[go: up one dir, main page]

CN112698258B - An integrated error correction method for a three-axis magnetometer - Google Patents

An integrated error correction method for a three-axis magnetometer Download PDF

Info

Publication number
CN112698258B
CN112698258B CN202110077639.XA CN202110077639A CN112698258B CN 112698258 B CN112698258 B CN 112698258B CN 202110077639 A CN202110077639 A CN 202110077639A CN 112698258 B CN112698258 B CN 112698258B
Authority
CN
China
Prior art keywords
axis
sinα
sin
magnetometer
rot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110077639.XA
Other languages
Chinese (zh)
Other versions
CN112698258A (en
Inventor
张宁
林朋飞
赵鹤达
徐磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Naval University of Engineering PLA
Original Assignee
Naval University of Engineering PLA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Naval University of Engineering PLA filed Critical Naval University of Engineering PLA
Priority to CN202110077639.XA priority Critical patent/CN112698258B/en
Publication of CN112698258A publication Critical patent/CN112698258A/en
Application granted granted Critical
Publication of CN112698258B publication Critical patent/CN112698258B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • G01R35/005Calibrating; Standards or reference devices, e.g. voltage or resistance standards, "golden" references

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

The invention discloses an integrated error correction method of a three-axis magnetometer, which comprises the following steps: s1, establishing an error correction model of the three-axis magnetometer; s2, fixing the three-axis magnetometer on a nonmagnetic rotating platform in a uniform magnetic field environment, enabling the x axis and the y axis of the three-axis magnetometer to be parallel to the rotating plane of the nonmagnetic rotating platform, enabling the x axis and the z axis of the three-axis magnetometer to be parallel to the rotating plane of the nonmagnetic rotating platform, enabling the y axis and the z axis of the three-axis magnetometer to be parallel to the rotating plane of the nonmagnetic rotating platform, enabling the nonmagnetic rotating platform to rotate at equal intervals under three conditions, and acquiring the measurement data of the three-axis magnetometer; s3, solving each parameter of the error correction model established in the step S1 by using the measured data under the three conditions in the step S2; and S4, carrying out error correction on the measurement value of the three-axis magnetometer by using the solved error correction model.

Description

一种三轴磁强计的一体化误差校正方法An integrated error correction method for a three-axis magnetometer

技术领域technical field

本发明涉及磁探测领域,尤其是涉及一种三轴磁强计的一体化误差校正方法。The invention relates to the field of magnetic detection, in particular to an integrated error correction method for a three-axis magnetometer.

背景技术Background technique

三轴磁强计是测量空间中的微弱磁场必不可少的器件,理想中三轴磁强计与标定三轴完全对准,但由于制作工艺的影响,磁强计的三轴并非严格对准,此外受到零点漂移和长期磁偏移等因素的影响,使得其测量的磁场数据并非理想值,需要对其进行误差校正。而当前针对磁强计的非对准校正主要是对其三轴进行非正交校正,而校正后的正交三轴与标定的三轴并一定是对准的。The three-axis magnetometer is an indispensable device for measuring weak magnetic fields in space. Ideally, the three-axis magnetometer is completely aligned with the calibration three-axis. However, due to the influence of the manufacturing process, the three-axis of the magnetometer is not strictly aligned. In addition, due to factors such as zero-point drift and long-term magnetic offset, the measured magnetic field data is not ideal, and it needs to be corrected for errors. The current non-alignment correction for the magnetometer is mainly to perform non-orthogonal correction on its three axes, and the corrected orthogonal three axes are not necessarily aligned with the calibrated three axes.

在当前的三轴非正交误差的校正模型中,校正后的正交三轴与三轴磁强计的标定的三轴并非一致,只对磁强计进行三轴非正交校正是不够的,还存在非对准误差,校正后的正交三轴是以磁强计某一实际轴建立正交三轴坐标系,且是以总磁场强度为校正标准进行校正。现有的,磁校正模型只适合磁总场测量和对定位要求低的矢量磁场应用中,针对磁强计上标定的三轴与实际三轴对准的校正研究几乎没有,在定位要求高的应用中,对标定三轴和实际三轴进行校正十分有必要。In the current three-axis non-orthogonal error correction model, the corrected orthogonal three-axis are inconsistent with the calibrated three-axis of the three-axis magnetometer, and it is not enough to perform three-axis non-orthogonal correction on the magnetometer. , there is also a non-alignment error, the corrected orthogonal three-axis is based on an actual axis of the magnetometer to establish an orthogonal three-axis coordinate system, and the total magnetic field strength is used as the correction standard for correction. At present, the magnetic calibration model is only suitable for the total magnetic field measurement and the vector magnetic field applications with low positioning requirements. There is almost no calibration research on the alignment of the three axes calibrated on the magnetometer with the actual three axes. In application, it is necessary to correct the calibration three-axis and the actual three-axis.

发明内容SUMMARY OF THE INVENTION

为解决上述背景技术中提出的问题,本发明的目的在于提供一种三轴磁强计的一体化误差校正方法。In order to solve the problems raised in the above background technology, the purpose of the present invention is to provide an integrated error correction method for a three-axis magnetometer.

为实现上述目的,本发明采取的技术方案为:To achieve the above object, the technical scheme adopted in the present invention is:

一种三轴磁强计的一体化误差校正方法,包括如下步骤:An integrated error correction method for a three-axis magnetometer, comprising the following steps:

S1,建立三轴磁强计的误差校正模型,误差校正模型中包含零偏误差、三轴灵敏度误差、三轴非正交误差及非对准误差造成的影响;S1, establish an error correction model of the three-axis magnetometer, and the error correction model includes the effects of zero bias error, three-axis sensitivity error, three-axis non-orthogonal error and non-alignment error;

S2,在均匀磁场环境中,将三轴磁强计固定在无磁旋转平台上,并分别使三轴磁强计的x轴、y轴平行于无磁旋转平台的旋转平面,三轴磁强计的x轴、z轴平行于无磁旋转平台的旋转平面,三轴磁强计的y轴、z轴平行于无磁旋转平台的旋转平面,在三种情况下,均使无磁旋转平台等间隔旋转,并获取三轴磁强计的测量数据;S2, in a uniform magnetic field environment, fix the three-axis magnetometer on the non-magnetic rotating platform, and make the x-axis and y-axis of the three-axis magnetometer parallel to the rotation plane of the non-magnetic rotating platform, and the three-axis magnetic The x-axis and z-axis of the meter are parallel to the rotation plane of the non-magnetic rotating platform, and the y-axis and z-axis of the three-axis magnetometer are parallel to the rotation plane of the non-magnetic rotating platform. Rotate at equal intervals and obtain the measurement data of the three-axis magnetometer;

S3,利用步骤S2中三种情况下测得的测量数据,求解步骤S1 中建立的误差校正模型的各个参数;S3, using the measurement data measured under the three conditions in step S2, solve each parameter of the error correction model established in step S1;

S4,利用求解后的误差校正模型,对三轴磁强计的测量值进行误差校正。S4, using the solved error correction model to perform error correction on the measured value of the three-axis magnetometer.

在一些实施例中,步骤S1中,建立三轴磁强计的误差校正模型的具体步骤如下:In some embodiments, in step S1, the specific steps of establishing the error correction model of the three-axis magnetometer are as follows:

设x、y、z分别表示三轴磁强计的理想标定轴,x、y、z三轴相互正交,xm、ym、zm分别表示三轴磁强计的实际三轴,设xm轴与x 轴的夹角为α1,xm轴与y轴的夹角为

Figure BDA0002908116470000021
xm轴在yz平面的投影与y 轴的夹角为β1;ym轴与y轴的夹角为α2,ym轴与z轴的夹角为
Figure BDA0002908116470000022
ym轴在xz平面的投影与z轴的夹角为β2;zm轴与z轴的夹角为α3,zm轴与x轴的夹角为
Figure BDA0002908116470000023
zm轴在xy平面的投影与x轴的夹角为β3;Let x, y, and z represent the ideal calibration axes of the three-axis magnetometer, respectively, the three axes of x, y, and z are orthogonal to each other, and x m , y m , and z m represent the actual three axes of the three-axis magnetometer, respectively. The angle between the x m axis and the x axis is α 1 , and the angle between the x m axis and the y axis is
Figure BDA0002908116470000021
The angle between the projection of the x m axis on the yz plane and the y axis is β 1 ; the angle between the y m axis and the y axis is α 2 , and the angle between the y m axis and the z axis is
Figure BDA0002908116470000022
The angle between the projection of the y m axis on the xz plane and the z axis is β 2 ; the angle between the z m axis and the z axis is α 3 , and the angle between the z m axis and the x axis is
Figure BDA0002908116470000023
The angle between the projection of the z m axis on the xy plane and the x axis is β 3 ;

则将三轴磁强计的实际输出值由三轴输出理论值表示为:Then the actual output value of the three-axis magnetometer is represented by the theoretical value of the three-axis output as:

Figure BDA0002908116470000031
Figure BDA0002908116470000031

其中,kx、ky、kz分别为三轴灵敏度系数,Bx0、By0、Bz0分别为三轴零点偏移误差,Bx、By、Bz分别为三轴磁强计的标定三轴输出理论值,Bxm、Bym、Bzm分别为三轴磁强计的实际输出值;Among them, k x , ky , and k z are the three-axis sensitivity coefficients, respectively, B x0 , By0 , and B z0 are the three-axis zero offset errors, respectively, and B x , By , and B z are the three-axis magnetometer values . To calibrate the theoretical value of the three-axis output, B xm , Bym , and B zm are the actual output values of the three-axis magnetometer;

对式(1)进行变换,则三轴磁强计的三轴输出理论值表示为:Transforming formula (1), the theoretical value of the three-axis output of the three-axis magnetometer is expressed as:

Figure BDA0002908116470000032
Figure BDA0002908116470000032

式(1)、式(2)即为三轴磁强计的误差校正模型。Equations (1) and (2) are the error correction models of the three-axis magnetometer.

在一些实施例中,步骤S2中,具体包括如下步骤:In some embodiments, step S2 specifically includes the following steps:

设在均匀磁场环境中,均匀磁场强度为B,地磁倾角为I,则均匀磁场强度在旋转平面和垂直方向的磁场强度能够表示为:In a uniform magnetic field environment, the uniform magnetic field strength is B and the geomagnetic inclination is I, then the magnetic field strength of the uniform magnetic field strength in the rotating plane and the vertical direction can be expressed as:

Figure BDA0002908116470000033
Figure BDA0002908116470000033

式中,Brot为均匀磁场强度为B在旋转平面的磁场分量,Bw为均匀磁场强度为B在旋转平面垂直方向的磁场分量;In the formula, B rot is the magnetic field component whose uniform magnetic field strength is B in the rotating plane, and B w is the magnetic field component whose uniform magnetic field strength is B in the vertical direction of the rotating plane;

无磁旋转平台旋转时,设θ为旋转角度,θx为Brot与y轴的的初始角度;When the non-magnetic rotating platform rotates, let θ be the rotation angle, and θ x be the initial angle between B rot and the y-axis;

三轴磁强计的标定x轴、y轴平行于无磁旋转平台的旋转平面时,等间隔旋转平台,测得的理论值为:When the calibration x-axis and y-axis of the three-axis magnetometer are parallel to the rotation plane of the non-magnetic rotating platform, the platform is rotated at equal intervals, and the measured theoretical value is:

Figure BDA0002908116470000034
Figure BDA0002908116470000034

将式(4)代入式(1),则此时三轴磁强计的实际输出值Bxm1、 Bym1、Bzm1能够表示为:Substituting Equation (4) into Equation (1), the actual output values B xm1 , Bym1 , and B zm1 of the three-axis magnetometer can be expressed as:

Bxm1=kxcosα1Brotsin(θ+θx)+kxsinα1cosβ1Brotcos(θ+θx)+kxsinα1sinβ1Bw+Bx0 (5)B xm1 =k x cosα 1 B rot sin(θ+θ x )+k x sinα 1 cosβ 1 B rot cos(θ+θ x )+k x sinα 1 sinβ 1 B w +B x0 (5)

Bym1=kysinα2sinβ2Brotsin(θ+θx)+kycosα2Brotcos(θ+θx)+kysinα2cosβ2Bw+By0 B ym1 =k y sinα 2 sinβ 2 B rot sin(θ+θ x )+k y cosα 2 B rot cos(θ+θ x )+k y sinα 2 cosβ 2 B w +B y0

Bzm1=kzsinα3cosβ3Brotsin(θ+θx)+kzsinα3sinβ3Brotcos(θ+θx)+kzcosα3Bw+Bz0 B zm1 =k z sinα 3 cosβ 3 B rot sin(θ+θ x )+k z sinα 3 sinβ 3 B rot cos(θ+θ x )+k z cosα 3 B w +B z0

式(5)能够化简为:Equation (5) can be simplified as:

Bxm1=A1sin((θ+θx)+η1)+kxsinα1sinβ1Bw+Bx0=A1sin(θ+b1)+C1 (6)B xm1 =A 1 sin((θ+θ x )+η 1 )+k x sinα 1 sinβ 1 B w +B x0 =A 1 sin(θ+b 1 )+C 1 (6)

Bym1=A2sin((θ+θx)+η2)+kysinα2cosβ2Bw+By0=A2sin(θ+b2)+C2 B ym1 =A 2 sin((θ+θ x )+η 2 )+k y sinα 2 cosβ 2 B w +B y0 =A 2 sin(θ+b 2 )+C 2

Bzm1=kzsinα3Brotsin(θ+θx3)+kzcosα3Bw+Bz0=A3sin(θ+b3)+C3 B zm1 =k z sinα 3 B rot sin(θ+θ x3 )+k z cosα 3 B w +B z0 =A 3 sin(θ+b 3 )+C 3

式(6)中,η1、η2为常数,变量A1、A2、A3、b1、b2、b3、C1、 C2、C3为拟合函数的特征参数,由实际输出值拟合得到;In formula (6), η 1 and η 2 are constants, and the variables A 1 , A 2 , A 3 , b 1 , b 2 , b 3 , C 1 , C 2 , and C 3 are the characteristic parameters of the fitting function. The actual output value is fitted;

翻转磁强计,将三轴磁强计的标定x轴、z轴平行于无磁旋转平台的旋转平面,等间隔旋转平台,测得的理论值为:Flip the magnetometer, make the calibrated x-axis and z-axis of the three-axis magnetometer parallel to the rotation plane of the non-magnetic rotating platform, and rotate the platform at equal intervals. The measured theoretical value is:

Figure BDA0002908116470000041
Figure BDA0002908116470000041

将式(7)代入式(1),则此时三轴磁强计的实际输出值Bxm2、 Bym2、Bzm2能够表示为:Substituting Equation (7) into Equation (1), the actual output values B xm2 , Bym2 , and B zm2 of the three-axis magnetometer can be expressed as:

Bxm2=kxcosα1Brotcos(θ+θx)+kxsinα1cosβ1Bw+kxsinα1sinβ1Brotsin(θ+θx)+Bx0 (8)B xm2 =k x cosα 1 B rot cos(θ+θ x )+k x sinα 1 cosβ 1 B w +k x sinα 1 sinβ 1 B rot sin(θ+θ x )+B x0 (8)

Bym2=kysinα2sinβ2Brotcos(θ+θx)+kycosα2Bw+kysinα2cosβ2Brotsin(θ+θx)+By0 B ym2 = k y sinα 2 sinβ 2 B rot cos(θ+θ x )+k y cosα 2 B w +k y sinα 2 cosβ 2 B rot sin(θ+θ x )+B y0

Bzm2=kzsinα3cosβ3Brotcos(θ+θx)+kzsinα3sinβ3Bw+kzcosα3Brotsin(θ+θx)+Bz0 B zm2 =k z sinα 3 cosβ 3 B rot cos(θ+θ x )+k z sinα 3 sinβ 3 B w +k z cosα 3 B rot sin(θ+θ x )+B z0

式(8)能够化简为:Equation (8) can be simplified as:

Bxm2=A4sin((θ+θx)+η4)+kxsinα1cosβ1Bw+Bx0=A4sin(θ+b4)+C4 (9)B xm2 =A 4 sin((θ+θ x )+η 4 )+k x sinα 1 cosβ 1 B w +B x0 =A 4 sin(θ+b 4 )+C 4 (9)

Bym2=kysinα2Brotsin((θ+θx)+β2)+kycosα2Bw+By0=A5sin(θ+b5)+C5 B ym2 = k y sinα 2 B rot sin((θ+θ x )+β 2 )+k y cosα 2 B w +B y0 =A 5 sin(θ+b 5 )+C 5

Bzm2=A6sin((θ+θx)+η6)+kzsinα3sinβ3Bw+Bz0=A6sin(θ+b6)+C6 B zm2 =A 6 sin((θ+θ x )+η 6 )+k z sinα 3 sinβ 3 B w +B z0 =A 6 sin(θ+b 6 )+C 6

式(9)中,η4、η6为常数,变量A4、A5、A6、b4、b5、b6、C4、 C5、C6为拟合函数的特征参数,由实际输出值拟合得到;In formula (9), η 4 and η 6 are constants, and the variables A 4 , A 5 , A 6 , b 4 , b 5 , b 6 , C 4 , C 5 , and C 6 are the characteristic parameters of the fitting function, which are represented by The actual output value is fitted;

翻转传感器,将三轴磁强计的标定y轴、z轴平行于无磁旋转平台的旋转平面时,等间隔旋转平台,测得的理论值为:Flip the sensor, when the calibration y-axis and z-axis of the three-axis magnetometer are parallel to the rotation plane of the non-magnetic rotating platform, and rotate the platform at equal intervals, the measured theoretical value is:

Figure BDA0002908116470000051
Figure BDA0002908116470000051

将式(10)代入式(1),则此时三轴磁强计的实际输出值Bxm3、 Bym3、Bzm3能够表示为:Substituting Equation (10) into Equation (1), the actual output values B xm3 , Bym3 , and B zm3 of the three-axis magnetometer can be expressed as:

Bxm3=kxcosα1Bw+kxsinα1cosβ1Brotsin(θ+θx)+kxsinα1sinβ1Brotcos(θ+θx)+Bx0 (11)B xm3 =k x cosα 1 B w +k x sinα 1 cosβ 1 B rot sin(θ+θ x )+k x sinα 1 sinβ 1 B rot cos(θ+θ x )+B x0 (11)

Bym3=kysinα2sinβ2Bw+kycosα2Brotsin(θ+θx)+kysinα2cosβ2Brotcos(θ+θx)+By0 B ym3 = k y sinα 2 sinβ 2 B w +k y cosα 2 B rot sin(θ+θ x )+k y sinα 2 cosβ 2 B rot cos(θ+θ x )+B y0

Bzm3=kzsinα3cosβ3Bw+kzsinα3sinβ3Brotsin(θ+θx)+kzcosα3Brotcos(θ+θx)+Bz0 B zm3 =k z sinα 3 cosβ 3 B w +k z sinα 3 sinβ 3 B rot sin(θ+θ x )+k z cosα 3 B rot cos(θ+θ x )+B z0

式(11)能够化简为:Equation (11) can be simplified as:

Bxm3=kxsinα1Brotsin((θ+θx)+β1)+kxcosα1Bw+Bx0=A7sin(θ+b7)+C7 (12)B xm3 =k x sinα 1 B rot sin((θ+θ x )+β 1 )+k x cosα 1 B w +B x0 =A 7 sin(θ+b 7 )+C 7 (12)

Bym3=A8sin((θ+θx)+η8)+kysinα2sinβ2Bw+By0=A8sin(θ+b8)+C8 B ym3 =A 8 sin((θ+θ x )+η 8 )+k y sinα 2 sinβ 2 B w +B y0 =A 8 sin(θ+b 8 )+C 8

Bzm3=A9sin((θ+θx)+η9)+kzsinα3cosβ3Bw+Bz0=A9sin(θ+b9)+C9 B zm3 =A 9 sin((θ+θ x )+η 9 )+k z sinα 3 cosβ 3 B w +B z0 =A 9 sin(θ+b 9 )+C 9

式(12)中,η8、η9为常数,变量A7、A8、A9、b7、b8、b9、 C7、C8、C9为拟合函数的特征参数,由实际输出值拟合得到。In formula (12), η 8 and η 9 are constants, and the variables A 7 , A8 , A9 , b 7 , b 8 , b 9 , C 7 , C 8 , and C 9 are the characteristic parameters of the fitting function, which are output by the actual value fitted.

在一些实施例中,步骤S3中,求解步骤S1中建立的误差校正模型的各个参数的具体步骤如下:In some embodiments, in step S3, the specific steps for solving each parameter of the error correction model established in step S1 are as follows:

由式(6)(9)(12)可得,误差校正模型的参数kx、α1、β1、 Bx0满足:From equations (6) (9) (12), the parameters k x , α 1 , β 1 , and B x0 of the error correction model satisfy:

Figure BDA0002908116470000052
Figure BDA0002908116470000052

求解式(13)可知β1满足:Solving equation (13), we know that β 1 satisfies:

Figure BDA0002908116470000061
Figure BDA0002908116470000061

make

Figure BDA0002908116470000062
Figure BDA0002908116470000062

有0<β1<π,在求解β1时,若0<β 1 <π, when solving for β 1 , if

Figure BDA0002908116470000063
Figure BDA0002908116470000063

则β1只有一个解,即:Then β 1 has only one solution, namely:

Figure BDA0002908116470000064
Figure BDA0002908116470000064

like

Figure BDA0002908116470000065
Figure BDA0002908116470000065

则β1有两个解:Then β 1 has two solutions:

Figure BDA0002908116470000066
Figure BDA0002908116470000066

解得β1后,代入式(13),可得:After solving for β 1 , substitute into equation (13), we can get:

Figure BDA0002908116470000067
Figure BDA0002908116470000067

Figure BDA0002908116470000068
Figure BDA0002908116470000068

Figure BDA0002908116470000069
Figure BDA0002908116470000069

由式(6)(9)(12)可得,误差校正模型的参数ky、α2、β2、 By0满足:From equations (6) (9) (12), the parameters ky , α 2 , β 2 , and By0 of the error correction model satisfy:

kysinα2cosβ2Bw+By0=C2 (15)k y sinα 2 cosβ 2 B w +B y0 =C 2 (15)

kycosα2Bw+By0=C5 k y cosα 2 B w +B y0 =C 5

kysinα2sinβ2Bw+By0=C8 k y sinα 2 sinβ 2 B w +B y0 =C 8

kysinα2Brot=A5 k y sinα 2 B rot =A 5

求解式(15)可知β2满足:Solving equation (15), we know that β 2 satisfies:

Figure BDA0002908116470000071
Figure BDA0002908116470000071

make

Figure BDA0002908116470000072
Figure BDA0002908116470000072

有0<β2<π,在求解β2时,若0<β 2 <π, when solving for β 2 , if

Figure BDA0002908116470000073
Figure BDA0002908116470000073

则β2只有一个解,即:Then β 2 has only one solution, namely:

Figure BDA0002908116470000074
Figure BDA0002908116470000074

like

Figure BDA0002908116470000075
Figure BDA0002908116470000075

则β2有两个解:Then β 2 has two solutions:

Figure BDA0002908116470000076
Figure BDA0002908116470000076

解得β2后,代入式(15),可得:After solving for β 2 , substitute into equation (15), we can get:

Figure BDA0002908116470000081
Figure BDA0002908116470000081

Figure BDA0002908116470000082
Figure BDA0002908116470000082

Figure BDA0002908116470000083
Figure BDA0002908116470000083

由式(6)(9)(12)可得,误差校正模型的参数kz、α3、β3、 Bz0满足:From equations (6) (9) (12), the parameters k z , α 3 , β 3 , and B z0 of the error correction model satisfy:

kysinα2cosβ2Bw+By0=C2 (17)k y sinα 2 cosβ 2 B w +B y0 =C 2 (17)

kycosα2Bw+By0=C5 k y cosα 2 B w +B y0 =C 5

kysinα2sinβ2Bw+By0=C8 k y sinα 2 sinβ 2 B w +B y0 =C 8

kysinα2Brot=A5 k y sinα 2 B rot =A 5

求解式(17)可知β3满足:Solving equation (17), we know that β 3 satisfies:

Figure BDA0002908116470000084
Figure BDA0002908116470000084

make

Figure BDA0002908116470000085
Figure BDA0002908116470000085

有0<β3<π,在求解β3时,若0<β 3 <π, when solving for β 3 , if

Figure BDA0002908116470000086
Figure BDA0002908116470000086

则β3只有一个解,即:Then β 3 has only one solution, namely:

Figure BDA0002908116470000087
Figure BDA0002908116470000087

like

Figure BDA0002908116470000088
Figure BDA0002908116470000088

则β3有两个解:Then β 3 has two solutions:

Figure BDA0002908116470000091
Figure BDA0002908116470000091

解得β3后,代入式(17),可得:After solving for β 3 , substitute into equation (17), we can get:

Figure BDA0002908116470000092
Figure BDA0002908116470000092

Figure BDA0002908116470000093
Figure BDA0002908116470000093

Figure BDA0002908116470000094
Figure BDA0002908116470000094

从而解得了误差校正模型的所有参数,对于β1、β2、β3存在两个解的情况,将两种情况各自解得的参数代入误差校正模型中,根据实际校正效果来确定β1、β2、β3的值。Thus, all parameters of the error correction model are obtained. For the case where there are two solutions for β 1 , β 2 , and β 3 , the parameters obtained in the two cases are substituted into the error correction model, and β 1 , β 1 , β 3 are determined according to the actual correction effect. The value of β 2 , β 3 .

与现有技术相比,本发明的有益效果是:Compared with the prior art, the beneficial effects of the present invention are:

本发明提供的三轴磁强计的一体化误差校正方法,提出了三轴都不重合的三轴非正交及非对准模型,一次性解决传感器的非正交误差和正交后与标定三轴不对准的误差,并对零偏误差和灵敏度系数误差进行一体建模,通过三角函数拟合求解误差系数,实现精度极高的误差校正。The integrated error correction method of the three-axis magnetometer provided by the present invention proposes a three-axis non-orthogonal and non-aligned model in which the three axes are not coincident, and solves the non-orthogonal error of the sensor and the calibration after orthogonality at one time. Three-axis misalignment error, and the zero bias error and sensitivity coefficient error are modeled together, and the error coefficient is solved by trigonometric function fitting to achieve extremely high-precision error correction.

附图说明Description of drawings

图1为三轴磁强计的实际轴和理论轴示意图;Figure 1 is a schematic diagram of the actual axis and theoretical axis of the three-axis magnetometer;

图2a-图2c为一个具体实施例中三轴磁强计的实际输出值与拟合值的示意图。2a-2c are schematic diagrams of actual output values and fitted values of a three-axis magnetometer in a specific embodiment.

具体实施方式Detailed ways

为使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合附图和具体实施方式,进一步阐述本发明是如何实施的。In order to make the technical means, creative features, achievement goals and effects realized by the present invention easy to understand, how the present invention is implemented is further described below with reference to the accompanying drawings and specific embodiments.

本发明提供了一种三轴磁强计的一体化误差校正方法,包括如下步骤:The invention provides an integrated error correction method for a three-axis magnetometer, comprising the following steps:

S1,建立三轴磁强计的误差校正模型,误差校正模型中包含零偏误差、三轴灵敏度误差、三轴非正交误差及非对准误差造成的影响;S1, establish an error correction model of the three-axis magnetometer, and the error correction model includes the effects of zero bias error, three-axis sensitivity error, three-axis non-orthogonal error and non-alignment error;

S2,在均匀磁场环境中,将三轴磁强计固定在无磁旋转平台上,并分别使三轴磁强计的x轴、y轴平行于无磁旋转平台的旋转平面,三轴磁强计的x轴、z轴平行于无磁旋转平台的旋转平面,三轴磁强计的y轴、z轴平行于无磁旋转平台的旋转平面,在三种情况下,均使无磁旋转平台等间隔旋转,并获取三轴磁强计的测量数据;S2, in a uniform magnetic field environment, fix the three-axis magnetometer on the non-magnetic rotating platform, and make the x-axis and y-axis of the three-axis magnetometer parallel to the rotation plane of the non-magnetic rotating platform, and the three-axis magnetic The x-axis and z-axis of the meter are parallel to the rotation plane of the non-magnetic rotating platform, and the y-axis and z-axis of the three-axis magnetometer are parallel to the rotation plane of the non-magnetic rotating platform. Rotate at equal intervals and obtain the measurement data of the three-axis magnetometer;

S3,利用步骤S2中三种情况下测得的测量数据,求解步骤S1 中建立的误差校正模型的各个参数;S3, using the measurement data measured under the three conditions in step S2, solve each parameter of the error correction model established in step S1;

S4,利用求解后的误差校正模型,对三轴磁强计的测量值进行误差校正。S4, using the solved error correction model to perform error correction on the measured value of the three-axis magnetometer.

进一步地,步骤S1中,建立三轴磁强计的误差校正模型的具体步骤如下:Further, in step S1, the specific steps for establishing the error correction model of the three-axis magnetometer are as follows:

如图1所示,设x、y、z分别表示三轴磁强计的理想标定轴,x、 y、z三轴相互正交,xm、ym、zm分别表示三轴磁强计的实际三轴,设xm轴与x轴的夹角为α1,xm轴与y轴的夹角为

Figure BDA0002908116470000101
xm轴在yz平面的投影与y轴的夹角为β1;ym轴与y轴的夹角为α2,ym轴与z轴的夹角为
Figure BDA0002908116470000102
ym轴在xz平面的投影与z轴的夹角为β2;zm轴与z轴的夹角为α3,zm轴与x轴的夹角为
Figure BDA0002908116470000114
zm轴在xy平面的投影与x轴的夹角为β3;As shown in Figure 1, let x, y, and z represent the ideal calibration axes of the three-axis magnetometer, respectively, the three axes of x, y, and z are orthogonal to each other, and x m , y m , and z m respectively represent the three-axis magnetometer. The actual three axes of the
Figure BDA0002908116470000101
The angle between the projection of the x m axis on the yz plane and the y axis is β 1 ; the angle between the y m axis and the y axis is α 2 , and the angle between the y m axis and the z axis is
Figure BDA0002908116470000102
The angle between the projection of the y m axis on the xz plane and the z axis is β 2 ; the angle between the z m axis and the z axis is α 3 , and the angle between the z m axis and the x axis is
Figure BDA0002908116470000114
The angle between the projection of the z m axis on the xy plane and the x axis is β 3 ;

则将三轴磁强计的实际输出值由三轴输出理论值表示为:Then the actual output value of the three-axis magnetometer is represented by the theoretical value of the three-axis output as:

Figure BDA0002908116470000111
Figure BDA0002908116470000111

其中,kx、ky、kz分别为三轴灵敏度系数,Bx0、By0、Bz0分别为三轴零点偏移误差,Bx、By、Bz分别为三轴磁强计的理论值输出值, Bxm、Bym、Bzm分别为三轴磁强计的实际输出值;Among them, k x , ky , and k z are the three-axis sensitivity coefficients, respectively, B x0 , By0 , and B z0 are the three-axis zero offset errors, respectively, and B x , By , and B z are the three-axis magnetometer values . The theoretical value output value, B xm , Bym , B zm are the actual output values of the three-axis magnetometer;

对式(1)进行变换,则三轴磁强计的三轴输出理论值表示为:Transforming formula (1), the theoretical value of the three-axis output of the three-axis magnetometer is expressed as:

Figure BDA0002908116470000112
Figure BDA0002908116470000112

式(1)、式(2)即为三轴磁强计的误差校正模型。Equations (1) and (2) are the error correction models of the three-axis magnetometer.

进一步地,步骤S2中,具体包括如下步骤:Further, in step S2, it specifically includes the following steps:

设在均匀磁场环境中,均匀磁场强度为B,地磁倾角为I,则均匀磁场强度在旋转平面和垂直方向的磁场强度能够表示为:In a uniform magnetic field environment, the uniform magnetic field strength is B and the geomagnetic inclination is I, then the magnetic field strength of the uniform magnetic field strength in the rotating plane and the vertical direction can be expressed as:

Figure BDA0002908116470000113
Figure BDA0002908116470000113

式中,Brot为均匀磁场强度为B在旋转平面的磁场分量,Bw为均匀磁场强度为B在旋转平面垂直方向的磁场分量;In the formula, B rot is the magnetic field component of the uniform magnetic field strength B in the rotating plane, B w is the magnetic field component of the uniform magnetic field strength B in the vertical direction of the rotating plane;

无磁旋转平台旋转时,设θ为旋转角度,θx为Brot与y轴的的初始角度;When the non-magnetic rotating platform rotates, let θ be the rotation angle, and θ x be the initial angle between B rot and the y-axis;

三轴磁强计的xm轴、ym轴平行于无磁旋转平台的旋转平面时,测得的理论值为:When the x m axis and y m axis of the three-axis magnetometer are parallel to the rotation plane of the non-magnetic rotating platform, the measured theoretical value is:

Figure BDA0002908116470000121
Figure BDA0002908116470000121

将式(4)代入式(1),则此时三轴磁强计的实际输出值Bxm1、 Bym1、Bzm1能够表示为:Substituting Equation (4) into Equation (1), the actual output values B xm1 , Bym1 , and B zm1 of the three-axis magnetometer can be expressed as:

Bxm1=kxcosα1Brotsin(θ+θx)+kxsinα1cosβ1Brotcos(θ+θx)+kxsinα1sinβ1Bw+Bx0 (5)B xm1 =k x cosα 1 B rot sin(θ+θ x )+k x sinα 1 cosβ 1 B rot cos(θ+θ x )+k x sinα 1 sinβ 1 B w +B x0 (5)

Bym1=kysinα2sinβ2Brotsin(θ+θx)+kycosα2Brotcos(θ+θx)+kysinα2cosβ2Bw+By0 B ym1 =k y sinα 2 sinβ 2 B rot sin(θ+θ x )+k y cosα 2 B rot cos(θ+θ x )+k y sinα 2 cosβ 2 B w +B y0

Bzm1=kzsinα3cosβ3Brotsin(θ+θx)+kzsinα3sinβ3Brotcos(θ+θx)+kzcosα3Bw+Bz0 B zm1 =k z sinα 3 cosβ 3 B rot sin(θ+θ x )+k z sinα 3 sinβ 3 B rot cos(θ+θ x )+k z cosα 3 B w +B z0

式(5)能够化简为:Equation (5) can be simplified as:

Bxm1=A1sin((θ+θx)+η1)+kxsinα1sinβ1Bw+Bx0=A1sin(θ+b1)+C1 (6)B xm1 =A 1 sin((θ+θ x )+η 1 )+k x sinα 1 sinβ 1 B w +B x0 =A 1 sin(θ+b 1 )+C 1 (6)

Bym1=A2sin((θ+θx)+η2)+kysinα2cosβ2Bw+By0=A2sin(θ+b2)+C2 B ym1 =A 2 sin((θ+θ x )+η 2 )+k y sinα 2 cosβ 2 B w +B y0 =A 2 sin(θ+b 2 )+C 2

Bzm1=kzsinα3Brotsin(θ+θx3)+kzcosα3Bw+Bz0=A3sin(θ+b3)+C3 B zm1 =k z sinα 3 B rot sin(θ+θ x3 )+k z cosα 3 B w +B z0 =A 3 sin(θ+b 3 )+C 3

式(6)中,η1、η2为常数,变量A1、A2、A3、b1、b2、b3、C1、 C2、C3为拟合函数的特征参数,由实际输出值拟合得到;In formula (6), η 1 and η 2 are constants, and the variables A 1 , A 2 , A 3 , b 1 , b 2 , b 3 , C 1 , C 2 , and C 3 are the characteristic parameters of the fitting function. The actual output value is fitted;

三轴磁强计的标定x轴、z轴平行于无磁旋转平台的旋转平面时,测得的理论值为:When the calibration x-axis and z-axis of the three-axis magnetometer are parallel to the rotation plane of the non-magnetic rotating platform, the measured theoretical value is:

Figure BDA0002908116470000122
Figure BDA0002908116470000122

将式(7)代入式(1),则此时三轴磁强计的实际输出值Bxm2、 Bym2、Bzm2能够表示为:Substituting Equation (7) into Equation (1), the actual output values B xm2 , Bym2 , and B zm2 of the three-axis magnetometer can be expressed as:

Bxm2=kxcosα1Brotcos(θ+θx)+kxsinα1cosβ1Bw+kxsinα1sinβ1Brotsin(θ+θx)+Bx0 (8)B xm2 =k x cosα 1 B rot cos(θ+θ x )+k x sinα 1 cosβ 1 B w +k x sinα 1 sinβ 1 B rot sin(θ+θ x )+B x0 (8)

Bym2=kysinα2sinβ2Brotcos(θ+θx)+kycosα2Bw+kysinα2cosβ2Brotsin(θ+θx)+By0 B ym2 = k y sinα 2 sinβ 2 B rot cos(θ+θ x )+k y cosα 2 B w +k y sinα 2 cosβ 2 B rot sin(θ+θ x )+B y0

Bzm2=kzsinα3cosβ3Brotcos(θ+θx)+kzsinα3sinβ3Bw+kzcosα3Brotsin(θ+θx)+Bz0 B zm2 =k z sinα 3 cosβ 3 B rot cos(θ+θ x )+k z sinα 3 sinβ 3 B w +k z cosα 3 B rot sin(θ+θ x )+B z0

式(8)能够化简为:Equation (8) can be simplified as:

Bxm2=A4sin((θ+θx)+η4)+kxsinα1cosβ1Bw+Bx0=A4sin(θ+b4)+C4 (9)B xm2 =A 4 sin((θ+θ x )+η 4 )+k x sinα 1 cosβ 1 B w +B x0 =A 4 sin(θ+b 4 )+C 4 (9)

Bym2=kysinα2Brotsin((θ+θx)+β2)+kycosα2Bw+By0=A5sin(θ+b5)+C5 B ym2 = k y sinα 2 B rot sin((θ+θ x )+β 2 )+k y cosα 2 B w +B y0 =A 5 sin(θ+b 5 )+C 5

Bzm2=A6sin((θ+θx)+η6)+kzsinα3sinβ3Bw+Bz0=A6sin(θ+b6)+C6 B zm2 =A 6 sin((θ+θ x )+η 6 )+k z sinα 3 sinβ 3 B w +B z0 =A 6 sin(θ+b 6 )+C 6

式(9)中,η4、η6为常数,变量A4、A5、A6、b4、b5、b6、C4、 C5、C6为拟合函数的特征参数,由实际输出值拟合得到;In formula (9), η 4 and η 6 are constants, and the variables A 4 , A 5 , A 6 , b 4 , b 5 , b 6 , C 4 , C 5 , and C 6 are the characteristic parameters of the fitting function, which are represented by The actual output value is fitted;

翻转磁强计,将三轴磁强计的标定y轴、z轴平行于无磁旋转平台的旋转平面时,测得的理论值为:When the magnetometer is flipped and the calibrated y-axis and z-axis of the three-axis magnetometer are parallel to the rotation plane of the non-magnetic rotating platform, the measured theoretical value is:

Figure BDA0002908116470000131
Figure BDA0002908116470000131

将式(10)代入式(1),则此时三轴磁强计的实际输出值Bxm3、 Bym3、Bzm3能够表示为:Substituting Equation (10) into Equation (1), the actual output values B xm3 , Bym3 , and B zm3 of the three-axis magnetometer can be expressed as:

Bxm3=kxcosα1Bw+kxsinα1cosβ1Brotsin(θ+θx)+kxsinα1sinβ1Brotcos(θ+θx)+Bx0 (11)B xm3 =k x cosα 1 B w +k x sinα 1 cosβ 1 B rot sin(θ+θ x )+k x sinα 1 sinβ 1 B rot cos(θ+θ x )+B x0 (11)

Bym3=kysinα2sinβ2Bw+kycosα2Brotsin(θ+θx)+kysinα2cosβ2Brotcos(θ+θx)+By0 B ym3 = k y sinα 2 sinβ 2 B w +k y cosα 2 B rot sin(θ+θ x )+k y sinα 2 cosβ 2 B rot cos(θ+θ x )+B y0

Bzm3=kzsinα3cosβ3Bw+kzsinα3sinβ3Brotsin(θ+θx)+kzcosα3Brotcos(θ+θx)+Bz0 B zm3 =k z sinα 3 cosβ 3 B w +k z sinα 3 sinβ 3 B rot sin(θ+θ x )+k z cosα 3 B rot cos(θ+θ x )+B z0

式(11)能够化简为:Equation (11) can be simplified as:

Bxm3=kxsinα1Brotsin((θ+θx)+β1)+kxcosα1Bw+Bx0=A7sin(θ+b7)+C7 (12)B xm3 =k x sinα 1 B rot sin((θ+θ x )+β 1 )+k x cosα 1 B w +B x0 =A 7 sin(θ+b 7 )+C 7 (12)

Bym3=A8sin((θ+θx)+η8)+kysinα2sinβ2Bw+By0=A8sin(θ+b8)+C8 B ym3 =A 8 sin((θ+θ x )+η 8 )+k y sinα 2 sinβ 2 B w +B y0 =A 8 sin(θ+b 8 )+C 8

Bzm3=A9sin((θ+θx)+η9)+kzsinα3cosβ3Bw+Bz0=A9sin(θ+b9)+C9 B zm3 =A 9 sin((θ+θ x )+η 9 )+k z sinα 3 cosβ 3 B w +B z0 =A 9 sin(θ+b 9 )+C 9

式(12)中,η8、η9为常数,变量A7、A8、A9、b7、b8、b9、 C7、C8、C9为拟合函数的特征参数,由实际输出值拟合得到。In formula (12), η 8 and η 9 are constants, and the variables A 7 , A8 , A9 , b 7 , b 8 , b 9 , C 7 , C 8 , and C 9 are the characteristic parameters of the fitting function, which are output by the actual value fitted.

进一步地,步骤S3中,求解步骤S1中建立的误差校正模型的各个参数的具体步骤如下:Further, in step S3, the specific steps for solving each parameter of the error correction model established in step S1 are as follows:

由式(6)(9)(12)可得,误差校正模型的参数kx、α1、β1、 Bx0满足:From equations (6) (9) (12), the parameters k x , α 1 , β 1 , and B x0 of the error correction model satisfy:

Figure BDA0002908116470000141
Figure BDA0002908116470000141

求解式(13)可知β1满足:Solving equation (13), we know that β 1 satisfies:

Figure BDA0002908116470000142
Figure BDA0002908116470000142

make

Figure BDA0002908116470000143
Figure BDA0002908116470000143

有0<β1<π,在求解β1时,若0<β 1 <π, when solving for β 1 , if

Figure BDA0002908116470000144
Figure BDA0002908116470000144

则β1只有一个解,即:Then β 1 has only one solution, namely:

Figure BDA0002908116470000145
Figure BDA0002908116470000145

like

Figure BDA0002908116470000146
Figure BDA0002908116470000146

则β1有两个解:Then β 1 has two solutions:

Figure BDA0002908116470000147
Figure BDA0002908116470000147

解得β1后,代入式(13),可得:After solving for β 1 , substitute into equation (13), we can get:

Figure BDA0002908116470000151
Figure BDA0002908116470000151

Figure BDA0002908116470000152
Figure BDA0002908116470000152

Figure BDA0002908116470000153
Figure BDA0002908116470000153

由式(6)(9)(12)可得,误差校正模型的参数ky、α2、β2、 By0满足:From equations (6) (9) (12), it can be obtained that the parameters ky , α 2 , β 2 , and By0 of the error correction model satisfy:

kysinα2cosβ2Bw+By0=C2 (15)k y sinα 2 cosβ 2 B w +B y0 =C 2 (15)

kycosα2Bw+By0=C5 k y cosα 2 B w +B y0 =C 5

kysinα2sinβ2Bw+By0=C8 k y sinα 2 sinβ 2 B w +B y0 =C 8

kysinα2Brot=A5 k y sinα 2 B rot =A 5

求解式(15)可知β2满足:Solving equation (15), we know that β 2 satisfies:

Figure BDA0002908116470000154
Figure BDA0002908116470000154

make

Figure BDA0002908116470000155
Figure BDA0002908116470000155

有0<β2<π,在求解β2时,若0<β 2 <π, when solving for β 2 , if

Figure BDA0002908116470000156
Figure BDA0002908116470000156

则β2只有一个解,即:Then β 2 has only one solution, namely:

Figure BDA0002908116470000157
Figure BDA0002908116470000157

like

Figure BDA0002908116470000158
Figure BDA0002908116470000158

则β2有两个解:Then β 2 has two solutions:

Figure BDA0002908116470000161
Figure BDA0002908116470000161

解得β2后,代入式(15),可得:After solving for β 2 , substitute into equation (15), we can get:

Figure BDA0002908116470000162
Figure BDA0002908116470000162

Figure BDA0002908116470000163
Figure BDA0002908116470000163

Figure BDA0002908116470000164
Figure BDA0002908116470000164

由式(6)(9)(12)可得,误差校正模型的参数kz、α3、β3、 Bz0满足:From equations (6) (9) (12), the parameters k z , α 3 , β 3 , and B z0 of the error correction model satisfy:

kysinα2cosβ2Bw+By0=C2 (17)k y sinα 2 cosβ 2 B w +B y0 =C 2 (17)

kycosα2Bw+By0=C5 k y cosα 2 B w +B y0 =C 5

kysinα2sinβ2Bw+By0=C8 k y sinα 2 sinβ 2 B w +B y0 =C 8

kysinα2Brot=A5 k y sinα 2 B rot =A 5

求解式(17)可知β3满足:Solving equation (17), we know that β 3 satisfies:

Figure BDA0002908116470000165
Figure BDA0002908116470000165

make

Figure BDA0002908116470000166
Figure BDA0002908116470000166

有0<β3<π,在求解β3时,若0<β 3 <π, when solving for β 3 , if

Figure BDA0002908116470000167
Figure BDA0002908116470000167

则β3只有一个解,即:Then β 3 has only one solution, namely:

Figure BDA0002908116470000171
Figure BDA0002908116470000171

like

Figure BDA0002908116470000172
Figure BDA0002908116470000172

则β3有两个解:Then β 3 has two solutions:

Figure BDA0002908116470000173
Figure BDA0002908116470000173

解得β3后,代入式(17),可得:After solving for β 3 , substitute into equation (17), we can get:

Figure BDA0002908116470000174
Figure BDA0002908116470000174

Figure BDA0002908116470000175
Figure BDA0002908116470000175

Figure BDA0002908116470000176
Figure BDA0002908116470000176

从而解得了误差校正模型的所有参数,对于β1、β2、β3存在两个解的情况,将两种情况各自解得的参数代入误差校正模型中,根据实际校正效果来确定β1、β2、β3的值。Thus, all parameters of the error correction model are obtained. For the case where there are two solutions for β 1 , β 2 , and β 3 , the parameters obtained from the two solutions are substituted into the error correction model, and β 1 , β 1 , β 3 are determined according to the actual correction effect. The value of β 2 , β 3 .

接下来,在一个具体实施例中,对本发明提供的三轴磁强计的一体化误差校正方法进行仿真分析。Next, in a specific embodiment, simulation analysis is performed on the integrated error correction method of the three-axis magnetometer provided by the present invention.

设三轴磁强计三轴的零点漂移误差分别为:The zero drift errors of the three axes of the three-axis magnetometer are set as:

Bx0=152nT,By0=95.4nT,Bz0=125.3nTB x0 =152nT, By0 =95.4nT, B z0 =125.3nT

三轴灵敏度误差分别为:The three-axis sensitivity errors are:

kx=0.921,ky=1.151,kz=1.131k x =0.921, k y =1.151, k z =1.131

三轴的非正交和非对准角度分别为:The non-orthogonal and non-aligned angles of the three axes are:

α1=1.20°,β1=30.0°,α2=1.34°,β2=40.7°,α3=1.02°,β3=24.5°α 1 =1.20°, β 1 =30.0°, α 2 =1.34°, β 2 =40.7°,α 3 =1.02°,β 3 =24.5°

均匀磁场强度:Uniform Magnetic Field Strength:

B=50000nTB=50000nT

地磁倾角:Magnetic dip:

I=43°I=43°

首先,使三轴磁强计的x轴、y轴平行于无磁旋转平台的旋转平面,无磁旋转平台以π/18的等间隔角度旋转,分别得到三轴磁强计的实际输出值以及利用式(6)建立自定义拟合函数得到的拟合值,实际输出值及拟合值的图像如图2a-图2c所示,由图可以看出拟合值和实际输出值基本吻合,利用计算机求得到的拟合曲线表达式为:First, make the x-axis and y-axis of the three-axis magnetometer parallel to the rotation plane of the non-magnetic rotating platform, and the non-magnetic rotating platform rotates at equal intervals of π/18 to obtain the actual output value of the three-axis magnetometer and Using formula (6) to establish the fitting value obtained by the custom fitting function, the actual output value and the image of the fitting value are shown in Figure 2a-Figure 2c. It can be seen from the figure that the fitting value and the actual output value are basically consistent. The fitting curve expression obtained by the computer is:

Bxm1=33677sin(θ+0.6465)-176.8591B xm1 = 33677sin(θ+0.6465)-176.8591

Bym1=-42083sin(θ-0.9577)-600.4528B ym1 =-42083sin(θ-0.9577)-600.4528

Bzm1=736.2320sin(θ+1.0559)-38436B zm1 =736.2320sin(θ+1.0559)-38436

其中,in,

Figure BDA0002908116470000181
Figure BDA0002908116470000181

结合式(6),即得到了拟合函数的特征参数A1、A2、A3、b1、 b2、b3、C1、C2、C3的值。Combined with formula (6), the values of characteristic parameters A 1 , A 2 , A 3 , b 1 , b 2 , b 3 , C 1 , C 2 , and C 3 of the fitting function are obtained.

接下来,翻转三轴磁强计,使其x轴、z轴平行于无磁旋转平台的旋转平面,基于类似的步骤,求得拟合拟合曲线表达式为:Next, flip the three-axis magnetometer so that its x-axis and z-axis are parallel to the rotation plane of the non-magnetic rotating platform. Based on similar steps, the fitting curve expression is obtained as:

Bxm2=33673sin(θ+2.1886)-417.6006B xm2 = 33673sin(θ+2.1886)-417.6006

Bym2=984.2725sin(θ+1.3387)-39143B ym2 =984.2725sin(θ+1.3387)-39143

Bzm2=41357sin(θ+0.6445)-159.4066B zm2 =41357sin(θ+0.6445)-159.4066

结合式(9),即得到了拟合函数的特征参数A4、A5、A6、b4、 b5、b6、C4、C5、C6的值。Combined with formula (9), the values of characteristic parameters A 4 , A 5 , A 6 , b 4 , b 5 , b 6 , C 4 , C 5 , and C 6 of the fitting function are obtained.

再次翻转三轴磁强计,使其y轴、z轴平行于无磁旋转平台的旋转平面,基于类似的步骤,求得拟合拟合曲线表达式为:Flip the three-axis magnetometer again so that its y-axis and z-axis are parallel to the rotation plane of the non-magnetic rotating platform. Based on similar steps, the fitting curve expression is obtained as:

Bxm3=705.3164sin(θ+1.1519)-31247B xm3 = 705.3164sin(θ+1.1519)-31247

Bym3=42083sin(θ+0.6461)-503.1279B ym3 =42083sin(θ+0.6461)-503.1279

Bzm3=41353sin(θ+2.1917)-499.4316B zm3 =41353sin(θ+2.1917)-499.4316

结合式(12),即得到了拟合函数的特征参数A7、A8、A9、b7、 b8、b9、C7、C8、C9的值。Combined with formula (12), the values of characteristic parameters A 7 , A8 , A9 , b 7 , b 8 , b 9 , C 7 , C 8 , and C 9 of the fitting function are obtained.

将各特征参数带入各标定参数的公式即可求得各标定参数为:By bringing each characteristic parameter into the formula of each calibration parameter, each calibration parameter can be obtained as:

Bx0=152.0nTB x0 = 152.0nT

By0=95.4nTB y0 =95.4nT

Bz0=125.3nTB z0 =125.3nT

α1=1.200°,α2=1.3400°,α3=1.020°α 1 =1.200°, α 2 =1.3400°, α 3 =1.020°

β1=30.000°,β2=40.700°,β1=24.500°β 1 =30.000°, β 2 =40.700°, β 1 =24.500°

kx=0.9210,ky=1.1510,kz=1.1310k x =0.9210, k y =1.1510, k z =1.1310

可见,求得的三轴磁强计的各标定参数与原先的设定值相等,将标定参数代入传感器的误差校正模型,即可实现传感器校正,从而验证了本发明的正确性。It can be seen that the obtained calibration parameters of the triaxial magnetometer are equal to the original set values, and the calibration parameters can be substituted into the error correction model of the sensor to realize sensor calibration, thereby verifying the correctness of the present invention.

经过试验验证,对于某一件三轴磁强计,未校正前,实际输出值与理论值的绝对误差最大有6147.6nT;利用本发明提供的方法进行误差校正后,校正值和理论值相差非常小,数量级为10-11,可以忽略,从而验证了本发明的有效性。It has been verified by experiments that for a certain triaxial magnetometer, the absolute error between the actual output value and the theoretical value is 6147.6nT at most before calibration; after the error correction is performed by the method provided by the present invention, the difference between the calibration value and the theoretical value is very different. is small, the order of magnitude is 10 −11 , which can be ignored, thus verifying the effectiveness of the present invention.

综上,本发明提供的三轴磁强计的一体化误差校正方法,提出了三轴都不重合的三轴非正交及非对准模型,一次性解决传感器的非正交误差和正交后与标定三轴不对准的误差,并对零偏误差和灵敏度系数误差进行一体建模,通过三角函数拟合求解误差系数;校正后,传感器输出绝对误差数量级由103nT降低为10-11nT,校正精度非常高。To sum up, the integrated error correction method of the three-axis magnetometer provided by the present invention proposes a three-axis non-orthogonal and non-aligned model in which the three axes are not coincident, and solves the non-orthogonal error and orthogonality of the sensor at one time. After calibration, the error of the misalignment of the three axes is calculated, and the zero bias error and sensitivity coefficient error are modeled together, and the error coefficient is solved by trigonometric function fitting; after correction, the magnitude of the absolute error of the sensor output is reduced from 10 3 nT to 10 -11 nT, the correction accuracy is very high.

最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围中。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention and not to limit them. Although the present invention has been described in detail with reference to the preferred embodiments, those of ordinary skill in the art should understand that the technical solutions of the present invention can be Modifications or equivalent substitutions, without departing from the spirit and scope of the technical solutions of the present invention, should all be included in the scope of the claims of the present invention.

Claims (3)

1. An integrated error correction method of a three-axis magnetometer is characterized by comprising the following steps:
s1, establishing an error correction model of the triaxial magnetometer, wherein the error correction model comprises the influences caused by zero offset errors, triaxial sensitivity errors, triaxial non-orthogonal errors and non-alignment errors;
s2, fixing the three-axis magnetometer on a nonmagnetic rotating platform in a uniform magnetic field environment, enabling the x axis and the y axis of the three-axis magnetometer to be parallel to the rotating plane of the nonmagnetic rotating platform, enabling the x axis and the z axis of the three-axis magnetometer to be parallel to the rotating plane of the nonmagnetic rotating platform, enabling the y axis and the z axis of the three-axis magnetometer to be parallel to the rotating plane of the nonmagnetic rotating platform, enabling the nonmagnetic rotating platform to rotate at equal intervals under three conditions, and acquiring the measurement data of the three-axis magnetometer;
s3, solving each parameter of the error correction model established in the step S1 by using the measured data under the three conditions in the step S2;
s4, carrying out error correction on the measurement value of the three-axis magnetometer by using the solved error correction model;
in step S1, the specific steps of establishing the error correction model of the three-axis magnetometer are as follows:
let x, y, and z respectively representIdeal calibration axis of three-axis magnetometer, x, y, z three axes are orthogonal, xm、ym、zmRespectively representing the actual three axes of a three-axis magnetometer, let xmThe axis forms an angle alpha with the x-axis1,xmThe axis forms an included angle with the y-axis
Figure FDA0003526860240000011
xmThe projection of the axis on the yz plane forms an included angle beta with the y axis1;ymThe included angle between the axis and the y axis is alpha2,ymThe axis forms an angle with the z-axis
Figure FDA0003526860240000012
ymThe projection of the axis on the xz plane forms an included angle beta with the z axis2;zmThe included angle between the axis and the z axis is alpha3,zmThe axis forms an angle with the x-axis
Figure FDA0003526860240000013
zmThe projection of the axis on the xy plane forms an included angle beta with the x axis3
The actual output value of the triaxial magnetometer is expressed by the triaxial output theoretical value as:
Figure FDA0003526860240000021
wherein k isx、ky、kzRespectively, the three-axis sensitivity coefficient, Bx0、By0、Bz0Respectively, three-axis zero offset error, Bx、By、BzRespectively, the nominal triaxial output theoretical value, B, of the triaxial magnetometerxm、Bym、BzmRespectively the actual output values of the three-axis magnetometer;
by transforming equation (1), the theoretical value of the triaxial output of the triaxial magnetometer is expressed as:
Figure FDA0003526860240000022
the formula (1) and the formula (2) are error correction models of the three-axis magnetometer.
2. The integrated error correction method of the three-axis magnetometer of claim 1, wherein step S2 specifically includes the following steps:
if the magnetic field intensity is B and the geomagnetic inclination angle is I, the magnetic field intensity of the uniform magnetic field in the rotation plane and the vertical direction can be represented as follows:
Figure FDA0003526860240000023
in the formula, BrotThe magnetic field strength is B component of the uniform magnetic field in the rotating planewThe uniform magnetic field intensity is a magnetic field component of B in the vertical direction of the rotating plane;
when the non-magnetic rotary platform rotates, the theta is set as the rotation anglexIs BrotAn initial angle to the y-axis;
when the calibration x-axis and y-axis of the three-axis magnetometer are parallel to the rotating plane of the nonmagnetic rotating platform, the platform is rotated at equal intervals, and the measured theoretical values are as follows:
Figure FDA0003526860240000031
the formula (4) is substituted into the formula (1), and the actual output value B of the triaxial magnetometer is obtained at the momentxm1、Bym1、Bzm1Can be expressed as:
Bxm1=kxcosα1Brotsin(θ+θx)+kxsinα1cosβ1Brotcos(θ+θx)+kxsinα1sinβ1Bw+Bx0 (5)
Bym1=kysinα2sinβ2Brotsin(θ+θx)+kycosα2Brotcos(θ+θx)+kysinα2cosβ2Bw+By0
Bzm1=kzsinα3cosβ3Brotsin(θ+θx)+kzsinα3sinβ3Brotcos(θ+θx)+kzcosα3Bw+Bz0
equation (5) can be simplified to:
Bxm1=A1sin((θ+θx)+η1)+kxsinα1sinβ1Bw+Bx0=A1sin(θ+b1)+C1 (6)
Bym1=A2sin((θ+θx)+η2)+kysinα2cosβ2Bw+By0=A2sin(θ+b2)+C2
Bzm1=kzsinα3Brotsin(θ+θx3)+kzcosα3Bw+Bz0=A3sin(θ+b3)+C3
in the formula (6), eta1、η2Is a constant, variable A1、A2、A3、b1、b2、b3、C1、C2、C3Fitting the characteristic parameters of the fitting function by using the actual output values;
turning over the magnetometer to enable the calibration x axis and the calibration z axis of the triaxial magnetometer to be parallel to the rotating plane of the nonmagnetic rotating platform, rotating the platform at equal intervals, and measuring theoretical values as follows:
Figure FDA0003526860240000032
the formula (7) is substituted into the formula (1), and the actual output value B of the triaxial magnetometer is obtained at the momentxm2、Bym2、Bzm2Can be expressed as:
Bxm2=kxcosα1Brotcos(θ+θx)+kxsinα1cosβ1Bw+kxsinα1sinβ1Brotsin(θ+θx)+Bx0 (8)
Bym2=kysinα2sinβ2Brotcos(θ+θx)+kycosα2Bw+kysinα2cosβ2Brotsin(θ+θx)+By0
Bzm2=kzsinα3cosβ3Brotcos(θ+θx)+kzsinα3sinβ3Bw+kzcosα3Brotsin(θ+θx)+Bz0
equation (8) can be simplified to:
Bxm2=A4sin((θ+θx)+η4)+kxsinα1cosβ1Bw+Bx0=A4sin(θ+b4)+C4 (9)
Bym2=kysinα2Brotsin((θ+θx)+β2)+kycosα2Bw+By0=A5sin(θ+b5)+C5
Bzm2=A6sin((θ+θx)+η6)+kzsinα3sinβ3Bw+Bz0=A6sin(θ+b6)+C6
in the formula (9), eta4、η6Is a constant, variable A4、A5、A6、b4、b5、b6、C4、C5、C6Fitting the characteristic parameters of the fitting function by using the actual output values;
turning over the fluxgate, rotating the platform at equal intervals when the calibration y axis and the calibration z axis of the three-axis magnetometer are parallel to the rotating plane of the nonmagnetic rotating platform, and measuring the theoretical values as follows:
Figure FDA0003526860240000041
the formula (10) is substituted into the formula (1), and the actual output value B of the three-axis magnetometer is obtained at the momentxm3、Bym3、Bzm3Can be expressed as:
Bxm3=kxcosα1Bw+kxsinα1cosβ1Brotsin(θ+θx)+kxsinα1sinβ1Brotcos(θ+θx)+Bx0 (11)
Bym3=kysinα2sinβ2Bw+kycosα2Brotsin(θ+θx)+kysinα2cosβ2Brotcos(θ+θx)+By0
Bzm3=kzsinα3cosβ3Bw+kzsinα3sinβ3Brotsin(θ+θx)+kzcosα3Brotcos(θ+θx)+Bz0
equation (11) can be simplified to:
Bxm3=kxsinα1Brotsin((θ+θx)+β1)+kxcosα1Bw+Bx0=A7sin(θ+b7)+C7 (12)
Bym3=A8sin((θ+θx)+η8)+kysinα2sinβ2Bw+By0=A8sin(θ+b8)+C8
Bzm3=A9sin((θ+θx)+η9)+kzsinα3cosβ3Bw+Bz0=A9sin(θ+b9)+C9
in the formula (12), eta8、η9Is a constant, variable A7、A8、A9、b7、b8、b9、C7、C8、C9The characteristic parameters of the fitting function are obtained by fitting actual output values.
3. The method for integrally correcting errors of a three-axis magnetometer according to claim 2, wherein in step S3, the specific steps for solving the parameters of the error correction model established in step S1 are as follows:
the parameters k of the error correction model can be obtained from the equations (6), (9) and (12)x、α1、β1、Bx0Satisfies the following conditions:
Figure FDA0003526860240000051
by solving the equation (13), beta is found1Satisfies the following conditions:
Figure FDA0003526860240000052
order to
Figure FDA0003526860240000053
Has a value of 0 < beta1< pi, in solving for beta1When, if
Figure FDA0003526860240000054
Then beta is1Only one solution, namely:
Figure FDA0003526860240000055
if it is
Figure FDA0003526860240000056
Then beta is1There are two solutions:
Figure FDA0003526860240000057
or
Figure FDA0003526860240000058
Get beta by solution1Then, by substituting the formula (13), it is possible to obtain:
Figure FDA0003526860240000061
Figure FDA0003526860240000062
Figure FDA0003526860240000063
the parameters k of the error correction model can be obtained from the equations (6), (9) and (12)y、α2、β2、By0Satisfies the following conditions:
kysinα2cosβ2Bw+By0=C2 (15)
kycosα2Bw+By0=C5
kysinα2sinβ2Bw+By0=C8
kysinα2Brot=A5
by solving equation (15), beta is found2Satisfies the following conditions:
Figure FDA0003526860240000064
order to
Figure FDA0003526860240000065
Has a value of 0 < beta2< pi, in solving for beta2When, if
Figure FDA0003526860240000066
Then beta is2Only one solution, namely:
Figure FDA0003526860240000067
if it is
Figure FDA0003526860240000068
Then beta is2There are two solutions:
Figure FDA0003526860240000071
or
Figure FDA0003526860240000072
Get beta by solution2Then, by substituting the formula (15), it is possible to obtain:
Figure FDA0003526860240000073
Figure FDA0003526860240000074
Figure FDA0003526860240000075
the parameters k of the error correction model can be obtained from the equations (6), (9) and (12)z、α3、β3、Bz0Satisfies the following conditions:
kysinα2cosβ2Bw+By0=C2 (17)
kycosα2Bw+By0=C5
kysinα2sinβ2Bw+By0=C8
kysinα2Brot=A5
by solving equation (17), beta is found3Satisfies the following conditions:
Figure FDA0003526860240000076
order to
Figure FDA0003526860240000077
Has a value of 0 < beta3< pi, in solving for beta3When, if
Figure FDA0003526860240000078
Then beta is3Only one solution, namely:
Figure FDA0003526860240000081
if it is
Figure FDA0003526860240000082
Then beta is3There are two solutions:
Figure FDA0003526860240000083
or
Figure FDA0003526860240000084
Get beta by solution3Then, by substituting equation (17), it is possible to obtain:
Figure FDA0003526860240000085
Figure FDA0003526860240000086
Figure FDA0003526860240000087
thus solving all parameters of the error correction model for beta1、β2、β3If there are two solutions, substituting the parameters obtained by the two solutions into the error correction model, and determining beta according to the actual correction effect1、β2、β3The value of (c).
CN202110077639.XA 2021-01-20 2021-01-20 An integrated error correction method for a three-axis magnetometer Active CN112698258B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110077639.XA CN112698258B (en) 2021-01-20 2021-01-20 An integrated error correction method for a three-axis magnetometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110077639.XA CN112698258B (en) 2021-01-20 2021-01-20 An integrated error correction method for a three-axis magnetometer

Publications (2)

Publication Number Publication Date
CN112698258A CN112698258A (en) 2021-04-23
CN112698258B true CN112698258B (en) 2022-04-12

Family

ID=75515863

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110077639.XA Active CN112698258B (en) 2021-01-20 2021-01-20 An integrated error correction method for a three-axis magnetometer

Country Status (1)

Country Link
CN (1) CN112698258B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113253180B (en) * 2021-04-25 2022-04-01 吉林大学 Single-axis measurement precision testing method for field three-axis magnetic sensor
CN114076906B (en) * 2021-11-16 2023-10-17 吉林大学 Non-orthogonal error correction method for high-temperature superconductive full tensor magnetic gradient probe
CN114563741A (en) * 2022-01-27 2022-05-31 西南民族大学 Field calibration method and device for magnetic gradiometer
CN115727872B (en) * 2022-11-07 2024-08-02 北京自动化控制设备研究所 Test and evaluation method for stability of EPR magnetometer measurement axis and magnetometer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1983154A1 (en) * 2007-04-17 2008-10-22 Services Pétroliers Schlumberger In-situ correction of triaxial accelerometer and magnetometer measurements made in a well
CN106125026A (en) * 2016-06-12 2016-11-16 哈尔滨工程大学 A kind of three axis magnetometer total error parameter identification not relying on field, earth's magnetic field amount and bearing calibration
CN106569150A (en) * 2016-11-02 2017-04-19 南京理工大学 Two-step simple correction method for triaxial magnetic sensor
CN106990451A (en) * 2017-02-07 2017-07-28 中国人民解放军国防科学技术大学 Earth magnetism vector measurement system error calibration method based on lagrange's method of multipliers
CN109932672A (en) * 2019-03-27 2019-06-25 上海微小卫星工程中心 A Method of Correcting Error of Triaxial Magnetometer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150019159A1 (en) * 2013-07-15 2015-01-15 Honeywell International Inc. System and method for magnetometer calibration and compensation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1983154A1 (en) * 2007-04-17 2008-10-22 Services Pétroliers Schlumberger In-situ correction of triaxial accelerometer and magnetometer measurements made in a well
CN106125026A (en) * 2016-06-12 2016-11-16 哈尔滨工程大学 A kind of three axis magnetometer total error parameter identification not relying on field, earth's magnetic field amount and bearing calibration
CN106569150A (en) * 2016-11-02 2017-04-19 南京理工大学 Two-step simple correction method for triaxial magnetic sensor
CN106990451A (en) * 2017-02-07 2017-07-28 中国人民解放军国防科学技术大学 Earth magnetism vector measurement system error calibration method based on lagrange's method of multipliers
CN109932672A (en) * 2019-03-27 2019-06-25 上海微小卫星工程中心 A Method of Correcting Error of Triaxial Magnetometer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
基于线性误差模型的磁张量系统校正;张光等;《吉林大学学报(工学版)》;20150515;第第45卷卷(第03期);第1012-1016页 *

Also Published As

Publication number Publication date
CN112698258A (en) 2021-04-23

Similar Documents

Publication Publication Date Title
CN112698258B (en) An integrated error correction method for a three-axis magnetometer
CN107024674B (en) A fast on-site calibration method of magnetometer based on recursive least squares method
Zhang et al. Improved multi-position calibration for inertial measurement units
CN110849403B (en) Calibration method of directional sensor
CN100559189C (en) A non-directional multi-position high-precision calibration method for an inertial measurement unit
CN107024673B (en) Three axis magnetometer total error scaling method based on gyroscope auxiliary
CN107121707A (en) A kind of error calibration method of magnetic sensor measuring basis and structure benchmark
CN109709628B (en) A calibration method of a rotary accelerometer gravity gradiometer
CN101241009A (en) A kind of magnetic electronic compass error compensation method
CN106918352A (en) A kind of correction of course method of hand-held MEMS magnetometers
CN113866688B (en) A three-axis magnetic sensor error calibration method under the condition of small attitude angle
CN108088431B (en) A self-calibrating electronic compass and its calibration method
CN109059960B (en) A kind of calibration method of three-dimensional electronic compass
WO2021068797A1 (en) Calibration checking system and method of directional sensor
CN111239667B (en) A Unified Calibration Method for Magnetic Gradient Tensors of Different Orders
CN103090882B (en) Sensitive axis non-orthogonal compensation correction method in accelerometer application of realizing inclination measurement
CN113375693B (en) A Geomagnetic Heading Error Correction Method
CN111273058A (en) Accelerometer calibration method
CN103235278A (en) Method for measuring orthogonality among three magnetic axes of magnetometer
CN113624253A (en) Rotator error compensation and experiment method for three-axis magnetic sensor
CN102354000A (en) Orthogonal field calibration device for three-component magnetic probe and calibration method thereof
CN109932672A (en) A Method of Correcting Error of Triaxial Magnetometer
CN113820751B (en) Mechanical drift correction method and device for dIdD magnetometer platform and storage device
CN113175941B (en) Method for identifying parameters of north seeker of laser gyroscope based on double-shaft turntable
CN108803373A (en) A ground speed elimination method for a three-axis turntable

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant