzymes with electrical or wave energy, e.g. magnetism, sonic waves
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/87—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/005—Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
- H01S3/0085—Modulating the output, i.e. the laser beam is modulated outside the laser cavity
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- Genetics & Genomics (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Sustainable Development (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Electromagnetism (AREA)
- Cell Biology (AREA)
- Dispersion Chemistry (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Plant Pathology (AREA)
- Clinical Laboratory Science (AREA)
- Computer Hardware Design (AREA)
- Microscoopes, Condenser (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
Description
技术领域technical field
本发明涉及液体的光致击穿以及细胞光穿孔领域,尤其涉及一种基于空间光调制技术的纳秒脉冲激光穿孔系统和方法。The present invention relates to the field of photo-induced breakdown of liquid and cell photo-perforation, in particular to a nanosecond pulsed laser perforation system and method based on spatial light modulation technology.
背景技术Background technique
细胞膜微手术对于我们深度解析生命过程以及疾病的发病机制具有很大的科学意义,例如将一些外源性的生物大分子如蛋白质、DNA、RNA及 siRNA等引入到活细胞中可干预蛋白质功能表达甚至在微观领域靶向的杀死或者逆转病变细胞。在这个过程中,如何实现在尽量不影响细胞活性的情况下对细胞进行可恢复性穿孔是一个关键步骤。Cell membrane microsurgery is of great scientific significance for our in-depth analysis of life processes and the pathogenesis of diseases. For example, the introduction of some exogenous biological macromolecules such as proteins, DNA, RNA and siRNA into living cells can interfere with the expression of protein functions. Even targeted killing or reversal of diseased cells in the microscopic field. In this process, how to achieve recoverable perforation of cells without affecting cell viability as much as possible is a key step.
将外源物质导入细胞过程中,具有主动导入的能力是提高导入效率、成功率以及剂量可控的关键,同时,实现对细胞的靶向性、高通量的操作亦是非常重要的要求。传统的细胞膜微手术方法包括毛细管微注射、电穿孔、声穿孔以及病毒或者化学运载等。此外,随着激光技术的发展,一种具有非侵入、非接触且能实现靶向性操作的光穿孔方法被应用于细胞膜微手术领域。一方面,可以利用紧聚焦激光实现对单个细胞的靶向性穿孔,另一方面,可借助于一些金属纳米材料对激光的强吸收来实现对细胞群的高通量穿孔。但这两种方法在实现穿孔之后,都是利用外源性物质的被动扩散来进入细胞,因此存在导入剂量不可控,重复性差的缺点。鉴于此,一种利用双脉冲激光器在水中诱导多点击穿所形成的微射流来对单细胞进行靶向性穿孔的方法被提出。微射流高速运动过程会带动周围介质的移动,因此,这种存在主动靶向导入的能量和剂量可控的应用潜力。但是,利用两个脉冲激光器诱导射流形成来实现细胞光穿孔存在造价高,操作复杂等缺点。In the process of introducing foreign substances into cells, the ability to actively introduce is the key to improving the efficiency, success rate and dose control of the introduction. At the same time, it is also a very important requirement to achieve targeted and high-throughput operations on cells. Traditional cell membrane microsurgery methods include capillary microinjection, electroporation, sonoporation, and viral or chemical delivery. In addition, with the development of laser technology, a non-invasive, non-contact and target-oriented photoperforation method has been applied to the field of cell membrane microsurgery. On the one hand, a tightly focused laser can be used to achieve targeted perforation of single cells, and on the other hand, high-throughput perforation of cell populations can be achieved by means of the strong absorption of laser light by some metal nanomaterials. However, these two methods use passive diffusion of exogenous substances to enter cells after perforation, so there are disadvantages of uncontrollable introduction dose and poor repeatability. In view of this, a method for targeted perforation of single cells using microfluidics formed by inducing multi-point perforation in water by a double-pulse laser is proposed. The high-speed motion of the microfluidic fluid will drive the movement of the surrounding medium. Therefore, it has the potential to control the energy and dose of active targeted introduction. However, using two pulsed lasers to induce jet formation to realize cell photoperforation has disadvantages such as high cost and complicated operation.
发明内容SUMMARY OF THE INVENTION
为了克服上述现有技术的缺点,本发明的目的在于提供一种基于空间光调制技术的纳秒脉冲激光穿孔系统和方法,利用单脉冲诱导的可控射流,在微流控芯片中实现对细胞靶向性及高通量穿孔,且系统简单,操作容易,造价低。In order to overcome the above-mentioned shortcomings of the prior art, the purpose of the present invention is to provide a nanosecond pulse laser perforation system and method based on spatial light modulation technology, which utilizes a single-pulse-induced controllable jet to achieve cell puncture in a microfluidic chip. Targeted and high-throughput perforation, and the system is simple, easy to operate, and low cost.
本发明是通过以下技术方案来实现:The present invention is achieved through the following technical solutions:
一种基于空间光调制技术的纳秒脉冲激光穿孔系统,包括脉冲激光器、空间光调制器、白光光源、能量测量模块和系统控制存储模块;A nanosecond pulsed laser perforation system based on spatial light modulation technology, comprising a pulsed laser, a spatial light modulator, a white light source, an energy measurement module and a system control storage module;
脉冲激光器发出的脉冲激光入射在空间光调制器上,经空间光调制器反射的脉冲激光传播方向上依次设置有线偏振片和第一凸透镜;The pulsed laser light emitted by the pulsed laser is incident on the spatial light modulator, and the linear polarizer and the first convex lens are sequentially arranged in the propagation direction of the pulsed laser light reflected by the spatial light modulator;
白光光源发出的连续光传播方向上依次设置有微流控芯片、物镜、二向色镜和高速成像仪;从第一凸透镜透过的脉冲激光经二向色镜反射后进入物镜;A microfluidic chip, an objective lens, a dichroic mirror and a high-speed imager are arranged in sequence in the direction of continuous light propagation from the white light source; the pulsed laser light transmitted from the first convex lens is reflected by the dichroic mirror and then enters the objective lens;
微流控芯片设置有细胞流动通道和试剂流动通道,试剂流动通道中存在击穿腔,击穿腔通过射流口与细胞流动通道相通;经物镜聚焦后的脉冲激光入射在击穿腔内;The microfluidic chip is provided with a cell flow channel and a reagent flow channel, a breakdown cavity exists in the reagent flow channel, and the breakdown cavity communicates with the cell flow channel through a jet port; the pulsed laser focused by the objective lens is incident in the breakdown cavity;
能量测量模块用于测量脉冲激光器发出的脉冲激光能量;The energy measurement module is used to measure the pulsed laser energy emitted by the pulsed laser;
系统控制存储模块与脉冲激光器、空间光调制器和高速成像仪电连接;用于控制脉冲激光器、空间光调制器和高速成像仪之间的时序和触发并控制脉冲激光器的脉冲激光能量和空间光调制器的相位全息图载入,接收和存储高速成像仪的图像数据。The system control storage module is electrically connected to the pulsed laser, the spatial light modulator and the high-speed imager; it is used to control the timing and triggering between the pulsed laser, the spatial light modulator and the high-speed imager, and to control the pulsed laser energy and spatial light of the pulsed laser The phase hologram of the modulator loads, receives and stores image data from the high-speed imager.
优选的,能量测量模块包括分束棱镜和能量计;分束棱镜设置在脉冲激光器的脉冲激光传播方向上,能量计设置在分束棱镜反射的脉冲激光传播方向上,能量计与系统控制存储模块与电连接。Preferably, the energy measurement module includes a beam splitter prism and an energy meter; the beam splitter prism is arranged in the pulse laser propagation direction of the pulsed laser, the energy meter is arranged in the pulse laser propagation direction reflected by the beam splitter prism, and the energy meter and the system control storage module with electrical connection.
优选的,脉冲激光器的脉冲激光传播方向上依次设置有二分之一波片、凹透镜和第二凸透镜,从第二凸透镜透射的脉冲激光入射在空间光调制器上。Preferably, a half-wave plate, a concave lens and a second convex lens are arranged in sequence in the pulse laser propagation direction of the pulse laser, and the pulse laser transmitted from the second convex lens is incident on the spatial light modulator.
优选的,脉冲激光器的脉冲激光传播方向上设置有第一反射镜,在经第一反射镜反射后的脉冲光传播方向上设置有第二反射镜,空间光调制器置于经第二反射镜反射的脉冲光传播方向上。Preferably, the pulse laser is provided with a first reflection mirror in the direction of propagation of the pulsed laser light, a second reflection mirror is arranged in the transmission direction of the pulsed light reflected by the first reflection mirror, and the spatial light modulator is placed on the second reflection mirror. in the direction of propagation of the reflected pulsed light.
进一步的,第一反射镜与脉冲激光器的脉冲激光传播方向的夹角为逆时针45°,第二反射镜与第一反射镜反射的脉冲光传播方向夹角为逆时针 85°;空间光调制器镜面与第二反射镜镜面平行。Further, the included angle between the first reflection mirror and the propagation direction of the pulsed laser light of the pulsed laser is 45° counterclockwise, and the included angle between the second reflection mirror and the propagation direction of the pulsed light reflected by the first reflection mirror is 85° counterclockwise; spatial light modulation The mirror surface of the reflector is parallel to the mirror surface of the second reflector.
优选的,白光光源和微流控芯片之间设置有凸透镜。Preferably, a convex lens is arranged between the white light source and the microfluidic chip.
优选的,二向色镜和高速成像仪之间设置有陷波片。Preferably, a notch plate is arranged between the dichroic mirror and the high-speed imager.
优选的,还包括压力泵,压力泵用于向微流控芯片的细胞流动通道和试剂流动通道中分别泵入悬浮细胞溶液和试剂;压力泵与系统控制存储模块电连接。Preferably, it also includes a pressure pump, which is used for pumping suspended cell solution and reagents into the cell flow channel and reagent flow channel of the microfluidic chip respectively; the pressure pump is electrically connected to the system control storage module.
一种基于空间光调制技术的纳秒脉冲激光穿孔方法,基于所述的基于空间光调制技术的纳秒脉冲激光穿孔系统,包括:A nanosecond pulse laser perforation method based on spatial light modulation technology, based on the nanosecond pulse laser perforation system based on spatial light modulation technology, comprising:
S1、系统调试:建立微射流强弱和方向与脉冲激光器发出的脉冲激光能量和载入空间光调制器的相位全息图之间的关系;S1. System debugging: establish the relationship between the strength and direction of the micro-jet, the pulsed laser energy emitted by the pulsed laser and the phase hologram loaded into the spatial light modulator;
S2、微流控芯片中悬浮细胞溶液与试剂溶液的导入:将悬浮细胞溶液注入细胞流动通道中,将外源性试剂溶液注入试剂流动通道中;S2. Introduction of suspended cell solution and reagent solution in the microfluidic chip: inject the suspended cell solution into the cell flow channel, and inject the exogenous reagent solution into the reagent flow channel;
S3、细胞穿孔和外源性物质的导入:利用高速成像仪对微流控芯片细胞流动通道内细胞进行实时动态监控;当监测到有细胞处于穿孔位置时,系统根据细胞所处位置及S1得到的微射流强弱和方向与脉冲激光器发出的脉冲激光能量和载入空间光调制器的相位全息图之间的关系,向空间光调制器载入对应的相位全息图,并以合适的延时向脉冲激光器发出触发信号,控制脉冲激光器发出对应能量的脉冲激光并在微流控芯片击穿腔内形成微射流,实现对单个细胞的靶向可逆性穿孔,并利用微射流引起的定向流将试剂流动通道内的试剂溶液注射进入穿孔细胞。S3. Cell perforation and introduction of exogenous substances: use a high-speed imager to dynamically monitor the cells in the cell flow channel of the microfluidic chip in real time; when a cell is detected in the perforation position, the system obtains the cell position according to the position of the cell and S1 The relationship between the intensity and direction of the micro-jet and the pulsed laser energy emitted by the pulsed laser and the phase hologram loaded into the spatial light modulator, the corresponding phase hologram is loaded into the spatial light modulator, and with a suitable delay Send a trigger signal to the pulsed laser, control the pulsed laser to emit a pulsed laser of corresponding energy and form a microjet in the breakdown cavity of the microfluidic chip, realize the targeted reversible perforation of a single cell, and use the directional flow caused by the microjet to The reagent solution in the reagent flow channel is injected into the perforated cells.
优选的,所述的S1的具体实现步骤为:Preferably, the specific implementation steps of the S1 are:
(1)在微流控芯片的细胞流动通道和试剂流动通道中分别注入悬浮细胞溶液和试剂溶液;(1) Inject the suspended cell solution and the reagent solution into the cell flow channel and the reagent flow channel of the microfluidic chip respectively;
(2)调整脉冲激光能量,在不同的脉冲激光能量范围内,载入不同的相位全息图,控制在击穿腔内击穿点的数量、相对位置和大小;利用高速成像仪对空泡和微射流的演变过程进行实时成像;(2) Adjust the pulsed laser energy, load different phase holograms in different pulsed laser energy ranges, and control the number, relative position and size of the breakdown points in the breakdown cavity; use a high-speed imager to detect the cavitation and Real-time imaging of the evolution of microfluidics;
(3)利用高速成像仪拍摄到的图像,记录微射流的方向,计算微射流的强弱信息;建立脉冲激光能量和相位全息图与微射流的强弱和方向之间的关系。(3) Using the image captured by the high-speed imager, record the direction of the microjet, and calculate the intensity information of the microjet; establish the relationship between the pulsed laser energy and phase hologram and the intensity and direction of the microjet.
与现有技术相比,本发明具有以下有益的技术效果:Compared with the prior art, the present invention has the following beneficial technical effects:
本发明利用空间光调制器对单脉冲激光进行光场调制,从而实现单脉冲激光在聚焦的焦平面形成大小、数量以及位置可控的多点击穿;多点击穿空泡在振荡过程中的相互作用会形成定向的微射流,最终利用微射流来实现对单细胞的靶向性穿孔,并借助空泡的非对称振荡引起的定向流将外源性物质经穿孔处导入到细胞内,实现导入剂量的可控,且将整个穿孔过程置于微流控通道内,能显著增加穿孔速度和通量。通过设置高速成像仪可对微射流的形成过程进行清晰高时空分辨率的成像,同时在穿孔过程可对细胞的位置和流动进行实时监控。The invention uses the spatial light modulator to modulate the light field of the single-pulse laser, so as to realize the single-pulse laser on the focused focal plane to form multiple tap penetrations with controllable size, quantity and position; The action will form a directional microfluid, and finally use the microfluid to realize the targeted perforation of single cells, and use the directional flow caused by the asymmetric oscillation of the vacuoles to introduce the exogenous substances into the cells through the perforation to achieve the introduction. The dose is controllable, and the entire perforation process is placed in a microfluidic channel, which can significantly increase the perforation speed and throughput. By setting up a high-speed imager, the formation process of the microfluidic fluid can be imaged clearly and with high spatial and temporal resolution, and the position and flow of cells can be monitored in real time during the perforation process.
进一步的,二分之一波片用于调整入射激光的偏振方向,凹透镜和第一凸透镜可实现对脉冲激光的扩束与准直。Further, the half-wave plate is used to adjust the polarization direction of the incident laser light, and the concave lens and the first convex lens can realize beam expansion and collimation of the pulsed laser light.
进一步的,设置第一反射镜和第二反射镜,用于调整脉冲激光入射到空间光调制器的入射角度。Further, a first reflecting mirror and a second reflecting mirror are provided for adjusting the incident angle of the pulsed laser light incident on the spatial light modulator.
进一步的,白光光源和微流控芯片之间设置第二凸透镜,用于对白光光源进行准直。Further, a second convex lens is arranged between the white light source and the microfluidic chip for collimating the white light source.
进一步的,二向色镜和高速成像仪之间设置有陷波片,用于防止脉冲激光进入高速成像仪,起到保护高速成像仪的作用。Further, a notch plate is arranged between the dichroic mirror and the high-speed imager to prevent the pulsed laser light from entering the high-speed imager and to protect the high-speed imager.
本发明引入了一个简单的可行的微射流细胞穿孔方式,为细胞膜微手术提供了新的技术方案,具体具有以下优点:(1)微射流的形成方式和可控性方案简单,只需要载入不同的相位全息图和调整合适的脉冲激光能量输入就能实现;(2)微射流的靶向性穿孔具有主动导入能力,能更精准的控制外源性物质的导入剂量,且微射流尺寸更小,引起的细胞损伤更加可控;(3)整个穿孔过程在微流控芯片中进行,且对穿孔细胞进行实时监控,能显著提高穿孔成功率、穿孔效率;(4)对操作人员的操作熟练度要求较低。The present invention introduces a simple and feasible microfluidic cell perforation method, which provides a new technical solution for cell membrane microsurgery. Specifically, it has the following advantages: (1) The microfluidic formation method and controllability scheme are simple, and only need to load Different phase holograms can be achieved by adjusting the appropriate pulsed laser energy input; (2) the targeted perforation of the microjet has the ability to actively introduce, which can more accurately control the introduction dose of exogenous substances, and the size of the microjet is smaller. (3) The entire perforation process is carried out in a microfluidic chip, and the perforated cells are monitored in real time, which can significantly improve the perforation success rate and perforation efficiency; (4) The operation of the operator Proficiency requirements are low.
附图说明Description of drawings
图1为本发明基于空间光调制技术的纳秒脉冲光穿孔的系统的结构示意图。FIG. 1 is a schematic structural diagram of a system of nanosecond pulse optical perforation based on spatial light modulation technology according to the present invention.
图2为本发明所使用的微流控芯片结构示意图。FIG. 2 is a schematic structural diagram of the microfluidic chip used in the present invention.
图3为本发明基于空间光调制技术的纳秒脉冲光穿孔方法流程图。FIG. 3 is a flow chart of the nanosecond pulse optical perforation method based on the spatial light modulation technology of the present invention.
其中:脉冲激光器1、分束棱镜2、能量计3、二分之一波片4、凹透镜 5、第二凸透镜6、第一反射镜7、第二反射镜8、空间光调制器9、线偏振片10、第一 凸透镜11、白光光源12、第三凸透镜13、微流控芯片14、物镜15、二向色镜16、陷波片17、高速成像 仪18、系统控制与存储模块19、压力泵20。Among them: pulse laser 1,
具体实施方式Detailed ways
下面结合具体的实施例对本发明做进一步的详细说明,所述是对本发明的解释而不是限定。The present invention will be further described in detail below in conjunction with specific embodiments, which are to explain rather than limit the present invention.
如图1所示,一种基于空间光调制技术的纳秒脉冲激光穿孔系统,包括脉冲激光器1、空间光调制器9、白光光源12和系统控制存储模块19。As shown in FIG. 1 , a nanosecond pulsed laser perforation system based on spatial light modulation technology includes a pulsed laser 1 , a spatial light modulator 9 , a
脉冲激光器1的脉冲激光传播方向上依次设置有分束棱镜2、二分之一波片4、凹透镜5、第二凸透镜6和第一反射镜7;分束棱镜2的透射反射分光比为9:1;凹透镜5的像焦点与第二凸透镜6的物焦点重合;第一反射镜7与入射脉冲光的夹角为逆时针45°;分束棱镜2的反射光方向上放置能量计3。A
脉冲激光器1、分束棱镜2、二分之一波片4、凹透镜5、第二凸透镜6 和第一反射镜7处于同一水平面且满足共轴条件。The pulsed laser 1 , the
白光光源12发出的连续光传播方向上依次设置有第三凸透镜13、微流控芯片14、物镜15、二向色镜16、陷波片17和高速成像仪18。A third
在经第一反射镜7反射后的脉冲光传播方向上设置有第二反射镜8,第二反射镜8与入射脉冲光夹角为逆时针85°。A
空间光调制器9置于经第二反射镜8反射的脉冲光传播路径上,其与第二反射镜8镜面保持平行。The spatial light modulator 9 is placed on the propagation path of the pulsed light reflected by the second reflecting
经空间光调制器9反射的脉冲激光传播方向上放置有线偏振片10、第一凸透镜11,其中线偏振片用于抑制调制后的脉冲激光里高阶衍射部分,凸透镜11用于准直调制后的脉冲激光。A
二向色镜16设置在经空间光调制器9反射的脉冲激光方向上,与脉冲激光方向夹角为逆时针45度;二向色镜16用于将脉冲激光反射进物镜15 进行聚焦。The
微流控芯片14、物镜15与二向色镜16处于同一竖直平面;二向色镜 16为长波通二向色镜,截止波长为567nm。The
还包括压力泵20,所述的压力泵20与微流控芯片14的细胞流动通道和试剂流动通道液路相连。A
所述的脉冲激光器1的输出波长为532nm,脉宽为6ns,最大单脉冲能量可到200mJ。The output wavelength of the pulsed laser 1 is 532 nm, the pulse width is 6 ns, and the maximum single pulse energy can reach 200 mJ.
所述的陷波片17截止波长为532nm,用于防止脉冲激光进入高速成像仪18。The cut-off wavelength of the
所述的系统控制存储模块19包含处理存储部分和时序控制部分,与脉冲激光器1、能量计3、空间光调制器9、高速成像仪18、压力泵20电连接,一方面用于设备之间的时序控制,另一方面用于数据记录和存储。The system
所述的物镜15的数值孔径为0.65,放大倍数为40倍;其一方面用于聚焦脉冲激光在微流控芯片中形成可控微射流来对细胞进行穿孔;另一方面作为成像的放大物镜用于对通道内的微射流过程进行高速成像,以及对细胞流动进行实时监测。The numerical aperture of the
所述的高速成像仪18的最高帧频可达50万帧,在调试过程可用于对微射流的形成过程进行清晰高时空分辨率的成像;同时在穿孔过程可对细胞的位置和流动进行实时监控。The highest frame rate of the high-
所述的微流控芯片的结构示意图如图2所示,包含了细胞流动通道和试剂流动通道;细胞流动通道直径为40μm,试剂流动通道的直径为30μm;试剂流动通道存在一个击穿腔,击穿腔直径为100μm;试剂流动通道和细胞流动通道在击穿腔射流口处相通,射流口直径为10μm;击穿腔内形成的指向细胞流动通道的多点击穿可控射流对经过射流口的细胞实现靶向性的穿孔;The schematic diagram of the structure of the microfluidic chip is shown in Figure 2, which includes a cell flow channel and a reagent flow channel; the diameter of the cell flow channel is 40 μm, and the diameter of the reagent flow channel is 30 μm; the reagent flow channel has a breakdown cavity, The diameter of the breakdown cavity is 100 μm; the reagent flow channel and the cell flow channel are connected at the jet opening of the breakdown cavity, and the diameter of the jet opening is 10 μm; the multi-point puncture controllable jet pairs formed in the breakdown cavity and pointing to the cell flow channel pass through the jet opening The cells achieve targeted perforation;
如图3所示,本发明提供了一种基于空间光调制技术的纳秒脉冲激光穿孔的方法,该方法首先利用空间光调制器对入射的脉冲激光进行调制;调制后的脉冲激光利用物镜在微流控芯片内聚焦形成可控的微射流,利用微射流来实现对细胞的靶向性穿孔和外源性物质的可控靶向性导入,并利用微流控芯片内细胞的流动性实现微手术的高通量操作;微射流的控制是通过空间光调制器来实现的。该方法的具体实施步骤为:As shown in FIG. 3 , the present invention provides a method for nanosecond pulse laser perforation based on spatial light modulation technology. The method firstly uses a spatial light modulator to modulate the incident pulsed laser light; Focusing in the microfluidic chip forms a controllable microfluidic flow, using the microfluidic flow to achieve targeted perforation of cells and controllable targeted introduction of exogenous substances, and use the fluidity of the cells in the microfluidic chip to achieve High-throughput operation of microsurgery; control of microfluidics is achieved through spatial light modulators. The specific implementation steps of the method are:
S1、系统调试。建立微射流强弱、方向与脉冲激光能量、载入空间光调制器的相位全息图之间的关系;S1, system debugging. Establish the relationship between the intensity and direction of the microjet and the energy of the pulsed laser and the phase hologram loaded into the spatial light modulator;
S2、悬浮细胞溶液准备:将在培养皿中培养好的细胞利用胰酶消化两分钟,去除胰酶,再加适量培养基吹打细胞使其脱壁并使细胞浓度小于8000个/ml;S2. Preparation of suspension cell solution: digest the cells cultured in the petri dish with trypsin for two minutes, remove the trypsin, add an appropriate amount of medium by pipetting to make the cells detached and make the cell concentration less than 8000 cells/ml;
S3、微流控芯片中悬浮细胞溶液与试剂溶液的导入:将脱壁后的悬浮细胞溶液注入微流控芯片中的细胞流动通道,同时将需要导入的外源性物质溶液注入微流控芯片中的试剂流动通道,调试压力泵,确保细胞流动通道和试剂流动通道内溶液能被压力泵驱动;S3. Introduction of suspended cell solution and reagent solution in the microfluidic chip: inject the detached suspended cell solution into the cell flow channel in the microfluidic chip, and at the same time inject the exogenous substance solution that needs to be introduced into the microfluidic chip The reagent flow channel in the device, adjust the pressure pump to ensure that the solution in the cell flow channel and the reagent flow channel can be driven by the pressure pump;
S4、穿孔悬浮细胞溶液和废液的收集:微流控芯片的细胞流动通道出口连接培养皿,用于收集被穿孔细胞;试剂流动通道出口与废液箱连接;S4. Collection of perforated suspension cell solution and waste liquid: the outlet of the cell flow channel of the microfluidic chip is connected to the culture dish, which is used to collect the perforated cells; the outlet of the reagent flow channel is connected to the waste liquid tank;
S5、微流控芯片位置的固定:确保击穿发生在击穿腔内;打开压力泵,并根据悬浮细胞溶液的细胞浓度来控制细胞流动通道和试剂流动通道的流速;S5. Fixing the position of the microfluidic chip: ensure that the breakdown occurs in the breakdown cavity; turn on the pressure pump, and control the flow rate of the cell flow channel and the reagent flow channel according to the cell concentration of the suspended cell solution;
S6、细胞穿孔和外源性物质的导入:利用高速成像仪对微流控芯片细胞流动通道内细胞进行实时动态监控。当监测到有细胞处于微流控芯片的穿孔位置时,系统根据细胞所处位置向空间光调制器载入特定的相位全息图,并以合适的延时向脉冲激光器1发出触发信号,控制脉冲激光器发出脉冲激光并在微流控芯片击穿腔内形成微射流,实现对单个细胞的靶向可逆性穿孔,并利用微射流引起的定向流将试剂流动通道内染料试剂溶液注射进入穿孔细胞;S6. Cell perforation and introduction of exogenous substances: real-time dynamic monitoring of cells in the cell flow channel of the microfluidic chip using a high-speed imager. When a cell is detected at the perforation position of the microfluidic chip, the system loads a specific phase hologram into the spatial light modulator according to the position of the cell, and sends a trigger signal to the pulsed laser 1 with an appropriate delay to control the pulse The laser emits a pulsed laser and forms a microjet in the breakdown cavity of the microfluidic chip to achieve targeted reversible perforation of a single cell, and the directional flow caused by the microjet is used to inject the dye reagent solution in the reagent flow channel into the perforated cells;
S7、穿孔结束后处理:处理完全部细胞后,将使用过的微流控芯片进行安全处理,更换新的微流控芯片以备下次使用;将收集的穿孔悬浮细胞溶液分装、培养,并用于后续研究。S7. Post-processing after perforation: After all cells are processed, the used microfluidic chip is safely processed, and a new microfluidic chip is replaced for next use; and used for follow-up research.
所述的S1的具体实现步骤为:The specific implementation steps of the S1 are:
(1)调整系统各装置的位置和角度,确保脉冲激光能以5°左右的入射角入射到空间光调制器的调制靶面,同时确保调制后的激光能被正确入射到物镜中;(1) Adjust the position and angle of each device of the system to ensure that the pulsed laser can be incident on the modulation target surface of the spatial light modulator at an incident angle of about 5°, and at the same time ensure that the modulated laser can be correctly incident on the objective lens;
(2)调整物镜位置和微流控芯片位置,使得脉冲激光能被正确的聚焦到微流控芯片的击穿腔内;(2) Adjust the position of the objective lens and the position of the microfluidic chip so that the pulsed laser can be correctly focused into the breakdown cavity of the microfluidic chip;
(3)在微流控芯片的细胞流动通道和试剂流动通道中分别注入悬浮细胞溶液和试剂溶液;(3) injecting the suspended cell solution and the reagent solution into the cell flow channel and the reagent flow channel of the microfluidic chip respectively;
(4)调整脉冲激光能量,在不同的脉冲激光能量范围内,载入不同的相位全息图,从而控制在击穿腔内击穿点的数量、相对位置和大小;利用高速成像仪18对空泡和射流的演变过程进行实时成像;(4) Adjust the pulsed laser energy, and load different phase holograms in different pulsed laser energy ranges, so as to control the number, relative position and size of the breakdown points in the breakdown cavity; Real-time imaging of the evolution of bubbles and jets;
(5)利用高速成像仪18拍摄到的空泡动态演变图像,记录微射流的方向和强弱等信息;并建立脉冲激光能量、特定的相位全息图与微射流之间的关系。(5) Use the image of the dynamic evolution of the cavitation captured by the high-
本发明的原理为:脉冲激光器1、分束棱镜2、二分之一波片4、凹透镜5和第二凸透镜6组成脉冲激光泵浦模块,用于能量可调的单脉冲激光的输出;第一反射镜7、第二反射镜8、空间光调制器9、线偏振片10和第一 凸透镜11组成空间光调制模块,用于对脉冲激光进行空间的光场调制;调制后的脉冲激光经二向色镜16反射后进入物镜15,聚焦到微流控芯片14 的击穿腔内,形成可控的多点微射流;当目标细胞在微流控芯片14的细胞流动通道流动至射流口时,系统根据细胞的位置和流动速度发出指令,诱导指向细胞的微射流形成并对细胞进行穿孔,实现外源性物质的可控性导入。The principle of the present invention is as follows: a pulsed laser 1, a
白光光源12、第三凸透镜13、物镜15、二向色镜16、陷波片17和高速成像仪18构成成像模块,用于对微流控芯片内的微射流形成过程进行高时空分辨率的成像,同时对穿孔过程中细胞的流动进行实时监测;第三凸透镜13是用于对白光光源进行准直;物镜15用于成像的放大;陷波片17用于阻止反射的脉冲激光进入高速成像仪18,起到保护高速成像仪18的作用。The
该系统利用空间光调制器对单脉冲激光进行空间光场调制,从而在微流控芯片中形成强弱、方向可控的可达亚微米量级的微射流,该过程利用高速成像仪对微射流进行成像,从而可建立微射流特性与脉冲激光能量、载入空间光调制器的全息相位图之间的关系;在此基础上,利用可控的微射流来在微流控芯片内对细胞进行细胞膜微手术和外源性物质的导入,具有很好的穿孔效率和穿孔速度,同时为导入剂量的可控性提供了新方案,对于光穿孔技术在生物医学领域的应用有很大的应用潜力,具有重大应用价值。The system uses a spatial light modulator to perform spatial light field modulation on a single-pulse laser, so as to form a microfluidic microfluidic with controllable strength and direction up to the sub-micron level in a microfluidic chip. The jet is imaged, so that the relationship between the characteristics of the microjet and the energy of the pulsed laser and the holographic phase map loaded into the spatial light modulator can be established; It has good perforation efficiency and perforation speed for cell membrane microsurgery and introduction of exogenous substances, and provides a new solution for the controllability of the introduced dose, which has great applications for the application of photoperforation technology in the field of biomedicine potential, with great application value.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011612112.4A CN112779156B (en) | 2020-12-29 | 2020-12-29 | Nanosecond pulse laser perforation system and method based on spatial light modulation technology |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011612112.4A CN112779156B (en) | 2020-12-29 | 2020-12-29 | Nanosecond pulse laser perforation system and method based on spatial light modulation technology |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112779156A CN112779156A (en) | 2021-05-11 |
CN112779156B true CN112779156B (en) | 2022-10-25 |
Family
ID=75753944
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011612112.4A Active CN112779156B (en) | 2020-12-29 | 2020-12-29 | Nanosecond pulse laser perforation system and method based on spatial light modulation technology |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112779156B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102021212505A1 (en) | 2021-11-08 | 2023-05-11 | Robert Bosch Gesellschaft mit beschränkter Haftung | Optical device for exciting a sample, analyzer and method for exciting a sample |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114371621B (en) * | 2021-12-28 | 2024-09-06 | 复旦大学 | An automatic control device and method for light-controlled microfluidic platform |
CN114486687B (en) * | 2022-01-27 | 2023-09-15 | 北京理工大学 | Multi-scale continuous observation feedback method and device for femtosecond laser processing cells |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110618133A (en) * | 2019-10-17 | 2019-12-27 | 江苏卓易信息科技股份有限公司 | Device and method for detecting dynamics of symmetric vacuoles in transparent liquid environment |
CN110736749A (en) * | 2019-10-17 | 2020-01-31 | 淮阴工学院 | Multi-point detection device and method for millimeter-scale cavitation on solid wall |
CN112649595A (en) * | 2020-11-11 | 2021-04-13 | 西安交通大学 | System and method based on single-pulse laser-induced photoinduced breakdown controllable jet flow |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6083583A (en) * | 1983-10-13 | 1985-05-11 | Rikagaku Kenkyusho | Live cell laser perforation device |
US7892837B2 (en) * | 2002-05-23 | 2011-02-22 | Karsten Koenig | Method for transferring molecules in vital cells by means of laser beams and arrangement for carrying out said method |
US9816086B2 (en) * | 2010-07-06 | 2017-11-14 | The Ohio State University | Dose and location controlled drug/gene/particle delivery to individual cells by nanoelectroporation |
GB201110454D0 (en) * | 2011-06-21 | 2011-08-03 | College The | Microfluidic photoporation |
DE102015101838A1 (en) * | 2015-02-09 | 2016-08-11 | Jenlab Gmbh | Method and device for reprogramming living cells |
ITUB20159747A1 (en) * | 2015-12-30 | 2017-06-30 | Fondazione St Italiano Tecnologia | Method for the opto-injection of exogenous material in a receiving cell. |
WO2018152460A1 (en) * | 2017-02-19 | 2018-08-23 | Soliton, Inc. | Selective laser induced optical breakdown in biological medium |
WO2019046304A1 (en) * | 2017-08-28 | 2019-03-07 | Matthias Wagner | Microfluidic laser-activated intracellular delivery systems and methods |
CN108531396B (en) * | 2018-03-30 | 2021-07-27 | 东南大学 | A microfluidic chip for cell transfection |
-
2020
- 2020-12-29 CN CN202011612112.4A patent/CN112779156B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110618133A (en) * | 2019-10-17 | 2019-12-27 | 江苏卓易信息科技股份有限公司 | Device and method for detecting dynamics of symmetric vacuoles in transparent liquid environment |
CN110736749A (en) * | 2019-10-17 | 2020-01-31 | 淮阴工学院 | Multi-point detection device and method for millimeter-scale cavitation on solid wall |
CN112649595A (en) * | 2020-11-11 | 2021-04-13 | 西安交通大学 | System and method based on single-pulse laser-induced photoinduced breakdown controllable jet flow |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102021212505A1 (en) | 2021-11-08 | 2023-05-11 | Robert Bosch Gesellschaft mit beschränkter Haftung | Optical device for exciting a sample, analyzer and method for exciting a sample |
Also Published As
Publication number | Publication date |
---|---|
CN112779156A (en) | 2021-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112779156B (en) | Nanosecond pulse laser perforation system and method based on spatial light modulation technology | |
AU2021200818B2 (en) | Microfluidic system and method with focused energy apparatus | |
Quinto-Su et al. | Examination of laser microbeam cell lysis in a PDMS microfluidic channel using time-resolved imaging | |
EP2723859B1 (en) | Microfluidic photoporation | |
US9126177B2 (en) | Method and system for acoustically treating material | |
US20240344987A1 (en) | Far-field optical ultrathin slice imaging system and method | |
US20180038784A1 (en) | Methods, systems and apparatus for sorting and processing analytes | |
US8076632B2 (en) | Device and method for the contactless manipulation and alignment of sample particles in a measurement volume using a nonhomogeneous electric alternating field | |
US20070160175A1 (en) | Systems and methods for force-fluorescence microscopy | |
CN102436063A (en) | Laser optical tweezer microscope | |
Patskovsky et al. | Single point single-cell nanoparticle mediated pulsed laser optoporation | |
US11092521B2 (en) | Method and system for acoustically treating material | |
CN118362481A (en) | A single droplet reaction flow tube device | |
US7534598B2 (en) | Apparatus and method for injecting substance into cell | |
TWI806062B (en) | Method and device for opening the external layer structure of cells using laser | |
Korobtsov et al. | Compact optical tweezer with the capability of dynamic control | |
CN115505588A (en) | Method and device for opening outer layer structure of cell by using laser | |
Hellman | Pulsed laser microbeams for cellular manipulation: Applications in cell biology and microfluidics | |
McDougall | Advanced photonic methodologies for the'in vitro'manipulation of cellular systems | |
Salehi-Reyhani | Tools for Single Cell Proteomics |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |