CN112751346B - Design method of DFIG-PSS controller based on virtual impedance - Google Patents
Design method of DFIG-PSS controller based on virtual impedance Download PDFInfo
- Publication number
- CN112751346B CN112751346B CN202011603063.8A CN202011603063A CN112751346B CN 112751346 B CN112751346 B CN 112751346B CN 202011603063 A CN202011603063 A CN 202011603063A CN 112751346 B CN112751346 B CN 112751346B
- Authority
- CN
- China
- Prior art keywords
- stator
- rotor
- power
- virtual impedance
- current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
- H02J3/24—Arrangements for preventing or reducing oscillations of power in networks
- H02J3/241—The oscillation concerning frequency
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2203/00—Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
- H02J2203/20—Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/76—Power conversion electric or electronic aspects
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Eletrric Generators (AREA)
Abstract
Description
技术领域technical field
本发明涉及风电系统技术领域,特别是指一种基于虚拟阻抗的DFIG-PSS控制器设计方法。The invention relates to the technical field of wind power systems, in particular to a design method for a DFIG-PSS controller based on virtual impedance.
背景技术Background technique
大规模风电机组并网给电力系统稳定运行带来了新的挑战,风电机组如双馈感应电机(doubly fed induction generator,DFIG)将影响系统原有振荡模式,并可能引入新的振荡模式,对系统的动态稳定性尤其是小干扰稳定性产生不利影响。传统同步发电机采用电力系统稳定器(power system stabilizer,PSS),在系统受到扰动期间提供附加阻尼,改善系统低频振荡特性。随着风电渗透率的增加,电网要求风电机组也能为电力系统提供阻尼,通过类似传统同步发电机的附加阻尼控制策略研究变得至关重要。The grid connection of large-scale wind turbines has brought new challenges to the stable operation of the power system. Wind turbines such as doubly fed induction generators (DFIG) will affect the original oscillation mode of the system and may introduce new oscillation modes. The dynamic stability of the system, especially the small disturbance stability will be adversely affected. Traditional synchronous generators use a power system stabilizer (PSS) to provide additional damping when the system is disturbed and improve the low-frequency oscillation characteristics of the system. With the increase of wind power penetration, the power grid requires wind turbines to also provide damping for the power system, and the study of additional damping control strategies similar to traditional synchronous generators has become crucial.
近年来,国内外针对大规模风电并网引起的低频振荡问题已展开了大量的研究工作,并取得了丰富的研究成果。研究表明,大容量风电机组对电力系统的影响不容忽视,因此研究风电机组,尤其是目前广泛应用的双馈风电机组对互联系统小干扰稳定性的影响尤为重要。文献[JoseLuisDominguez-Garc1,Oriol Gomis-Bellmunta,Fernando D.Bianchi,Andreas Sumpera.Power oscillation damping supported by wind power:Areview[J].Renewable and Sustainable Energy Reviews,2012,16(7):4982-4993.]阐明了风力发电对小信号稳定性的影响,并介绍了风力发电机组抑制内部和电力系统振荡模式的控制方法。文献[Liu Yong,Joe R.Gracia,Thomas J.King,Liu Yilu.Frequency regulation andoscillation damping contributions of variable-speed wind generators intheU.S.Eastern Interconnection(EI)[J].IEEETransactions on Sustainable Energy,2015,6(3):951-957.]提出了变速风力发电机快速有功功率控制技术,并讨论如何将这些控制应用于美国东部互联系统的频率调节和振荡阻尼。文献[Mohit Singh,AliciaJ.Allen,Eduard Muljadi,VahanGevorgian,Zhang Yingchen,Surya Santoso.Interareaoscillation damping controls for wind power plants.IEEE Transactions onSustainable Energy,2015,6(3):967-975.]将控制信号加到有功功率控制环中,通过调节DFIG有功功率输出来提高系统的小干扰稳定性。文献[Liao Kai,He Zhengyou,Xu Yan,GuoChen,Zhao Yangdong,Kit Po Wong.Asliding mode based damping control of DFIGfor interarea power oscillations.IEEE Transactions on Sustainable Energy,2017,8(1):258-267.]提出一种二阶滑模控制器对DFIG无功功率输出进行调制,文献[FanLingling,YinHaiping,MiaoZhixin.On Active/Reactive Power Modulation of DFIG-Based Wind Generation for Interarea Oscillation Damping.IEEE Transactions onEnergy Conversion,2011,26(2):513-521]表明功调调制可能导致轴振荡,无功调制为更优选择。采用PSS抑制低频振荡是传统电力系统常用的手段,DFIG也可以采取类似于同步发电机的附加阻尼控制策略来改善互联电力系统低频振荡特性,即DFIG-PSS。文献[F.Michael Hughes,Olimpo Anaya-Lara,Nicholas Jenkins,Goran Strbac.Apowersystem stabilizer for DFIG-based wind generation.IEEE Transactions on PowerSystems,2006,21(2):763-772.]阐明,双馈风力发电机增加适当设计的电力系统稳定器可以显著增强风电场对电网阻尼的贡献,并且可以在不降低所提供的电压控制质量的情况下实现。文献[边晓燕,耿艳,袁方期,李学武,符杨.多运行方式下DFIG-PSS输入信号选取的探讨[J].电力系统及其自动化学报,2016,28(07):47-50.]分析了DFIG-PSS位置与输入对其阻尼振荡的影响。文献[李生虎,孙琪,石雪梅,黄杰杰.基于区域极点配置的风电系统弱阻尼低频振荡模式抑制[J].电力系统保护与控制,2017,45(20):14-20.]应用区域极点配置法设计DFIG-PSS。文献[BianXiaoyan,Ding Yang,Jia Qingyu,Shi Lei,Zhang Xiaoping,L.LO Kwok.Mitigation of sub-synchronous control interaction of a power systemwith DFIG-based wind farm under multi-operating points[J].IET Generation,Transmission&Distribution,2018,12(21):5834-5842.]基于次同步控制交互概率灵敏度,选择DFIG-PSS位置与输入,并优化控制参数。文献[李生虎,张浩.风电系统振荡模式对DFIG-PSS传递函数的灵敏度分析[J].电力系统保护与控制,2020,48(16):11-17.]建立含DFIG-PSS系统状态方程,将特征值增量引入传递函数增量迭代运算,通过仿真对比参数灵敏度和传递函数灵敏度误差以及相应设计的DFIG-PSS的控制效果。In recent years, a lot of research work has been carried out on the low-frequency oscillation problem caused by large-scale wind power grid-connected at home and abroad, and rich research results have been obtained. Studies have shown that the impact of large-capacity wind turbines on power systems cannot be ignored, so it is particularly important to study the impact of wind turbines, especially the widely used doubly-fed wind turbines, on the stability of small disturbances in interconnected systems. Literature[JoseLuisDominguez-Garc1, Oriol Gomis-Bellmunta, Fernando D.Bianchi, Andreas Summera. Power oscillation damping supported by wind power:Areview[J].Renewable and Sustainable Energy Reviews,2012,16(7):4982-4993.] The impact of wind power generation on small-signal stability is clarified, and control methods for wind turbines to suppress internal and power system oscillation modes are introduced. Literature [Liu Yong, Joe R. Gracia, Thomas J. King, Liu Yilu. Frequency regulation and oscillation damping contributions of variable-speed wind generators in the U.S. Eastern Interconnection (EI) [J]. IEEE Transactions on Sustainable Energy, 2015,6 (3):951-957.] presents fast active power control techniques for variable-speed wind turbines and discusses how these controls can be applied to frequency regulation and oscillation damping in the Eastern United States Interconnection System. Literature [Mohit Singh, AliciaJ.Allen, Eduard Muljadi, VahanGevorgian, Zhang Yingchen, Surya Santoso.Interareaoscillation damping controls for wind power plants.IEEE Transactions onSustainable Energy,2015,6(3):967-975.]Add the control signal to In the active power control loop, the small disturbance stability of the system is improved by adjusting the DFIG active power output. Document [Liao Kai, He Zhengyou, Xu Yan, GuoChen, Zhao Yangdong, Kit Po Wong. Asliding mode based damping control of DFIG for interarea power oscillations. IEEE Transactions on Sustainable Energy, 2017, 8(1): 258-267.] proposed A second-order sliding mode controller modulates DFIG reactive power output, document [FanLingling, YinHaiping, MiaoZhixin.On Active/Reactive Power Modulation of DFIG-Based Wind Generation for Interarea Oscillation Damping.IEEE Transactions onEnergy Conversion, 2011,26 (2):513-521] show that power modulation may cause shaft oscillation, and reactive power modulation is a better choice. Using PSS to suppress low-frequency oscillation is a common method in traditional power systems. DFIG can also adopt an additional damping control strategy similar to synchronous generators to improve the low-frequency oscillation characteristics of interconnected power systems, that is, DFIG-PSS. The literature [F.Michael Hughes, Olimpo Anaya-Lara, Nicholas Jenkins, Goran Strbac.Apowersystem stabilizer for DFIG-based wind generation.IEEE Transactions on PowerSystems,2006,21(2):763-772.] clarifies that double-fed wind power generation The addition of a properly designed power system stabilizer can significantly enhance the wind farm's contribution to grid damping and can be achieved without degrading the quality of voltage control provided. Literature[Bian Xiaoyan, Geng Yan, Yuan Fangqi, Li Xuewu, Fu Yang. Discussion on DFIG-PSS Input Signal Selection under Multiple Operation Modes[J].Journal of Electric Power System and Automation,2016,28(07):47-50 .] The influence of DFIG-PSS position and input on its damped oscillation is analyzed. Literature [Li Shenghu, Sun Qi, Shi Xuemei, Huang Jiejie. Weakly damped low-frequency oscillation mode suppression of wind power system based on regional pole configuration[J]. Power System Protection and Control, 2017,45(20):14-20.] Application of regional pole configuration Design DFIG-PSS by method. Literature [BianXiaoyan, Ding Yang, Jia Qingyu, Shi Lei, Zhang Xiaoping, L.LO Kwok. Mitigation of sub-synchronous control interaction of a power system with DFIG-based wind farm under multi-operating points [J]. IET Generation, Transmission & Distribution ,2018,12(21):5834-5842.] Based on subsynchronous control interaction probability sensitivity, select DFIG-PSS position and input, and optimize control parameters. Literature [Li Shenghu, Zhang Hao. Sensitivity Analysis of Wind Power System Oscillation Modes to DFIG-PSS Transfer Function[J]. Power System Protection and Control, 2020,48(16):11-17.] Establishing the State Equation of DFIG-PSS System , the eigenvalue increment is introduced into the incremental iterative operation of the transfer function, and the control effect of the correspondingly designed DFIG-PSS is compared with the parameter sensitivity and the transfer function sensitivity error through simulation.
风电并网时,系统输出电压对输出阻抗特性有一定要求,采用相应的虚拟阻抗(virtual impedance,VI)控制策略,可以使等效输出阻抗呈现出系统期望的特性。文献[周鹏,张新燕,邸强,岳家辉,邢琛.基于虚拟同步机控制的双馈风电机组预同步并网策略[J].电力系统自动化,2020,44(14):71-84.]提出一种虚拟同步机(virtual synchronousgenerator,VSG)控制的双馈风电机组无锁相环预同步控制策略,并提出在无功控制环中引入虚拟阻抗,以虚拟电流代替参考输入量,实现了双馈风电机组快速有效地平滑并网。文献[巨云涛,马雅蓉,齐志男.基于阻尼转矩分析的虚拟同步机对小干扰稳定的影响机理研究[J/OL].中国电机工程报,1-10[2020-11-30].]阐明了虚拟同步控制策略对小干扰稳定的影响机理,并发现适当增大虚拟阻抗环节的电感有利于系统的小干扰稳定。文献[李辉,王坤,胡玉,王晓,夏桂森.双馈风电系统虚拟同步控制的阻抗建模及稳定性分析[J].中国电机工程学报,2019,39(12):3434-3443.]基于双馈风电系统的虚拟同步控制策略,提出一种d-q旋转坐标系下的虚拟同步控制策略。When wind power is connected to the grid, the output voltage of the system has certain requirements on the output impedance characteristics, and the corresponding virtual impedance (VI) control strategy can be used to make the equivalent output impedance present the expected characteristics of the system. Literature [Zhou Peng, Zhang Xinyan, Di Qiang, Yue Jiahui, Xing Chen. Pre-synchronization grid connection strategy of doubly-fed wind turbine based on virtual synchronous machine control[J]. Automation of Electric Power Systems, 2020,44(14):71-84. ] proposed a pre-synchronization control strategy for doubly-fed wind turbines controlled by a virtual synchronous generator (VSG) without a phase-locked loop, and introduced a virtual impedance in the reactive power control loop, and replaced the reference input with a virtual current to achieve Doubly-fed wind turbines are quickly and efficiently connected to the grid smoothly. Literature [Ju Yuntao, Ma Yarong, Qi Zhinan. Research on the Influence Mechanism of Virtual Synchronous Machine on Small Disturbance Stability Based on Damping Torque Analysis[J/OL]. Chinese Journal of Electrical Engineering, 1-10[2020-11-30].] The influence mechanism of the virtual synchronous control strategy on the small-disturbance stability is clarified, and it is found that increasing the inductance of the virtual impedance link is beneficial to the small-disturbance stability of the system. Literature [Li Hui, Wang Kun, Hu Yu, Wang Xiao, Xia Guisen. Impedance Modeling and Stability Analysis of Virtual Synchronous Control of Double-fed Wind Power System[J]. Chinese Journal of Electrical Engineering, 2019, 39(12): 3434-3443 .] Based on the virtual synchronous control strategy of double-fed wind power system, a virtual synchronous control strategy in the d-q rotating coordinate system is proposed.
传统PSS采用开环控制,易产生一些对系统不利影响的振荡信号。当并网逆变器带非线性负载运行时,系统输出电流含有谐波,输出阻抗呈现非电阻特性,可采用虚拟阻抗自校正来调节输出阻抗特性。The traditional PSS adopts open-loop control, which is easy to generate some oscillation signals that adversely affect the system. When the grid-connected inverter operates with a nonlinear load, the system output current contains harmonics, and the output impedance presents non-resistive characteristics, and the virtual impedance self-calibration can be used to adjust the output impedance characteristics.
发明内容Contents of the invention
针对上述背景技术中的不足,本发明提出了一种基于虚拟阻抗的DFIG-PSS控制器设计方法,解决了现有含风电电力系统存在低频振荡的技术问题。Aiming at the shortcomings in the above-mentioned background technology, the present invention proposes a DFIG-PSS controller design method based on virtual impedance, which solves the technical problem of low-frequency oscillation in the existing wind power system.
本发明的技术方案是这样实现的:Technical scheme of the present invention is realized like this:
一种基于虚拟阻抗的DFIG-PSS控制器设计方法,其步骤如下:A kind of DFIG-PSS controller design method based on virtual impedance, its steps are as follows:
步骤一:构建含双馈感应电机模型的电网系统,其中,双馈感应电机模型包括转子侧换流器和风电机组,转子侧换流器通过定子和转子控制风电机组;Step 1: Construct a power grid system with a doubly-fed induction motor model, where the doubly-fed induction motor model includes a rotor-side converter and a wind turbine, and the rotor-side converter controls the wind turbine through the stator and rotor;
步骤二:将电力系统稳定器和虚拟阻抗相结合后连接到转子侧换流器,并采用定子磁链定向矢量控制技术获得转子侧换流器的输出电压与转子电流的关系;Step 2: Connect the power system stabilizer and virtual impedance to the rotor-side converter, and use the stator flux linkage oriented vector control technology to obtain the relationship between the output voltage of the rotor-side converter and the rotor current;
步骤三:根据定子电压、定子磁链和定子电流之间的关系获得定子电流与定子的输出功率的关系;Step 3: Obtain the relationship between the stator current and the output power of the stator according to the relationship between the stator voltage, the stator flux linkage and the stator current;
步骤四:根据转子侧换流器的输出电压与转子电流的关系以及定子电流与定子的输出功率的关系得到电力系统稳定器-虚拟阻抗的参数与定子的输出功率的关系;Step 4: According to the relationship between the output voltage of the rotor-side converter and the rotor current and the relationship between the stator current and the output power of the stator, the relationship between the parameters of the power system stabilizer-virtual impedance and the output power of the stator is obtained;
步骤五:通过改变电力系统稳定器-虚拟阻抗的参数调整定子的输出功率,进而影响电网系统的阻尼特性。Step 5: Adjust the output power of the stator by changing the parameters of the power system stabilizer-virtual impedance, thereby affecting the damping characteristics of the grid system.
所述转子侧换流器的输出电压与转子电流的关系为:The relationship between the output voltage of the rotor-side converter and the rotor current is:
其中,Kp1、Ki1、Kp3、Ki3、Kq1、Ki2均为转子侧换流器控制比例积分控制器的参数,Vrd表示d轴转子电压,Ps *表示转子有功功率参考值,Ps表示转子有功功率测量值,ird表示d轴转子电流,Vrq表示q轴转子电压,表示转子无功功率参考值,Qs表示转子无功功率测量值,irq表示q轴转子电流,s表示微分算子,uerrs为电力系统稳定器-虚拟阻抗经自动电压调节器装置后的输入信号。Among them, K p1 , K i1 , K p3 , K i3 , K q1 , and K i2 are the parameters of the rotor-side converter control proportional integral controller, V rd represents the d-axis rotor voltage, and P s * represents the rotor active power reference value, P s represents the rotor active power measurement value, i rd represents the d-axis rotor current, V rq represents the q-axis rotor voltage, Indicates the reference value of rotor reactive power, Q s indicates the measured value of rotor reactive power, i rq indicates the q-axis rotor current, s indicates the differential operator, u errs is the power system stabilizer-virtual impedance after the automatic voltage regulator device input signal.
所述电力系统稳定器-虚拟阻抗经自动电压调节器装置后的输入信号为:The input signal of the power system stabilizer-virtual impedance after the automatic voltage regulator device is:
式中,Te、Kf1、Tc、Tb、Tf1、Ka、Ta、Tr、K均为自动电压调节器的控制参数,△P表示转子有功功率参考值Ps *与转子有功功率测量值Ps的差值,u表示双馈感应电机模型的定子电压,G1(s)表示电力系统稳定器-虚拟阻抗的传递函数。In the formula, T e , K f1 , T c , T b , T f1 , K a , T a , T r , K are the control parameters of the automatic voltage regulator, and △P represents the rotor active power reference value P s * and The difference of the rotor active power measurement value P s , u represents the stator voltage of the double-fed induction motor model, G 1 (s) represents the transfer function of the power system stabilizer-virtual impedance.
所述定子电流与定子的输出功率的关系为:The relationship between the stator current and the output power of the stator is:
式中:Lm为d-q坐标系定子和转子同轴等效绕组互感,Ls为d-q坐标系中定子等效两相绕组自感,ωs为同步磁场旋转角速度,Ps'为定子的有功输出功率,Qs'为定子的无功输出功率,ids表示d轴定子电流,iqs表示q轴定子电流,uds表示d轴定子电压,Us表示定子电压。In the formula: L m is the mutual inductance of the stator and rotor coaxial equivalent windings in the dq coordinate system, L s is the self-inductance of the stator equivalent two-phase windings in the dq coordinate system, ω s is the rotational angular velocity of the synchronous magnetic field, and P s ' is the active power of the stator Output power, Q s 'is the reactive output power of the stator, ids represents the d-axis stator current, i qs represents the q-axis stator current, u ds represents the d-axis stator voltage, U s represents the stator voltage.
所述定子电流为:The stator current is:
所述电力系统稳定器-虚拟阻抗的参数与定子的输出功率的关系为:The relationship between the parameters of the power system stabilizer-virtual impedance and the output power of the stator is:
与现有技术相比,本发明产生的有益效果为:Compared with prior art, the beneficial effect that the present invention produces is:
1)本发明在传统PSS基础上增添虚拟阻抗环节,采用闭环负反馈控制方式,以增强控制器对外界抗干扰能力,通过对控制器进行阶跃响应测试,验证虚拟阻抗环节对控制器的提升作用。1) The present invention adds a virtual impedance link on the basis of the traditional PSS, adopts a closed-loop negative feedback control method to enhance the controller’s anti-interference ability to the outside world, and verifies the improvement of the controller by the virtual impedance link by performing a step response test on the controller effect.
2)在DIgSILENT/PowerFactory仿真软件中搭建本发明的DFIG-PSS-VI模型,并以4机2区域系统为例,将所搭建控制器加入DFIG转子侧控制器无功控制环中,通过时域仿真验证了所设计控制器对系统低频振荡特性的改善作用。2) Build the DFIG-PSS-VI model of the present invention in the DIgSILENT/PowerFactory simulation software, and take the 4-machine 2-area system as an example, add the built controller into the reactive power control loop of the DFIG rotor side controller, and pass the time domain The simulation verifies that the designed controller can improve the low-frequency oscillation characteristics of the system.
3)基于虚拟阻抗控制器超调量低于传统控制器,具有良好的阶跃响应特性,对系统稳定性改善作用更明显。3) The overshoot based on the virtual impedance controller is lower than that of the traditional controller, and it has a good step response characteristic, and has a more obvious effect on improving the stability of the system.
4)DFIG转子侧无功控制环加装基于虚拟阻抗PSS可改善含风电电力系统低频振荡特性,在联络线功率变化时也有一定的效果。4) The addition of PSS-based reactive power control loop on the rotor side of DFIG can improve the low-frequency oscillation characteristics of the power system including wind power, and it also has a certain effect when the power of the tie line changes.
5)DFIG-PSS-VI增益和虚拟阻抗电感对系统阻尼有一定的影响,其对区域内振荡改善效果有限,但为抑制含风电区域互联系统区域间低频振荡提供了新思路。5) DFIG-PSS-VI gain and virtual impedance inductance have a certain influence on the system damping, which has a limited effect on improving intra-regional oscillations, but it provides a new idea for suppressing inter-regional low-frequency oscillations of regional interconnection systems containing wind power.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present invention. Those skilled in the art can also obtain other drawings based on these drawings without creative work.
图1为虚拟阻抗矢量图。Figure 1 is a virtual impedance vector diagram.
图2为PSS-VI阶跃响应曲线。Figure 2 is the PSS-VI step response curve.
图3为PSS-VI单位阶跃响应曲线。Figure 3 is the PSS-VI unit step response curve.
图4为本发明的DFIG-PSS-VI控制结构图。Fig. 4 is a control structure diagram of DFIG-PSS-VI of the present invention.
图5为本发明的含DFIG的4机2区域系统框图。Fig. 5 is a block diagram of the 4-machine 2-area system including DFIG of the present invention.
图6为本发明的PSS-VI增益K1对含DFIG的4机2区域系统的区域间振荡模式特征根的影响分布。Fig. 6 is the influence distribution of the PSS-VI gain K 1 of the present invention on the characteristic root of the inter-area oscillation mode of the 4-machine 2-area system containing DFIG.
图7为本发明的PSS-VI参数KL对含DFIG的4机2区域系统的区域间振荡模式特征根的影响分布。Fig. 7 is the influence distribution of the PSS-VI parameter K L of the present invention on the characteristic root of the inter-area oscillation mode of the 4-machine 2-area system containing DFIG.
图8为本发明的含DFIG的4机2区域系统加装PSS-VI后负荷波动响应曲线,其中,(a)为发电机G1功角响应曲线,(b)为发电机G1电压响应曲线。Fig. 8 is the load fluctuation response curve after adding PSS-VI to the 4-machine 2-area system containing DFIG of the present invention, wherein (a) is the power angle response curve of generator G1 , and (b) is the voltage response of generator G1 curve.
图9为本发明的含DFIG的4机2区域系统加装PSS-VI后三相短路响应曲线,其中,(a)为发电机G1功角响应曲线,(b)为发电机G1电压响应曲线。Fig. 9 is the three-phase short-circuit response curve after adding PSS-VI to the 4-machine 2-area system containing DFIG of the present invention, wherein (a) is the power angle response curve of generator G1 , and (b) is the voltage of generator G1 response curve.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some, not all, embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.
虚拟阻抗是在控制环节中引入反馈回路来模拟实际线路阻抗作用的一种控制方法,虚拟阻抗的实现方法较灵活,在控制器输出阻抗或者线路阻抗较小时,均可引入虚拟阻抗来进行补偿。通过选取合理的虚拟阻抗Zvi,与PSS的输出阻抗Zoi组成新的输出阻抗Zi,进而改变系统阻抗的性质来达到提高系统稳定性的目的。Virtual impedance is a control method that introduces a feedback loop in the control link to simulate the actual line impedance. The implementation method of virtual impedance is more flexible. When the output impedance of the controller or the line impedance is small, the virtual impedance can be introduced to compensate. By selecting a reasonable virtual impedance Z vi , it forms a new output impedance Z i with the output impedance Z oi of the PSS, and then changes the nature of the system impedance to achieve the purpose of improving system stability.
根据开环系统稳定性判据可知,若想提高系统稳定性,可以从提高系统阻尼,降低系统超调量着手,从图1中可看出,当Zvi改变时可以改变Zi的相角,通过改变虚拟阻抗来调整PSS-VI输出阻抗,进而保证控制器良好的单位阶跃响应。而采用闭环反馈环节可以保证控制器有较高精度,增强控制器抗干扰能力,保证系统的小干扰稳定性。According to the stability criterion of the open-loop system, if you want to improve the system stability, you can start by increasing the system damping and reducing the system overshoot. It can be seen from Figure 1 that when Z vi changes, the phase angle of Z i can be changed , by changing the virtual impedance to adjust the PSS-VI output impedance, thereby ensuring a good unit step response of the controller. The use of closed-loop feedback links can ensure that the controller has higher precision, enhance the anti-interference ability of the controller, and ensure the stability of the system with small disturbances.
PSS-VI如图2所示,其传递函数为:PSS-VI is shown in Figure 2, and its transfer function is:
式中,KL,Kr为虚拟阻抗环节参数;K1为PSS-VI控制器增益,G1(s)表示PSS-VI传递函数,TW表示滤波环节时间常数,T1、T2、T3、T4表示补偿环节时间常数。In the formula, K L and K r are the parameters of the virtual impedance link; K 1 is the gain of the PSS-VI controller, G 1 (s) is the transfer function of the PSS-VI, T W is the time constant of the filter link, T 1 , T 2 , T 3 and T 4 represent the time constant of the compensation link.
图3为PSS-VI单位阶跃响应,可以看出,虽然PSS-VI采用闭环负反馈的控制方式,但没有出现闭环系统常见的超调、振荡等问题,有良好的阶跃响应特性,改变虚拟阻抗环节参数KL可以调节控制器单位阶跃响应。Figure 3 shows the unit step response of PSS-VI. It can be seen that although PSS-VI adopts the closed-loop negative feedback control method, there are no problems such as overshoot and oscillation that are common in closed-loop systems, and it has good step response characteristics. The parameter K L of the virtual impedance link can adjust the unit step response of the controller.
本发明实施例提供了一种基于虚拟阻抗的DFIG-PSS控制器设计方法,具体步骤如下:The embodiment of the present invention provides a method for designing a DFIG-PSS controller based on virtual impedance, and the specific steps are as follows:
步骤一:构建含双馈感应电机模型的电网系统,其中,双馈感应电机模型包括转子侧换流器和风电机组,转子侧换流器通过定子和转子控制风电机组;双馈发电机采用矢量控制策略,实现有功功率和无功功率的解耦控制,并考虑最大风功率和无功补偿,如图4所示。该控制器采用传统的嵌套环结构,即外部转速/有功功率和无功功率控制回路和内部d-q转子电流控制回路,可以从实际参考值和无功参考值中有效估计出转子d-q参考电流,省去了嵌套控制结构的功率环控制器。Step 1: Construct a power grid system with a double-fed induction motor model, where the double-fed induction motor model includes the rotor-side converter and the wind turbine, and the rotor-side converter controls the wind turbine through the stator and rotor; the double-fed generator adopts vector The control strategy realizes the decoupling control of active power and reactive power, and considers the maximum wind power and reactive power compensation, as shown in Figure 4. The controller adopts the traditional nested loop structure, that is, the outer speed/active power and reactive power control loop and the inner d-q rotor current control loop, which can effectively estimate the rotor d-q reference current from the actual reference value and reactive power reference value, The power loop controller of the nested control structure is omitted.
具有基本功率和电压控制回路的双馈发电机对电网机电振荡模式的阻尼作用较小,但通过引入附加阻尼控制,可以显著增强阻尼作用。附加阻尼控制信号经自动电压调节器(automatic voltage regulator,AVR)加入DFIG有功功率控制回路或无功功率控制回路。The DFIG with basic power and voltage control loops has a small damping effect on the electromechanical oscillation mode of the grid, but by introducing additional damping control, the damping effect can be significantly enhanced. The additional damping control signal is added to the DFIG active power control loop or reactive power control loop through an automatic voltage regulator (AVR).
通过有功调节改变发电机的电磁转矩更有效,但有功调节会恶化DFIG轴动力学特性,无功调节可能会恶化定子电压动态特性,DFIG有时需要牺牲自身的部分动力学特性来进行阻尼控制,在实际实现时需要同时考虑阻尼控制和系统动态性能。It is more effective to change the electromagnetic torque of the generator through active power regulation, but the active power regulation will deteriorate the dynamic characteristics of the DFIG shaft, and the reactive power regulation may deteriorate the dynamic characteristics of the stator voltage. Sometimes, DFIG needs to sacrifice part of its own dynamic characteristics for damping control. In actual implementation, damping control and system dynamic performance need to be considered at the same time.
步骤二:将电力系统稳定器和虚拟阻抗相结合后连接到转子侧换流器,并采用定子磁链定向矢量控制技术获得转子侧换流器的输出电压与转子电流的关系;PSS-VI输入信号选择对控制器性能有较大影响,输入信号可以选择转子转速、电压、电流或频率,基于残差分析是最常用的信号选择方式。当输出信号加到转子电压正交分量,即无功功率控制回路中时,可选择为DFIG的有功功率参考值Ps *与有功功率测量值Ps的差值ΔP作为输入信号。本发明将PSS-VI输出控制信号UPSS-VI加入无功功率控制回路中,求和得到转子电压的正交分量。Step 2: Connect the power system stabilizer and virtual impedance to the rotor side converter, and use the stator flux oriented vector control technology to obtain the relationship between the output voltage of the rotor side converter and the rotor current; PSS-VI input Signal selection has a great influence on the performance of the controller. The input signal can be selected from rotor speed, voltage, current or frequency. Based on residual analysis is the most commonly used signal selection method. When the output signal is added to the quadrature component of the rotor voltage, that is, the reactive power control loop, the difference ΔP between the active power reference value P s * of DFIG and the active power measurement value P s can be selected as the input signal. In the present invention, the PSS-VI output control signal U PSS-VI is added into the reactive power control loop, and the sum is obtained to obtain the quadrature component of the rotor voltage.
DFIG转子侧变流器采用定子磁链定向矢量控制技术,转子电流和RSC输出电压的关系为:The DFIG rotor side converter adopts the stator flux oriented vector control technology, and the relationship between the rotor current and the RSC output voltage is:
加入PSS-VI控制器后,由公式(2)可以得出转子电流和RSC输出电压的关系:After adding the PSS-VI controller, the relationship between the rotor current and the RSC output voltage can be obtained from formula (2):
其中,Kp1、Ki1、Kp3、Ki3、Kq1、Ki2均为转子侧换流器控制PI(比例积分)控制器的参数,Vrd表示d轴转子电压,Ps *表示转子有功功率参考值,Ps表示转子有功功率测量值,ird表示d轴转子电流,Vrq表示q轴转子电压,Qs *表示转子无功功率参考值,Qs表示转子无功功率测量值,irq表示q轴转子电流,s表示微分算子,uerrs为电力系统稳定器-虚拟阻抗经自动电压调节器装置后的输入信号。Among them, K p1 , K i1 , K p3 , K i3 , K q1 , and K i2 are the parameters of the rotor-side converter control PI (proportional-integral) controller, V rd represents the d-axis rotor voltage, and P s * represents the rotor Active power reference value, P s means rotor active power measurement value, i rd means d-axis rotor current, V rq means q-axis rotor voltage, Q s * means rotor reactive power reference value, Q s means rotor reactive power measurement value , i rq represents the q-axis rotor current, s represents the differential operator, u errs is the input signal of the power system stabilizer-virtual impedance after the automatic voltage regulator device.
uerrs为电力系统稳定器-虚拟阻抗经AVR装置后的输入信号。u errs is the input signal of the power system stabilizer-virtual impedance after passing through the AVR device.
式中,Te、Kf1、Tc、Tb、Tf1、Ka、Ta、Tr、K均为AVR控制参数,UPSS-VI表示PSS-VI输出信号,u表示DFIG定子电压。In the formula, T e , K f1 , T c , T b , T f1 , K a , T a , T r , K are all AVR control parameters, U PSS-VI means PSS-VI output signal, u means DFIG stator voltage .
步骤三:根据定子电压、定子磁链和定子电流之间的关系获得定子电流与定子的输出功率的关系;Step 3: Obtain the relationship between the stator current and the output power of the stator according to the relationship between the stator voltage, the stator flux linkage and the stator current;
在定子电压定向下,同步旋转坐标系d轴与定子电压矢量us方向重合,忽略定子电阻后定子磁通矢量与q轴负向一致,滞后定子电压矢量90°。由定子侧的电压、磁链和电流关系可得定子电流和功率表达式为:Under stator voltage orientation, the d-axis of the synchronous rotating coordinate system coincides with the stator voltage vector u s direction, and the stator magnetic flux vector coincides with the negative direction of the q-axis after ignoring the stator resistance, lagging the stator voltage vector by 90°. From the voltage, flux linkage and current relationship on the stator side, the stator current and power can be expressed as:
式中:Lm为d-q坐标系定子和转子同轴等效绕组互感,Ls为d-q坐标系中定子等效两相绕组自感,ωs为同步磁场旋转角速度,Ps'为定子的有功输出功率,Qs'为定子的无功输出功率,ids表示d轴定子电流,iqs表示q轴定子电流,uds表示d轴定子电压,Us表示定子电压。In the formula: L m is the mutual inductance of the stator and rotor coaxial equivalent windings in the dq coordinate system, L s is the self-inductance of the stator equivalent two-phase windings in the dq coordinate system, ω s is the rotational angular velocity of the synchronous magnetic field, and P s ' is the active power of the stator Output power, Q s 'is the reactive output power of the stator, ids represents the d-axis stator current, i qs represents the q-axis stator current, u ds represents the d-axis stator voltage, U s represents the stator voltage.
步骤四:根据转子侧换流器的输出电压与转子电流的关系以及定子电流与定子的输出功率的关系得到电力系统稳定器-虚拟阻抗的参数与定子的输出功率的关系;Step 4: According to the relationship between the output voltage of the rotor-side converter and the rotor current and the relationship between the stator current and the output power of the stator, the relationship between the parameters of the power system stabilizer-virtual impedance and the output power of the stator is obtained;
由公式(4)-(6)可得定子输出功率与PSS-VI控制器参数的关系如下:According to formulas (4)-(6), the relationship between the output power of the stator and the parameters of the PSS-VI controller can be obtained as follows:
步骤五:通过改变电力系统稳定器-虚拟阻抗的参数调整定子的输出功率,进而影响电网系统的阻尼特性。根据公式(7),当改变PSS-VI参数时,DFIG的输出无功功率会跟随改变,进而影响系统的阻尼特性。Step 5: Adjust the output power of the stator by changing the parameters of the power system stabilizer-virtual impedance, thereby affecting the damping characteristics of the grid system. According to formula (7), when the PSS-VI parameters are changed, the output reactive power of DFIG will change accordingly, which will affect the damping characteristics of the system.
仿真实验Simulation
为研究本发明方法改善含风电电力系统低频振荡特性的有效性,在DigSilent/PowerFactory仿真软件搭建DFIG-PSS-VI模型,并在4机2区域互联系统(简称本系统)上采用特征根分析和时域仿真进行了分析。本系统的基准容量为100MVA,频率50Hz,联络线传输功率为400MW。本系统的区域1和区域2通过双回联络线连通,G1、G2、G3、G4为4台额定容量为900MVA、20kV的火电机组,其中节点3为参考节点,各发电机组有功出力为700MW。DFIG接入点为母线10,本系统的系统图如图5所示。In order to study the effectiveness of the method of the present invention in improving the low-frequency oscillation characteristics of power systems containing wind power, the DFIG-PSS-VI model is built in the DigSilent/PowerFactory simulation software, and the characteristic root analysis and Time domain simulations are analyzed. The base capacity of this system is 100MVA, the frequency is 50Hz, and the transmission power of the tie line is 400MW.
本仿真实验首先研究控制器增益影响,在保证其他控制参数不变的前提下调整PSS-VI控制器增益K1,由式(7)和式(4)可知当K1减小时,DFIG输出无功功率相应减小,图6给出系统区域间振荡模式特征根的分布情况,由图6可知,随着PSS-VI控制器增益减小,本系统区域间振荡模式特征值呈左移趋势,阻尼比呈增加趋势。In this simulation experiment, the influence of the controller gain is first studied, and the PSS-VI controller gain K 1 is adjusted under the premise of keeping other control parameters unchanged. From formula (7) and formula (4), it can be seen that when K 1 decreases, the DFIG output has no The work power decreases accordingly. Figure 6 shows the distribution of the characteristic roots of the system's inter-regional oscillation mode. It can be seen from Fig. 6 that as the PSS-VI controller gain decreases, the system's inter-regional oscillation mode eigenvalues tend to shift to the left. The damping ratio tends to increase.
PSS-VI控制器增益K1=0.45,保持其他参数不变,改变虚拟阻抗环节参数KL,图7给出了系统区域间振荡模式特征根的分布情况,由图7可知,随着PSS-VI控制器虚拟阻抗环节参数KL减小,本系统的区域间振荡模式特征根系统区域间振荡模式特征值呈左移趋势,阻尼比呈增加趋势。PSS-VI controller gain K 1 = 0.45, keep other parameters unchanged, change the virtual impedance link parameter K L , Fig. 7 shows the distribution of the characteristic root of the oscillation mode between the system regions, it can be seen from Fig. 7 that with the PSS- As the parameter K L of the virtual impedance link of the VI controller decreases, the eigenvalues of the system's interregional oscillation mode eigenvalues tend to shift to the left, and the damping ratio increases.
根据前面分析,取PSS-VI参数:TW=0.01,T1=0.2,T2=0.08,T3=0.06,T4=0.4,K1=0.45,Kr=0.2,KL=0.5。表1中给出了系统加装PSS-VI控制器前后的部分特征值,模式1与模式4为区域间振荡模式,模式2和模式3为区域内振荡模式。可以看出,区域间振荡模式1的阻尼比得到明显提高,系统的鲁棒性得到改善。According to the previous analysis, the PSS-VI parameters are taken as: T W =0.01, T 1 =0.2, T 2 =0.08, T 3 =0.06, T 4 =0.4, K 1 =0.45, K r =0.2, K L =0.5. Table 1 shows some eigenvalues of the system before and after the PSS-VI controller is installed.
表1加装PSS-VI后系统振荡模式Table 1 System oscillation mode after installing PSS-VI
假设系统负荷L1有功功率在1s时阶跃5%,1.5s时系统负荷恢复,联络线传输功率为400MW,仿真时间20s,图8中给出了在发生负荷波动时,系统添加PSS-VI控制器前后发电机G1相对功角δ和母线6电压变化曲线。Assuming that the active power of the system load L1 steps 5% in 1s, the system load recovers in 1.5s, the transmission power of the tie line is 400MW, and the simulation time is 20s. Figure 8 shows that when the load fluctuation occurs, the system adds PSS-VI The relative power angle δ of generator G 1 and the voltage change curve of
假设联络线6与7之间在t=1s时发生三相短路,t=1.1s故障清除,仿真时间20s,图9给出了发电机G1相对功角δ和母线6的频率变化曲线。Assuming that a three-phase short circuit occurs between
由图8和图9可知,在系统发生不同类型的扰动时,系统添加PSS-VI控制器后发电机G1相对功角δ和母线6电压振荡幅度均发生了不同程度的减小,这说明加装PSS-VI控制器对系统振荡有一定的抑制作用,改善了含风电系统的阻尼特性。It can be seen from Figures 8 and 9 that when different types of disturbances occur in the system, the relative power angle δ of generator G 1 and the voltage oscillation amplitude of
发电机出力或负荷功率变化都会使联络线传输功率发生变化,甚至改变联络线的功率传输方向。为进一步验证所建立模型,考虑通过改变同步发电机的出力改变联络线功率,在不同联络线功率下研究其改善效果。Changes in generator output or load power will change the transmission power of the tie line, and even change the power transmission direction of the tie line. In order to further verify the established model, it is considered to change the power of the tie line by changing the output of the synchronous generator, and the improvement effect is studied under different power of the tie line.
表2不同联络线传输功率下系统的振荡模式Table 2 Oscillation modes of the system under different tie line transmission power
将联络线功率分别调整为300MW、450MW、600MW,由区域1向区域2传输功率,表2给出不同联络线传输功率时系统特征值。由表2可得,加装PSS-VI控制器后,在联络线传输功率不同的条件下,系统区域间振荡模式1的阻尼比改变量均得到提高。Adjust the tie line power to 300MW, 450MW, and 600MW respectively, and transmit power from
针对风电并网系统中低频振荡问题,本发明构建了基于虚拟阻抗的DFIG-PSS控制器,之后对搭建的控制器进行了阶跃响应分析,验证虚拟阻抗环节对控制器的提升作用。在DIgSILENT/PowerFactory仿真软件中搭建所设计DFIG-PSS-VI模型,并以4机2区域系统为例,将所搭建控制器加入DFIG转子侧控制器无功控制环中,通过时域仿真验证了所设计控制器对系统低频振荡特性的改善作用。本发明具有以下优势:Aiming at the problem of low-frequency oscillation in the wind power grid-connected system, the present invention constructs a DFIG-PSS controller based on virtual impedance, and then analyzes the step response of the built controller to verify the promotion effect of the virtual impedance link on the controller. Build the designed DFIG-PSS-VI model in the DIgSILENT/PowerFactory simulation software, and take the 4-machine 2-area system as an example, add the built controller to the reactive power control loop of the DFIG rotor side controller, and verify it through time domain simulation The designed controller can improve the low-frequency oscillation characteristics of the system. The present invention has the following advantages:
(1)基于虚拟阻抗控制器超调量低于传统控制器,具有良好的阶跃响应特性,对系统稳定性改善作用更明显。(1) The overshoot of the virtual impedance controller is lower than that of the traditional controller, and it has a good step response characteristic, which can improve the stability of the system more obviously.
(2)DFIG转子侧无功控制环加装基于虚拟阻抗PSS可改善含风电电力系统低频振荡特性,在联络线功率变化时也有一定的效果。(2) The addition of PSS-based reactive power control loop on the rotor side of DFIG can improve the low-frequency oscillation characteristics of the power system including wind power, and it also has a certain effect when the power of the tie line changes.
(3)DFIG-PSS-VI增益和虚拟阻抗电感对系统阻尼有一定的影响,其对区域内振荡改善效果有限,但为抑制含风电区域互联系统区域间低频振荡提供了新思路。(3) DFIG-PSS-VI gain and virtual impedance inductance have a certain influence on the system damping, which has a limited effect on improving intra-regional oscillations, but it provides a new idea for suppressing inter-regional low-frequency oscillations of regional interconnection systems containing wind power.
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included in the scope of the present invention. within the scope of protection.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011603063.8A CN112751346B (en) | 2020-12-30 | 2020-12-30 | Design method of DFIG-PSS controller based on virtual impedance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011603063.8A CN112751346B (en) | 2020-12-30 | 2020-12-30 | Design method of DFIG-PSS controller based on virtual impedance |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112751346A CN112751346A (en) | 2021-05-04 |
CN112751346B true CN112751346B (en) | 2023-02-28 |
Family
ID=75647038
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011603063.8A Active CN112751346B (en) | 2020-12-30 | 2020-12-30 | Design method of DFIG-PSS controller based on virtual impedance |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112751346B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL2028953B1 (en) * | 2021-08-11 | 2023-02-23 | Univ Beijing Civil Eng & Architecture | State Feedback Decoupling Control-based Wind Power Grid-Connected Damping Control Method and Device |
CN113922372B (en) * | 2021-10-14 | 2023-11-17 | 浙江大学 | High-frequency oscillation suppression method and device for doubly-fed wind power access flexible-direct system |
CN114421830B (en) * | 2022-03-29 | 2022-06-21 | 南京凌博电子科技有限公司 | Motor control method based on virtual damping winding for permanent magnet synchronous motor |
CN116316864B (en) * | 2023-01-31 | 2023-12-19 | 四川大学 | Method for analyzing grid-connected stability of multiple converters under strong connection condition |
CN116167232B (en) * | 2023-03-03 | 2023-12-26 | 国网浙江省电力有限公司电力科学研究院 | DFIG sequence impedance model identification method and system |
CN116316893B (en) * | 2023-03-29 | 2024-07-19 | 国网江苏省电力有限公司扬州供电分公司 | Distributed power grid-connected system control method and device based on robust virtual synchronization |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996019025A1 (en) * | 1994-12-30 | 1996-06-20 | Westinghouse Electric Corporation | Series compensator inserting real and reactive impedance into electric power system for damping power oscillations |
CN103812132A (en) * | 2013-12-23 | 2014-05-21 | 湖南工业大学 | Wind power integration system transient stability improvement method based on DFIG-FMAC-PSS control |
CN104158169A (en) * | 2014-05-16 | 2014-11-19 | 湖南工业大学 | Voltage control method for photovoltaic DC micro-grid bus |
CN105186568A (en) * | 2015-10-14 | 2015-12-23 | 华中科技大学 | Doubly-fed wind turbine generator set low-voltage rid through control method based on inductance simulation |
CN106981878A (en) * | 2016-01-18 | 2017-07-25 | 华北电力大学(保定) | A kind of method that double-fed blower fan based on Active Disturbance Rejection Control suppresses electricity grid oscillating |
CN107017646A (en) * | 2017-05-25 | 2017-08-04 | 东南大学 | The double-fed blower fan sub-synchronous oscillation suppression method controlled based on virtual impedance |
CN107968416A (en) * | 2017-12-07 | 2018-04-27 | 郑州轻工业学院 | A kind of POD design methods based on UPFC dampings oscillating characteristic containing wind power system |
CN108270241A (en) * | 2018-02-06 | 2018-07-10 | 国网四川省电力公司电力科学研究院 | The control method of wind turbine gird-connected inverter virtual synchronous generator |
CN109659955A (en) * | 2018-12-25 | 2019-04-19 | 国网黑龙江省电力有限公司电力科学研究院 | A kind of DFIG and SSSC coordination wide area damp of electrical power system control method |
JP2019080476A (en) * | 2017-10-27 | 2019-05-23 | 東京電力ホールディングス株式会社 | Ac-dc converter control device |
CN110957746A (en) * | 2019-12-25 | 2020-04-03 | 郑州轻工业大学 | A Power System Stabilizer Parameter Optimization Method Based on Generalized Phase Compensation Method |
CN111276959A (en) * | 2019-12-24 | 2020-06-12 | 天津大学 | Direct-current micro-grid power coordination control method based on double-fed wind power generation system |
CN112104275A (en) * | 2020-11-13 | 2020-12-18 | 国网浙江省电力有限公司电力科学研究院 | DFIG impedance remodeling control method for direct power control without phase-locked loop |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DK2544358T3 (en) * | 2011-07-08 | 2017-02-20 | Abb Technology Oy | Double supply induction machine control system |
US11289940B2 (en) * | 2013-06-14 | 2022-03-29 | Abb Schweiz Ag | Systems and methods for multi-use multi-mode ups |
GB2554954B (en) * | 2016-10-17 | 2018-11-21 | Zhong Qingchang | Operating doubly-fed induction generators as virtual synchronous generators |
CN109787274B (en) * | 2017-11-15 | 2023-09-22 | 中国电力科学研究院有限公司 | A virtual synchronization control method and rotor-side frequency converter controller |
CN109936169A (en) * | 2017-12-15 | 2019-06-25 | 台达电子企业管理(上海)有限公司 | Uneven and harmonic power distribution control method and device between shunt chopper |
-
2020
- 2020-12-30 CN CN202011603063.8A patent/CN112751346B/en active Active
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996019025A1 (en) * | 1994-12-30 | 1996-06-20 | Westinghouse Electric Corporation | Series compensator inserting real and reactive impedance into electric power system for damping power oscillations |
CN103812132A (en) * | 2013-12-23 | 2014-05-21 | 湖南工业大学 | Wind power integration system transient stability improvement method based on DFIG-FMAC-PSS control |
CN104158169A (en) * | 2014-05-16 | 2014-11-19 | 湖南工业大学 | Voltage control method for photovoltaic DC micro-grid bus |
CN105186568A (en) * | 2015-10-14 | 2015-12-23 | 华中科技大学 | Doubly-fed wind turbine generator set low-voltage rid through control method based on inductance simulation |
CN106981878A (en) * | 2016-01-18 | 2017-07-25 | 华北电力大学(保定) | A kind of method that double-fed blower fan based on Active Disturbance Rejection Control suppresses electricity grid oscillating |
CN107017646A (en) * | 2017-05-25 | 2017-08-04 | 东南大学 | The double-fed blower fan sub-synchronous oscillation suppression method controlled based on virtual impedance |
JP2019080476A (en) * | 2017-10-27 | 2019-05-23 | 東京電力ホールディングス株式会社 | Ac-dc converter control device |
CN107968416A (en) * | 2017-12-07 | 2018-04-27 | 郑州轻工业学院 | A kind of POD design methods based on UPFC dampings oscillating characteristic containing wind power system |
CN108270241A (en) * | 2018-02-06 | 2018-07-10 | 国网四川省电力公司电力科学研究院 | The control method of wind turbine gird-connected inverter virtual synchronous generator |
CN109659955A (en) * | 2018-12-25 | 2019-04-19 | 国网黑龙江省电力有限公司电力科学研究院 | A kind of DFIG and SSSC coordination wide area damp of electrical power system control method |
CN111276959A (en) * | 2019-12-24 | 2020-06-12 | 天津大学 | Direct-current micro-grid power coordination control method based on double-fed wind power generation system |
CN110957746A (en) * | 2019-12-25 | 2020-04-03 | 郑州轻工业大学 | A Power System Stabilizer Parameter Optimization Method Based on Generalized Phase Compensation Method |
CN112104275A (en) * | 2020-11-13 | 2020-12-18 | 国网浙江省电力有限公司电力科学研究院 | DFIG impedance remodeling control method for direct power control without phase-locked loop |
Non-Patent Citations (1)
Title |
---|
《附加阻尼控制静止无功补偿器对含风电》;和萍,文福拴,Ledwich Gerard,吴丹岳,林因;《华北电力大学学报》;20140331;第41卷(第2期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN112751346A (en) | 2021-05-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112751346B (en) | Design method of DFIG-PSS controller based on virtual impedance | |
Xue et al. | A complete impedance model of a PMSG-based wind energy conversion system and its effect on the stability analysis of MMC-HVDC connected offshore wind farms | |
Song et al. | Analysis of middle frequency resonance in DFIG system considering phase-locked loop | |
Song et al. | Overview of DFIG-based wind power system resonances under weak networks | |
Alawasa et al. | Modeling, analysis, and suppression of the impact of full-scale wind-power converters on subsynchronous damping | |
CN111277001A (en) | Fan grid-connected control method based on virtual synchronous generator parameter adaptive control | |
CN106981878A (en) | A kind of method that double-fed blower fan based on Active Disturbance Rejection Control suppresses electricity grid oscillating | |
CN108631338A (en) | A method of for inhibiting the grid-connected sub-synchronous oscillation in double-fed fan motor field | |
CN108683198A (en) | The voltage-controlled type virtual synchronous method of double-fed wind power generator group | |
CN110611321B (en) | A design method of virtual power system stabilizer for compensating the negative damping characteristics of virtual synchronous machine | |
Zhou et al. | Mitigation of subsynchronous oscillation in a VSC-HVDC connected offshore wind farm integrated to grid | |
CN112838589A (en) | Suppression method for subsynchronous oscillation of voltage source type doubly-fed wind turbines in series-compensated grid | |
CN106786673B (en) | The suppressing method and device of double-fed blower compensated transmission system subsynchronous resonance | |
CN107732939A (en) | Suppression sub-synchronous oscillation control method based on voltage source type converter uneoupled control | |
Qiao et al. | Power quality and dynamic performance improvement of wind farms using a STATCOM | |
CN117134372A (en) | Joint compensation method, control method and device for grid-connected energy storage system | |
CN112993991A (en) | Fan two-channel damping control low-frequency oscillation wide-area damping control method | |
CN115882762A (en) | Frequency optimization control method of grid-connected wind power system | |
Li et al. | Stability assessment and enhanced control of DFIG-based WTs during weak AC grid | |
CN115459300A (en) | Doubly-fed wind power plant subsynchronous oscillation suppression method based on linear active disturbance rejection control | |
CN117674183A (en) | Frequency dynamic response optimization method based on grid-connected inverter | |
Zheng et al. | HPF-LADRC for DFIG-based wind farm to mitigate subsynchronous control interaction | |
Wan et al. | Relationships of internal voltage dependence on power imbalance illustrating characteristics and roles in system dynamics of inertial-controlled DFIG-based wind turbines | |
Guo et al. | Subsynchronous oscillation suppression strategy of wind turbine’s phase-locked loop based on optimal damping ratio | |
CN116169689A (en) | Damping optimization control method based on virtual synchronous generator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |