[go: up one dir, main page]

CN112765918B - Fuzzy reasoning method for determining design parameters of integrated circuit - Google Patents

Fuzzy reasoning method for determining design parameters of integrated circuit Download PDF

Info

Publication number
CN112765918B
CN112765918B CN202110085524.5A CN202110085524A CN112765918B CN 112765918 B CN112765918 B CN 112765918B CN 202110085524 A CN202110085524 A CN 202110085524A CN 112765918 B CN112765918 B CN 112765918B
Authority
CN
China
Prior art keywords
performance index
integrated circuit
error vector
design parameters
membership
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110085524.5A
Other languages
Chinese (zh)
Other versions
CN112765918A (en
Inventor
李迪
谌东东
杨银堂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN202110085524.5A priority Critical patent/CN112765918B/en
Publication of CN112765918A publication Critical patent/CN112765918A/en
Application granted granted Critical
Publication of CN112765918B publication Critical patent/CN112765918B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/32Circuit design at the digital level
    • G06F30/33Design verification, e.g. functional simulation or model checking
    • G06F30/3308Design verification, e.g. functional simulation or model checking using simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/04Inference or reasoning models
    • G06N5/048Fuzzy inferencing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Fuzzy Systems (AREA)
  • Geometry (AREA)
  • Artificial Intelligence (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

The invention discloses a fuzzy reasoning method for determining design parameters of an integrated circuit, which comprises the following steps: building an integrated circuit design database; setting target performance indexes of the design parameters of the integrated circuit, subtracting the target performance indexes from each performance index in a database, and obtaining a plurality of performance index error vectors corresponding to each design parameter; calculating the membership degree of the performance index error vector by using a fuzzy reasoning method; and multiplying the membership degree of the performance index error vector with the corresponding design parameters in the database and summing to obtain the integrated circuit design parameters reaching the target performance index. The invention establishes a database according to the design data of the integrated circuit aiming at the difficult problem that the size parameters of the integrated circuit device are difficult to be determined quickly in the research and development process of the integrated circuit chip, rapidly estimates the design parameters reaching the target performance index by using a fuzzy reasoning method, can be applied to the design of the integrated circuit, and provides a new method for shortening the design period of the integrated circuit.

Description

一种确定集成电路设计参数的模糊推理方法A Fuzzy Reasoning Method for Determining Design Parameters of Integrated Circuits

技术领域technical field

本发明属于集成电路设计领域,具体涉及一种确定集成电路设计参数的模糊推理方法。The invention belongs to the field of integrated circuit design, and in particular relates to a fuzzy reasoning method for determining integrated circuit design parameters.

背景技术Background technique

集成电路尤其是模拟集成电路的开发,较多地依赖于研发人员的设计经验和软件的重复迭代仿真验证,设计人员不断调整集成电路中器件的尺寸参数,以获得期望的电路模块性能指标,这种耗时耗力的设计方法降低了集成电路设计效率,提高了研发成本,延长了集成电路芯片研制周期。The development of integrated circuits, especially analog integrated circuits, relies more on the design experience of R&D personnel and repeated iterative simulation verification of software. Designers constantly adjust the size parameters of devices in integrated circuits to obtain the desired performance indicators of circuit modules. This time-consuming and labor-intensive design method reduces the efficiency of integrated circuit design, increases the cost of research and development, and prolongs the development cycle of integrated circuit chips.

发明内容Contents of the invention

针对现有技术中的上述不足,本发明提供的一种确定集成电路设计参数的模糊推理方法解决了现有技术中存在的问题。Aiming at the above-mentioned deficiencies in the prior art, a fuzzy reasoning method for determining integrated circuit design parameters provided by the present invention solves the problems existing in the prior art.

为了达到上述发明目的,本发明采用的技术方案为:一种确定集成电路设计参数的模糊推理方法,包括以下步骤:In order to achieve the above-mentioned purpose of the invention, the technical solution adopted in the present invention is: a fuzzy reasoning method for determining integrated circuit design parameters, comprising the following steps:

S1、搭建集成电路设计数据库;S1. Build an integrated circuit design database;

S2、设定集成电路设计参数的目标性能指标,并将其与数据库中每个性能指标相减,获取每个设计参数对应的若干性能指标误差向量;S2. Set the target performance index of the integrated circuit design parameter, and subtract it from each performance index in the database to obtain several performance index error vectors corresponding to each design parameter;

S3、利用模糊推理方法计算性能指标误差向量的隶属度;S3. Calculate the degree of membership of the error vector of the performance index by using the fuzzy reasoning method;

S4、将性能指标误差向量的隶属度与数据库中对应的设计参数相乘并求和,得到达到目标性能指标的集成电路设计参数。S4. Multiply and sum the membership degree of the error vector of the performance index and the corresponding design parameter in the database to obtain the design parameter of the integrated circuit that reaches the target performance index.

进一步地,所述步骤S1中数据库包括若干集成电路设计案例数据,所述集成电路设计案例数据包括设计参数以及性能指标。Further, the database in the step S1 includes several integrated circuit design case data, and the integrated circuit design case data includes design parameters and performance indicators.

进一步地,所述步骤S2包括以下步骤:Further, the step S2 includes the following steps:

S2.1、设定集成电路设计参数的目标性能指标;S2.1. Setting target performance indicators of integrated circuit design parameters;

S2.2、对目标性能指标和数据库中性能指标均进行归一化处理;S2.2. Normalize both the target performance index and the performance index in the database;

S2.3、将目标性能指标与数据库中每个性能指标相减,获取每个参数对应的若干性能指标误差向量。S2.3. Subtracting the target performance index from each performance index in the database to obtain several performance index error vectors corresponding to each parameter.

进一步地,所述步骤S2中归一化处理的函数为:Further, the function of the normalization process in the step S2 is:

其中,xn表示归一化后的数据,x表示需要归一化的数据,xmin表示所有需要归一化数据中的最小值,xmax表示所有需要归一化数据中的最大值。Among them, x n represents the normalized data, x represents the data that needs to be normalized, x min represents the minimum value among all the data that needs to be normalized, and x max represents the maximum value among all the data that needs to be normalized.

进一步地,所述性能指标误差向量包括增益误差、增益带宽积误差以及输出噪声误差。Further, the performance index error vector includes gain error, gain bandwidth product error and output noise error.

进一步地,所述步骤S3中隶属度的获取方法具体为:Further, the method for obtaining the degree of membership in the step S3 is specifically:

S3.1、获取性能指标误差向量中每个性能指标误差的初始隶属度p为:S3.1. Acquiring the initial degree of membership p of each performance index error in the performance index error vector is:

其中,p表示性能指标误差向量的隶属度,A表示第一中间参数,e表示归一化后的性能指标误差向量,c表示第二中间参数;Among them, p represents the degree of membership of the performance index error vector, A represents the first intermediate parameter, e represents the normalized performance index error vector, and c represents the second intermediate parameter;

S3.2、将性能指标误差向量的所有初始隶属度p进行乘积,得到性能指标误差向量的初始隶属度pv为:S3.2. Multiply all the initial membership degrees p of the performance index error vector to obtain the initial membership degree p v of the performance index error vector as:

其中,pv表示性能指标误差向量的初始隶属度,pi表示性能指标误差向量中的第i个性能指标误差对应的隶属度,i=1,2,...,n,n表示性能指标误差向量中性能指标误差总数;Among them, p v represents the initial membership degree of the performance index error vector, p i represents the membership degree corresponding to the i-th performance index error in the performance index error vector, i=1,2,...,n, n represents the performance index The total number of performance index errors in the error vector;

S3.3、将每个性能指标误差向量的初始隶属度pv进行归一化,得到性能指标误差向量的隶属度具体为:S3.3. Normalize the initial membership degree pv of each performance index error vector, and obtain the membership degree of the performance index error vector as follows:

其中,pj表示第j个性能指标误差向量归一化之前的初始隶属度,pjn表示第j个性能指标误差向量归一化后的隶属度,j=1,2,...,m,m表示性能指标误差向量的总数。Among them, p j represents the initial membership degree before the jth performance index error vector is normalized, p jn represents the membership degree after the jth performance index error vector is normalized, j=1,2,...,m , m represents the total number of performance indicator error vectors.

进一步地,所述步骤S4具体为:Further, the step S4 is specifically:

S4.1、将隶属度以及数据库中设计参数分别表示为向量P和D;S4.1. Express the degree of membership and the design parameters in the database as vectors P and D respectively;

S4.2、将性能指标误差向量的隶属度与数据库中对应的设计参数相乘并求和,得到达到目标性能指标的集成电路设计参数Q具体为:S4.2. Multiply and sum the membership degree of the performance index error vector with the corresponding design parameters in the database, and obtain the integrated circuit design parameter Q that reaches the target performance index, specifically:

Q=P·DT Q=P D T

其中,T表示转置。Among them, T means transpose.

本发明的有益效果为:The beneficial effects of the present invention are:

(1)本发明针对集成电路芯片研发过程中集成电路器件尺寸参数难以快速确定的难题,根据集成电路设计数据建立了数据库,利用模糊推理方法快速地估算出达到目标性能指标的设计参数,能够应用到集成电路设计中,为缩短集成电路设计周期提供新方法。(1) The present invention aims at the difficult problem that the dimensional parameters of integrated circuit devices are difficult to quickly determine in the process of developing integrated circuit chips. A database is established according to the integrated circuit design data, and the design parameters that reach the target performance index are quickly estimated by using the fuzzy reasoning method, which can be applied In the design of integrated circuits, it provides a new method for shortening the design cycle of integrated circuits.

(2)本发明计算量少,复杂程度低,且能够快速确定集成电路的设计参数,对降低集成电路芯片的研发成本有重要工程意义。(2) The present invention has less calculation amount and low complexity, and can quickly determine the design parameters of the integrated circuit, which has important engineering significance for reducing the research and development cost of the integrated circuit chip.

附图说明Description of drawings

图1为本发明提出的一种确定集成电路设计参数的模糊推理方法流程图。FIG. 1 is a flowchart of a fuzzy reasoning method for determining integrated circuit design parameters proposed by the present invention.

图2为本发明实施应用的电阻负载的NMOS输入差分对集成电路图。FIG. 2 is an integrated circuit diagram of an NMOS input differential pair with a resistive load applied in the implementation of the present invention.

图3为采用本发明方法获取设计参数后的NMOS输入差分对集成电路图。Fig. 3 is an integrated circuit diagram of an NMOS input differential pair after the design parameters are acquired by the method of the present invention.

图4为根据获取的集成电路设计参数,采用Cadence软件模拟实验结果:增益与增益带宽积。Figure 4 shows the results of simulation experiments using Cadence software based on the obtained IC design parameters: gain and gain-bandwidth product.

图5为根据获取的集成电路设计参数,采用Cadence软件模拟实验结果:输出噪声。Figure 5 shows the results of simulation experiments using Cadence software based on the obtained IC design parameters: output noise.

具体实施方式Detailed ways

下面对本发明的具体实施方式进行描述,以便于本技术领域的技术人员理解本发明,但应该清楚,本发明不限于具体实施方式的范围,对本技术领域的普通技术人员来讲,只要各种变化在所附的权利要求限定和确定的本发明的精神和范围内,这些变化是显而易见的,一切利用本发明构思的发明创造均在保护之列。Specific embodiments of the present invention are described below so that those skilled in the art can understand the present invention, but it should be clear that the present invention is not limited to the scope of specific embodiments. For those of ordinary skill in the art, as long as various changes Within the spirit and scope of the present invention defined and determined by the appended claims, these changes are obvious, and all inventions and creations using the concept of the present invention are included in the protection list.

下面结合附图详细说明本发明的实施例。Embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings.

如图1所示,一种确定集成电路设计参数的模糊推理方法,包括以下步骤:As shown in Figure 1, a fuzzy reasoning method for determining integrated circuit design parameters includes the following steps:

S1、搭建集成电路设计数据库;S1. Build an integrated circuit design database;

S2、设定集成电路设计参数的目标性能指标,并将其与数据库中每个性能指标相减,获取每个设计参数对应的若干性能指标误差向量;S2. Set the target performance index of the integrated circuit design parameter, and subtract it from each performance index in the database to obtain several performance index error vectors corresponding to each design parameter;

S3、利用模糊推理方法计算性能指标误差向量的隶属度;S3. Calculate the degree of membership of the error vector of the performance index by using the fuzzy reasoning method;

S4、将性能指标误差向量的隶属度与数据库中对应的设计参数相乘并求和,得到达到目标性能指标的集成电路设计参数。S4. Multiply and sum the membership degree of the error vector of the performance index and the corresponding design parameter in the database to obtain the design parameter of the integrated circuit that reaches the target performance index.

所述步骤S1中数据库包括若干集成电路设计案例数据,所述集成电路设计案例数据包括设计参数以及性能指标。The database in step S1 includes a number of integrated circuit design case data, and the integrated circuit design case data includes design parameters and performance indicators.

如图2所示,在本实施例中,对NMOS输入差分对电路的电阻负载进行参数确定。As shown in FIG. 2 , in this embodiment, parameters are determined for the resistive load of the NMOS input differential pair circuit.

所述步骤S2包括以下步骤:Described step S2 comprises the following steps:

S2.1、设定集成电路设计参数的目标性能指标;S2.1. Setting target performance indicators of integrated circuit design parameters;

S2.2、对目标性能指标和数据库中性能指标均进行归一化处理;S2.2. Normalize both the target performance index and the performance index in the database;

S2.3、将目标性能指标与数据库中每个性能指标相减,获取每个参数对应的若干性能指标误差向量。S2.3. Subtracting the target performance index from each performance index in the database to obtain several performance index error vectors corresponding to each parameter.

所述步骤S2中归一化处理的函数为:The function of the normalization process in the step S2 is:

其中,xn表示归一化后的数据,x表示需要归一化的数据,xmin表示所有需要归一化数据中的最小值,xmax表示所有需要归一化数据中的最大值。Among them, x n represents the normalized data, x represents the data that needs to be normalized, x min represents the minimum value among all the data that needs to be normalized, and x max represents the maximum value among all the data that needs to be normalized.

所述性能指标误差向量包括增益误差、增益带宽积误差以及输出噪声误差。The performance index error vector includes gain error, gain bandwidth product error and output noise error.

在本实施例中,性能指标误差向量是目标性能指标与数据库中存储的性能指标的差值,可以表示为:In this embodiment, the performance index error vector is the difference between the target performance index and the performance index stored in the database, which can be expressed as:

Ei=[Gdes-Gi,GBWdes-GBWi,ONdes-ONi]i=1,2,…mE i =[G des -G i ,GBW des -GBW i ,ON des -ON i ]i=1,2,...m

其中,Gdes、GBWdes和ONdes分别表示目标性能指标(增益、增益带宽积和输出噪声),Gi、GBWi和ONi分别表示数据库中存储的性能指标(增益、增益带宽积和输出噪声),Ei为第i个性能指标误差向量,m是性能指标误差向量的个数。Among them, G des , GBW des and ON des represent the target performance indicators (gain, gain-bandwidth product and output noise) respectively, and G i , GBW i and ON i represent the performance indicators (gain, gain-bandwidth product and output noise) stored in the database respectively. noise), E i is the i-th performance index error vector, and m is the number of performance index error vectors.

所述步骤S3中隶属度的获取方法具体为:The method for obtaining the degree of membership in the step S3 is specifically:

S3.1、获取性能指标误差向量中每个性能指标误差的初始隶属度p为:S3.1. Acquiring the initial degree of membership p of each performance index error in the performance index error vector is:

其中,p表示性能指标误差向量的隶属度,A表示第一中间参数,e表示归一化后的性能指标误差向量,c表示第二中间参数;Among them, p represents the degree of membership of the performance index error vector, A represents the first intermediate parameter, e represents the normalized performance index error vector, and c represents the second intermediate parameter;

S3.2、将性能指标误差向量的所有初始隶属度p进行乘积,得到性能指标误差向量的初始隶属度pv为:S3.2. Multiply all the initial membership degrees p of the performance index error vector to obtain the initial membership degree p v of the performance index error vector as:

其中,pv表示性能指标误差向量的初始隶属度,pi表示性能指标误差向量中的第i个性能指标误差对应的隶属度,i=1,2,...,n,n表示性能指标误差向量中性能指标误差总数;Among them, p v represents the initial membership degree of the performance index error vector, p i represents the membership degree corresponding to the i-th performance index error in the performance index error vector, i=1,2,...,n, n represents the performance index The total number of performance index errors in the error vector;

S3.3、将每个性能指标误差向量的初始隶属度pv进行归一化,得到性能指标误差向量的隶属度具体为:S3.3. Normalize the initial membership degree pv of each performance index error vector, and obtain the membership degree of the performance index error vector as follows:

其中,pj表示第j个性能指标误差向量归一化之前的初始隶属度,pjn表示第j个性能指标误差向量归一化后的隶属度,j=1,2,...,m,m表示性能指标误差向量的总数。Among them, p j represents the initial membership degree before the jth performance index error vector is normalized, p jn represents the membership degree after the jth performance index error vector is normalized, j=1,2,...,m , m represents the total number of performance indicator error vectors.

所述步骤S4具体为:The step S4 is specifically:

S4.1、将隶属度以及数据库中设计参数分别表示为向量P和D;S4.1. Express the degree of membership and the design parameters in the database as vectors P and D respectively;

S4.2、将性能指标误差向量的隶属度与数据库中对应的设计参数相乘并求和,得到达到目标性能指标的集成电路设计参数Q具体为:S4.2. Multiply and sum the membership degree of the performance index error vector with the corresponding design parameters in the database, and obtain the integrated circuit design parameter Q that reaches the target performance index, specifically:

Q=P·DT Q=P D T

其中,T表示转置。Among them, T means transpose.

在本实施例中,将性能指标误差向量的隶属度和数据库中的设计参数都用向量形式表示:In this embodiment, the degree of membership of the performance indicator error vector and the design parameters in the database are expressed in vector form:

P=[p1n,p2n,……,pmn],I=[i1,i2,……,im],C=[c1,c2,……,cm],P=[p 1n ,p 2n ,...,p mn ], I=[i 1 ,i 2 ,...,i m ], C=[c 1 ,c 2 ,...,c m ],

R=[r1,r2,……,rm]R=[r 1 ,r 2 ,...,r m ]

其中,P是性能指标误差向量的隶属度构成的向量,I、C和R分别表示 NMOS输入管尺寸、尾电流源管尺寸和负载电阻值向量,估算的达到目标性能指标的设计参数可以表示为:Among them, P is a vector composed of the membership degree of the performance index error vector, I, C and R represent the NMOS input tube size, the tail current source tube size and the load resistance value vector respectively, and the estimated design parameters to achieve the target performance index can be expressed as :

io=P·IT i o = P · I T

co=P·CT c o =P·C T

ro=P·RT r o =P·R T

其中,P是性能指标误差向量的隶属度,io、co和ro分别表示模糊推理得出的NMOS输入管尺寸、尾电流源管尺寸和负载电阻值。Among them, P is the membership degree of the error vector of the performance index, and i o , c o and r o represent the size of the NMOS input tube, the size of the tail current source tube and the value of the load resistance obtained by fuzzy reasoning respectively.

按照期望的性能指标(增益、增益带宽积和输出噪声分别为20dB、144MHz 和利用上述集成电路设计参数模糊推理方法,快速估算出电阻负载的NMOS输入差分对电路的设计参数。优化出的输入管尺寸、尾电流源管尺寸(沟道宽度/沟道长度)和负载电阻值分别为32μm/0.18μm、18μm/0.18μm 和10KΩ,如图3所示。按照估算出的电阻负载的NMOS输入差分对电路设计参数,利用Cadence软件模拟实验结果如图4-5所示,电阻负载的NMOS输入差分对电路的增益、增益带宽积和输出噪声分别为20.78dB、140.00MHz和 达到了期望的性能指标,这说明提出方法能有效地估算电阻负载的NMOS输入差分对电路的设计参数,获得符合性能需求的集成电路。According to the expected performance index (gain, gain-bandwidth product and output noise are 20dB, 144MHz and The design parameters of the NMOS input differential pair circuit with resistive load are quickly estimated by using the fuzzy reasoning method of the above-mentioned integrated circuit design parameters. The optimized input tube size, tail current source tube size (channel width/channel length) and load resistance values are 32μm/0.18μm, 18μm/0.18μm and 10KΩ, respectively, as shown in Figure 3. According to the estimated design parameters of the NMOS input differential pair circuit with resistive load, the simulation experiment results using Cadence software are shown in Figure 4-5. The gain, gain-bandwidth product, and output noise of the NMOS input differential pair circuit with resistive load are 20.78dB. , 140.00MHz and The expected performance index is achieved, which shows that the proposed method can effectively estimate the design parameters of the NMOS input differential pair circuit with resistive load, and obtain an integrated circuit that meets the performance requirements.

从上述结果可以发现,本发明提出的方法能够简单、有效地估算集成电路的设计参数,缩短集成电路的研发周期,为实现集成电路的高效设计提供了可靠的途径。From the above results, it can be found that the method proposed by the present invention can simply and effectively estimate the design parameters of the integrated circuit, shorten the development cycle of the integrated circuit, and provide a reliable way for realizing the efficient design of the integrated circuit.

Claims (3)

1.一种确定集成电路设计参数的模糊推理方法,其特征在于,包括以下步骤:1. A fuzzy reasoning method for determining integrated circuit design parameters is characterized in that, comprising the following steps: S1、搭建集成电路设计数据库;S1. Build an integrated circuit design database; S2、设定集成电路设计参数的目标性能指标,并将其与数据库中每个性能指标相减,获取每个设计参数对应的若干性能指标误差向量;S2. Set the target performance index of the integrated circuit design parameter, and subtract it from each performance index in the database to obtain several performance index error vectors corresponding to each design parameter; S3、利用模糊推理方法计算性能指标误差向量的隶属度;S3. Calculate the degree of membership of the error vector of the performance index by using the fuzzy reasoning method; S4、将性能指标误差向量的隶属度与数据库中对应的设计参数相乘并求和,得到达到目标性能指标的集成电路设计参数;S4. Multiply and sum the membership degree of the performance index error vector with the corresponding design parameters in the database to obtain the integrated circuit design parameters that meet the target performance index; 所述步骤S2包括以下步骤:Described step S2 comprises the following steps: S2.1、设定集成电路设计参数的目标性能指标;S2.1. Setting target performance indicators of integrated circuit design parameters; S2.2、对目标性能指标和数据库中性能指标均进行归一化处理;S2.2. Normalize both the target performance index and the performance index in the database; S2.3、将目标性能指标与数据库中每个性能指标相减,获取每个参数对应的若干性能指标误差向量;S2.3. Subtracting the target performance index from each performance index in the database to obtain several performance index error vectors corresponding to each parameter; 所述步骤S2中归一化处理的函数为:The function of the normalization process in the step S2 is: 其中,xn表示归一化后的数据,x表示需要归一化的数据,xmin表示所有需要归一化数据中的最小值,xmax表示所有需要归一化数据中的最大值;Among them, x n represents the normalized data, x represents the data that needs to be normalized, x min represents the minimum value of all data that needs to be normalized, and x max represents the maximum value of all data that needs to be normalized; 所述性能指标误差向量包括增益误差、增益带宽积误差以及输出噪声误差;The performance index error vector includes gain error, gain bandwidth product error and output noise error; 所述步骤S3中隶属度的获取方法具体为:The method for obtaining the degree of membership in the step S3 is specifically: S3.1、获取性能指标误差向量中每个性能指标误差的初始隶属度p为:S3.1. Acquiring the initial degree of membership p of each performance index error in the performance index error vector is: 其中,p表示性能指标误差向量的隶属度,A表示第一中间参数,e表示归一化后的性能指标误差向量,c表示第二中间参数;Among them, p represents the degree of membership of the performance index error vector, A represents the first intermediate parameter, e represents the normalized performance index error vector, and c represents the second intermediate parameter; S3.2、将性能指标误差向量的所有初始隶属度p进行乘积,得到性能指标误差向量的初始隶属度pv为:S3.2. Multiply all the initial membership degrees p of the performance index error vector to obtain the initial membership degree p v of the performance index error vector as: 其中,pv表示性能指标误差向量的初始隶属度,pi表示性能指标误差向量中的第i个性能指标误差对应的隶属度,i=1,2,...,n,n表示性能指标误差向量中性能指标误差总数;Among them, p v represents the initial membership degree of the performance index error vector, p i represents the membership degree corresponding to the i-th performance index error in the performance index error vector, i=1,2,...,n, n represents the performance index The total number of performance index errors in the error vector; S3.3、将每个性能指标误差向量的初始隶属度pv进行归一化,得到性能指标误差向量的隶属度具体为:S3.3. Normalize the initial membership degree pv of each performance index error vector, and obtain the membership degree of the performance index error vector as follows: 其中,pj表示第j个性能指标误差向量归一化之前的初始隶属度,pjn表示第j个性能指标误差向量归一化后的隶属度,j=1,2,...,m,m表示性能指标误差向量的总数。Among them, p j represents the initial membership degree before the jth performance index error vector is normalized, p jn represents the membership degree after the jth performance index error vector is normalized, j=1,2,...,m , m represents the total number of performance indicator error vectors. 2.根据权利要求1所述的确定集成电路设计参数的模糊推理方法,其特征在于,所述步骤S1中数据库包括若干集成电路设计案例数据,所述集成电路设计案例数据包括设计参数以及性能指标。2. The fuzzy reasoning method for determining integrated circuit design parameters according to claim 1, characterized in that, in the step S1, the database includes some integrated circuit design case data, and the integrated circuit design case data includes design parameters and performance indicators . 3.根据权利要求1所述的确定集成电路设计参数的模糊推理方法,其特征在于,所述步骤S4具体为:3. The fuzzy reasoning method for determining integrated circuit design parameters according to claim 1, wherein said step S4 is specifically: S4.1、将隶属度以及数据库中设计参数分别表示为向量P和D;S4.1. Express the degree of membership and the design parameters in the database as vectors P and D respectively; S4.2、将性能指标误差向量的隶属度与数据库中对应的设计参数相乘并求和,得到达到目标性能指标的集成电路设计参数Q具体为:S4.2. Multiply and sum the membership degree of the performance index error vector with the corresponding design parameters in the database, and obtain the integrated circuit design parameter Q that reaches the target performance index, specifically: Q=P·DT Q=P D T 其中,T表示转置。Among them, T means transpose.
CN202110085524.5A 2021-01-22 2021-01-22 Fuzzy reasoning method for determining design parameters of integrated circuit Active CN112765918B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110085524.5A CN112765918B (en) 2021-01-22 2021-01-22 Fuzzy reasoning method for determining design parameters of integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110085524.5A CN112765918B (en) 2021-01-22 2021-01-22 Fuzzy reasoning method for determining design parameters of integrated circuit

Publications (2)

Publication Number Publication Date
CN112765918A CN112765918A (en) 2021-05-07
CN112765918B true CN112765918B (en) 2023-08-18

Family

ID=75702551

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110085524.5A Active CN112765918B (en) 2021-01-22 2021-01-22 Fuzzy reasoning method for determining design parameters of integrated circuit

Country Status (1)

Country Link
CN (1) CN112765918B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5694351A (en) * 1996-03-06 1997-12-02 Holtek Microelectronics, Inc. Method and apparatus for generating degree of membership in fuzzy inference
CN106777672A (en) * 2016-12-14 2017-05-31 中南大学 Metal material forging microstructure flexible measurement method based on adaptive expert system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7006900B2 (en) * 2002-11-14 2006-02-28 Asm International N.V. Hybrid cascade model-based predictive control system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5694351A (en) * 1996-03-06 1997-12-02 Holtek Microelectronics, Inc. Method and apparatus for generating degree of membership in fuzzy inference
CN106777672A (en) * 2016-12-14 2017-05-31 中南大学 Metal material forging microstructure flexible measurement method based on adaptive expert system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
自适应神经模糊推理系统的参数优化方法;秦炎峰;陈铁军;;微计算机信息(18);全文 *

Also Published As

Publication number Publication date
CN112765918A (en) 2021-05-07

Similar Documents

Publication Publication Date Title
US20070075770A1 (en) Base-band digital pre-distortion-based method for improving efficiency of rf power amplifier
CN111173573B (en) An Identification Method of Power Object Model of Turbine Regulation System
TWI737228B (en) Quantization method based on hardware of in-memory computing and system thereof
CN108448585B (en) A kind of electric network swim equation solution method of linearization based on data-driven
CN110543609A (en) A classification and power flow calculation method for electrothermal coupling nodes in an integrated energy system
CN106355292A (en) Method and system for optimally dispatching cascade reservoirs on basis of quantum-behaved particle swarm algorithms
CN116070534B (en) Optimization method, device, equipment and medium for liquid cooling plate in lithium battery energy storage system
CN113837812B (en) Joint probability prediction method and device for node electricity price
CN114580578B (en) Constrained distributed stochastic optimization model training method, device and terminal
CN105119279A (en) Distributed power supply planning method and system thereof
CN114841106A (en) Integrated circuit optimization method and system based on rule-guided genetic algorithm
CN112765918B (en) Fuzzy reasoning method for determining design parameters of integrated circuit
CN110766141A (en) Activation function hybrid calculation method and system based on CORDIC
CN116797346A (en) Financial fraud detection method and system based on federated learning
CN102780220A (en) Power flow calculation method for electric distribution network comprising PV constant distributed generation
CN106410811A (en) Power flow calculation method for the first iterative small-impedance branch end-point change Jacobian matrix
CN105302968B (en) A kind of distributed power amplifier optimum design method
CN111325308A (en) A Nonlinear System Identification Method
CN105406517A (en) Finite time average consistency algorithm-based economic dispatching method for power system
CN112597647A (en) Rapid-convergence ultrahigh-frequency microwave rainfall data discretization method
CN116244894B (en) A power system transient simulation method and system based on large step size
CN116192045A (en) Parameter extraction method, system, medium and equipment for multi-junction compound battery model
CN117494650A (en) Multi-task Bayesian optimization method based on multi-task neural network enhanced Gaussian process
CN115543911A (en) A Method for Calculating Computing Capability of Heterogeneous Computing Devices
CN109086245B (en) VIC parameter multi-target method based on substitution model

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant