[go: up one dir, main page]

CN112771210A - 具有铜铁矿氧化物abo2的用于析氢反应(her)的电催化剂 - Google Patents

具有铜铁矿氧化物abo2的用于析氢反应(her)的电催化剂 Download PDF

Info

Publication number
CN112771210A
CN112771210A CN201980063048.8A CN201980063048A CN112771210A CN 112771210 A CN112771210 A CN 112771210A CN 201980063048 A CN201980063048 A CN 201980063048A CN 112771210 A CN112771210 A CN 112771210A
Authority
CN
China
Prior art keywords
independently selected
iupac
pdcoo
group
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201980063048.8A
Other languages
English (en)
Other versions
CN112771210B (zh
Inventor
C·费尔泽
G·李
A·麦肯齐
S·金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Max Planck Gesellschaft zur Foerderung der Wissenschaften
Original Assignee
Max Planck Gesellschaft zur Foerderung der Wissenschaften
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Max Planck Gesellschaft zur Foerderung der Wissenschaften filed Critical Max Planck Gesellschaft zur Foerderung der Wissenschaften
Publication of CN112771210A publication Critical patent/CN112771210A/zh
Application granted granted Critical
Publication of CN112771210B publication Critical patent/CN112771210B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • C25B11/081Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound the element being a noble metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8913Cobalt and noble metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Complex oxides containing cobalt and at least one other metal element
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/76Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及包含具有式ABOx的化合物的材料,其中x为>1.5且≤2.5,A独立地选自IUPAC第10和11族的过渡金属,和B独立地选自IUPAC第6、7、8或9族的过渡金属或IUPAC第13族的主族元素,作为用于析氢反应(HER)的高度活性催化剂。

Description

具有铜铁矿氧化物ABO2的用于析氢反应(HER)的电催化剂
背景
全球能源挑战是普遍的,并且向替代的可持续能量来源,特别是太阳的转移是不可避免的。因为太阳能仅在白天可用,所以以适当方式储存能量将会高度有利。以氢的形式储存将是实现这一点的非常有吸引力的方式。此外,由于其有害气体和全球变暖气体的零排放,氢被认为是化石燃料能源例如煤和油的理想替代。另外,氢具有任何燃料的单位质量的最高能量;它达到142MJ/kg。
制氢的理想方法是使用水作为氢来源连同电或太阳光用于转化。因此,光/电催化水裂解作为最有前景的制氢方法之一引起了关注。然而,因为难以进行热力学上坡(uphill)反应,长期以来阻碍了用于水裂解的高活性光/电催化剂的开发。遗憾的是,需要催化剂(尤其是贵金属例如铂)来加速析氢反应(HER)动力学,其限制这种技术的广泛应用。
另一研究焦点在于通过设计合适的结构、提高表面积例如通过纳米结构化、掺杂、应变或边缘化,或使用助催化剂以提高给定材料的效率来改进现有材料。对于催化剂设计的现有策略集中于提高局部催化位点例如在析氢反应中二硫化钼(MoS2)的边缘位点的数量和活性。然而,从前述策略获得的电催化剂通常是高度复杂的,具有不确定的暴露晶体表面和高密度的缺陷,这带来更多问题例如难以控制活性位点。另外,使用这些策略通过提高活性位点的密度从而改进电催化活性非常有限。
现有技术
US4748144A公开了具有铜铁矿类型晶体晶格结构的混合氧化物,用于将合成气转化为线性醇类和醛类。混合氧化物可由下式表示:CuxMaFebO2x,其中M选自Cr和Al,并且a和b等于或几乎等于x。
EP2127731A1提供水热处理NaAlO2和Ag2O以获得铜铁矿型AgAlO2材料。该材料可用作燃烧碳而不会腐蚀支撑蜂窝结构的催化剂。
US2008/O112870A1提供不含贵金属元素的化合物用于氨(NH3)和氧化碳(CO)氧化。该化合物包含碱性(碱土)组分(Mg、Ba或K)、过渡金属(V、Cr、Mo、Mn、Fe、Co、Ni、Cu、Zn、Ag或它们的组合)和金属氧化物载体。
US20090321244A1公开了光催化剂,其包括选自以下的元素:Cu、Al、Ti、Ga、Cd、Zn、W、Fe、Sn、Si、In、或它们的任何组合。示例性催化剂化合物包括CuAlO2、TiO2、CuO、Cu2O、NiO、GaAs、GaP、CdSe、ZnO、WO3、Fe2O3、SnO3、SiC、CuGaO2、和CulnO2或它们的任何组合。它可将水转化成氢和氧,并且更具体地使用阳光将水转化成氢和氧。
M.Trari等人International Journal of Hydrogen Energy,2004报道了铜铁矿CuAlO2的合成。它可用作析氢催化剂。但是它仅在碱性介质中起作用并且pH小于7没有观察到光活性。
Y.Kim等人Bull.Korean Chem.Soc.2014报道了通过高温固态合成从Ga2O3和CuO合成具有铜铁矿结构的多晶CuGaO2粒料。使用合成的CuGaO2粒料作为光电极,在UV光照射下,光电化学水还原成分子氢被证明处于比平带电势更高的电势。
EP-2 407 419-A1描述通过由导电分隔体层分离析氧光催化剂和析氢光催化剂的解决方案。
US-A-2012/0145532公开了贵金属核/半导体壳混合纳米颗粒的宽谱激发用于无帮助光催化裂解水的用途。金属核/半导体壳复合材料纳米颗粒包含贵金属(例如Au、Ag、Pt、Pd、或贵金属合金)核,其涂覆有对与金属核的等离子体吸收带一致的可见光和近红外(NIR)光谱范围中的光激发透明的宽带隙半导体光催化剂(例如TiO2、ZnS、Nb2O5)。
US-A-2015/0010463涉及使用可见光照射从水产生氢的光催化剂,其包含纳米晶钴(II)氧化物纳米颗粒。
发明目的
本发明的目的是提供用于析氢反应(HER)的更平价和更有效的催化剂。本发明的具体目的是通过优化HER催化剂用的传导率和载流子迁移率来提高固有电化学活性。这将促进在催化剂表面和被吸附物之间的电子转移,其进而将加速HER的反应动力学。同时催化剂应具有对于HER的高催化活性,使得它们可用于大规模的制氢。将优选的是提供尽可能接近最有效的催化剂例如Pt的催化剂,Pt仅需要30mV的过电势以传递10mA cm-2的电流密度。此外,这样催化剂的成本应比已知的催化剂的成本低,特别是低于纯铂的成本。另外,催化剂应表现出高化学稳定性和耐久性从而允许光/电化学电池的稳定且延长的寿命,使得它们可连续几天或甚至几个月产生氢。
发明概述
本发明提供HER催化材料,包含具有式ABOx(I)的铜铁矿氧化物的化合物。在式(I)中
x在1.5和2.5之间,并优选为2。
A独立地选自IUPAC的第10和11族的过渡金属;和
B独立地选自IUPAC第6、7、8或9族的过渡金属或IUPAC第13族的主族元素。本发明还提供经济且大规模生产这些具有式(I)的铜铁矿氧化物的简单途径。
催化剂可直接用作光/电化学电池中的氢还原电极。催化剂显示在酸性介质中显著的性能,具有低过电势和随着时间优异的稳定性。根据本发明的催化剂在大电流密度下在比纯Pt低得多的过电势下工作。
附图简要描述
图1:PdCoO2的晶体结构。
图2a:PdCoO2单晶的SEM图像。
图2b:PdCoO2单晶的放大的SEM图像。
图3:单晶的EDS分析。
图4:PdCoO2单晶的电阻温度关系。
图5:电催化系统的图像。
图6:Cu线、20%Pt/C和PdCoO2单晶的HER极化曲线。
图7:在大的所施加电势窗口中的极化曲线。
图8:20%Pt/C和PdCoO2单晶的塔菲尔曲线。
图9:PdCoO2电催化剂在以下过电势下的电流-时间(I-t)计时电流响应:初始测试中50mV,和在空气中暴露两周后40mV。
发明详细描述
本发明涉及HER催化材料,包含具有式(I)的铜铁矿结构的化合物
ABOx (I)
其中
x为>1.5且≤2.5,
A独立地选自IUPAC第10和11族的过渡金属,和
B独立地选自IUPAC第6、7、8或9族的过渡金属或IUPAC第13族的主族元素。
在优选实施方案中
X为2,并且
A独立地选自:Pt、Pd或Ag,和
B独立地选自:Co、Al、Cr、Fe、In、Nd或Rh。
最优选的是铜铁矿氧化物化合物PdCoO2和PtCoO2。PdCoO2和PtCoO2具有层状结构并以三角晶系空间群结晶,这通过[A]层和[BO2]板沿着c轴的交替堆叠构造。大多数铜铁矿氧化物是绝缘体,但是一些例如PdCoO2、PdCrO2或PtCoO2是优良金属。室温下面内传导率仅为约3μΩcm,这甚至高于纯金属例如Pd、Cu和Au的传导率。然而,它们的载流子密度为大约1.6*1022cm-3。这是3d过渡金属的三分之一。这导致多达0.6nm的长的平均自由程长度,这是任何已知的大载流子密度金属中最长的。考虑到“B”元素比铂便宜得多,并且氧是免费的,催化剂的成本可降低多达75%。但是,HER活性甚至高于在>10mA cm-2的高工作电流密度下纯铂的活性。
可例如通过混合“A”-卤化物例如氯化物、溴化物或碘化物与“B”-氧化物优选通过共同研磨两种化合物,优选在不活泼气体(例如N2、Ar)气氛中10至60分钟来制造根据本发明的铜铁矿氧化物催化剂。然后将混合的粉末加热至600-1000℃、优选700-900℃、最优选至约800℃持续3-8小时、优选4-7小时、最优选持续约5小时并然后以5-10℃/小时、优选6-8℃/小时、最优选约7℃/小时的冷却速率冷却降至小于最高加热温度20-100℃、优选40-80℃、最优选至50-70℃,并然后保持在这个温度下持续10-50小时、优选20-40小时、最优选约30小时。最后,以70-120℃/小时、优选80-100℃/小时、最优选以约90℃/小时的速率将组合物冷却至室温。这个反应优选在密封管例如石英管中,优选在10-3和10-4Pa之间的减小的压力下进行。
一般性质
本发明的电催化剂表现出室温下非常低的电阻率,其在5-300K的温度范围中在0.05-3μΩcm的范围内。这促进在催化剂和电解质之间容易的电子转移。此外,本电催化剂显示比Pt箔在酸性条件下更高的活性。传递10mA/cm2的电流密度的过电势仅为33mV。塔菲尔斜率在酸性(pH=0)介质中低至30mV/dec。所有这些值低于Pt箔的值(10mA/cm2下71mV,塔菲尔斜率为74mV/dec),并甚至与纳米Pt/C催化剂相当(10mA/cm2下28mV,塔菲尔斜率为34mV/dec)。交换电流密度测定为0.795mA/cm2,这高于Pt/C催化剂的交换电流密度(其值为0.518mA/cm2)。电催化剂的高化学稳定性和电化学活性甚至在化合物暴露于空气3个月之后也没有改变。
本发明的电催化剂由具有ABOx铜铁矿结构的化合物组成,其中x为>1.5且≤2.5,A独立地选自IUPAC第10和11族的过渡金属,和B独立地选自IUPAC第6、7、8或9族的过渡金属或IUPAC第13族的主族元素。例如,ABOx化合物可在导电基材例如Ni泡沫、碳布上生长或可与石墨烯混合以提高迁移率和传导率。然而,出乎预料地发现了本发明ABOx化合物可采用单晶形式直接作为工作电极使用。在这种情况下电极具有约0.5至1.5×0.5至3.0×0.05至1.0mm3,优选约1×2×0.1mm3的尺寸。然后可将单晶电极例如用银漆附着至导线例如Cu线。
实施例
以下参考实施例更详细地解释本发明。
将试剂级PdCl2(99.99+%纯度,Alfa Aesar)和CoO(99.995%纯度,Alfa Aesar)的粉末在不活泼气体气氛下一起研磨约一小时。然后在5×10-4Pa的真空下将混合粉末密封在石英管中。将密封的石英管在竖炉中加热至800℃持续5小时并以7.5℃/小时的速率冷却降至740℃并保持在这个温度下30小时。最后,以90℃/小时的速率将炉从740℃冷却至室温。
分析方法
从D8先进X-射线衍射仪(Bruker,AXS)使用Cu Kα辐射来获得X-射线粉末衍射图样。通过具有能量色散X-射线光谱法(EDX)能力的扫描电子显微镜(SEM,FEI Quanta 200F)检查样品的显微组织。使用标准四探针ac技术在4He低温恒温器(Quantum Design)中进行传输测量。
在Autolab PGSTAT302N上使用具有常规的三电极电池构造的阻抗模块电化学工作站进行HER催化测量。使用Ag/AgCl(3M KCl)电极作为参比电极,并且使用碳棒作为对电极。电解质是0.5M H2SO4溶液并在使用前用Ar净化。使用PdCoO2单晶电极以1mV/S的扫描速率记录线性扫描伏安图。在初始测试中以50mA/cm2的电流密度进行稳定性测试24小时。为了检查催化剂的化学稳定性,在将晶体暴露于空气两周之后再次重复相同的测试。所有电势参比反氢电极(RHE)。
组成和结构
合成PdCoO2单晶并且通过用沸腾的酒精清洗产物来将其与未反应的CoO并与CoCl2粉末分离。图1显示PdCoO2的晶体结构。它由二维层构成,其中边缘连接的CoO6八面体通过O-Pd-O哑铃连接。PdCoO2的八面体位点中的Co原子处于非磁性低自旋状态。它是具有空间群R-3m(空间群号166)的三角晶系。
图2a显示典型的PdCoO2单晶的SEM图像。晶体具有带有金属光泽的平坦表面。可从图2b清晰地看出在晶体表面上的陡台阶,表明横向生长和层状结构。这意味着暴露的平坦表面是a-b面并沿着(alone)c轴构成。
图3显示所调查晶体的EDS谱图。化学组成测定为Pt、Co和O,具有接近1:1:2的化学计量比,进一步表明所合成晶体的高纯度。
物理传输性质
图4显示单晶的面内的电阻率温度关系。电阻率在整个温度范围内随着温度降低而降低,表明金属性行为。室温下的电阻率仅为2.1μΩcm,这低于所有报导的氧化物金属。剩余电阻率比ρ300K/ρ15K通常为50至60,表明样品的高纯度。
电催化活性评价
图5显示三电极电催化系统。PdCoO2单晶用银漆附着在Cu线上并直接用作工作电极。0.5M H2SO4溶液用作电解质并在测量之前用Ar气体净化30分钟。单晶的表面积测定为约0.008cm2
在图6中显示Cu线、商购Pt/C和PdCoO2电催化剂的HER极化曲线。可看出Cu线在测量电势范围内是不活泼的。商购Pt/C需要30mV的过电势来传递10mA/cm2的电流密度。PdCoO2单晶的值仅为33mV。更感兴趣的是,对于PdCoO2而言传递较大电流密度的过电势低得多。图7显示在较大电势窗口中PdCoO2的极化曲线。它仅需要112mV的过电势来实现600mA/cm2的电流密度。
通过用巴特勒-沃尔默公式来拟合实验数据从而获得塔菲尔斜率和交换电流密度(图8)。Pt/C和PdCoO2的塔菲尔斜率分别为32和30mV/dec。交换电流密度对于PdCoO2而言为0.795mA/cm2,这也高于Pt/C的交换电流密度(0.68mA/cm2)。这些实验数据明确地说明PdCoO2是高活性HER催化剂。
测试并在图9中显示长期化学和电化学稳定性。使用50mV的过电势,催化剂传递约50mA/cm2的电流密度并保持稳定24小时。将单晶暴露于空气2周并重复相同的测试。使用50mV的过电势,电极可稳定地工作48h。这表明单晶催化剂的优异稳定性。

Claims (6)

1.HER催化材料,其包含具有式(I)的化合物
ABOx (I)
其中
x为>1.5且≤2.5,
A独立地选自IUPAC第10和11族的过渡金属,和
B独立地选自IUPAC第6、7、8或9族的过渡金属或IUPAC第13族的主族元素。
2.根据权利要求1所述的催化材料,其中
x为2,并且
A独立地选自:Pt、Pd或Ag,和
B独立地选自:Co、Al、Cr、Fe、In、Nd或Rh。
3.根据权利要求1或2所述的催化材料,其中
该化合物是PdCoO2或PtCoO2
4.制造根据式(I)化合物的方法
ABOx (I)
其中
x为>1.5且≤2.5,
A独立地选自IUPAC第10和11族的过渡金属,和
B独立地选自IUPAC第6、7、8或9族的过渡金属或IUPAC第13族的主族元素
通过混合“A”-卤化物与“B”-氧化物并加热混合物至600-1000℃。
5.根据式(I)的化合物的用途,作为催化剂
ABOx (I)
其中
x为>1.5且≤2.5,
A独立地选自IUPAC第10和11族的过渡金属,和
B独立地选自IUPAC第6、7、8或9族的过渡金属或IUPAC第13族的主族元素。
6.根据权利要求5所述的用途,作为HER催化剂。
CN201980063048.8A 2018-09-26 2019-09-19 具有铜铁矿氧化物abo2的用于析氢反应(her)的电催化剂 Active CN112771210B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP18196868 2018-09-26
EP18196868.6 2018-09-26
PCT/EP2019/075151 WO2020064500A1 (en) 2018-09-26 2019-09-19 Electrocatalysts for hydrogen evolution reactions (her) with delafossite oxides abo2

Publications (2)

Publication Number Publication Date
CN112771210A true CN112771210A (zh) 2021-05-07
CN112771210B CN112771210B (zh) 2024-11-15

Family

ID=63798802

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980063048.8A Active CN112771210B (zh) 2018-09-26 2019-09-19 具有铜铁矿氧化物abo2的用于析氢反应(her)的电催化剂

Country Status (4)

Country Link
US (1) US12054832B2 (zh)
EP (1) EP3856411B1 (zh)
CN (1) CN112771210B (zh)
WO (1) WO2020064500A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116847719A (zh) * 2023-08-15 2023-10-03 清华大学 自旋轨道矩材料和器件、铜铁矿氧化物的薄膜的用途

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1400948A (en) * 1973-02-03 1975-07-16 Ppg Industries Inc Electrodes having a delafossite surface
US3910828A (en) * 1972-02-01 1975-10-07 Nora International Company Production of chlorine
US20020183200A1 (en) * 2000-10-27 2002-12-05 Kazunori Sato Catalyst for oxidation of gaseous compound
JP2004292188A (ja) * 2003-03-25 2004-10-21 Tokyo Electric Power Co Inc:The 金属酸化物微粒子及びその製造方法
CN103501896A (zh) * 2011-02-08 2014-01-08 庄信万丰燃料电池有限公司 用于燃料电池的催化剂

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3804740A (en) * 1972-02-01 1974-04-16 Nora Int Co Electrodes having a delafossite surface
US4748144A (en) 1986-08-13 1988-05-31 Eastman Kodak Company Delafossite mixed metal oxide catalysts and method for their preparation
CN1083742A (zh) * 1993-07-29 1994-03-16 周红星 双功能多金属氧化物催化剂
JP2002255548A (ja) * 2001-02-26 2002-09-11 Japan Science & Technology Corp 混合層積層不整結晶構造デラフォサイト型酸化物とその製造方法
US6979435B1 (en) * 2001-04-03 2005-12-27 Northwestern University p-Type transparent conducting oxides and methods for preparation
US8193114B2 (en) 2006-11-15 2012-06-05 Basf Catalysts Llc Catalysts for dual oxidation of ammonia and carbon monoxide with low to no NOx formation
JP2009219972A (ja) 2007-03-20 2009-10-01 Denso Corp 触媒材料の製造方法
WO2009158385A2 (en) 2008-06-25 2009-12-30 Hydrogen Generation Inc. Improved process for producing hydrogen
WO2011011064A2 (en) 2009-07-24 2011-01-27 Stc.Unm Efficient hydrogen production by photocatalytic water splitting using surface plasmons in hybrid nanoparticles
CN101838011B (zh) * 2010-05-25 2011-11-09 陕西科技大学 一种CuAlO2微晶的制备方法
EP2407419A1 (en) 2010-07-16 2012-01-18 Universiteit Twente Photocatalytic water splitting
CN102730741A (zh) * 2012-06-25 2012-10-17 华东师范大学 一种高纯P型CuAlO2粉体的制备方法
US9259714B2 (en) 2013-07-05 2016-02-16 University Of Houston High-efficiency solar water splitting by nanocrystalline cobalt (II) oxide photocatalyst and uses thereof
JP2019163508A (ja) * 2018-03-20 2019-09-26 株式会社豊田中央研究所 電解用アノード

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3910828A (en) * 1972-02-01 1975-10-07 Nora International Company Production of chlorine
GB1400948A (en) * 1973-02-03 1975-07-16 Ppg Industries Inc Electrodes having a delafossite surface
US20020183200A1 (en) * 2000-10-27 2002-12-05 Kazunori Sato Catalyst for oxidation of gaseous compound
JP2004292188A (ja) * 2003-03-25 2004-10-21 Tokyo Electric Power Co Inc:The 金属酸化物微粒子及びその製造方法
CN103501896A (zh) * 2011-02-08 2014-01-08 庄信万丰燃料电池有限公司 用于燃料电池的催化剂

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JING GU: ""p-Type CuRhO2 as a Self-Healing Photoelectrode for Water Reduction under Visible Light"", J. AM. CHEM. SOC., vol. 136, no. 3, 22 January 2014 (2014-01-22), pages 830 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116847719A (zh) * 2023-08-15 2023-10-03 清华大学 自旋轨道矩材料和器件、铜铁矿氧化物的薄膜的用途
CN116847719B (zh) * 2023-08-15 2023-11-28 清华大学 自旋轨道矩材料和器件、铜铁矿氧化物的薄膜的用途

Also Published As

Publication number Publication date
CN112771210B (zh) 2024-11-15
EP3856411C0 (en) 2024-09-11
WO2020064500A1 (en) 2020-04-02
EP3856411B1 (en) 2024-09-11
US12054832B2 (en) 2024-08-06
US20210388516A1 (en) 2021-12-16
EP3856411A1 (en) 2021-08-04

Similar Documents

Publication Publication Date Title
Lin et al. Construction of an iron and oxygen co-doped nickel phosphide based on MOF derivatives for highly efficient and long-enduring water splitting
Ray et al. Conceptual design of three-dimensional CoN/Ni 3 N-coupled nanograsses integrated on N-doped carbon to serve as efficient and robust water splitting electrocatalysts
Swesi et al. Textured NiSe2 film: bifunctional electrocatalyst for full water splitting at remarkably low overpotential with high energy efficiency
Liu et al. Electrodeposition of cobalt-sulfide nanosheets film as an efficient electrocatalyst for oxygen evolution reaction
Peng et al. Binary transition-metal oxide hollow nanoparticles for oxygen evolution reaction
Wang et al. Transition metal selenides as catalysts for electrochemical water splitting
Butt et al. B-site doping in lanthanum cerate nanomaterials for water electrocatalysis
Yu et al. Recent advances in Ni‐Fe (Oxy) hydroxide electrocatalysts for the oxygen evolution reaction in alkaline electrolyte targeting industrial applications
Khan et al. Improvement in electrocatalytic behavior of hydrothermally prepared SrBi2O4 with g-CN toward OER activity
Zhuang et al. Oxygen evolution on iron oxide nanoparticles: the impact of crystallinity and size on the overpotential
Xing et al. Engineering interfacial coupling between 3D net-like Ni3 (VO4) 2 ultrathin nanosheets and MoS2 on carbon fiber cloth for boostinghydrogen evolution reaction
Jasrotia et al. Photocatalytic and electrocatalytic hydrogen production promoted by Nd/La substituted cobalt–nickel magnetic nanomaterials
Mohanraju et al. Enhanced electrocatalytic activity of Pt decorated spinals (M3O4, M= Mn, Fe, Co)/C for oxygen reduction reaction in PEM fuel cell and their evaluation by hydrodynamic techniques
Le et al. Carbon-Decorated Fe3S4-Fe7Se8 Hetero-Nanowires: Interfacial Engineering for Bifunctional Electrocatalysis Toward Hydrogen and Oxygen Evolution Reactions
Kubba et al. LaFe1–x Co x O3 Perovskite Nanoparticles Supported on Ni (OH) 2 as Electrocatalyst for the Oxygen Evolution Reaction
Ma et al. In situ construction and post-electrolysis structural study of porous Ni 2 P@ C nanosheet arrays for efficient water splitting
Liu et al. Enhanced oxygen evolution performance by the partial phase transformation of cobalt/nickel carbonate hydroxide nanosheet arrays in an Fe-containing alkaline electrolyte
Yang et al. Intrinsic defects of nonprecious metal electrocatalysts for energy conversion: Synthesis, advanced characterization, and fundamentals
Ge et al. Low-cost and multi-level structured NiFeMn alloy@ NiFeMn oxyhydroxide electrocatalysts for highly efficient overall water splitting
Ali et al. Fabrication of efficient electrocatalysts for electrochemical water oxidation using bimetallic oxides system
CN110681407A (zh) Fe掺杂Co1.11Te2@NCNTFs纳米复合材料及其制备方法
Deokate et al. Electrodeposited bimetallic microporous MnCu oxide electrode as a highly stable electrocatalyst for oxygen evolution reaction
CN112771210B (zh) 具有铜铁矿氧化物abo2的用于析氢反应(her)的电催化剂
Rheem et al. Electrospun cobalt-doped MoS2 Nanofibers for electrocatalytic hydrogen evolution
JP7401115B2 (ja) 電極触媒およびアミン化合物の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant