Arbitrary four-position single gyroscope north-seeking method
Technical Field
The invention relates to the technical field of inertia, in particular to a north seeking method for a single gyroscope at any four positions.
Background
The gyro north finder is a high-precision inertial instrument capable of automatically indicating the direction in all weather in a static state, and has wide application prospect in military and civil departments.
The gyro north finder mainly has the function of providing attitude and azimuth reference for a carrier, and most of the current north finders adopt a fiber optic gyro and an accelerometer as main sensitive elements to realize north finding.
In the prior art, the north-seeking scheme based on the transposition has two-position, four-position, multi-position and continuous rotation methods, and the traditional methods have the following defects: part of north-seeking methods require fixed position measurement, such as 90 degrees of rotation orthogonality at four positions, 45 degrees of rotation in psi-type scheme, 90 degrees of included angle between two gyros in two-position scheme and 180 degrees of rotation; the partial north-seeking method has high requirements on constant-speed control of the motor (a continuous rotation method) and has strong conditional constraints.
Therefore, the method which is convenient to operate, few in constraint conditions and high in north-seeking reliability is provided, and the method is of great significance.
Disclosure of Invention
The invention provides a north-seeking method for an arbitrary four-position single gyroscope, which solves the problem that data measurement must be carried out at a fixed or symmetrical position due to the fact that the constraints of the rotating position and the number of sensitive elements are reduced in the traditional four-position scheme, has the characteristics of convenience in operation and high reliability, and can be widely applied to the fields of accurate orientation of weapon systems such as military missile artillery and the like, mine engineering, through measurement and the like which require accurate azimuth reference. The specific technical scheme is as follows:
a single gyro north-seeking method at any four positions comprises the following steps:
the method comprises the following steps of firstly, installing an inertial device, wherein the inertial device comprises a gyroscope and an accelerometer;
secondly, acquiring static data of the gyroscope and the accelerometer in the inertial device at the initial position to obtain a gyroscope output mean value omega
x 1And accelerometer output mean
Thirdly, synchronously rotating the gyroscope and the accelerometer by an angle mu
1Obtaining static data of the gyroscope and the accelerometer in the inertial device at the position to obtain a gyroscope output mean value omega
x 2And accelerometer output mean
Step four, synchronizing rotation angles mu of gyroscope and accelerometer
2Obtaining static data of the gyroscope and the accelerometer in the inertial device at the position to obtain gyroscope outputValue omega
x 3And accelerometer output mean
Fifthly, synchronously rotating the gyroscope and the accelerometer by an angle mu3Obtaining static data of the gyroscope and the accelerometer in the inertial device at the position to obtain a gyroscope output mean value omegax 4And accelerometer output mean value omegax 4;
And step six, substituting the gyro output mean value and the accelerometer output mean value obtained in the step two to the step five into an expression 1) to solve the azimuth angle alpha:
wherein:
A=ω
nor[(1-cos μ
1)cosθ-sin μ
1 sin θ sin γ];
B=ωnor sin μ1 cosγ;C=ωu[(cos μ1-1)sin θ-sin μ1 cos θ sin γ];
X=ωnor{[cos(μ1+μ2)-cos(μ1+μ2+μ3)]cos θ+[sin(μ1+μ2)-sin(μ1+μ2+μ3)]sin θ sin γ};
Y=-ωnor[sin(μ1+μ2)-sin(μ1+μ2+μ3)]cosγ;
Z=ωu{[cos(μ1+μ2+μ3)-cos(μ1+μ2)]sin θ+(sin(μ1+μ2)-sin(μ1+μ2+μ3))cos θ sin γ};
g is the local earth gravitational acceleration; omega
ieIs the rotational angular velocity of the earth;
and taking the local latitude.
Preferably, the gyroscope and the accelerometer sensitive shaft are arranged in the same direction, and the shaft is driven to rotate by a motor.
Preferably, the motor drives the shaft to rotate at a constant speed; and the time from the second step to the fifth step is 50-150 seconds when the static data is acquired. And the static data are kept for a period of time, so that enough static data are obtained, and further more accurate gyro output mean value and accelerometer output mean value are obtained.
Preferably, the gyroscope and the accelerometer are both one.
Preferably, said mu1、μ2And mu3Are all 0 DEG to 360 DEG, and preferably mu1、μ2And mu3All are 0 to 90 degrees.
The scheme of the invention has the following effects:
1. according to the invention, north finding can be realized only by one gyroscope and one accelerometer, so that the constraint of the use number of sensitive elements is reduced.
2. According to the invention, the gyroscope and the accelerometer rotate at any angle to obtain the position data of the inertial devices at four positions, and a unique azimuth angle calculation expression is adopted, so that north finding can be accurately realized, the condition constraint on the measured data position in application is greatly reduced, and the operation is convenient; the rotation angle can be selected at will, north finding can be realized in a short time, and the practicability is strong.
Drawings
FIG. 1 is a schematic flow chart of a single gyro north-seeking method at any four positions according to an embodiment of the present invention;
fig. 2 is a schematic diagram of a configuration of north-seeking and indexing of a single gyro at any four positions in the embodiment of the present invention.
Detailed Description
The embodiments of the present invention will be described in detail with reference to the accompanying drawings so that the advantages and features of the invention can be more easily understood by those skilled in the art, and the scope of the invention will be clearly and clearly defined.
Example (b):
a single gyro north-seeking method at any four positions specifically comprises the following steps, which are detailed as shown in figure 1:
the method comprises the following steps that firstly, an inertia device is installed, the inertia device comprises a gyroscope and an accelerometer, only one gyroscope and one accelerometer are needed, a sensitive shaft of the gyroscope and the sensitive shaft of the accelerometer are installed in the same direction, and a motor drives the shafts to rotate; x, Y, Z are shown in FIG. 2, with O being the origin of the coordinates and the gyroscope and accelerometer being mounted on the X-axis.
Secondly, after receiving a north seeking instruction, the motor is locked at the current position P1, stays for a period of time (the initial position data of the gyroscope and the accelerometer in the inertial device is selected for 100 seconds according to requirements of visual conditions, accuracy and the like), and the initial position data of the gyroscope and the accelerometer in the inertial device is obtained to obtain the gyro output mean value omega
x 1And accelerometer output mean
Thirdly, controlling the motor to stably drive the gyroscope and the accelerometer to synchronously rotate at an angle mu at a constant speed
1The motor is locked at the current position P2, stays for a period of time (the time is selected to be 100 seconds according to requirements of visual working conditions, precision and the like), static data of the gyroscope and the accelerometer in the inertial device at the position are obtained, and the gyro output mean value omega is obtained
x 2And accelerometer output mean
Fourthly, controlling the motor to stably drive the gyroscope, the accelerometer gyroscope and the accelerometer to synchronously rotate at an angle mu at a constant speed2The motor is locked at the current position P3, stays for a period of time (the time is selected to be 100 seconds according to requirements of visual working conditions, precision and the like), static data of the gyroscope and the accelerometer in the inertial device at the position are obtained, and the gyro output mean value omega is obtainedx 3And accelerometer output mean ax 3。
Fifthly, controlling the motor to stably drive the gyroscope and the accelerometer to synchronously rotate at an angle mu at a constant speed3The motor is locked at the current position P4, stays for a period of time (the time is selected to be 100 seconds according to requirements of visual working conditions, precision and the like), static data of the gyroscope and the accelerometer in the inertial device at the position are obtained, and the gyro output mean value omega is obtainedx 4And accelerometer output mean value omegax 4。
And step six, substituting the gyro output mean value and the accelerometer output mean value obtained in the step two to the step five into an expression 1) to solve the azimuth angle alpha:
wherein:
A=ω
nor[(1-cos μ
1)cos θ-sin μ
1 sin θ sin γ];
B=ωnor sin μ1 cos γ;C=ωu[(cos μ1-1)sin θ-sin μ1 cos θ sin γ];
X=ωnor{[cos(μ1+μ2)-cos(μ1+μ2+μ3)]cos θ+[sin(μ1+μ2)-sin(μ1+μ2+μ3)]sin θ sin γ};
Y=-ωnor[sin(μ1+μ2)-sin(μ1+μ2+μ3)]cosγ;
Z=ωu{[cos(μ1+μ2+μ3)-cos(μ1+μ2)]sin θ+(sin(μ1+μ2)-sin(μ1+μ2+μ3))cos θ sin γ};
g is the local earth gravitational acceleration; omega
ieIs the rotational angular velocity of the earth;
and taking the local latitude.
The scheme of the present embodiment is simulated (without considering device errors), and details are as follows:
setting simulation initial conditions: see table 1 for details.
According to the input, the output data of the gyroscope and the accelerometer at each position is generated through simulation, and the details are shown in table 1.
TABLE 1 statistics of data under different simulation conditions
As can be seen by combining simulation 1-simulation 5 in the table 1, no matter the data of the initial set azimuth angle is changed (simulation 1 is compared with simulation 4), the set rotation angle is changed (simulation 1, simulation 2 and simulation 3), or the initial values of theta and gamma are changed (simulation 1 is compared with simulation 5), the data of the azimuth angle obtained by the azimuth angle calculation formula of the invention is completely consistent with the setting, and the scheme of the invention can accurately find north at any four positions and has strong practicability.
The above description is only an embodiment of the present invention, and not intended to limit the scope of the present invention, and all modifications of equivalent structures and equivalent processes performed by the present specification and drawings, or directly or indirectly applied to other related technical fields, are included in the scope of the present invention.