CN112680646B - Preparation method of TiC-based metal ceramic with high-entropy alloy binder phase - Google Patents
Preparation method of TiC-based metal ceramic with high-entropy alloy binder phase Download PDFInfo
- Publication number
- CN112680646B CN112680646B CN202011399718.4A CN202011399718A CN112680646B CN 112680646 B CN112680646 B CN 112680646B CN 202011399718 A CN202011399718 A CN 202011399718A CN 112680646 B CN112680646 B CN 112680646B
- Authority
- CN
- China
- Prior art keywords
- phase
- tic
- powder
- entropy alloy
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000956 alloy Substances 0.000 title claims abstract description 45
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 43
- 239000011230 binding agent Substances 0.000 title claims abstract description 42
- 239000000919 ceramic Substances 0.000 title claims abstract description 22
- 238000002360 preparation method Methods 0.000 title claims abstract description 17
- 229910052751 metal Inorganic materials 0.000 title claims description 15
- 239000002184 metal Substances 0.000 title claims description 15
- 238000000034 method Methods 0.000 claims abstract description 42
- 239000011195 cermet Substances 0.000 claims abstract description 41
- 239000000463 material Substances 0.000 claims abstract description 38
- 238000005245 sintering Methods 0.000 claims abstract description 35
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 14
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 13
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 11
- 238000011065 in-situ storage Methods 0.000 claims abstract description 10
- 239000002131 composite material Substances 0.000 claims abstract description 8
- 239000012071 phase Substances 0.000 claims description 86
- 239000000203 mixture Substances 0.000 claims description 43
- 239000000843 powder Substances 0.000 claims description 43
- 238000000498 ball milling Methods 0.000 claims description 24
- 239000011812 mixed powder Substances 0.000 claims description 14
- 238000002156 mixing Methods 0.000 claims description 14
- RZJQYRCNDBMIAG-UHFFFAOYSA-N [Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Zn].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn] Chemical class [Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Zn].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn] RZJQYRCNDBMIAG-UHFFFAOYSA-N 0.000 claims description 12
- 229910052804 chromium Inorganic materials 0.000 claims description 11
- 238000004146 energy storage Methods 0.000 claims description 11
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 10
- 239000002994 raw material Substances 0.000 claims description 7
- 229910052799 carbon Inorganic materials 0.000 claims description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 5
- 239000002612 dispersion medium Substances 0.000 claims description 5
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 238000001816 cooling Methods 0.000 claims description 3
- 239000007791 liquid phase Substances 0.000 claims description 3
- 238000000713 high-energy ball milling Methods 0.000 claims description 2
- 239000000126 substance Substances 0.000 claims description 2
- 229910010293 ceramic material Inorganic materials 0.000 claims 2
- 229910003178 Mo2C Inorganic materials 0.000 claims 1
- 238000010304 firing Methods 0.000 claims 1
- 230000001376 precipitating effect Effects 0.000 claims 1
- 238000003825 pressing Methods 0.000 claims 1
- 238000004663 powder metallurgy Methods 0.000 abstract description 3
- 230000001427 coherent effect Effects 0.000 abstract description 2
- 230000003647 oxidation Effects 0.000 abstract 1
- 238000007254 oxidation reaction Methods 0.000 abstract 1
- 239000002245 particle Substances 0.000 description 12
- 239000010936 titanium Substances 0.000 description 12
- 238000005482 strain hardening Methods 0.000 description 10
- 238000002441 X-ray diffraction Methods 0.000 description 5
- 238000001556 precipitation Methods 0.000 description 5
- 239000006104 solid solution Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 150000001247 metal acetylides Chemical class 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000004090 dissolution Methods 0.000 description 3
- 238000000227 grinding Methods 0.000 description 3
- 238000010191 image analysis Methods 0.000 description 3
- 239000011268 mixed slurry Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000011258 core-shell material Substances 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001887 electron backscatter diffraction Methods 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000010183 spectrum analysis Methods 0.000 description 2
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000012938 design process Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
Images
Landscapes
- Powder Metallurgy (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
Abstract
本发明涉及粉末冶金和多主元髙熵合金材料领域,特别涉及制备具有髙熵合金粘结相的金属陶瓷复合材料的方法。本发明制备的具有高熵合金粘结相的TiC基金属陶瓷材料,其特征在于粘结相为高熵合金NiCoCrMoWTi,各组元的摩尔分数为Ni:30.0~35.0%,Co:10.0~35.0%,Cr:5.0~20.0%,Mo:5.0~20.0%,W:5.0~15.0%,Ti:5.0~35.0%,各组元的摩尔分数之和为100%。本发明所制备的具有高熵合金粘结相的TiC基金属陶瓷具有更高的强度、硬度、耐磨性和抗氧化性能,制备工艺过程中有TiC陶瓷相的原位析出,从而细化烧结体的晶粒度,烧结体的粘结相和硬质相之间的界面具有共格关系。
The invention relates to the field of powder metallurgy and multi-principal element high-entropy alloy materials, in particular to a method for preparing a metal-ceramic composite material with a high-entropy alloy binding phase. The TiC-based cermet material with high-entropy alloy binder phase prepared by the invention is characterized in that the binder phase is high-entropy alloy NiCoCrMoWTi, and the mole fraction of each component is Ni: 30.0-35.0%, Co: 10.0-35.0% , Cr: 5.0~20.0%, Mo: 5.0~20.0%, W: 5.0~15.0%, Ti: 5.0~35.0%, the sum of the mole fractions of each component is 100%. The TiC-based cermet with the high-entropy alloy binding phase prepared by the invention has higher strength, hardness, wear resistance and oxidation resistance, and the TiC ceramic phase is precipitated in-situ during the preparation process, so as to refine the sintering The grain size of the body, the interface between the binder phase and the hard phase of the sintered body have a coherent relationship.
Description
技术领域technical field
本发明涉及机械加工和粉末冶金领域,具体涉及一种高熵合金粘结相的TiC基金属陶瓷的制备方法。The invention relates to the fields of mechanical processing and powder metallurgy, in particular to a preparation method of a TiC-based cermet with a high-entropy alloy binding phase.
背景技术Background technique
高熵合金作为一种新型多主元合金材料,具有简单的体心或面心固溶体结构。高熵合金具有普通合金所不具备的高熵值,因而高熵合金具有普通合金所不具备的优异力学性能,包括高硬度、高强度、良好的延展性、优异的耐磨性能和耐腐蚀性等。As a new type of multi-principal alloy material, high-entropy alloys have simple body-centered or face-centered solid solution structures. High-entropy alloys have high entropy values that ordinary alloys do not have, so high-entropy alloys have excellent mechanical properties that ordinary alloys do not have, including high hardness, high strength, good ductility, excellent wear resistance and corrosion resistance. Wait.
TiC基金属陶瓷材料由硬质相和粘结相两相组成。粘结相通常为Ni或者Co基固溶体合金,为金属陶瓷材料的塑韧性组织结构单元。传统的金属陶瓷烧结体的制备方法是将陶瓷粉和金属单质粉按比例混合后进行球磨;陶瓷粉末硬度高,因而在混料球磨过程中吸收了很大一部分磨球的撞击能量并进一步细化;金属粉末在球磨过程中的加工硬化程度并不高。金属陶瓷烧结体中的粘结相是在固相和液相烧结阶段由于溶质元素在粘接相金属溶剂中溶解、扩散而形成金属固溶体。溶质元素在溶剂中的溶解、析出及扩散会产生一些中间过程化学反应,中间过程化学反应的控制及其对最终组织的影响通常只能理论推断,因此对于粉末冶金产品最终烧结性能和力学性能的控制变得较为复杂。TiC-based cermet materials are composed of two phases, a hard phase and a binder phase. The binder phase is usually a Ni or Co-based solid solution alloy, which is the plastic-ductile structural unit of the cermet material. The traditional preparation method of cermet sintered body is to mix ceramic powder and metal element powder in proportion and then ball milling; ceramic powder has high hardness, so in the process of mixing ball milling, a large part of the impact energy of the grinding ball is absorbed and further refined. ; The degree of work hardening of metal powder during ball milling is not high. The binder phase in the cermet sintered body is a metal solid solution formed by the dissolution and diffusion of solute elements in the binder phase metal solvent during the solid phase and liquid phase sintering stages. The dissolution, precipitation and diffusion of solute elements in the solvent will produce some intermediate process chemical reactions. The control of intermediate process chemical reactions and their influence on the final structure can usually only be inferred theoretically. Therefore, the final sintering performance and mechanical properties of powder metallurgy products are important Control becomes more complex.
发明内容SUMMARY OF THE INVENTION
为解决上述技术问题,本发明提供用于具有高熵合金粘结相的TiC基金属陶瓷的制备方法。In order to solve the above technical problems, the present invention provides a preparation method for a TiC-based cermet with a high-entropy alloy binder phase.
本发明的方案:Scheme of the present invention:
一种具有高熵合金粘结相的TiC基金属陶瓷材料,所述材料包括硬质相和粘结相,粘结相为高熵合金,粘结相组元为Ni-Co-Cr-Mo-W-Ti;硬质相的化学式为(Ti, M)C和(Ti,M)(C,N),其中M选自W、Mo、Cr中的一种或多种的组合。A TiC-based cermet material with a high-entropy alloy binding phase, the material includes a hard phase and a binding phase, the binding phase is a high-entropy alloy, and the binding phase component is Ni-Co-Cr-Mo- W—Ti; the chemical formula of the hard phase is (Ti, M)C and (Ti, M)(C, N), wherein M is selected from the combination of one or more of W, Mo, and Cr.
优选地,粘结相各组元的摩尔分数为Ni:30.0~35.0%,Co:10.0~35.0%,Cr:5.0~20.0%,Mo:5.0~20.0%,W:5.0 ~15.0%, Ti:5.0~35.0%;各组元的摩尔分数之和为100%。Preferably, the molar fraction of each component of the binder phase is Ni: 30.0-35.0%, Co: 10.0-35.0%, Cr: 5.0-20.0%, Mo: 5.0-20.0%, W: 5.0-15.0%, Ti: 5.0~35.0%; the sum of the mole fractions of each component is 100%.
优选地,硬质相的原料包括:TiC、Ti(C, N)、(Ti, W)C、Mo2C粉、Cr3C2粉中的一种或者多种组合。Preferably, the raw materials of the hard phase include: one or more combinations of TiC, Ti(C, N), (Ti, W)C, Mo 2 C powder, and Cr 3 C 2 powder.
优选地,所述金属陶瓷材料的原料成分以质量百分比计,包括粘结相粉末20~36wt.%,陶瓷粉末64~80wt.%。Preferably, the raw material components of the cermet material, in terms of mass percentage, include 20-36 wt.% of the binder phase powder and 64-80 wt.% of the ceramic powder.
制备所述TiC基金属陶瓷材料的方法,所述方法为:采用高能球磨法制备高储能粘结相合金混合粉末,然后与陶瓷粉末混合制备金属陶瓷混合料。The method for preparing the TiC-based cermet material is as follows: using a high-energy ball milling method to prepare a high-energy-storage bonding phase alloy mixed powder, and then mixing with the ceramic powder to prepare a cermet mixed material.
优选地,包括以下步骤:Preferably, the following steps are included:
1)将Co、Cr、Ni、Mo、W、Ti粉按照摩尔比配料球磨得到高储能合金混合料;1) Ball milling Co, Cr, Ni, Mo, W and Ti powders according to molar ratio to obtain a high energy storage alloy mixture;
2)将1)所得的合金混合料和陶瓷粉配料、球磨进一步得到金属陶瓷混合料;2) The alloy mixture and ceramic powder obtained in 1) are batched and ball-milled to further obtain a cermet mixture;
3)金属陶瓷混合料进行压制得到压坯;3) The cermet mixture is pressed to obtain a green compact;
4)压坯在真空烧结炉内烧制成形;4) The compact is fired into a vacuum sintering furnace;
5) 烧结后的冷却;5) Cooling after sintering;
完成TiC基金属陶瓷材料的制备。The preparation of TiC-based cermet material is completed.
优选地,所述步骤1)粘接相合金混合料中再添加摩尔分数为2.8~8.6%的碳粉,在烧结过程中脱氧和原位析出TiC及其复合碳化物。Preferably, carbon powder with a molar fraction of 2.8-8.6% is added to the bonding phase alloy mixture in the step 1) to deoxidize and in-situ precipitate TiC and its composite carbides during the sintering process.
优选地,所述步骤1)采用行星式球磨工艺,球料比为(8~12):1,采用无水乙醇作为分散介质,醇料比为(30~35):100(L/kg),转速225~300r/min,球磨时间为60~72小时。Preferably, the step 1) adopts a planetary ball milling process, the ratio of ball to material is (8~12): 1, anhydrous ethanol is used as the dispersion medium, and the ratio of alcohol to material is (30~35): 100 (L/kg) , the speed is 225~300r/min, and the ball milling time is 60~72 hours.
优选地,所述步骤1)中所得混合料形貌为高加工硬化特征的片状高能量合金混合粉末。所得混合料形貌为高加工硬化特征(所得混合粉末的XRD衍射峰半峰宽明显宽化,具体在实施例1中说明)的片状活性合金混合粉末。Preferably, the morphology of the mixture obtained in the step 1) is a flake-shaped high-energy alloy mixed powder with high work hardening characteristics. The morphology of the obtained mixture is a flake active alloy mixed powder with high work hardening characteristics (the half-width of the XRD diffraction peak of the obtained mixed powder is significantly broadened, which is specifically described in Example 1).
优选地,所述步骤2)采用湿法球磨,球料比为(5~7):1,采用无水乙醇作为分散介质,醇料比为(60~70):100,转速211~225r/min,球磨时间为24~36小时。粘结相粉末在球磨过程中发生强烈的塑性变形和加工硬化,球磨能量输入使得混合粉储能增加,球磨过程中既有部分固溶体的形成。Preferably, the step 2) adopts wet ball milling, the ratio of ball to material is (5~7): 1, anhydrous ethanol is used as the dispersion medium, the ratio of alcohol to material is (60~70): 100, and the rotation speed is 211~225r/ min, the ball milling time is 24 to 36 hours. The binder phase powder undergoes strong plastic deformation and work hardening during the ball milling process. The energy input of the ball milling increases the energy storage of the mixed powder, and some solid solutions are formed during the ball milling process.
优选地,所述步骤4)采用真空液相烧结工艺,烧结温度为1370~1400°C,烧结过程真空度为10-1~10-3Pa。Preferably, the step 4) adopts a vacuum liquid phase sintering process, the sintering temperature is 1370-1400°C, and the vacuum degree during the sintering process is 10 -1 -10 -3 Pa.
本发明首先采用行星球磨法制备高能量粘接相合金粉末,高能量的塑性金属混合粉末在金属陶瓷材料的混料过程中进一步提高储能和熵值,以制备具有高熵合金粘接相的TiC基金属陶瓷,此制备方法可极大促进金属陶瓷材料的烧结特性、降低烧结温度,有利于节能和降低烧结设备的损耗。同时,烧结过程中原位形成细颗粒复合碳化物颗粒,可降低材料的晶粒度。且由于粘接相合金中溶质元素含量高,可以抑制硬质相在粘接相中的溶解、促进复合碳化物硬质相的形成,使得金属陶瓷两相体积分数和力学性能的设计过程更加准确,烧结过程亦更加可控。而由此工艺方法所制备的烧结体具有更高的力学性能组合。The present invention firstly adopts the planetary ball milling method to prepare high-energy bonding phase alloy powder, and the high-energy plastic metal mixed powder further increases energy storage and entropy value during the mixing process of cermet materials, so as to prepare high-entropy alloy bonding phase alloy powder. The TiC-based cermet, the preparation method can greatly promote the sintering properties of the cermet material, reduce the sintering temperature, save energy and reduce the loss of sintering equipment. At the same time, fine-grained composite carbide particles are formed in-situ during sintering, which can reduce the grain size of the material. And due to the high content of solute elements in the binder phase alloy, it can inhibit the dissolution of the hard phase in the binder phase and promote the formation of the composite carbide hard phase, making the design process of the volume fraction and mechanical properties of the cermet two-phase more accurate. , the sintering process is also more controllable. The sintered body prepared by this process has a higher combination of mechanical properties.
粘结相合金中每种元素混合摩尔比为5%~35%之间。此制备方法较好的提高了烧结体的烧结性能和最终的力学性能。所得烧结体组织为典型的金属陶瓷组织,无气孔等缺陷,如图1所示,硬质相颗粒具有典型的芯壳结构,硬质相包含两种类型:“白芯-灰壳”和“黑芯-白壳”硬质相。制备过程质量稳定。The molar ratio of each element in the binder phase alloy is between 5% and 35%. The preparation method can better improve the sintering properties and final mechanical properties of the sintered body. The structure of the obtained sintered body is a typical cermet structure without defects such as pores. As shown in Figure 1, the hard phase particles have a typical core-shell structure, and the hard phase contains two types: "white core-gray shell" and "white core-grey shell" Black core-white shell" hard phase. The quality of the preparation process is stable.
本发明有益效果:Beneficial effects of the present invention:
1、本发明通过行星式球磨法制备高熵合金粘结相混合料粉末,粘结相合金混合料粉末具有较高的储能和加工硬化特征,进而极大提高了金属陶瓷烧结体的烧结性能、降低烧结温度,是一种更节能的制备工艺。1. The present invention prepares the high-entropy alloy binder phase mixture powder by the planetary ball milling method, and the binder phase alloy mixture powder has high energy storage and work hardening characteristics, thereby greatly improving the sintering performance of the cermet sintered body , reduce the sintering temperature, is a more energy-saving preparation process.
2、本发明所制备的金属陶瓷粉末在烧结过程中可原位形成大量细小的“白芯-灰壳”硬质相颗粒,促进烧结体硬质相颗粒的细化。2. The cermet powder prepared by the present invention can form a large number of fine "white core-grey shell" hard phase particles in situ during the sintering process, which promotes the refinement of the hard phase particles of the sintered body.
3、本发明制备的具有高熵合金粘结相的金属陶瓷材料具有更高的硬度、抗弯强度和断裂韧性的力学性能组合。3. The cermet material with the high-entropy alloy binder phase prepared by the present invention has a higher mechanical property combination of hardness, flexural strength and fracture toughness.
附图说明Description of drawings
图1为实施例1的金属陶瓷烧结体SEM组织;Fig. 1 is the SEM structure of the cermet sintered body of Example 1;
图2为实施例1的高加工硬化状态粘结相粉末的SEM形貌;Fig. 2 is the SEM morphology of the highly work-hardened state binder phase powder of Example 1;
图3为实施例1的粘结相混合料粉末的XRD图谱;Fig. 3 is the XRD pattern of the binder phase mixture powder of Example 1;
图4 为实施例1的金属陶瓷烧结体的XRD图谱;Fig. 4 is the XRD pattern of the cermet sintered body of Example 1;
图5 为实施例1的金属陶瓷烧结体的EBSD取向图,以及硬质相和粘结相的反极图。5 is an EBSD orientation diagram of the cermet sintered body of Example 1, and an inverse pole diagram of a hard phase and a binder phase.
具体实施方式Detailed ways
下面结合实施例来进一步说明本发明,但本发明要求保护的范围并不局限于实施例表述的范围。The present invention will be further described below in conjunction with the embodiments, but the claimed scope of the present invention is not limited to the scope expressed by the embodiments.
实施例1Example 1
一种具有高熵合金粘结相的TiC基金属陶瓷材料的制备方法,包括以下步骤:A preparation method of a TiC-based cermet material with a high-entropy alloy binder phase, comprising the following steps:
1)是高储能合金混合料的制备:采用Ni粉、Co粉、Cr粉、Mo粉、Ti粉、W粉、碳粉等原始料,配置材料摩尔分数为Ni:30%,Co:30%,Cr:10%,Mo:10%,W:5%,Ti:15%的混合料,混合料中额外添加摩尔分数3.8%的碳粉,以去除混合料中的氧和促进烧结过程中钛的碳化物及其复合碳化物的原位析出;采用无水乙醇作为分散介质,无水乙醇的用量为醇料比采用30:100的比例,YG8硬质合金球为磨球,球料比10:1;在行星式球磨机上混料,转速280r/min,时间60h;1) It is the preparation of high energy storage alloy mixture: Ni powder, Co powder, Cr powder, Mo powder, Ti powder, W powder, carbon powder and other raw materials are used, and the molar fraction of the configuration materials is Ni: 30%, Co: 30 %, Cr: 10%, Mo: 10%, W: 5%, Ti: 15% of the mixture, an additional 3.8% mole fraction of carbon powder is added to the mixture to remove oxygen in the mixture and promote the sintering process. In-situ precipitation of titanium carbide and its composite carbide; using absolute ethanol as the dispersion medium, the amount of absolute ethanol is the ratio of alcohol to material ratio of 30:100, YG8 cemented carbide balls are grinding balls, and the ratio of ball to material is 30:100. 10:1; mixing on a planetary ball mill, rotating speed 280r/min, time 60h;
2)在混合料中二次加入陶瓷粉,配置成材料质量分数为:陶瓷粉末78wt.%,高出能合金混合粉末22wt.%的混合料;二次添加无水乙醇配制醇料比70:100的比例;在行星式球磨机上混料,转速210r/min,时间36h,混合浆料后80℃烘箱烘干获得金属陶瓷混合粉;2) Add ceramic powder to the mixture twice, and configure the material mass fraction as follows: ceramic powder 78wt.%, high-energy alloy mixed powder 22wt.%; secondary addition of absolute ethanol to prepare alcohol-to-material ratio of 70: The ratio of 100; mix the materials on a planetary ball mill, the speed is 210r/min, the time is 36h, and the mixed slurry is dried in an oven at 80 °C to obtain a cermet mixed powder;
3)金属陶瓷混合粉在一定的压力(160MPa)下压制成形;3) The cermet mixed powder is pressed and formed under a certain pressure (160MPa);
4)压坯放入真空碳管炉内进行真空烧结。1000°C以下炉内真空度为4.0×10-2Pa;在1000°C以上采用分段烧结工艺,分别在1280°C和1350°C做二次保温,保温时间分别为90min和20min;烧结温度为1390°C保温60min;4) The compact is placed in a vacuum carbon tube furnace for vacuum sintering. The vacuum degree in the furnace below 1000°C is 4.0×10 -2 Pa; above 1000°C, the staged sintering process is adopted, and the secondary heat preservation is performed at 1280°C and 1350°C respectively, and the holding time is 90min and 20min respectively; sintering The temperature is 1390°C for 60min;
5)然后炉冷制室温,冷却阶段真空度为1.0×10-3~1.0×10-2Pa。5) Then the furnace is cooled to room temperature, and the vacuum degree in the cooling stage is 1.0×10 -3 ~1.0×10 -2 Pa.
图1为金属陶瓷烧结体的高倍SEM组织,由图可发现在基体内出现大量细小的“白芯-灰壳”硬质相颗粒。图2所示为本实施例所获得的片状合金混合料的SEM形貌,可以看出金属混合料在球磨过程中发生了较为剧烈的塑性变形、加工硬化、焊合和断裂等系列行为,混合料形成了扁平状粉体。将合金混合料混合30min时作为初始原料以及混合60h小时后的混合料的物相进行XRD分析,物相XRD图谱如图3所示。混料60h后与初始原料相比,金属组分的衍射峰明显宽化,部分金属的衍射峰消失,证明在球磨过程中已经形成部分固溶体合金。衍射角位于40.5°的(110)Mo衍射峰和位于44.8°的(002)Co衍射峰的半峰宽分别宽化了203%和261%,可见合金粉末在球磨过程中发生了剧烈的加工硬化。由于磨球碰撞能量的输入,金属粘接相剧烈的塑性变形及加工硬化形成扁平状的粉末,极大提高了粉末储能和表面能,因此在随后的烧结过程可取较低的烧结温度烧结成形。图4给出了金属陶瓷烧结体的XRD图谱,证明了烧结体由两相组成:TiC硬质相和Ni基粘结相,两相皆为面心立方晶格结构。图5给出了金属陶瓷烧结体的EBSD取向分布图和TiC硬质相、Ni基粘接相的反极图,可以看出硬质相的芯壳结构为完全共格关系,所选图片内硬质相与粘结相的取向分布主要集中在[101],即二者之间具有较高的共格关系,这个关系进一步在TEM和高分辨中得到证实。Figure 1 shows the high-magnification SEM structure of the cermet sintered body. From the figure, it can be found that a large number of fine "white core-grey shell" hard phase particles appear in the matrix. Figure 2 shows the SEM morphology of the flake alloy mixture obtained in this example. It can be seen that the metal mixture undergoes a series of behaviors such as relatively severe plastic deformation, work hardening, welding and fracture during the ball milling process. The mixture formed a flat powder. The alloy mixture was mixed for 30min as the initial raw material and the phase of the mixture after mixing for 60h was subjected to XRD analysis, and the phase XRD pattern was shown in Figure 3. Compared with the initial raw materials, the diffraction peaks of the metal components were significantly broadened after mixing for 60 hours, and the diffraction peaks of some metals disappeared, which proved that some solid solution alloys had been formed during the ball milling process. The half-widths of the (110) Mo diffraction peak at a diffraction angle of 40.5° and the (002) Co diffraction peak at 44.8° are broadened by 203% and 261%, respectively, indicating that the alloy powder undergoes severe work hardening during the ball milling process. . Due to the input of the collision energy of the grinding ball, the metal bonding phase undergoes severe plastic deformation and work hardening to form a flat powder, which greatly improves the energy storage and surface energy of the powder. Therefore, a lower sintering temperature can be used in the subsequent sintering process. . Figure 4 shows the XRD pattern of the cermet sintered body, which proves that the sintered body consists of two phases: a TiC hard phase and a Ni-based binder phase, both of which have a face-centered cubic lattice structure. Figure 5 shows the EBSD orientation distribution diagram of the cermet sintered body and the inverse pole diagram of the TiC hard phase and the Ni-based bonding phase. It can be seen that the core-shell structure of the hard phase is in a completely coherent relationship. The orientation distribution of the hard phase and the binder phase is mainly concentrated in [101], that is, there is a high coherence relationship between the two, which is further confirmed by TEM and high resolution.
经图像分析,硬质相和粘接相两相体积分数分别为85.8%和14.2%,硬质相“白芯-灰壳”硬质相颗粒所占体积比例为5.7%;烧结体的平均晶粒尺寸为0.56μm。能谱分析所形成的粘结相内的元素摩尔含量分别为Co:30.5%,Cr:9.3%,Ni:33.4%,Mo:9.4%,W:3.6%,Ti:13.8%。与粘接相合金原始料组分相比,碳化物形成元素的摩尔分数降低。可见,粘接相中TiC在烧结过程中原位析出,Mo、W、Cr向原位析出的TiC和原始硬质相颗粒扩散形成复合碳化物。所得烧结体的力学性能指标为:硬度1735HV,抗弯强度1856MPa,断裂韧性KIC10.6MPa·m1/2。The image analysis shows that the volume fractions of the hard phase and the binder phase are 85.8% and 14.2%, respectively, and the volume fraction of the hard phase "white core-grey shell" hard phase particles is 5.7%; the average crystallinity of the sintered body. The particle size was 0.56 μm. The molar contents of elements in the binder phase formed by energy spectrum analysis are Co: 30.5%, Cr: 9.3%, Ni: 33.4%, Mo: 9.4%, W: 3.6%, Ti: 13.8%. The mole fraction of carbide-forming elements is reduced compared to the binder phase alloy raw material composition. It can be seen that TiC in the binder phase precipitates in-situ during the sintering process, and Mo, W, and Cr diffuse to the in-situ precipitated TiC and the original hard phase particles to form composite carbides. The mechanical property indexes of the obtained sintered body are: hardness 1735HV, flexural strength 1856MPa, fracture toughness K IC 10.6MPa·m 1/2 .
实施例2Example 2
采用实施例1的成分组合、混料方法、制备工艺和烧结路线。在实施例2中首先是粘结相混合料的制备环节不采用陶瓷粉二次加入方式,即对应不采用实施例1的第2步陶瓷粉直接加入粘接相湿料中的加入方式。而是获得粘结相合金混合浆料后80℃烘箱烘干过筛备用的方式。然后进一步配置成材料质量分数为:陶瓷粉末78wt.%,活性合金混合粉末22wt.%的金属陶瓷混合料;混合料的混料方法同实施例1。The component combination, mixing method, preparation process and sintering route of Example 1 were adopted. In Example 2, the second step of adding ceramic powder is not used in the preparation of the binder phase mixture, that is, the method of directly adding the ceramic powder to the binder phase wet material in the second step of Example 1 is not used. Instead, the mixed slurry of the binder phase alloy is obtained and then dried in an oven at 80°C and sieved for use. Then, it is further configured into a metal-ceramic mixture with a material mass fraction of 78 wt.% of the ceramic powder and 22 wt.% of the active alloy mixed powder; the mixing method of the mixture is the same as that of Example 1.
经过分析,球磨后合金混合料及金属陶瓷混合料的形貌没有明细区别。烧结体的金相组织与扫描组织无其他相的形成,为典型的金属陶瓷的两相组织,与实施例1所获得的组织相同。经图像分析,两相体积分数及硬质相“白芯-灰壳”硬质相颗粒所占体积比例与实施例相似。烧结体的力学性能指标为:硬度1695HV,抗弯强度1944MPa,断裂韧性KIC11.1MPa·m1/2。与实施1相比,混料路线的调整,合金混合浆料的烘干过程对混合料的加工硬化虽然具有产生一定的软化效果,但是对金属陶瓷烧结体的力学性能没有显著影响,烧结体的硬度略有下降,横向断裂强度和断裂韧性略有上升。After analysis, the morphology of the alloy mixture and the cermet mixture after ball milling is not clearly different. The metallographic structure and scanning structure of the sintered body have no other phases, and are typical two-phase structures of cermets, which are the same as those obtained in Example 1. The image analysis shows that the volume fraction of the two phases and the volume ratio of the hard phase "white core-grey shell" hard phase particles are similar to those in the examples. The mechanical properties of the sintered body are as follows: hardness 1695HV, flexural strength 1944MPa, fracture toughness K IC 11.1MPa·m 1/2 . Compared with Example 1, the adjustment of the mixing route and the drying process of the alloy mixed slurry have a certain softening effect on the work hardening of the mixture, but have no significant effect on the mechanical properties of the cermet sintered body. The hardness decreased slightly, and the transverse fracture strength and fracture toughness increased slightly.
实施例3Example 3
改变粘结相混合料配比,配置材料摩尔份数为Ni:35.0%,Co:10.0%,Cr:5.0%,Mo:13.0%,W:7.0%,Ti:30.0%的混合料,混合料中额外添加摩尔分数8.0%的碳粉。金属陶瓷混合料配置质量分数为:陶瓷粉末68wt.%,高储能合金混合粉末32wt.%的混合料。混料工艺方法及烧结路线同实施例1,混料时间延长至72h。Change the ratio of the binder phase mixture, and configure the molar ratio of the materials as Ni: 35.0%, Co: 10.0%, Cr: 5.0%, Mo: 13.0%, W: 7.0%, Ti: 30.0% mixture, mixture Add an additional 8.0% mole fraction of toner. The mass fraction of the metal-ceramic mixture is as follows: a mixture of 68 wt.% ceramic powder and 32 wt.% high-energy-storage alloy mixed powder. The mixing process and sintering route are the same as those in Example 1, and the mixing time is extended to 72h.
经过分析,球磨工艺后合金混合料的形貌特征仍为扁平状形貌,采用激光粒度仪所测试的混合料的颗粒尺寸与实施例1相比变化不大,可见球磨时间60后,合金混合料的塑性变形、加工硬化、焊合和断裂达到平衡状态。采用XRD进行物相分析后发现没有新相形成。所获得烧结体的金相组织与扫描组织亦无其他相的形成,为典型的金属陶瓷的两相组织。经图像分析,硬质相和粘接相两相体积分数分别为77.8%和22.2%;硬质相“白芯-灰壳”硬质相颗粒所占体积比例为7.8%;烧结体的平均晶粒尺寸为0.41μm,平均晶粒较实施例1进一步细化,可见粘接相中有较多的碳化钛析出。能谱分析所形成的粘结相内的元素摩尔含量分别为Ni:36.8%,Ti:29.3%,Co:18.1%,Cr:3.5%,Mo:7.8%,W:4.6%。所得烧结体的力学性能指标为:硬度1625HV,抗弯强度2356MPa,断裂韧性KIC12.7MPa·m1/2。After analysis, the morphology of the alloy mixture after the ball milling process is still flat, and the particle size of the mixture tested by the laser particle size analyzer has little change compared with Example 1. The plastic deformation, work hardening, welding and fracture of the material reach an equilibrium state. Phase analysis by XRD found no new phase formed. The metallographic structure and scanning structure of the obtained sintered body also have no other phase formation, which is a typical two-phase structure of cermet. The image analysis shows that the volume fractions of the hard phase and the binder phase are 77.8% and 22.2%, respectively; the volume fraction of the hard phase "white core-grey shell" particles is 7.8%; the average crystallinity of the sintered body is 7.8%. The grain size is 0.41 μm, the average grain size is further refined than that of Example 1, and it can be seen that there is a lot of titanium carbide precipitation in the binder phase. The molar contents of elements in the binder phase formed by energy spectrum analysis are Ni: 36.8%, Ti: 29.3%, Co: 18.1%, Cr: 3.5%, Mo: 7.8%, W: 4.6%. The mechanical properties of the obtained sintered body are as follows: hardness 1625HV, flexural strength 2356MPa, fracture toughness K IC 12.7MPa·m 1/2 .
可见,虽然金属陶瓷混合料中硬质相碳化物质量分数降低,但是由于烧结过程中可以原位析出TiC并形成复合碳化物,烧结体内的硬质相体积分数高于理论计算体积分数值81.8%,再次证明了烧结过程中TiC的原位析出过程。粘接相体积分数的增加提高了抗弯强度和断裂韧性。It can be seen that although the mass fraction of hard phase carbides in the cermet mixture decreases, due to the in-situ precipitation of TiC and the formation of composite carbides during sintering, the volume fraction of hard phase in the sintered body is 81.8% higher than the theoretically calculated volume fraction value. , again demonstrating the in-situ precipitation process of TiC during sintering. The increase in the volume fraction of the binder phase improves the flexural strength and fracture toughness.
上述的实施例仅为本发明的优选技术方案,而不应视为对于本发明的限制,本发明的保护范围应以权利要求记载的技术方案,包括权利要求记载的技术方案中技术特征的等同替换方案为保护范围。即在此范围内的等同替换改进,也在本发明的保护范围之内。The above-mentioned embodiments are only the preferred technical solutions of the present invention, and should not be regarded as limitations of the present invention. The protection scope of the present invention should be based on the technical solutions described in the claims, including the equivalents of the technical features in the technical solutions described in the claims. The alternative is protection scope. That is, equivalent replacements and improvements within this scope are also within the protection scope of the present invention.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011399718.4A CN112680646B (en) | 2020-12-03 | 2020-12-03 | Preparation method of TiC-based metal ceramic with high-entropy alloy binder phase |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011399718.4A CN112680646B (en) | 2020-12-03 | 2020-12-03 | Preparation method of TiC-based metal ceramic with high-entropy alloy binder phase |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112680646A CN112680646A (en) | 2021-04-20 |
CN112680646B true CN112680646B (en) | 2022-05-06 |
Family
ID=75445812
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011399718.4A Active CN112680646B (en) | 2020-12-03 | 2020-12-03 | Preparation method of TiC-based metal ceramic with high-entropy alloy binder phase |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112680646B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113265573A (en) * | 2021-04-29 | 2021-08-17 | 四川大学 | High-strength high-toughness high-entropy alloy ceramic and preparation method thereof |
CN115029600B (en) * | 2022-07-07 | 2022-12-09 | 九江学院 | In-situ coreless ring structure (Mo, ti) (C, N) -based metal ceramic material and preparation method thereof |
CN115323236A (en) * | 2022-08-11 | 2022-11-11 | 上海宝鼎机械制造有限公司 | Cermet powder metallurgy material and method for manufacturing cermet guide |
CN115386775B (en) * | 2022-08-25 | 2023-04-07 | 三峡大学 | A kind of cermet material with high elastic modulus and preparation method thereof |
CN118621170B (en) * | 2024-08-14 | 2024-11-19 | 苏州实验室 | Preparation method of bicrystal structure high-entropy (Ti, M) (C, N) base metal ceramic |
Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5766742A (en) * | 1996-07-18 | 1998-06-16 | Mitsubishi Materials Corporation | Cutting blade made of titanium carbonitride-base cermet, and cutting blade made of coated cermet |
CN101792880A (en) * | 2010-03-12 | 2010-08-04 | 四川大学 | Weak core ring structured novel cermet material based on (Ti, M) (C, N) solid solution powder |
CN102470446A (en) * | 2009-06-30 | 2012-05-23 | 株式会社图格莱 | Cermet and coated cermet |
CN102787266A (en) * | 2012-09-04 | 2012-11-21 | 四川大学 | Titanium carbonitride based metal ceramic based on high-entropy alloy binder phase and preparation method of metal ceramic |
WO2017148885A1 (en) * | 2016-02-29 | 2017-09-08 | Sandvik Intellectual Property Ab | Cemented carbide with alternative binder |
TWI621717B (en) * | 2017-02-10 | 2018-04-21 | 國立清華大學 | Hard alloy suitable for additive manufacture |
CN108823478A (en) * | 2018-06-14 | 2018-11-16 | 株洲金锐美新材料有限公司 | Ultra-fine high-entropy alloy Binder Phase cermet and preparation method thereof |
CN109022990A (en) * | 2018-09-21 | 2018-12-18 | 成都理工大学 | A kind of preparation method of high-entropy alloy Binder Phase Ti (C, N) based ceramic metal |
CN109161774A (en) * | 2018-11-23 | 2019-01-08 | 西安工业大学 | Haystellite and preparation method thereof by high-entropy alloy as binder |
CN109161773A (en) * | 2018-09-21 | 2019-01-08 | 成都理工大学 | A kind of preparation method of high-entropy alloy bonding phase cemented carbide |
CN109252081A (en) * | 2018-10-31 | 2019-01-22 | 华南理工大学 | A kind of high-entropy alloy Binder Phase ultrafine tungsten carbide hard alloy and preparation method thereof |
CN109295373A (en) * | 2018-10-24 | 2019-02-01 | 江西理工大学 | Application of a kind of high entropy alloy and preparation method thereof |
CN109371307A (en) * | 2018-11-29 | 2019-02-22 | 福建工程学院 | A kind of preparation method of WC-based cemented carbide with high-entropy alloy powder as binder |
CN109972015A (en) * | 2019-04-09 | 2019-07-05 | 株洲华锐精密工具股份有限公司 | Ti (C, N) based metal ceramic cutter material and preparation method thereof |
CN110396632A (en) * | 2019-09-02 | 2019-11-01 | 中南大学 | A Ti(C,N)-based cermet with a homogeneous ring core structure and its preparation method |
CN111286664A (en) * | 2020-03-27 | 2020-06-16 | 燕山大学 | A kind of ultrafine tungsten carbide cemented carbide with high entropy alloy as binder phase and preparation method thereof |
CN111850373A (en) * | 2020-07-31 | 2020-10-30 | 中南大学 | A Ti(C,N)-based cermet with high-entropy ring phase structure and preparation method thereof |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4607954B2 (en) * | 2005-03-18 | 2011-01-05 | 京セラ株式会社 | TiCN-based cermet, cutting tool, and method of manufacturing workpiece using the same |
US8313842B2 (en) * | 2007-02-26 | 2012-11-20 | Kyocera Corporation | Ti-based cermet |
TWI347978B (en) * | 2007-09-19 | 2011-09-01 | Ind Tech Res Inst | Ultra-hard composite material and method for manufacturing the same |
-
2020
- 2020-12-03 CN CN202011399718.4A patent/CN112680646B/en active Active
Patent Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5766742A (en) * | 1996-07-18 | 1998-06-16 | Mitsubishi Materials Corporation | Cutting blade made of titanium carbonitride-base cermet, and cutting blade made of coated cermet |
CN102470446A (en) * | 2009-06-30 | 2012-05-23 | 株式会社图格莱 | Cermet and coated cermet |
CN101792880A (en) * | 2010-03-12 | 2010-08-04 | 四川大学 | Weak core ring structured novel cermet material based on (Ti, M) (C, N) solid solution powder |
CN102787266A (en) * | 2012-09-04 | 2012-11-21 | 四川大学 | Titanium carbonitride based metal ceramic based on high-entropy alloy binder phase and preparation method of metal ceramic |
WO2017148885A1 (en) * | 2016-02-29 | 2017-09-08 | Sandvik Intellectual Property Ab | Cemented carbide with alternative binder |
TWI621717B (en) * | 2017-02-10 | 2018-04-21 | 國立清華大學 | Hard alloy suitable for additive manufacture |
CN108823478A (en) * | 2018-06-14 | 2018-11-16 | 株洲金锐美新材料有限公司 | Ultra-fine high-entropy alloy Binder Phase cermet and preparation method thereof |
CN109022990A (en) * | 2018-09-21 | 2018-12-18 | 成都理工大学 | A kind of preparation method of high-entropy alloy Binder Phase Ti (C, N) based ceramic metal |
CN109161773A (en) * | 2018-09-21 | 2019-01-08 | 成都理工大学 | A kind of preparation method of high-entropy alloy bonding phase cemented carbide |
CN109295373A (en) * | 2018-10-24 | 2019-02-01 | 江西理工大学 | Application of a kind of high entropy alloy and preparation method thereof |
CN109252081A (en) * | 2018-10-31 | 2019-01-22 | 华南理工大学 | A kind of high-entropy alloy Binder Phase ultrafine tungsten carbide hard alloy and preparation method thereof |
CN109161774A (en) * | 2018-11-23 | 2019-01-08 | 西安工业大学 | Haystellite and preparation method thereof by high-entropy alloy as binder |
CN109371307A (en) * | 2018-11-29 | 2019-02-22 | 福建工程学院 | A kind of preparation method of WC-based cemented carbide with high-entropy alloy powder as binder |
CN109972015A (en) * | 2019-04-09 | 2019-07-05 | 株洲华锐精密工具股份有限公司 | Ti (C, N) based metal ceramic cutter material and preparation method thereof |
CN110396632A (en) * | 2019-09-02 | 2019-11-01 | 中南大学 | A Ti(C,N)-based cermet with a homogeneous ring core structure and its preparation method |
CN111286664A (en) * | 2020-03-27 | 2020-06-16 | 燕山大学 | A kind of ultrafine tungsten carbide cemented carbide with high entropy alloy as binder phase and preparation method thereof |
CN111850373A (en) * | 2020-07-31 | 2020-10-30 | 中南大学 | A Ti(C,N)-based cermet with high-entropy ring phase structure and preparation method thereof |
Non-Patent Citations (1)
Title |
---|
碳含量对Ti(C,N)基金属陶瓷组织和性能的影响;但成等;《硬质合金》;20171031;第34卷(第5期);第306-313页 * |
Also Published As
Publication number | Publication date |
---|---|
CN112680646A (en) | 2021-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112680646B (en) | Preparation method of TiC-based metal ceramic with high-entropy alloy binder phase | |
CN110396632B (en) | Ti (C, N) -based metal ceramic with homogeneous ring core structure and preparation method thereof | |
CN109338160A (en) | A castable solid solution tungsten alloy and preparation method thereof | |
CN110273092B (en) | CoCrNi particle reinforced magnesium-based composite material and preparation method thereof | |
CN101423912B (en) | A kind of nanocrystalline tungsten-based alloy bulk material and its preparation method | |
CN109778042B (en) | A kind of high-strength tungsten-based alloy and preparation method thereof | |
CN110358941A (en) | A kind of tungsten alloy material and preparation method thereof | |
CN113502426B (en) | A kind of multi-grain scale cemented carbide and preparation method thereof | |
CN109576545B (en) | A Ti(C,N)-based cermet with mixed crystal structure and preparation method thereof | |
CN113549801A (en) | A kind of second phase strengthening high entropy binder cemented carbide and preparation method thereof | |
CN110438384B (en) | Iron-nickel-based ultrafine-grained hard alloy and preparation method thereof | |
CN101210291B (en) | A kind of production method of ultrafine grain cermet | |
CN111763843B (en) | Preparation method of multi-element doped high-specific gravity tungsten copper nickel alloy and prepared high-specific gravity tungsten copper nickel alloy | |
CN114480938A (en) | A kind of preparation method of high-entropy steel-bonded cemented carbide with core-edge structure | |
CN102732766B (en) | Coarse grain hard alloy material and preparation method thereof | |
CN108396199B (en) | A kind of cobalt-chromium-nickel alloy material and powder metallurgy preparation method thereof | |
CN110449580B (en) | A powder metallurgy high-strength and toughness boron-containing high-entropy alloy material and its preparation method and application | |
CN114535606B (en) | A kind of oxide dispersion strengthened alloy and its preparation method and application | |
CN118621171A (en) | A method for preparing coreless high-entropy metal ceramics | |
CN118272686A (en) | Hard alloy and preparation method thereof | |
CN117701929A (en) | AlCrCuFeNi high entropy alloy particles reinforced copper matrix composites | |
CN116652170A (en) | Duplex stainless steel and additive manufacturing method thereof | |
CN115401195A (en) | A particle-reinforced high-entropy alloy powder and its preparation method and application | |
WO2023025251A1 (en) | Lightweight steel and preparation method therefor, steel structural member and electronic device | |
CN114855045A (en) | High-strength high-toughness high-density multi-component alloy and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |