CN112698258B - An integrated error correction method for a three-axis magnetometer - Google Patents
An integrated error correction method for a three-axis magnetometer Download PDFInfo
- Publication number
- CN112698258B CN112698258B CN202110077639.XA CN202110077639A CN112698258B CN 112698258 B CN112698258 B CN 112698258B CN 202110077639 A CN202110077639 A CN 202110077639A CN 112698258 B CN112698258 B CN 112698258B
- Authority
- CN
- China
- Prior art keywords
- axis
- sinα
- sin
- magnetometer
- rot
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000012937 correction Methods 0.000 title claims abstract description 68
- 238000000034 method Methods 0.000 title claims abstract description 14
- 238000005259 measurement Methods 0.000 claims abstract description 9
- 230000035945 sensitivity Effects 0.000 claims description 9
- 230000001131 transforming effect Effects 0.000 claims description 3
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 claims 1
- 230000000694 effects Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R35/00—Testing or calibrating of apparatus covered by the other groups of this subclass
- G01R35/005—Calibrating; Standards or reference devices, e.g. voltage or resistance standards, "golden" references
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Magnetic Variables (AREA)
Abstract
Description
技术领域technical field
本发明涉及磁探测领域,尤其是涉及一种三轴磁强计的一体化误差校正方法。The invention relates to the field of magnetic detection, in particular to an integrated error correction method for a three-axis magnetometer.
背景技术Background technique
三轴磁强计是测量空间中的微弱磁场必不可少的器件,理想中三轴磁强计与标定三轴完全对准,但由于制作工艺的影响,磁强计的三轴并非严格对准,此外受到零点漂移和长期磁偏移等因素的影响,使得其测量的磁场数据并非理想值,需要对其进行误差校正。而当前针对磁强计的非对准校正主要是对其三轴进行非正交校正,而校正后的正交三轴与标定的三轴并一定是对准的。The three-axis magnetometer is an indispensable device for measuring weak magnetic fields in space. Ideally, the three-axis magnetometer is completely aligned with the calibration three-axis. However, due to the influence of the manufacturing process, the three-axis of the magnetometer is not strictly aligned. In addition, due to factors such as zero-point drift and long-term magnetic offset, the measured magnetic field data is not ideal, and it needs to be corrected for errors. The current non-alignment correction for the magnetometer is mainly to perform non-orthogonal correction on its three axes, and the corrected orthogonal three axes are not necessarily aligned with the calibrated three axes.
在当前的三轴非正交误差的校正模型中,校正后的正交三轴与三轴磁强计的标定的三轴并非一致,只对磁强计进行三轴非正交校正是不够的,还存在非对准误差,校正后的正交三轴是以磁强计某一实际轴建立正交三轴坐标系,且是以总磁场强度为校正标准进行校正。现有的,磁校正模型只适合磁总场测量和对定位要求低的矢量磁场应用中,针对磁强计上标定的三轴与实际三轴对准的校正研究几乎没有,在定位要求高的应用中,对标定三轴和实际三轴进行校正十分有必要。In the current three-axis non-orthogonal error correction model, the corrected orthogonal three-axis are inconsistent with the calibrated three-axis of the three-axis magnetometer, and it is not enough to perform three-axis non-orthogonal correction on the magnetometer. , there is also a non-alignment error, the corrected orthogonal three-axis is based on an actual axis of the magnetometer to establish an orthogonal three-axis coordinate system, and the total magnetic field strength is used as the correction standard for correction. At present, the magnetic calibration model is only suitable for the total magnetic field measurement and the vector magnetic field applications with low positioning requirements. There is almost no calibration research on the alignment of the three axes calibrated on the magnetometer with the actual three axes. In application, it is necessary to correct the calibration three-axis and the actual three-axis.
发明内容SUMMARY OF THE INVENTION
为解决上述背景技术中提出的问题,本发明的目的在于提供一种三轴磁强计的一体化误差校正方法。In order to solve the problems raised in the above background technology, the purpose of the present invention is to provide an integrated error correction method for a three-axis magnetometer.
为实现上述目的,本发明采取的技术方案为:To achieve the above object, the technical scheme adopted in the present invention is:
一种三轴磁强计的一体化误差校正方法,包括如下步骤:An integrated error correction method for a three-axis magnetometer, comprising the following steps:
S1,建立三轴磁强计的误差校正模型,误差校正模型中包含零偏误差、三轴灵敏度误差、三轴非正交误差及非对准误差造成的影响;S1, establish an error correction model of the three-axis magnetometer, and the error correction model includes the effects of zero bias error, three-axis sensitivity error, three-axis non-orthogonal error and non-alignment error;
S2,在均匀磁场环境中,将三轴磁强计固定在无磁旋转平台上,并分别使三轴磁强计的x轴、y轴平行于无磁旋转平台的旋转平面,三轴磁强计的x轴、z轴平行于无磁旋转平台的旋转平面,三轴磁强计的y轴、z轴平行于无磁旋转平台的旋转平面,在三种情况下,均使无磁旋转平台等间隔旋转,并获取三轴磁强计的测量数据;S2, in a uniform magnetic field environment, fix the three-axis magnetometer on the non-magnetic rotating platform, and make the x-axis and y-axis of the three-axis magnetometer parallel to the rotation plane of the non-magnetic rotating platform, and the three-axis magnetic The x-axis and z-axis of the meter are parallel to the rotation plane of the non-magnetic rotating platform, and the y-axis and z-axis of the three-axis magnetometer are parallel to the rotation plane of the non-magnetic rotating platform. Rotate at equal intervals and obtain the measurement data of the three-axis magnetometer;
S3,利用步骤S2中三种情况下测得的测量数据,求解步骤S1 中建立的误差校正模型的各个参数;S3, using the measurement data measured under the three conditions in step S2, solve each parameter of the error correction model established in step S1;
S4,利用求解后的误差校正模型,对三轴磁强计的测量值进行误差校正。S4, using the solved error correction model to perform error correction on the measured value of the three-axis magnetometer.
在一些实施例中,步骤S1中,建立三轴磁强计的误差校正模型的具体步骤如下:In some embodiments, in step S1, the specific steps of establishing the error correction model of the three-axis magnetometer are as follows:
设x、y、z分别表示三轴磁强计的理想标定轴,x、y、z三轴相互正交,xm、ym、zm分别表示三轴磁强计的实际三轴,设xm轴与x 轴的夹角为α1,xm轴与y轴的夹角为xm轴在yz平面的投影与y 轴的夹角为β1;ym轴与y轴的夹角为α2,ym轴与z轴的夹角为ym轴在xz平面的投影与z轴的夹角为β2;zm轴与z轴的夹角为α3,zm轴与x轴的夹角为zm轴在xy平面的投影与x轴的夹角为β3;Let x, y, and z represent the ideal calibration axes of the three-axis magnetometer, respectively, the three axes of x, y, and z are orthogonal to each other, and x m , y m , and z m represent the actual three axes of the three-axis magnetometer, respectively. The angle between the x m axis and the x axis is α 1 , and the angle between the x m axis and the y axis is The angle between the projection of the x m axis on the yz plane and the y axis is β 1 ; the angle between the y m axis and the y axis is α 2 , and the angle between the y m axis and the z axis is The angle between the projection of the y m axis on the xz plane and the z axis is β 2 ; the angle between the z m axis and the z axis is α 3 , and the angle between the z m axis and the x axis is The angle between the projection of the z m axis on the xy plane and the x axis is β 3 ;
则将三轴磁强计的实际输出值由三轴输出理论值表示为:Then the actual output value of the three-axis magnetometer is represented by the theoretical value of the three-axis output as:
其中,kx、ky、kz分别为三轴灵敏度系数,Bx0、By0、Bz0分别为三轴零点偏移误差,Bx、By、Bz分别为三轴磁强计的标定三轴输出理论值,Bxm、Bym、Bzm分别为三轴磁强计的实际输出值;Among them, k x , ky , and k z are the three-axis sensitivity coefficients, respectively, B x0 , By0 , and B z0 are the three-axis zero offset errors, respectively, and B x , By , and B z are the three-axis magnetometer values . To calibrate the theoretical value of the three-axis output, B xm , Bym , and B zm are the actual output values of the three-axis magnetometer;
对式(1)进行变换,则三轴磁强计的三轴输出理论值表示为:Transforming formula (1), the theoretical value of the three-axis output of the three-axis magnetometer is expressed as:
式(1)、式(2)即为三轴磁强计的误差校正模型。Equations (1) and (2) are the error correction models of the three-axis magnetometer.
在一些实施例中,步骤S2中,具体包括如下步骤:In some embodiments, step S2 specifically includes the following steps:
设在均匀磁场环境中,均匀磁场强度为B,地磁倾角为I,则均匀磁场强度在旋转平面和垂直方向的磁场强度能够表示为:In a uniform magnetic field environment, the uniform magnetic field strength is B and the geomagnetic inclination is I, then the magnetic field strength of the uniform magnetic field strength in the rotating plane and the vertical direction can be expressed as:
式中,Brot为均匀磁场强度为B在旋转平面的磁场分量,Bw为均匀磁场强度为B在旋转平面垂直方向的磁场分量;In the formula, B rot is the magnetic field component whose uniform magnetic field strength is B in the rotating plane, and B w is the magnetic field component whose uniform magnetic field strength is B in the vertical direction of the rotating plane;
无磁旋转平台旋转时,设θ为旋转角度,θx为Brot与y轴的的初始角度;When the non-magnetic rotating platform rotates, let θ be the rotation angle, and θ x be the initial angle between B rot and the y-axis;
三轴磁强计的标定x轴、y轴平行于无磁旋转平台的旋转平面时,等间隔旋转平台,测得的理论值为:When the calibration x-axis and y-axis of the three-axis magnetometer are parallel to the rotation plane of the non-magnetic rotating platform, the platform is rotated at equal intervals, and the measured theoretical value is:
将式(4)代入式(1),则此时三轴磁强计的实际输出值Bxm1、 Bym1、Bzm1能够表示为:Substituting Equation (4) into Equation (1), the actual output values B xm1 , Bym1 , and B zm1 of the three-axis magnetometer can be expressed as:
Bxm1=kxcosα1Brotsin(θ+θx)+kxsinα1cosβ1Brotcos(θ+θx)+kxsinα1sinβ1Bw+Bx0 (5)B xm1 =k x cosα 1 B rot sin(θ+θ x )+k x sinα 1 cosβ 1 B rot cos(θ+θ x )+k x sinα 1 sinβ 1 B w +B x0 (5)
Bym1=kysinα2sinβ2Brotsin(θ+θx)+kycosα2Brotcos(θ+θx)+kysinα2cosβ2Bw+By0 B ym1 =k y sinα 2 sinβ 2 B rot sin(θ+θ x )+k y cosα 2 B rot cos(θ+θ x )+k y sinα 2 cosβ 2 B w +B y0
Bzm1=kzsinα3cosβ3Brotsin(θ+θx)+kzsinα3sinβ3Brotcos(θ+θx)+kzcosα3Bw+Bz0 B zm1 =k z sinα 3 cosβ 3 B rot sin(θ+θ x )+k z sinα 3 sinβ 3 B rot cos(θ+θ x )+k z cosα 3 B w +B z0
式(5)能够化简为:Equation (5) can be simplified as:
Bxm1=A1sin((θ+θx)+η1)+kxsinα1sinβ1Bw+Bx0=A1sin(θ+b1)+C1 (6)B xm1 =A 1 sin((θ+θ x )+η 1 )+k x sinα 1 sinβ 1 B w +B x0 =A 1 sin(θ+b 1 )+C 1 (6)
Bym1=A2sin((θ+θx)+η2)+kysinα2cosβ2Bw+By0=A2sin(θ+b2)+C2 B ym1 =A 2 sin((θ+θ x )+η 2 )+k y sinα 2 cosβ 2 B w +B y0 =A 2 sin(θ+b 2 )+C 2
Bzm1=kzsinα3Brotsin(θ+θx+β3)+kzcosα3Bw+Bz0=A3sin(θ+b3)+C3 B zm1 =k z sinα 3 B rot sin(θ+θ x +β 3 )+k z cosα 3 B w +B z0 =A 3 sin(θ+b 3 )+C 3
式(6)中,η1、η2为常数,变量A1、A2、A3、b1、b2、b3、C1、 C2、C3为拟合函数的特征参数,由实际输出值拟合得到;In formula (6), η 1 and η 2 are constants, and the variables A 1 , A 2 , A 3 , b 1 , b 2 , b 3 , C 1 , C 2 , and C 3 are the characteristic parameters of the fitting function. The actual output value is fitted;
翻转磁强计,将三轴磁强计的标定x轴、z轴平行于无磁旋转平台的旋转平面,等间隔旋转平台,测得的理论值为:Flip the magnetometer, make the calibrated x-axis and z-axis of the three-axis magnetometer parallel to the rotation plane of the non-magnetic rotating platform, and rotate the platform at equal intervals. The measured theoretical value is:
将式(7)代入式(1),则此时三轴磁强计的实际输出值Bxm2、 Bym2、Bzm2能够表示为:Substituting Equation (7) into Equation (1), the actual output values B xm2 , Bym2 , and B zm2 of the three-axis magnetometer can be expressed as:
Bxm2=kxcosα1Brotcos(θ+θx)+kxsinα1cosβ1Bw+kxsinα1sinβ1Brotsin(θ+θx)+Bx0 (8)B xm2 =k x cosα 1 B rot cos(θ+θ x )+k x sinα 1 cosβ 1 B w +k x sinα 1 sinβ 1 B rot sin(θ+θ x )+B x0 (8)
Bym2=kysinα2sinβ2Brotcos(θ+θx)+kycosα2Bw+kysinα2cosβ2Brotsin(θ+θx)+By0 B ym2 = k y sinα 2 sinβ 2 B rot cos(θ+θ x )+k y cosα 2 B w +k y sinα 2 cosβ 2 B rot sin(θ+θ x )+B y0
Bzm2=kzsinα3cosβ3Brotcos(θ+θx)+kzsinα3sinβ3Bw+kzcosα3Brotsin(θ+θx)+Bz0 B zm2 =k z sinα 3 cosβ 3 B rot cos(θ+θ x )+k z sinα 3 sinβ 3 B w +k z cosα 3 B rot sin(θ+θ x )+B z0
式(8)能够化简为:Equation (8) can be simplified as:
Bxm2=A4sin((θ+θx)+η4)+kxsinα1cosβ1Bw+Bx0=A4sin(θ+b4)+C4 (9)B xm2 =A 4 sin((θ+θ x )+η 4 )+k x sinα 1 cosβ 1 B w +B x0 =A 4 sin(θ+b 4 )+C 4 (9)
Bym2=kysinα2Brotsin((θ+θx)+β2)+kycosα2Bw+By0=A5sin(θ+b5)+C5 B ym2 = k y sinα 2 B rot sin((θ+θ x )+β 2 )+k y cosα 2 B w +B y0 =A 5 sin(θ+b 5 )+C 5
Bzm2=A6sin((θ+θx)+η6)+kzsinα3sinβ3Bw+Bz0=A6sin(θ+b6)+C6 B zm2 =A 6 sin((θ+θ x )+η 6 )+k z sinα 3 sinβ 3 B w +B z0 =A 6 sin(θ+b 6 )+C 6
式(9)中,η4、η6为常数,变量A4、A5、A6、b4、b5、b6、C4、 C5、C6为拟合函数的特征参数,由实际输出值拟合得到;In formula (9), η 4 and η 6 are constants, and the variables A 4 , A 5 , A 6 , b 4 , b 5 , b 6 , C 4 , C 5 , and C 6 are the characteristic parameters of the fitting function, which are represented by The actual output value is fitted;
翻转传感器,将三轴磁强计的标定y轴、z轴平行于无磁旋转平台的旋转平面时,等间隔旋转平台,测得的理论值为:Flip the sensor, when the calibration y-axis and z-axis of the three-axis magnetometer are parallel to the rotation plane of the non-magnetic rotating platform, and rotate the platform at equal intervals, the measured theoretical value is:
将式(10)代入式(1),则此时三轴磁强计的实际输出值Bxm3、 Bym3、Bzm3能够表示为:Substituting Equation (10) into Equation (1), the actual output values B xm3 , Bym3 , and B zm3 of the three-axis magnetometer can be expressed as:
Bxm3=kxcosα1Bw+kxsinα1cosβ1Brotsin(θ+θx)+kxsinα1sinβ1Brotcos(θ+θx)+Bx0 (11)B xm3 =k x cosα 1 B w +k x sinα 1 cosβ 1 B rot sin(θ+θ x )+k x sinα 1 sinβ 1 B rot cos(θ+θ x )+B x0 (11)
Bym3=kysinα2sinβ2Bw+kycosα2Brotsin(θ+θx)+kysinα2cosβ2Brotcos(θ+θx)+By0 B ym3 = k y sinα 2 sinβ 2 B w +k y cosα 2 B rot sin(θ+θ x )+k y sinα 2 cosβ 2 B rot cos(θ+θ x )+B y0
Bzm3=kzsinα3cosβ3Bw+kzsinα3sinβ3Brotsin(θ+θx)+kzcosα3Brotcos(θ+θx)+Bz0 B zm3 =k z sinα 3 cosβ 3 B w +k z sinα 3 sinβ 3 B rot sin(θ+θ x )+k z cosα 3 B rot cos(θ+θ x )+B z0
式(11)能够化简为:Equation (11) can be simplified as:
Bxm3=kxsinα1Brotsin((θ+θx)+β1)+kxcosα1Bw+Bx0=A7sin(θ+b7)+C7 (12)B xm3 =k x sinα 1 B rot sin((θ+θ x )+β 1 )+k x cosα 1 B w +B x0 =A 7 sin(θ+b 7 )+C 7 (12)
Bym3=A8sin((θ+θx)+η8)+kysinα2sinβ2Bw+By0=A8sin(θ+b8)+C8 B ym3 =A 8 sin((θ+θ x )+η 8 )+k y sinα 2 sinβ 2 B w +B y0 =A 8 sin(θ+b 8 )+C 8
Bzm3=A9sin((θ+θx)+η9)+kzsinα3cosβ3Bw+Bz0=A9sin(θ+b9)+C9 B zm3 =A 9 sin((θ+θ x )+η 9 )+k z sinα 3 cosβ 3 B w +B z0 =A 9 sin(θ+b 9 )+C 9
式(12)中,η8、η9为常数,变量A7、A8、A9、b7、b8、b9、 C7、C8、C9为拟合函数的特征参数,由实际输出值拟合得到。In formula (12), η 8 and η 9 are constants, and the variables A 7 , A8 , A9 , b 7 , b 8 , b 9 , C 7 , C 8 , and C 9 are the characteristic parameters of the fitting function, which are output by the actual value fitted.
在一些实施例中,步骤S3中,求解步骤S1中建立的误差校正模型的各个参数的具体步骤如下:In some embodiments, in step S3, the specific steps for solving each parameter of the error correction model established in step S1 are as follows:
由式(6)(9)(12)可得,误差校正模型的参数kx、α1、β1、 Bx0满足:From equations (6) (9) (12), the parameters k x , α 1 , β 1 , and B x0 of the error correction model satisfy:
求解式(13)可知β1满足:Solving equation (13), we know that β 1 satisfies:
令make
有0<β1<π,在求解β1时,若0<β 1 <π, when solving for β 1 , if
则β1只有一个解,即:Then β 1 has only one solution, namely:
若like
则β1有两个解:Then β 1 has two solutions:
解得β1后,代入式(13),可得:After solving for β 1 , substitute into equation (13), we can get:
由式(6)(9)(12)可得,误差校正模型的参数ky、α2、β2、 By0满足:From equations (6) (9) (12), the parameters ky , α 2 , β 2 , and By0 of the error correction model satisfy:
kysinα2cosβ2Bw+By0=C2 (15)k y sinα 2 cosβ 2 B w +B y0 =C 2 (15)
kycosα2Bw+By0=C5 k y cosα 2 B w +B y0 =C 5
kysinα2sinβ2Bw+By0=C8 k y sinα 2 sinβ 2 B w +B y0 =C 8
kysinα2Brot=A5 k y sinα 2 B rot =A 5
求解式(15)可知β2满足:Solving equation (15), we know that β 2 satisfies:
令make
有0<β2<π,在求解β2时,若0<β 2 <π, when solving for β 2 , if
则β2只有一个解,即:Then β 2 has only one solution, namely:
若like
则β2有两个解:Then β 2 has two solutions:
解得β2后,代入式(15),可得:After solving for β 2 , substitute into equation (15), we can get:
由式(6)(9)(12)可得,误差校正模型的参数kz、α3、β3、 Bz0满足:From equations (6) (9) (12), the parameters k z , α 3 , β 3 , and B z0 of the error correction model satisfy:
kysinα2cosβ2Bw+By0=C2 (17)k y sinα 2 cosβ 2 B w +B y0 =C 2 (17)
kycosα2Bw+By0=C5 k y cosα 2 B w +B y0 =C 5
kysinα2sinβ2Bw+By0=C8 k y sinα 2 sinβ 2 B w +B y0 =C 8
kysinα2Brot=A5 k y sinα 2 B rot =A 5
求解式(17)可知β3满足:Solving equation (17), we know that β 3 satisfies:
令make
有0<β3<π,在求解β3时,若0<β 3 <π, when solving for β 3 , if
则β3只有一个解,即:Then β 3 has only one solution, namely:
若like
则β3有两个解:Then β 3 has two solutions:
解得β3后,代入式(17),可得:After solving for β 3 , substitute into equation (17), we can get:
从而解得了误差校正模型的所有参数,对于β1、β2、β3存在两个解的情况,将两种情况各自解得的参数代入误差校正模型中,根据实际校正效果来确定β1、β2、β3的值。Thus, all parameters of the error correction model are obtained. For the case where there are two solutions for β 1 , β 2 , and β 3 , the parameters obtained in the two cases are substituted into the error correction model, and β 1 , β 1 ,
与现有技术相比,本发明的有益效果是:Compared with the prior art, the beneficial effects of the present invention are:
本发明提供的三轴磁强计的一体化误差校正方法,提出了三轴都不重合的三轴非正交及非对准模型,一次性解决传感器的非正交误差和正交后与标定三轴不对准的误差,并对零偏误差和灵敏度系数误差进行一体建模,通过三角函数拟合求解误差系数,实现精度极高的误差校正。The integrated error correction method of the three-axis magnetometer provided by the present invention proposes a three-axis non-orthogonal and non-aligned model in which the three axes are not coincident, and solves the non-orthogonal error of the sensor and the calibration after orthogonality at one time. Three-axis misalignment error, and the zero bias error and sensitivity coefficient error are modeled together, and the error coefficient is solved by trigonometric function fitting to achieve extremely high-precision error correction.
附图说明Description of drawings
图1为三轴磁强计的实际轴和理论轴示意图;Figure 1 is a schematic diagram of the actual axis and theoretical axis of the three-axis magnetometer;
图2a-图2c为一个具体实施例中三轴磁强计的实际输出值与拟合值的示意图。2a-2c are schematic diagrams of actual output values and fitted values of a three-axis magnetometer in a specific embodiment.
具体实施方式Detailed ways
为使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合附图和具体实施方式,进一步阐述本发明是如何实施的。In order to make the technical means, creative features, achievement goals and effects realized by the present invention easy to understand, how the present invention is implemented is further described below with reference to the accompanying drawings and specific embodiments.
本发明提供了一种三轴磁强计的一体化误差校正方法,包括如下步骤:The invention provides an integrated error correction method for a three-axis magnetometer, comprising the following steps:
S1,建立三轴磁强计的误差校正模型,误差校正模型中包含零偏误差、三轴灵敏度误差、三轴非正交误差及非对准误差造成的影响;S1, establish an error correction model of the three-axis magnetometer, and the error correction model includes the effects of zero bias error, three-axis sensitivity error, three-axis non-orthogonal error and non-alignment error;
S2,在均匀磁场环境中,将三轴磁强计固定在无磁旋转平台上,并分别使三轴磁强计的x轴、y轴平行于无磁旋转平台的旋转平面,三轴磁强计的x轴、z轴平行于无磁旋转平台的旋转平面,三轴磁强计的y轴、z轴平行于无磁旋转平台的旋转平面,在三种情况下,均使无磁旋转平台等间隔旋转,并获取三轴磁强计的测量数据;S2, in a uniform magnetic field environment, fix the three-axis magnetometer on the non-magnetic rotating platform, and make the x-axis and y-axis of the three-axis magnetometer parallel to the rotation plane of the non-magnetic rotating platform, and the three-axis magnetic The x-axis and z-axis of the meter are parallel to the rotation plane of the non-magnetic rotating platform, and the y-axis and z-axis of the three-axis magnetometer are parallel to the rotation plane of the non-magnetic rotating platform. Rotate at equal intervals and obtain the measurement data of the three-axis magnetometer;
S3,利用步骤S2中三种情况下测得的测量数据,求解步骤S1 中建立的误差校正模型的各个参数;S3, using the measurement data measured under the three conditions in step S2, solve each parameter of the error correction model established in step S1;
S4,利用求解后的误差校正模型,对三轴磁强计的测量值进行误差校正。S4, using the solved error correction model to perform error correction on the measured value of the three-axis magnetometer.
进一步地,步骤S1中,建立三轴磁强计的误差校正模型的具体步骤如下:Further, in step S1, the specific steps for establishing the error correction model of the three-axis magnetometer are as follows:
如图1所示,设x、y、z分别表示三轴磁强计的理想标定轴,x、 y、z三轴相互正交,xm、ym、zm分别表示三轴磁强计的实际三轴,设xm轴与x轴的夹角为α1,xm轴与y轴的夹角为xm轴在yz平面的投影与y轴的夹角为β1;ym轴与y轴的夹角为α2,ym轴与z轴的夹角为ym轴在xz平面的投影与z轴的夹角为β2;zm轴与z轴的夹角为α3,zm轴与x轴的夹角为zm轴在xy平面的投影与x轴的夹角为β3;As shown in Figure 1, let x, y, and z represent the ideal calibration axes of the three-axis magnetometer, respectively, the three axes of x, y, and z are orthogonal to each other, and x m , y m , and z m respectively represent the three-axis magnetometer. The actual three axes of the The angle between the projection of the x m axis on the yz plane and the y axis is β 1 ; the angle between the y m axis and the y axis is α 2 , and the angle between the y m axis and the z axis is The angle between the projection of the y m axis on the xz plane and the z axis is β 2 ; the angle between the z m axis and the z axis is α 3 , and the angle between the z m axis and the x axis is The angle between the projection of the z m axis on the xy plane and the x axis is β 3 ;
则将三轴磁强计的实际输出值由三轴输出理论值表示为:Then the actual output value of the three-axis magnetometer is represented by the theoretical value of the three-axis output as:
其中,kx、ky、kz分别为三轴灵敏度系数,Bx0、By0、Bz0分别为三轴零点偏移误差,Bx、By、Bz分别为三轴磁强计的理论值输出值, Bxm、Bym、Bzm分别为三轴磁强计的实际输出值;Among them, k x , ky , and k z are the three-axis sensitivity coefficients, respectively, B x0 , By0 , and B z0 are the three-axis zero offset errors, respectively, and B x , By , and B z are the three-axis magnetometer values . The theoretical value output value, B xm , Bym , B zm are the actual output values of the three-axis magnetometer;
对式(1)进行变换,则三轴磁强计的三轴输出理论值表示为:Transforming formula (1), the theoretical value of the three-axis output of the three-axis magnetometer is expressed as:
式(1)、式(2)即为三轴磁强计的误差校正模型。Equations (1) and (2) are the error correction models of the three-axis magnetometer.
进一步地,步骤S2中,具体包括如下步骤:Further, in step S2, it specifically includes the following steps:
设在均匀磁场环境中,均匀磁场强度为B,地磁倾角为I,则均匀磁场强度在旋转平面和垂直方向的磁场强度能够表示为:In a uniform magnetic field environment, the uniform magnetic field strength is B and the geomagnetic inclination is I, then the magnetic field strength of the uniform magnetic field strength in the rotating plane and the vertical direction can be expressed as:
式中,Brot为均匀磁场强度为B在旋转平面的磁场分量,Bw为均匀磁场强度为B在旋转平面垂直方向的磁场分量;In the formula, B rot is the magnetic field component of the uniform magnetic field strength B in the rotating plane, B w is the magnetic field component of the uniform magnetic field strength B in the vertical direction of the rotating plane;
无磁旋转平台旋转时,设θ为旋转角度,θx为Brot与y轴的的初始角度;When the non-magnetic rotating platform rotates, let θ be the rotation angle, and θ x be the initial angle between B rot and the y-axis;
三轴磁强计的xm轴、ym轴平行于无磁旋转平台的旋转平面时,测得的理论值为:When the x m axis and y m axis of the three-axis magnetometer are parallel to the rotation plane of the non-magnetic rotating platform, the measured theoretical value is:
将式(4)代入式(1),则此时三轴磁强计的实际输出值Bxm1、 Bym1、Bzm1能够表示为:Substituting Equation (4) into Equation (1), the actual output values B xm1 , Bym1 , and B zm1 of the three-axis magnetometer can be expressed as:
Bxm1=kxcosα1Brotsin(θ+θx)+kxsinα1cosβ1Brotcos(θ+θx)+kxsinα1sinβ1Bw+Bx0 (5)B xm1 =k x cosα 1 B rot sin(θ+θ x )+k x sinα 1 cosβ 1 B rot cos(θ+θ x )+k x sinα 1 sinβ 1 B w +B x0 (5)
Bym1=kysinα2sinβ2Brotsin(θ+θx)+kycosα2Brotcos(θ+θx)+kysinα2cosβ2Bw+By0 B ym1 =k y sinα 2 sinβ 2 B rot sin(θ+θ x )+k y cosα 2 B rot cos(θ+θ x )+k y sinα 2 cosβ 2 B w +B y0
Bzm1=kzsinα3cosβ3Brotsin(θ+θx)+kzsinα3sinβ3Brotcos(θ+θx)+kzcosα3Bw+Bz0 B zm1 =k z sinα 3 cosβ 3 B rot sin(θ+θ x )+k z sinα 3 sinβ 3 B rot cos(θ+θ x )+k z cosα 3 B w +B z0
式(5)能够化简为:Equation (5) can be simplified as:
Bxm1=A1sin((θ+θx)+η1)+kxsinα1sinβ1Bw+Bx0=A1sin(θ+b1)+C1 (6)B xm1 =A 1 sin((θ+θ x )+η 1 )+k x sinα 1 sinβ 1 B w +B x0 =A 1 sin(θ+b 1 )+C 1 (6)
Bym1=A2sin((θ+θx)+η2)+kysinα2cosβ2Bw+By0=A2sin(θ+b2)+C2 B ym1 =A 2 sin((θ+θ x )+η 2 )+k y sinα 2 cosβ 2 B w +B y0 =A 2 sin(θ+b 2 )+C 2
Bzm1=kzsinα3Brotsin(θ+θx+β3)+kzcosα3Bw+Bz0=A3sin(θ+b3)+C3 B zm1 =k z sinα 3 B rot sin(θ+θ x +β 3 )+k z cosα 3 B w +B z0 =A 3 sin(θ+b 3 )+C 3
式(6)中,η1、η2为常数,变量A1、A2、A3、b1、b2、b3、C1、 C2、C3为拟合函数的特征参数,由实际输出值拟合得到;In formula (6), η 1 and η 2 are constants, and the variables A 1 , A 2 , A 3 , b 1 , b 2 , b 3 , C 1 , C 2 , and C 3 are the characteristic parameters of the fitting function. The actual output value is fitted;
三轴磁强计的标定x轴、z轴平行于无磁旋转平台的旋转平面时,测得的理论值为:When the calibration x-axis and z-axis of the three-axis magnetometer are parallel to the rotation plane of the non-magnetic rotating platform, the measured theoretical value is:
将式(7)代入式(1),则此时三轴磁强计的实际输出值Bxm2、 Bym2、Bzm2能够表示为:Substituting Equation (7) into Equation (1), the actual output values B xm2 , Bym2 , and B zm2 of the three-axis magnetometer can be expressed as:
Bxm2=kxcosα1Brotcos(θ+θx)+kxsinα1cosβ1Bw+kxsinα1sinβ1Brotsin(θ+θx)+Bx0 (8)B xm2 =k x cosα 1 B rot cos(θ+θ x )+k x sinα 1 cosβ 1 B w +k x sinα 1 sinβ 1 B rot sin(θ+θ x )+B x0 (8)
Bym2=kysinα2sinβ2Brotcos(θ+θx)+kycosα2Bw+kysinα2cosβ2Brotsin(θ+θx)+By0 B ym2 = k y sinα 2 sinβ 2 B rot cos(θ+θ x )+k y cosα 2 B w +k y sinα 2 cosβ 2 B rot sin(θ+θ x )+B y0
Bzm2=kzsinα3cosβ3Brotcos(θ+θx)+kzsinα3sinβ3Bw+kzcosα3Brotsin(θ+θx)+Bz0 B zm2 =k z sinα 3 cosβ 3 B rot cos(θ+θ x )+k z sinα 3 sinβ 3 B w +k z cosα 3 B rot sin(θ+θ x )+B z0
式(8)能够化简为:Equation (8) can be simplified as:
Bxm2=A4sin((θ+θx)+η4)+kxsinα1cosβ1Bw+Bx0=A4sin(θ+b4)+C4 (9)B xm2 =A 4 sin((θ+θ x )+η 4 )+k x sinα 1 cosβ 1 B w +B x0 =A 4 sin(θ+b 4 )+C 4 (9)
Bym2=kysinα2Brotsin((θ+θx)+β2)+kycosα2Bw+By0=A5sin(θ+b5)+C5 B ym2 = k y sinα 2 B rot sin((θ+θ x )+β 2 )+k y cosα 2 B w +B y0 =A 5 sin(θ+b 5 )+C 5
Bzm2=A6sin((θ+θx)+η6)+kzsinα3sinβ3Bw+Bz0=A6sin(θ+b6)+C6 B zm2 =A 6 sin((θ+θ x )+η 6 )+k z sinα 3 sinβ 3 B w +B z0 =A 6 sin(θ+b 6 )+C 6
式(9)中,η4、η6为常数,变量A4、A5、A6、b4、b5、b6、C4、 C5、C6为拟合函数的特征参数,由实际输出值拟合得到;In formula (9), η 4 and η 6 are constants, and the variables A 4 , A 5 , A 6 , b 4 , b 5 , b 6 , C 4 , C 5 , and C 6 are the characteristic parameters of the fitting function, which are represented by The actual output value is fitted;
翻转磁强计,将三轴磁强计的标定y轴、z轴平行于无磁旋转平台的旋转平面时,测得的理论值为:When the magnetometer is flipped and the calibrated y-axis and z-axis of the three-axis magnetometer are parallel to the rotation plane of the non-magnetic rotating platform, the measured theoretical value is:
将式(10)代入式(1),则此时三轴磁强计的实际输出值Bxm3、 Bym3、Bzm3能够表示为:Substituting Equation (10) into Equation (1), the actual output values B xm3 , Bym3 , and B zm3 of the three-axis magnetometer can be expressed as:
Bxm3=kxcosα1Bw+kxsinα1cosβ1Brotsin(θ+θx)+kxsinα1sinβ1Brotcos(θ+θx)+Bx0 (11)B xm3 =k x cosα 1 B w +k x sinα 1 cosβ 1 B rot sin(θ+θ x )+k x sinα 1 sinβ 1 B rot cos(θ+θ x )+B x0 (11)
Bym3=kysinα2sinβ2Bw+kycosα2Brotsin(θ+θx)+kysinα2cosβ2Brotcos(θ+θx)+By0 B ym3 = k y sinα 2 sinβ 2 B w +k y cosα 2 B rot sin(θ+θ x )+k y sinα 2 cosβ 2 B rot cos(θ+θ x )+B y0
Bzm3=kzsinα3cosβ3Bw+kzsinα3sinβ3Brotsin(θ+θx)+kzcosα3Brotcos(θ+θx)+Bz0 B zm3 =k z sinα 3 cosβ 3 B w +k z sinα 3 sinβ 3 B rot sin(θ+θ x )+k z cosα 3 B rot cos(θ+θ x )+B z0
式(11)能够化简为:Equation (11) can be simplified as:
Bxm3=kxsinα1Brotsin((θ+θx)+β1)+kxcosα1Bw+Bx0=A7sin(θ+b7)+C7 (12)B xm3 =k x sinα 1 B rot sin((θ+θ x )+β 1 )+k x cosα 1 B w +B x0 =A 7 sin(θ+b 7 )+C 7 (12)
Bym3=A8sin((θ+θx)+η8)+kysinα2sinβ2Bw+By0=A8sin(θ+b8)+C8 B ym3 =A 8 sin((θ+θ x )+η 8 )+k y sinα 2 sinβ 2 B w +B y0 =A 8 sin(θ+b 8 )+C 8
Bzm3=A9sin((θ+θx)+η9)+kzsinα3cosβ3Bw+Bz0=A9sin(θ+b9)+C9 B zm3 =A 9 sin((θ+θ x )+η 9 )+k z sinα 3 cosβ 3 B w +B z0 =A 9 sin(θ+b 9 )+C 9
式(12)中,η8、η9为常数,变量A7、A8、A9、b7、b8、b9、 C7、C8、C9为拟合函数的特征参数,由实际输出值拟合得到。In formula (12), η 8 and η 9 are constants, and the variables A 7 , A8 , A9 , b 7 , b 8 , b 9 , C 7 , C 8 , and C 9 are the characteristic parameters of the fitting function, which are output by the actual value fitted.
进一步地,步骤S3中,求解步骤S1中建立的误差校正模型的各个参数的具体步骤如下:Further, in step S3, the specific steps for solving each parameter of the error correction model established in step S1 are as follows:
由式(6)(9)(12)可得,误差校正模型的参数kx、α1、β1、 Bx0满足:From equations (6) (9) (12), the parameters k x , α 1 , β 1 , and B x0 of the error correction model satisfy:
求解式(13)可知β1满足:Solving equation (13), we know that β 1 satisfies:
令make
有0<β1<π,在求解β1时,若0<β 1 <π, when solving for β 1 , if
则β1只有一个解,即:Then β 1 has only one solution, namely:
若like
则β1有两个解:Then β 1 has two solutions:
解得β1后,代入式(13),可得:After solving for β 1 , substitute into equation (13), we can get:
由式(6)(9)(12)可得,误差校正模型的参数ky、α2、β2、 By0满足:From equations (6) (9) (12), it can be obtained that the parameters ky , α 2 , β 2 , and By0 of the error correction model satisfy:
kysinα2cosβ2Bw+By0=C2 (15)k y sinα 2 cosβ 2 B w +B y0 =C 2 (15)
kycosα2Bw+By0=C5 k y cosα 2 B w +B y0 =C 5
kysinα2sinβ2Bw+By0=C8 k y sinα 2 sinβ 2 B w +B y0 =C 8
kysinα2Brot=A5 k y sinα 2 B rot =A 5
求解式(15)可知β2满足:Solving equation (15), we know that β 2 satisfies:
令make
有0<β2<π,在求解β2时,若0<β 2 <π, when solving for β 2 , if
则β2只有一个解,即:Then β 2 has only one solution, namely:
若like
则β2有两个解:Then β 2 has two solutions:
解得β2后,代入式(15),可得:After solving for β 2 , substitute into equation (15), we can get:
由式(6)(9)(12)可得,误差校正模型的参数kz、α3、β3、 Bz0满足:From equations (6) (9) (12), the parameters k z , α 3 , β 3 , and B z0 of the error correction model satisfy:
kysinα2cosβ2Bw+By0=C2 (17)k y sinα 2 cosβ 2 B w +B y0 =C 2 (17)
kycosα2Bw+By0=C5 k y cosα 2 B w +B y0 =C 5
kysinα2sinβ2Bw+By0=C8 k y sinα 2 sinβ 2 B w +B y0 =C 8
kysinα2Brot=A5 k y sinα 2 B rot =A 5
求解式(17)可知β3满足:Solving equation (17), we know that β 3 satisfies:
令make
有0<β3<π,在求解β3时,若0<β 3 <π, when solving for β 3 , if
则β3只有一个解,即:Then β 3 has only one solution, namely:
若like
则β3有两个解:Then β 3 has two solutions:
解得β3后,代入式(17),可得:After solving for β 3 , substitute into equation (17), we can get:
从而解得了误差校正模型的所有参数,对于β1、β2、β3存在两个解的情况,将两种情况各自解得的参数代入误差校正模型中,根据实际校正效果来确定β1、β2、β3的值。Thus, all parameters of the error correction model are obtained. For the case where there are two solutions for β 1 , β 2 , and β 3 , the parameters obtained from the two solutions are substituted into the error correction model, and β 1 , β 1 ,
接下来,在一个具体实施例中,对本发明提供的三轴磁强计的一体化误差校正方法进行仿真分析。Next, in a specific embodiment, simulation analysis is performed on the integrated error correction method of the three-axis magnetometer provided by the present invention.
设三轴磁强计三轴的零点漂移误差分别为:The zero drift errors of the three axes of the three-axis magnetometer are set as:
Bx0=152nT,By0=95.4nT,Bz0=125.3nTB x0 =152nT, By0 =95.4nT, B z0 =125.3nT
三轴灵敏度误差分别为:The three-axis sensitivity errors are:
kx=0.921,ky=1.151,kz=1.131k x =0.921, k y =1.151, k z =1.131
三轴的非正交和非对准角度分别为:The non-orthogonal and non-aligned angles of the three axes are:
α1=1.20°,β1=30.0°,α2=1.34°,β2=40.7°,α3=1.02°,β3=24.5°α 1 =1.20°, β 1 =30.0°, α 2 =1.34°, β 2 =40.7°,α 3 =1.02°,β 3 =24.5°
均匀磁场强度:Uniform Magnetic Field Strength:
B=50000nTB=50000nT
地磁倾角:Magnetic dip:
I=43°I=43°
首先,使三轴磁强计的x轴、y轴平行于无磁旋转平台的旋转平面,无磁旋转平台以π/18的等间隔角度旋转,分别得到三轴磁强计的实际输出值以及利用式(6)建立自定义拟合函数得到的拟合值,实际输出值及拟合值的图像如图2a-图2c所示,由图可以看出拟合值和实际输出值基本吻合,利用计算机求得到的拟合曲线表达式为:First, make the x-axis and y-axis of the three-axis magnetometer parallel to the rotation plane of the non-magnetic rotating platform, and the non-magnetic rotating platform rotates at equal intervals of π/18 to obtain the actual output value of the three-axis magnetometer and Using formula (6) to establish the fitting value obtained by the custom fitting function, the actual output value and the image of the fitting value are shown in Figure 2a-Figure 2c. It can be seen from the figure that the fitting value and the actual output value are basically consistent. The fitting curve expression obtained by the computer is:
Bxm1=33677sin(θ+0.6465)-176.8591B xm1 = 33677sin(θ+0.6465)-176.8591
Bym1=-42083sin(θ-0.9577)-600.4528B ym1 =-42083sin(θ-0.9577)-600.4528
Bzm1=736.2320sin(θ+1.0559)-38436B zm1 =736.2320sin(θ+1.0559)-38436
其中,in,
结合式(6),即得到了拟合函数的特征参数A1、A2、A3、b1、 b2、b3、C1、C2、C3的值。Combined with formula (6), the values of characteristic parameters A 1 , A 2 , A 3 , b 1 , b 2 , b 3 , C 1 , C 2 , and C 3 of the fitting function are obtained.
接下来,翻转三轴磁强计,使其x轴、z轴平行于无磁旋转平台的旋转平面,基于类似的步骤,求得拟合拟合曲线表达式为:Next, flip the three-axis magnetometer so that its x-axis and z-axis are parallel to the rotation plane of the non-magnetic rotating platform. Based on similar steps, the fitting curve expression is obtained as:
Bxm2=33673sin(θ+2.1886)-417.6006B xm2 = 33673sin(θ+2.1886)-417.6006
Bym2=984.2725sin(θ+1.3387)-39143B ym2 =984.2725sin(θ+1.3387)-39143
Bzm2=41357sin(θ+0.6445)-159.4066B zm2 =41357sin(θ+0.6445)-159.4066
结合式(9),即得到了拟合函数的特征参数A4、A5、A6、b4、 b5、b6、C4、C5、C6的值。Combined with formula (9), the values of characteristic parameters A 4 , A 5 , A 6 , b 4 , b 5 , b 6 , C 4 , C 5 , and C 6 of the fitting function are obtained.
再次翻转三轴磁强计,使其y轴、z轴平行于无磁旋转平台的旋转平面,基于类似的步骤,求得拟合拟合曲线表达式为:Flip the three-axis magnetometer again so that its y-axis and z-axis are parallel to the rotation plane of the non-magnetic rotating platform. Based on similar steps, the fitting curve expression is obtained as:
Bxm3=705.3164sin(θ+1.1519)-31247B xm3 = 705.3164sin(θ+1.1519)-31247
Bym3=42083sin(θ+0.6461)-503.1279B ym3 =42083sin(θ+0.6461)-503.1279
Bzm3=41353sin(θ+2.1917)-499.4316B zm3 =41353sin(θ+2.1917)-499.4316
结合式(12),即得到了拟合函数的特征参数A7、A8、A9、b7、 b8、b9、C7、C8、C9的值。Combined with formula (12), the values of characteristic parameters A 7 , A8 , A9 , b 7 , b 8 , b 9 , C 7 , C 8 , and C 9 of the fitting function are obtained.
将各特征参数带入各标定参数的公式即可求得各标定参数为:By bringing each characteristic parameter into the formula of each calibration parameter, each calibration parameter can be obtained as:
Bx0=152.0nTB x0 = 152.0nT
By0=95.4nTB y0 =95.4nT
Bz0=125.3nTB z0 =125.3nT
α1=1.200°,α2=1.3400°,α3=1.020°α 1 =1.200°, α 2 =1.3400°, α 3 =1.020°
β1=30.000°,β2=40.700°,β1=24.500°β 1 =30.000°, β 2 =40.700°, β 1 =24.500°
kx=0.9210,ky=1.1510,kz=1.1310k x =0.9210, k y =1.1510, k z =1.1310
可见,求得的三轴磁强计的各标定参数与原先的设定值相等,将标定参数代入传感器的误差校正模型,即可实现传感器校正,从而验证了本发明的正确性。It can be seen that the obtained calibration parameters of the triaxial magnetometer are equal to the original set values, and the calibration parameters can be substituted into the error correction model of the sensor to realize sensor calibration, thereby verifying the correctness of the present invention.
经过试验验证,对于某一件三轴磁强计,未校正前,实际输出值与理论值的绝对误差最大有6147.6nT;利用本发明提供的方法进行误差校正后,校正值和理论值相差非常小,数量级为10-11,可以忽略,从而验证了本发明的有效性。It has been verified by experiments that for a certain triaxial magnetometer, the absolute error between the actual output value and the theoretical value is 6147.6nT at most before calibration; after the error correction is performed by the method provided by the present invention, the difference between the calibration value and the theoretical value is very different. is small, the order of magnitude is 10 −11 , which can be ignored, thus verifying the effectiveness of the present invention.
综上,本发明提供的三轴磁强计的一体化误差校正方法,提出了三轴都不重合的三轴非正交及非对准模型,一次性解决传感器的非正交误差和正交后与标定三轴不对准的误差,并对零偏误差和灵敏度系数误差进行一体建模,通过三角函数拟合求解误差系数;校正后,传感器输出绝对误差数量级由103nT降低为10-11nT,校正精度非常高。To sum up, the integrated error correction method of the three-axis magnetometer provided by the present invention proposes a three-axis non-orthogonal and non-aligned model in which the three axes are not coincident, and solves the non-orthogonal error and orthogonality of the sensor at one time. After calibration, the error of the misalignment of the three axes is calculated, and the zero bias error and sensitivity coefficient error are modeled together, and the error coefficient is solved by trigonometric function fitting; after correction, the magnitude of the absolute error of the sensor output is reduced from 10 3 nT to 10 -11 nT, the correction accuracy is very high.
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围中。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention and not to limit them. Although the present invention has been described in detail with reference to the preferred embodiments, those of ordinary skill in the art should understand that the technical solutions of the present invention can be Modifications or equivalent substitutions, without departing from the spirit and scope of the technical solutions of the present invention, should all be included in the scope of the claims of the present invention.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110077639.XA CN112698258B (en) | 2021-01-20 | 2021-01-20 | An integrated error correction method for a three-axis magnetometer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110077639.XA CN112698258B (en) | 2021-01-20 | 2021-01-20 | An integrated error correction method for a three-axis magnetometer |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112698258A CN112698258A (en) | 2021-04-23 |
CN112698258B true CN112698258B (en) | 2022-04-12 |
Family
ID=75515863
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110077639.XA Active CN112698258B (en) | 2021-01-20 | 2021-01-20 | An integrated error correction method for a three-axis magnetometer |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112698258B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113253180B (en) * | 2021-04-25 | 2022-04-01 | 吉林大学 | Single-axis measurement precision testing method for field three-axis magnetic sensor |
CN114076906B (en) * | 2021-11-16 | 2023-10-17 | 吉林大学 | Non-orthogonal error correction method for high-temperature superconductive full tensor magnetic gradient probe |
CN114563741A (en) * | 2022-01-27 | 2022-05-31 | 西南民族大学 | Field calibration method and device for magnetic gradiometer |
CN115727872B (en) * | 2022-11-07 | 2024-08-02 | 北京自动化控制设备研究所 | Test and evaluation method for stability of EPR magnetometer measurement axis and magnetometer |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1983154A1 (en) * | 2007-04-17 | 2008-10-22 | Services Pétroliers Schlumberger | In-situ correction of triaxial accelerometer and magnetometer measurements made in a well |
CN106125026A (en) * | 2016-06-12 | 2016-11-16 | 哈尔滨工程大学 | A kind of three axis magnetometer total error parameter identification not relying on field, earth's magnetic field amount and bearing calibration |
CN106569150A (en) * | 2016-11-02 | 2017-04-19 | 南京理工大学 | Two-step simple correction method for triaxial magnetic sensor |
CN106990451A (en) * | 2017-02-07 | 2017-07-28 | 中国人民解放军国防科学技术大学 | Earth magnetism vector measurement system error calibration method based on lagrange's method of multipliers |
CN109932672A (en) * | 2019-03-27 | 2019-06-25 | 上海微小卫星工程中心 | A Method of Correcting Error of Triaxial Magnetometer |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150019159A1 (en) * | 2013-07-15 | 2015-01-15 | Honeywell International Inc. | System and method for magnetometer calibration and compensation |
-
2021
- 2021-01-20 CN CN202110077639.XA patent/CN112698258B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1983154A1 (en) * | 2007-04-17 | 2008-10-22 | Services Pétroliers Schlumberger | In-situ correction of triaxial accelerometer and magnetometer measurements made in a well |
CN106125026A (en) * | 2016-06-12 | 2016-11-16 | 哈尔滨工程大学 | A kind of three axis magnetometer total error parameter identification not relying on field, earth's magnetic field amount and bearing calibration |
CN106569150A (en) * | 2016-11-02 | 2017-04-19 | 南京理工大学 | Two-step simple correction method for triaxial magnetic sensor |
CN106990451A (en) * | 2017-02-07 | 2017-07-28 | 中国人民解放军国防科学技术大学 | Earth magnetism vector measurement system error calibration method based on lagrange's method of multipliers |
CN109932672A (en) * | 2019-03-27 | 2019-06-25 | 上海微小卫星工程中心 | A Method of Correcting Error of Triaxial Magnetometer |
Non-Patent Citations (1)
Title |
---|
基于线性误差模型的磁张量系统校正;张光等;《吉林大学学报(工学版)》;20150515;第第45卷卷(第03期);第1012-1016页 * |
Also Published As
Publication number | Publication date |
---|---|
CN112698258A (en) | 2021-04-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112698258B (en) | An integrated error correction method for a three-axis magnetometer | |
CN107024674B (en) | A fast on-site calibration method of magnetometer based on recursive least squares method | |
Zhang et al. | Improved multi-position calibration for inertial measurement units | |
CN110849403B (en) | Calibration method of directional sensor | |
CN100559189C (en) | A non-directional multi-position high-precision calibration method for an inertial measurement unit | |
CN107024673B (en) | Three axis magnetometer total error scaling method based on gyroscope auxiliary | |
CN107121707A (en) | A kind of error calibration method of magnetic sensor measuring basis and structure benchmark | |
CN109709628B (en) | A calibration method of a rotary accelerometer gravity gradiometer | |
CN101241009A (en) | A kind of magnetic electronic compass error compensation method | |
CN106918352A (en) | A kind of correction of course method of hand-held MEMS magnetometers | |
CN113866688B (en) | A three-axis magnetic sensor error calibration method under the condition of small attitude angle | |
CN108088431B (en) | A self-calibrating electronic compass and its calibration method | |
CN109059960B (en) | A kind of calibration method of three-dimensional electronic compass | |
WO2021068797A1 (en) | Calibration checking system and method of directional sensor | |
CN111239667B (en) | A Unified Calibration Method for Magnetic Gradient Tensors of Different Orders | |
CN103090882B (en) | Sensitive axis non-orthogonal compensation correction method in accelerometer application of realizing inclination measurement | |
CN113375693B (en) | A Geomagnetic Heading Error Correction Method | |
CN111273058A (en) | Accelerometer calibration method | |
CN103235278A (en) | Method for measuring orthogonality among three magnetic axes of magnetometer | |
CN113624253A (en) | Rotator error compensation and experiment method for three-axis magnetic sensor | |
CN102354000A (en) | Orthogonal field calibration device for three-component magnetic probe and calibration method thereof | |
CN109932672A (en) | A Method of Correcting Error of Triaxial Magnetometer | |
CN113820751B (en) | Mechanical drift correction method and device for dIdD magnetometer platform and storage device | |
CN113175941B (en) | Method for identifying parameters of north seeker of laser gyroscope based on double-shaft turntable | |
CN108803373A (en) | A ground speed elimination method for a three-axis turntable |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |