CN112680484B - A method for producing 3,4-dihydroxybutyric acid using a double bacteria co-cultivation system - Google Patents
A method for producing 3,4-dihydroxybutyric acid using a double bacteria co-cultivation system Download PDFInfo
- Publication number
- CN112680484B CN112680484B CN202110057551.1A CN202110057551A CN112680484B CN 112680484 B CN112680484 B CN 112680484B CN 202110057551 A CN202110057551 A CN 202110057551A CN 112680484 B CN112680484 B CN 112680484B
- Authority
- CN
- China
- Prior art keywords
- escherichia coli
- acid
- gene
- culture
- engineering
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
本发明公开了一种利用双菌共培养体系生产3,4‑二羟基丁酸的方法,是(1)构建氧化葡萄糖酸杆菌与工程大肠杆菌Escherichia coli 6KI的双菌共培养体系,(2)利用双菌共培养体系发酵生产3,4‑二羟基丁酸。实验证实,本发明提供的方法能够使3,4‑二羟基丁酸生产量达到3.26g/L,得率为0.47g 3,4‑二羟基丁酸/1g木糖,有效解决了目前报道的单一基因工程菌生产3,4‑二羟基丁酸所具有的有产量低问题,得率低的问题,并为氧化葡萄糖酸杆菌在生物法生产需要复杂合成途径的化学品的应用提供新思路,新方法。
The invention discloses a method for producing 3,4-dihydroxybutyric acid by utilizing a double-bacteria co-cultivation system. 3,4-dihydroxybutyric acid was produced by fermentation in a two-bacteria co-cultivation system. Experiments confirm that the method provided by the invention can make the 3,4-dihydroxybutyric acid production amount reach 3.26g/L, and the yield is 0.47g 3,4-dihydroxybutyric acid/1g xylose, effectively solving the currently reported problem. The production of 3,4-dihydroxybutyric acid by a single genetically engineered bacterium has the problem of low yield and low yield, and provides a new idea for the application of Gluconobacter oxydans in the biological production of chemicals that require complex synthetic pathways, new method.
Description
技术领域technical field
本发明涉及一种发酵生产3,4-二羟基丁酸的方法,尤其涉及一种利用氧化葡萄糖酸杆菌和工程大肠杆菌组成的共培养体系以木糖为底物发酵生产3,4-二羟基丁酸方法,属于生物技术领域。The invention relates to a method for producing 3,4-dihydroxybutyric acid by fermentation, in particular to a co-cultivation system composed of Gluconobacter oxydans and engineering Escherichia coli, and using xylose as a substrate to ferment and produce 3,4-dihydroxybutyric acid The butyric acid method belongs to the field of biotechnology.
背景技术Background technique
3,4-二羟基丁酸及其脱水产物3-羟基丁内酯均是重要的平台化合物(Gao H etal.,2017,Bioresour.Technol.,245:794-800),广泛用于聚合物、溶剂和营养添加剂的生产(Wang J et al.,2017,Metab.Eng.,41:39-45)。化学法生产3,4-二羟基丁酸与3-羟基丁内酯具有反应条件苛刻、剧烈,底物昂贵,需要重金属或者稀有金属参与反应的缺点(KumarP et al.,2005,Tetrahedron:Asymmetry,16:2717-2721)。由于微生物发酵法生产化学品具有反应条件温和,污染少,底物廉价等优势,因此采用微生物发酵法生产3,4-二羟基丁酸具有重要研究价值和广阔市场前景。3,4-Dihydroxybutyric acid and its dehydration product 3-hydroxybutyrolactone are important platform compounds (Gao H et al., 2017, Bioresour. Technol., 245:794-800), which are widely used in polymers, Production of Solvents and Nutrient Additives (Wang J et al., 2017, Metab. Eng., 41:39-45). The chemical production of 3,4-dihydroxybutyric acid and 3-hydroxybutyrolactone has the disadvantages of harsh and violent reaction conditions, expensive substrates, and the need for heavy metals or rare metals to participate in the reaction (KumarP et al., 2005, Tetrahedron: Asymmetry, 16:2717-2721). Because the production of chemicals by microbial fermentation has the advantages of mild reaction conditions, less pollution, and cheap substrates, the production of 3,4-dihydroxybutyric acid by microbial fermentation has important research value and broad market prospects.
大肠杆菌具有培养要求简单、生长迅速,遗传背景清晰,易于基因工程操作等特点,已成功用于代谢工程改造生产3,4-二羟基丁酸。由于存在中间产物具有毒害作用、高氧化还原压力、反应过程可逆等问题,用重组大肠杆菌生产3,4-二羟基丁酸得率低,产量低。据报道国内课题组在大肠杆菌中通过表达外源木糖脱氢酶、醛脱氢酶等代谢工程改造,以木糖为底物,实现了3,4-二羟基丁酸的生产,产量为0.38g/L(Gao H et al.,2017,Bioresour.Technol.,245:794-800);国外有采用葡萄糖和乙醇酸为底物生产3,4-二羟基丁酸的报道,通过对大肠杆菌乙醛酸循环的代谢工程改造,3,4-二羟基丁酸产量达到0.7g/L(Dhamankar H et al.,2014,Metab.Eng.,25:72-81)。Escherichia coli has the characteristics of simple culture requirements, rapid growth, clear genetic background, and easy genetic engineering operation. It has been successfully used in metabolic engineering to produce 3,4-dihydroxybutyric acid. Due to the toxic effects of intermediate products, high redox pressure, and reversibility of the reaction process, the production of 3,4-dihydroxybutyric acid by recombinant Escherichia coli has low yield and low yield. According to reports, the domestic research group has achieved the production of 3,4-dihydroxybutyric acid by expressing exogenous xylose dehydrogenase, aldehyde dehydrogenase and other metabolic engineering transformations in Escherichia coli, and using xylose as a substrate. 0.38g/L (Gao H et al., 2017, Bioresour. Technol., 245: 794-800); there are foreign reports on the production of 3,4-dihydroxybutyric acid using glucose and glycolic acid as substrates. Metabolic engineering of bacillus glyoxylate cycle, 3,4-dihydroxybutyric acid production reached 0.7g/L (Dhamankar H et al., 2014, Metab.Eng., 25:72-81).
氧化葡萄糖酸杆菌是一种严格好氧菌(Prust C et al.,2005,Nat.Biotechnol.,23:195-200),其细胞膜具有多种膜结合脱氢酶,可以参与多种氧化反应,使其成为重要的工业应用菌株(Kiefler I et al.,2017,Appl.Microbiol.Biotechnol.,101:5453-5467)。例如,氧化葡萄糖酸杆菌在工业上广泛用于分别从葡萄糖、木糖、山梨醇和甘油生产葡萄糖酸、木糖酸、山梨糖和二羟基丙酮。然而,氧化葡萄糖酸杆菌存在直接将氧化产物分泌到胞外,体内TCA循环不完整,难以对其代谢工程改造等缺陷(Prust C et al.,2005,Nat.Biotechnol.,23:195-200;T et al.,2006,J.Bacteriol.,188:7668-7676),限制了氧化葡萄糖酸杆菌在需要复杂代谢途径的化学品合成方面的应用。Gluconobacter oxydans is a strictly aerobic bacteria (Prust C et al., 2005, Nat. Biotechnol., 23: 195-200), its cell membrane has a variety of membrane-bound dehydrogenases, which can participate in a variety of oxidation reactions, This makes it an important strain for industrial applications (Kiefler I et al., 2017, Appl. Microbiol. Biotechnol., 101:5453-5467). For example, G. oxydans is widely used in industry for the production of gluconic acid, xylonic acid, sorbose and dihydroxyacetone from glucose, xylose, sorbitol and glycerol, respectively. However, Gluconobacter oxydans has defects such as direct secretion of oxidation products into the extracellular space, incomplete TCA cycle in vivo, and difficulty in metabolic engineering (Prust C et al., 2005, Nat. Biotechnol., 23: 195-200; T et al., 2006, J. Bacteriol., 188:7668-7676), limiting the use of G. oxydans in the synthesis of chemicals that require complex metabolic pathways.
经检索,有关利用大肠杆菌易于工程改造并结合氧化葡萄糖酸杆菌的不完全氧化能力及将氧化产物直接分泌到胞外的特点,建立一种氧化葡萄糖酸杆菌与工程大肠杆菌共培养体系,以木糖为底物发酵生产3,4-二羟基丁酸方法还未见报道。After searching, it was found that a co-cultivation system of Gluconobacter oxydans and engineered Escherichia coli was established by utilizing the characteristics of E. The method of producing 3,4-dihydroxybutyric acid by fermentation of sugar as substrate has not been reported yet.
发明内容SUMMARY OF THE INVENTION
针对现有利用重组大肠杆菌生产3,4-二羟基丁酸的方法中,产品产量低、得率低,中间产物对于菌株具有毒害作用,反应过程可逆等问题。本发明提供了一种利用氧化葡萄糖酸杆菌和大肠杆菌组成的双菌共培养体系以木糖为底物高产3,4-二羟基丁酸的方法。Aiming at the problems of the existing method for producing 3,4-dihydroxybutyric acid using recombinant Escherichia coli, the product yield is low, the yield is low, the intermediate product has a toxic effect on the strain, and the reaction process is reversible. The invention provides a method for high-yielding 3,4-dihydroxybutyric acid using xylose as a substrate by using a double bacteria co-cultivation system composed of Gluconobacter oxydans and Escherichia coli.
本发明所述的利用双菌共培养体系生产3,4-二羟基丁酸的方法,步骤是:The method for producing 3,4-dihydroxybutyric acid using a double bacteria co-cultivation system according to the present invention, the steps are:
(1)构建氧化葡萄糖酸杆菌与工程大肠杆菌的双菌共培养体系(1) Construction of a double-bacteria co-cultivation system of Gluconobacter oxydans and engineered Escherichia coli
取活化后的氧化葡萄糖酸杆菌,6000转/分离心并用生理盐水洗涤1-2遍,然后用生理盐水重悬至OD=3,备用;取活化后的工程大肠杆菌,6000转/分离心并用生理盐水洗涤1-2遍,然后用生理盐水重悬至OD=2,备用;将上述两种重悬菌液按照体积比1~3:1~2混合后接种于共培养发酵培养基中并使菌液终OD为0.2±0.1,构建得到氧化葡萄糖酸杆菌与工程大肠杆菌的双菌共培养体系;Take the activated Gluconobacter oxydans, centrifuge at 6000 rpm and wash 1-2 times with physiological saline, then resuspend to OD=3 with physiological saline, for subsequent use; take the activated engineering Escherichia coli, centrifuge at 6000 rpm/separate and use Wash 1-2 times with normal saline, then resuspend to OD=2 with normal saline, for later use; mix the above-mentioned two resuspended bacterial solutions according to the volume ratio of 1~3:1~2, inoculate in the co-cultivation fermentation medium and then inoculate it in the co-cultivation fermentation medium. Make the final OD of the bacterial liquid to be 0.2±0.1, and construct a double-bacteria co-cultivation system of Gluconobacter oxydans and engineered Escherichia coli;
其中:in:
上述氧化葡萄糖酸杆菌选野生型Gluconobacter oxydans 621H;该菌为革兰氏阴性菌,严格好氧生长,该菌的较佳培养温度为28±1℃,可以在山梨醇复杂培养基中生长。所述氧化葡萄糖酸杆菌621H的活化培养基为山梨醇复杂培养基,其配方为:山梨醇73g/L,酵母粉18.4g/L,(NH4)2SO4 1.5g/L,KH2PO4 1.5g/L,MgSO4·7H2O 0.47g/L;121℃高压灭菌20分钟。The wild-type Gluconobacter oxydans 621H is selected from the above-mentioned Gluconobacter oxydans; the bacterium is a Gram-negative bacterium and grows strictly aerobic. The activation medium of Gluconobacter oxydans 621H is sorbitol complex medium, and its formula is: sorbitol 73g/L, yeast powder 18.4g/L, (NH 4 ) 2 SO 4 1.5g/L, KH 2 PO 4 1.5g/L, MgSO 4 ·7H 2 O 0.47g/L; autoclave at 121°C for 20 minutes.
上述工程大肠杆菌选工程大肠杆菌Escherichia coli 6KI,其基因型为Escherichia coli W3110(DE3)ΔxylAΔyjhHΔyagEΔyiaEΔyqdDΔxynR::xylD&kdcA;该菌为革兰氏阴性菌,需氧或兼性厌氧生长,该菌的较佳培养温度为37±1℃,可以在LB培养基中生长。所述工程大肠杆菌Escherichia coli 6KI的活化培养基为LB培养基,其配方为:蛋白胨10g/L;酵母粉5g/L;NaCl 10g/L;121℃条件下高压灭菌20分钟。The above-mentioned engineering Escherichia coli was selected as Escherichia coli 6KI, and its genotype is Escherichia coli W3110(DE3)ΔxylAΔyjhHΔyagEΔyiaEΔyqdDΔxynR::xylD&kdcA; the bacteria are Gram-negative bacteria, which grow aerobic or facultative anaerobic, and the bacteria are better The culture temperature is 37±1°C and can be grown in LB medium. The activation medium of the engineered Escherichia coli 6KI is LB medium, and its formula is: peptone 10 g/L; yeast powder 5 g/L; NaCl 10 g/L; and autoclaving at 121° C. for 20 minutes.
上述共培养发酵培养基配方为:木糖7±2g/L,葡萄糖5±1g/L,酵母粉5±1g/L,蛋白胨10±2g/L,NaCl 10±2g/L;121℃条件下高压灭菌20分钟。The above-mentioned co-cultivation fermentation medium formula is: xylose 7±2g/L, glucose 5±1g/L, yeast powder 5±1g/L,
(2)利用双菌共培养体系发酵生产3,4-二羟基丁酸(2) Fermentation production of 3,4-dihydroxybutyric acid by double bacteria co-culture system
将获得的双菌共培养体系于28±2℃、摇床转速200±20rpm条件下进行发酵培养,待体系总OD为0.7~0.8时,添加终浓度为1mM IPTG进行诱导,并且每隔3小时手动添加10MNaOH调节培养基pH至6.8~7.0,发酵培养54~65小时直至糖耗完全终止,即得到含3,4-二羟基丁酸的发酵液。The obtained double bacteria co-cultivation system was fermented and cultured at 28±2°C and the shaking speed was 200±20rpm. When the total OD of the system was 0.7 to 0.8, the final concentration of 1mM IPTG was added for induction, and every 3 hours. Manually add 10M NaOH to adjust the pH of the medium to 6.8-7.0, and ferment and culture for 54-65 hours until the sugar consumption is completely terminated, that is, a fermentation broth containing 3,4-dihydroxybutyric acid is obtained.
上述利用双菌共培养体系生产3,4-二羟基丁酸的方法中:所述Gluconobacteroxydans 621H与工程大肠杆菌Escherichia coli 6KI两种重悬菌液优选按照体积比1:1混合后接种于共培养发酵培养基中并使菌液终OD为0.2,构建得到氧化葡萄糖酸杆菌与工程大肠杆菌的双菌共培养体系。In the above-mentioned method for producing 3,4-dihydroxybutyric acid using a dual bacteria co-cultivation system: the two resuspended bacterial solutions of the Gluconobacteroxydans 621H and the engineering Escherichia coli 6KI are preferably mixed in a volume ratio of 1:1 and then inoculated into the co-cultivation In the fermentation medium, the final OD of the bacterial liquid was 0.2, and a double-bacteria co-culture system of Gluconobacter oxydans and engineered Escherichia coli was constructed.
上述利用双菌共培养体系生产3,4-二羟基丁酸的方法中:所述共培养发酵培养基配方优选为:木糖7g/L,葡萄糖5g/L,酵母粉5g/L,蛋白胨10g/L,NaCl 10g/L。In the above-mentioned method for producing 3,4-dihydroxybutyric acid using a dual bacteria co-cultivation system: the co-cultivation fermentation medium formula is preferably: xylose 7g/L, glucose 5g/L, yeast powder 5g/L, peptone 10g /L, NaCl 10g/L.
上述利用双菌共培养体系生产3,4-二羟基丁酸的方法中:所述双菌共培养体系中Gluconobacter oxydans 621H与工程大肠杆菌Escherichia coli 6KI两种菌液的OD比优选等于3:2,并优选于28℃、摇床转速200rpm条件下进行发酵培养。In the above-mentioned method for producing 3,4-dihydroxybutyric acid using a double bacteria co-cultivation system: the OD ratio of two bacterial liquids of Gluconobacter oxydans 621H and engineering Escherichia coli 6KI in the double bacteria co-cultivation system is preferably equal to 3:2 , and preferably fermented and cultured at 28° C. and under the conditions of a shaker rotation speed of 200 rpm.
上述工程大肠杆菌Escherichia coli 6KI的构建方法是:The construction method of above-mentioned engineering Escherichia coli 6KI is:
以大肠杆菌W3110(DE3)为出发菌株,采用Red重组技术(Datsenko KA et al.,2000,Proc.Natl.Acad.Sci.U S A.,97:6640-6645)对该菌株进行连续基因改造,步骤如下:Taking Escherichia coli W3110 (DE3) as the starting strain, the strain was continuously genetically modified by using Red recombination technology (Datsenko KA et al., 2000, Proc.Natl.Acad.Sci.US A., 97:6640-6645), Proceed as follows:
(1)采用基因工程手段在大肠杆菌W3110(DE3)中敲除木糖异构酶基因xylA和2-酮基-3-脱氧木糖酸醛缩酶基因yjhH和yagE,阻断菌株利用木糖和木糖酸的内源性途径,构建菌株Escherichia coli 3K。(1) The xylose isomerase gene xylA and the 2-keto-3-deoxyxylonate aldolase genes yjhH and yagE were knocked out in Escherichia coli W3110(DE3) by genetic engineering, blocking the strain from using xylose and the endogenous pathway of xylonic acid to construct strain Escherichia coli 3K.
(2)采用基因工程手段在Escherichia coli 3K中敲除木糖酸操纵子转录抑制因子基因xynR,阻断转录抑制因子XynR对木糖酸操纵子的调控,增强木糖酸脱水酶及木糖酸转运蛋白的表达,加强目的产物合成代谢,构建菌株Escherichia coli 4K。(2) Knock out the xylonic acid operon transcriptional repressor gene xynR in Escherichia coli 3K by genetic engineering, block the regulation of the transcriptional repressor XynR on the xylonic acid operon, and enhance the xylonic acid dehydratase and xylonic acid The expression of transporter protein enhances the synthesis and metabolism of the target product, and the strain Escherichia coli 4K is constructed.
(3)采用基因工程手段在Escherichia coli 4K中敲除NADPH依赖型醛还原酶基因yqhD,阻断3,4-二羟基丁醛还原形成1,2,4-丁三醇,构建菌株Escherichia coli 5K。(3) Knock out the NADPH-dependent aldehyde reductase gene yqhD in Escherichia coli 4K by genetic engineering, block the reduction of 3,4-dihydroxybutyraldehyde to form 1,2,4-butanetriol, and construct strain Escherichia coli 5K .
(4)采用基因工程手段在Escherichia coli 5K中敲除乙醛酸还原酶基因yiaE,削弱中间产物2-酮基-3-脱氧木糖酸还原反应,增强目的产物合成代谢,构建菌株Escherichia coli 6K。(4) The glyoxylate reductase gene yiaE was knocked out in Escherichia coli 5K by genetic engineering, weakening the reduction reaction of the intermediate product 2-keto-3-deoxyxylonic acid, enhancing the synthesis and metabolism of the target product, and constructing the strain Escherichia coli 6K .
(5)采用基因工程手段将来源于月柄杆菌(Caulobacter crescentus)的木糖酸脱水酶基因xylD和来源于乳酸乳球菌(Lactococcus lactis)的支链-2-酮酸脱羧酶基因kdcA插入商业化质粒pACYCDuet-1(图1),PCR扩增基因表达框,组建操纵子并敲入至Escherichia coli 6K基因组原xynR位点,构建得到工程大肠杆菌菌株Escherichia coli6KI。(5) Commercially insert the xylonic acid dehydratase gene xylD from Caulobacter crescentus and the branched-2-keto acid decarboxylase gene kdcA from Lactococcus lactis by genetic engineering The plasmid pACYCDuet-1 (Fig. 1) was used to amplify the gene expression cassette by PCR, construct an operon and knock it into the original xynR site of the Escherichia coli 6K genome to construct an engineered Escherichia coli 6KI.
上述3,4-二羟基丁酸及其余物质的检测方法是:采用生物传感分析仪(SBA-40D)检测葡萄糖;采用高效液相色谱仪(HPLC)Shimadzu 20-AT检测木糖,分析条件为:示差折光检测器;Bio-Rad Aminex HPX-87P分析柱(300×7.8mm),柱温75℃,流动相为纯水,流速0.7mL/min,进样体积5μL;采用HPLC检测木糖酸、2-酮基-3-脱氧木糖酸、3,4-二羟基丁醛、1,2,4-丁三醇和3,4-二羟基丁酸,分析条件为:紫外检测器,检测波长为210nm;Bio-RadAminex HPX-87H分析柱(300×7.8mm),柱温30℃,流动相为0.1%甲酸,流速0.4mL/min,进样体积5μL。The detection methods for the above-mentioned 3,4-dihydroxybutyric acid and other substances are: using a biosensor analyzer (SBA-40D) to detect glucose; using a high performance liquid chromatograph (HPLC) Shimadzu 20-AT to detect xylose, the analysis conditions are: Differential refractive index detector; Bio-Rad Aminex HPX-87P analytical column (300×7.8mm), column temperature 75℃, mobile phase is pure water, flow rate 0.7mL/min, injection volume 5μL; HPLC is used to detect xylose acid, 2-keto-3-deoxyxylonic acid, 3,4-dihydroxybutyraldehyde, 1,2,4-butanetriol and 3,4-dihydroxybutyric acid under the following conditions: UV detector, detection The wavelength is 210 nm; Bio-RadAminex HPX-87H analytical column (300×7.8 mm), the column temperature is 30° C., the mobile phase is 0.1% formic acid, the flow rate is 0.4 mL/min, and the injection volume is 5 μL.
本发明利用大肠杆菌易于工程改造结合氧化葡萄糖酸杆菌的不完全氧化能力及将氧化产物直接分泌到胞外的特点,开发了一种共培养氧化葡萄糖酸杆菌和大肠杆菌生产3,4-二羟基丁酸生产的新方法,为生物法生产3,4-二羟基丁酸提供了新思路,为氧化葡萄糖酸杆菌工业化应用提供新指导。上述双菌共培养体系中的氧化葡萄糖酸杆菌首先将木糖氧化为木糖酸,然后大肠杆菌将木糖酸转化为3,4-二羟基丁醛,最后氧化葡萄糖酸杆菌将3,4-二羟基丁醛氧化为3,4-二羟基丁酸。该方法解决了目前单一菌株生产3,4-二羟基丁酸的问题,实现了3,4-二羟基丁酸的高效率、高得率生产。本发明提供的方法能够使3,4-二羟基丁酸生产量达到3.26g/L,得率为0.47g 3,4-二羟基丁酸/1g木糖,其结果如图2所示。The present invention develops a co-cultivation of Gluconobacter oxydans and Escherichia coli to produce 3,4-dihydroxyl by taking advantage of the easy engineering of Escherichia coli combined with the incomplete oxidizing ability of G. oxydans and the direct secretion of oxidation products into the extracellular space. The new method of butyric acid production provides a new idea for the biological production of 3,4-dihydroxybutyric acid, and provides new guidance for the industrial application of Gluconobacter oxydans. In the above-mentioned two-bacteria co-cultivation system, G. oxidans first oxidizes xylose to xylonic acid, then Escherichia coli converts xylic acid to 3,4-dihydroxybutyraldehyde, and finally, G. oxidans converts 3,4-dihydroxybutyraldehyde. Dihydroxybutyraldehyde is oxidized to 3,4-dihydroxybutyric acid. The method solves the current problem of producing 3,4-dihydroxybutyric acid by a single strain, and realizes high-efficiency and high-yield production of 3,4-dihydroxybutyric acid. The method provided by the invention can make the production amount of 3,4-dihydroxybutyric acid reach 3.26g/L, and the yield is 0.47g 3,4-dihydroxybutyric acid/1g xylose, and the result is shown in FIG. 2 .
本发明具有的突出特点和有益效果是:The outstanding features and beneficial effects that the present invention has are:
(1)本发明提供了一种3,4-二羟基丁酸生产新思路,克服了单一菌株生产3,4-二羟基丁酸过程中中间产物具有毒害作用、高氧化还原压力、反应过程可逆等问题。(1) The present invention provides a new idea for the production of 3,4-dihydroxybutyric acid, which overcomes the toxic effect, high redox pressure, and reversibility of the reaction process of the intermediate product in the process of producing 3,4-dihydroxybutyric acid by a single strain And other issues.
(2)本发明能够使3,4-二羟基丁酸生产量达到3.26g/L,并具有高得率,高生产效率的优良特点,其产量是目前生物法生产3,4-二羟基丁酸的最高产量。(2) The present invention can make the production amount of 3,4-dihydroxybutyric acid reach 3.26g/L, and has the excellent characteristics of high yield and high production efficiency, and its output is the current biological method to produce 3,4-dihydroxybutyrate. The highest yield of acid.
(3)本发明为氧化葡萄糖酸杆菌在需复杂途径的生物合成领域的应用提供新指导。(3) The present invention provides new guidance for the application of Gluconobacter oxydans in the field of biosynthesis requiring complex pathways.
附图说明Description of drawings
图1:pACYCDuet-xylD-kdcA质粒图谱。Figure 1: pACYCDuet-xylD-kdcA plasmid map.
图2:共培养体系以葡萄糖、木糖为底物的补料分批发酵过程曲线。Figure 2: The process curve of fed-batch fermentation in the co-culture system with glucose and xylose as substrates.
具体实施方式Detailed ways
下面结合具体附图和实施例对本发明内容进行详细说明。如下所述例子仅是本发明的较佳实施方式而已,应该说明的是,下述说明仅仅是为了解释本发明,并非对本发明作任何形式上的限制,凡是依据本发明的技术实质对实施方式所做的任何简单修改,等同变化与修饰,均属于本发明技术方案的范围内。The content of the present invention will be described in detail below with reference to the specific drawings and embodiments. The following examples are only preferred embodiments of the present invention. It should be noted that the following descriptions are only for explaining the present invention, and do not limit the present invention in any form. Any simple modifications, equivalent changes and modifications made all fall within the scope of the technical solutions of the present invention.
下述实施例中,使用的氧化葡萄糖酸杆菌621H购自全球生物资源中心(ATCC),菌株序号为:ATCC 621H。本发明方法中使用的试剂购自国药集团化学试剂有限公司及西格玛奥德里奇(上海)贸易有限公司;敲除所用质粒pKD4(CGSC7632)、pKD46(CGSC7669)、pCP20(CGSC14177)均购自耶鲁大学质粒基因保藏中心。其他所使用的材料、试剂等,如无特殊说明,均从商业途径得到。In the following examples, the used Gluconobacter oxydans 621H was purchased from the Global Biological Resource Center (ATCC), and the strain number is: ATCC 621H. The reagents used in the method of the present invention were purchased from Sinopharm Chemical Reagent Co., Ltd. and Sigma-Aldrich (Shanghai) Trading Co., Ltd.; the plasmids pKD4 (CGSC7632), pKD46 (CGSC7669) and pCP20 (CGSC14177) used for knockout were purchased from Yale University Plasmid Gene Collection. Other materials, reagents, etc. used, unless otherwise specified, are obtained from commercial sources.
实施例1:利用氧化葡萄糖酸杆菌和大肠杆菌组成的双菌共培养体系以木糖为底物发酵生产3,4-二羟基丁酸Example 1: Production of 3,4-dihydroxybutyric acid by fermenting xylose as a substrate using a double-bacteria co-cultivation system composed of Gluconobacter oxydans and Escherichia coli
(1)构建氧化葡萄糖酸杆菌与工程大肠杆菌的双菌共培养体系(1) Construction of a double-bacteria co-cultivation system of Gluconobacter oxydans and engineered Escherichia coli
取活化后的野生型Gluconobacter oxydans 621H,6000转/分离心10分钟,用生理盐水洗涤沉淀物1-2遍,然后用生理盐水重悬至OD=3,备用;取活化后的工程大肠杆菌Escherichia coli 6KI,6000转/分离心10分钟,用生理盐水洗涤沉淀物1-2遍,然后用生理盐水重悬至OD=2,备用;将上述两种重悬菌液按照体积比1:1混合后接种于共培养发酵培养基中并使菌液终OD为0.2,构建得到氧化葡萄糖酸杆菌与工程大肠杆菌的双菌共培养体系;Take the activated wild-type Gluconobacter oxydans 621H, centrifuge at 6000 rpm for 10 minutes, wash the precipitate with normal saline 1-2 times, and then resuspend it to OD=3 with normal saline for later use; take the activated engineered Escherichia coli Escherichia coli 6KI, centrifuged at 6000 rpm for 10 minutes, washed the precipitate 1-2 times with normal saline, and then resuspended with normal saline to OD=2, for later use; the above two resuspended bacteria were mixed according to the volume ratio of 1:1 After inoculation in the co-cultivation fermentation medium, the final OD of the bacterial liquid is 0.2, and a double-bacteria co-cultivation system of Gluconobacter oxydans and engineered Escherichia coli is constructed;
其中:in:
上述野生型Gluconobacter oxydans 621H为革兰氏阴性菌,严格好氧生长,该菌的较佳培养温度为26℃,可以在山梨醇复杂培养基中生长。所述氧化葡萄糖酸杆菌621H的活化培养基为山梨醇复杂培养基,其配方为:山梨醇73g/L,酵母粉18.4g/L,(NH4)2SO41.5g/L,KH2PO4 1.5g/L,MgSO4·7H2O 0.47g/L;121℃高压灭菌20分钟。The above-mentioned wild-type Gluconobacter oxydans 621H is a Gram-negative bacterium and grows strictly aerobic. The optimal culture temperature of the bacterium is 26°C, and it can grow in a sorbitol complex medium. The activation medium of Gluconobacter oxydans 621H is sorbitol complex medium, and its formula is: sorbitol 73g/L, yeast powder 18.4g/L, (NH 4 ) 2 SO 4 1.5g/L, KH 2 PO 4 1.5g/L, MgSO 4 ·7H 2 O 0.47g/L; autoclave at 121°C for 20 minutes.
上述工程大肠杆菌Escherichia coli 6KI的基因型为Escherichia coli W3110(DE3)ΔxylAΔyjhHΔyagEΔyiaEΔyqdDΔxynR::xylD&kdcA;该菌为革兰氏阴性菌,需氧或兼性厌氧生长,该菌的较佳培养温度为37±1℃,可以在LB培养基中生长。所述工程大肠杆菌Escherichia coli 6KI的活化培养基为LB培养基,其配方为:蛋白胨10g/L;酵母粉5g/L;NaCl 10g/L;121℃条件下高压灭菌20分钟。The genotype of the above engineered Escherichia coli 6KI is Escherichia coli W3110(DE3)ΔxylAΔyjhHΔyagEΔyiaEΔyqdDΔxynR::xylD&kdcA; the bacterium is a gram-negative bacterium that grows aerobic or facultatively anaerobic, and the optimal culture temperature of the bacterium is 37± 1°C, can be grown in LB medium. The activation medium of the engineered Escherichia coli 6KI is LB medium, and its formula is: peptone 10 g/L; yeast powder 5 g/L; NaCl 10 g/L; and autoclaving at 121° C. for 20 minutes.
上述共培养发酵培养基配方为:木糖7g/L,葡萄糖5g/L,酵母粉5g/L,蛋白胨10g/L,NaCl 10g/L;121℃条件下高压灭菌20分钟。所述双菌共培养发酵体系为50mL。The above co-cultivation fermentation medium formula is: xylose 7g/L, glucose 5g/L, yeast powder 5g/L, peptone 10g/L, NaCl 10g/L; autoclave at 121°C for 20 minutes. The double bacteria co-culture fermentation system is 50 mL.
上述氧化葡萄糖酸杆菌621H及Escherichia coli 6KI活化方式为:The above-mentioned activation modes of Gluconobacter oxydans 621H and Escherichia coli 6KI are:
(1)平板培养:将菌株大肠埃希氏菌Escherichia coli 6KI划线到含有质量体积比为1.5~1.8%琼脂的LB平板上,37±1℃培养12±1小时;将菌株G.oxydans621H划线到含有质量体积比为1.5~1.8%琼脂的山梨醇复杂培养基平板上,30±1℃培养36±1小时。(1) Plate culture: The strain Escherichia coli 6KI was streaked onto an LB plate containing agar with a mass-to-volume ratio of 1.5-1.8%, and cultured at 37±1°C for 12±1 hours; the strain G.oxydans621H was streaked Lined onto a sorbitol complex medium plate containing agar with a mass-to-volume ratio of 1.5-1.8%, and cultured at 30±1°C for 36±1 hours.
(2)一级种子:在无菌的条件下,用无菌的牙签挑取步骤(1)LB平板上的一个单菌落,然后接种到5mL LB液体培养基中,37±1℃摇床振荡培养12±1小时;在无菌的条件下,用无菌的牙签挑取步骤(1)山梨醇复杂培养基平板上的一个单菌落,然后接种到5mL山梨醇复杂液体培养基中,30±1℃培养24±1小时。(2) First-class seeds: Under aseptic conditions, pick a single colony on the LB plate in step (1) with a sterile toothpick, then inoculate it into 5 mL of LB liquid medium, shake at 37±1°C with a shaker Cultivate for 12±1 hours; under sterile conditions, pick a single colony on the plate of step (1) sorbitol complex medium with a sterile toothpick, then inoculate it into 5mL sorbitol complex liquid medium, 30± Incubate at 1°C for 24±1 hours.
(3)二级种子:在无菌条件下,取步骤(2)所培养的Escherichia coli 6KI菌液以体积比为1~2%的接种量,接种到50mL LB液体培养基中,37±1℃摇床振荡培养12±1小时,即得到活化后的Escherichia coli 6KI菌液;在无菌条件下,取步骤(2)所培养的G.oxydnas621H菌液以体积比为1.5~2%的接种量,接种到50mL山梨醇复杂液体培养基中,30±1℃培养24±1小时,即得到活化后的野生型Gluconobacter oxydans 621H菌液。(3) Secondary seeds: under aseptic conditions, take the Escherichia coli 6KI bacterial liquid cultured in step (2) with an inoculum volume of 1 to 2%, inoculate into 50 mL of LB liquid medium, 37 ± 1 ℃ of shaking and culturing in a shaker for 12±1 hours to obtain the activated Escherichia coli 6KI bacterial liquid; under aseptic conditions, take the G.oxydnas621H bacterial liquid cultivated in step (2) and inoculate it with a volume ratio of 1.5 to 2% amount, inoculated into 50 mL of sorbitol complex liquid medium, and cultured at 30±1°C for 24±1 hours to obtain the activated wild-type Gluconobacter oxydans 621H bacterial liquid.
(2)利用双菌共培养体系发酵生产3,4-二羟基丁酸(2) Fermentation production of 3,4-dihydroxybutyric acid by double bacteria co-culture system
将获得的双菌共培养体系于28℃、摇床转速200rpm条件下进行发酵培养,待体系总OD为0.8时,添加终浓度为1mM IPTG进行诱导,并且每隔3小时手动添加10M NaOH调节培养基pH至6.8,发酵培养54~60小时直至糖耗完全终止,即得到含3,4-二羟基丁酸的发酵液。The obtained double-bacteria co-cultivation system was fermented and cultured at 28°C and the shaking speed was 200rpm. When the total OD of the system was 0.8, the final concentration of 1mM IPTG was added for induction, and 10M NaOH was manually added every 3 hours to adjust the culture. The pH of the base is adjusted to 6.8, and the fermentation is carried out for 54 to 60 hours until the sugar consumption is completely terminated, that is, a fermentation broth containing 3,4-dihydroxybutyric acid is obtained.
实施例2:利用氧化葡萄糖酸杆菌和大肠杆菌组成的双菌共培养体系以木糖为底物发酵生产3,4-二羟基丁酸Example 2: Production of 3,4-dihydroxybutyric acid by fermenting xylose as a substrate using a double-bacteria co-cultivation system composed of Gluconobacter oxydans and Escherichia coli
(1)构建氧化葡萄糖酸杆菌与工程大肠杆菌的双菌共培养体系(1) Construction of a double-bacteria co-cultivation system of Gluconobacter oxydans and engineered Escherichia coli
取活化后的野生型Gluconobacter oxydans 621H,6000转/分离心10分钟,用生理盐水洗涤沉淀物1-2遍,然后用生理盐水重悬至OD=3,备用;取活化后的工程大肠杆菌Escherichia coli 6KI,6000转/分离心10分钟,用生理盐水洗涤沉淀物1-2遍,然后用生理盐水重悬至OD=2,备用;将上述两种重悬菌液按照体积比3:2混合后接种于共培养发酵培养基中并使菌液终OD为0.3,构建得到氧化葡萄糖酸杆菌与工程大肠杆菌的双菌共培养体系;Take the activated wild-type Gluconobacter oxydans 621H, centrifuge at 6000 rpm for 10 minutes, wash the precipitate with normal saline 1-2 times, and then resuspend it to OD=3 with normal saline for later use; take the activated engineered Escherichia coli Escherichia coli 6KI, centrifuged at 6000 rpm/centrifugation for 10 minutes, washed the precipitate 1-2 times with normal saline, and then resuspended with normal saline to OD=2 for later use; the above two resuspended bacterial solutions were mixed according to the volume ratio of 3:2 After inoculation in the co-cultivation fermentation medium, the final OD of the bacterial liquid is 0.3, and a double-bacteria co-cultivation system of Gluconobacter oxydans and engineered Escherichia coli is constructed;
其中:in:
上述野生型Gluconobacter oxydans 621H为革兰氏阴性菌,严格好氧生长,该菌的较佳培养温度为26℃,可以在山梨醇复杂培养基中生长。所述氧化葡萄糖酸杆菌621H的活化培养基为山梨醇复杂培养基,其配方为:山梨醇73g/L,酵母粉18.4g/L,(NH4)2SO41.5g/L,KH2PO4 1.5g/L,MgSO4·7H2O 0.47g/L;121℃高压灭菌20分钟。The above-mentioned wild-type Gluconobacter oxydans 621H is a Gram-negative bacterium and grows strictly aerobic. The optimal culture temperature of the bacterium is 26°C, and it can grow in a sorbitol complex medium. The activation medium of Gluconobacter oxydans 621H is sorbitol complex medium, and its formula is: sorbitol 73g/L, yeast powder 18.4g/L, (NH 4 ) 2 SO 4 1.5g/L, KH 2 PO 4 1.5g/L, MgSO 4 ·7H 2 O 0.47g/L; autoclave at 121°C for 20 minutes.
上述工程大肠杆菌Escherichia coli 6KI的基因型为Escherichia coli W3110(DE3)ΔxylAΔyjhHΔyagEΔyiaEΔyqdDΔxynR::xylD&kdcA;该菌为革兰氏阴性菌,需氧或兼性厌氧生长,该菌的较佳培养温度为37±1℃,可以在LB培养基中生长。所述工程大肠杆菌Escherichia coli 6KI的活化培养基为LB培养基,其配方为:蛋白胨10g/L;酵母粉5g/L;NaCl 10g/L;121℃条件下高压灭菌20分钟。The genotype of the above engineered Escherichia coli 6KI is Escherichia coli W3110(DE3)ΔxylAΔyjhHΔyagEΔyiaEΔyqdDΔxynR::xylD&kdcA; the bacterium is a gram-negative bacterium that grows aerobic or facultatively anaerobic, and the optimal culture temperature of the bacterium is 37± 1°C, can be grown in LB medium. The activation medium of the engineered Escherichia coli 6KI is LB medium, and its formula is: peptone 10 g/L; yeast powder 5 g/L; NaCl 10 g/L; and autoclaving at 121° C. for 20 minutes.
上述共培养发酵培养基配方为:木糖9g/L,葡萄糖6g/L,酵母粉6g/L,蛋白胨12g/L,NaCl 12g/L;121℃条件下高压灭菌20分钟。所述双菌共培养发酵体系为50mL。The above co-cultivation fermentation medium formula is: xylose 9g/L, glucose 6g/L, yeast powder 6g/L, peptone 12g/L, NaCl 12g/L; autoclave sterilization at 121°C for 20 minutes. The double bacteria co-culture fermentation system is 50 mL.
(2)利用双菌共培养体系发酵生产3,4-二羟基丁酸(2) Fermentation production of 3,4-dihydroxybutyric acid by double bacteria co-culture system
将获得的双菌共培养体系于30℃、摇床转速220rpm条件下进行发酵培养,待体系总OD为0.8时,添加终浓度为1mM IPTG进行诱导,并且每隔3小时手动添加10M NaOH调节培养基pH至6.9,发酵培养54~65小时直至糖耗完全终止,即得到含3,4-二羟基丁酸的发酵液。The obtained double-bacteria co-cultivation system was fermented and cultured at 30 °C and a shaking table rotation speed of 220 rpm. When the total OD of the system was 0.8, the final concentration of 1 mM IPTG was added for induction, and 10 M NaOH was manually added every 3 hours to adjust the culture. The pH of the base is adjusted to 6.9, and the fermentation is carried out for 54 to 65 hours until the sugar consumption is completely terminated, that is, a fermentation broth containing 3,4-dihydroxybutyric acid is obtained.
上述氧化葡萄糖酸杆菌及Escherichia coli 6KI活化方法同实施例1所述方法。The above-mentioned activation methods of Gluconobacter oxydans and Escherichia coli 6KI are the same as those described in Example 1.
实施例3:利用氧化葡萄糖酸杆菌和大肠杆菌组成的双菌共培养体系以木糖为底物发酵生产3,4-二羟基丁酸Example 3: Production of 3,4-dihydroxybutyric acid by fermenting xylose as a substrate using a double-bacteria co-cultivation system composed of Gluconobacter oxydans and Escherichia coli
(1)构建氧化葡萄糖酸杆菌与工程大肠杆菌的双菌共培养体系(1) Construction of a double-bacteria co-cultivation system of Gluconobacter oxydans and engineered Escherichia coli
取活化后的野生型Gluconobacter oxydans 621H,6000转/分离心10分钟,用生理盐水洗涤沉淀物1-2遍,然后用生理盐水重悬至OD=3,备用;取活化后的工程大肠杆菌Escherichia coli 6KI,6000转/分离心10分钟,用生理盐水洗涤沉淀物1-2遍,然后用生理盐水重悬至OD=2,备用;将上述两种重悬菌液按照体积比1:2混合后接种于共培养发酵培养基中并使菌液终OD为0.2,构建得到氧化葡萄糖酸杆菌与工程大肠杆菌的双菌共培养体系;Take the activated wild-type Gluconobacter oxydans 621H, centrifuge at 6000 rpm for 10 minutes, wash the precipitate with normal saline 1-2 times, and then resuspend it to OD=3 with normal saline for later use; take the activated engineered Escherichia coli Escherichia coli 6KI, centrifuged at 6000 rpm/centrifugation for 10 minutes, washed the precipitate 1-2 times with normal saline, and then resuspended with normal saline to OD=2, for later use; the above two resuspended bacterial solutions were mixed according to the volume ratio of 1:2 After inoculation in the co-cultivation fermentation medium, the final OD of the bacterial liquid is 0.2, and a double-bacteria co-cultivation system of Gluconobacter oxydans and engineered Escherichia coli is constructed;
其中:in:
上述野生型Gluconobacter oxydans 621H为革兰氏阴性菌,严格好氧生长,该菌的较佳培养温度为26℃,可以在山梨醇复杂培养基中生长。所述氧化葡萄糖酸杆菌621H的活化培养基为山梨醇复杂培养基,其配方为:山梨醇73g/L,酵母粉18.4g/L,(NH4)2SO41.5g/L,KH2PO4 1.5g/L,MgSO4·7H2O 0.47g/L;121℃高压灭菌20分钟。The above-mentioned wild-type Gluconobacter oxydans 621H is a Gram-negative bacterium and grows strictly aerobic. The optimal culture temperature of the bacterium is 26°C, and it can grow in a sorbitol complex medium. The activation medium of Gluconobacter oxydans 621H is sorbitol complex medium, and its formula is: sorbitol 73g/L, yeast powder 18.4g/L, (NH 4 ) 2 SO 4 1.5g/L, KH 2 PO 4 1.5g/L, MgSO 4 ·7H 2 O 0.47g/L; autoclave at 121°C for 20 minutes.
上述工程大肠杆菌Escherichia coli 6KI的基因型为Escherichia coli W3110(DE3)ΔxylAΔyjhHΔyagEΔyiaEΔyqdDΔxynR::xylD&kdcA;该菌为革兰氏阴性菌,需氧或兼性厌氧生长,该菌的较佳培养温度为37±1℃,可以在LB培养基中生长。所述工程大肠杆菌Escherichia coli 6KI的活化培养基为LB培养基,其配方为:蛋白胨10g/L;酵母粉5g/L;NaCl 10g/L;121℃条件下高压灭菌20分钟。The genotype of the above engineered Escherichia coli 6KI is Escherichia coli W3110(DE3)ΔxylAΔyjhHΔyagEΔyiaEΔyqdDΔxynR::xylD&kdcA; the bacterium is a gram-negative bacterium that grows aerobic or facultatively anaerobic, and the optimal culture temperature of the bacterium is 37± 1°C, can be grown in LB medium. The activation medium of the engineered Escherichia coli 6KI is LB medium, and its formula is: peptone 10 g/L; yeast powder 5 g/L; NaCl 10 g/L; and autoclaving at 121° C. for 20 minutes.
上述共培养发酵培养基配方为:木糖5g/L,葡萄糖4g/L,酵母粉4g/L,蛋白胨8g/L,NaCl 8g/L;121℃条件下高压灭菌20分钟。所述双菌共培养发酵体系为50mL。The above co-cultivation fermentation medium formula is: xylose 5g/L, glucose 4g/L, yeast powder 4g/L, peptone 8g/L, NaCl 8g/L; autoclave sterilization at 121°C for 20 minutes. The double bacteria co-culture fermentation system is 50 mL.
(2)利用双菌共培养体系发酵生产3,4-二羟基丁酸(2) Fermentation production of 3,4-dihydroxybutyric acid by double bacteria co-culture system
将获得的双菌共培养体系于26℃、摇床转速180rpm条件下进行发酵培养,待体系总OD为0.7时,添加终浓度为1mM IPTG进行诱导,并且每隔3小时手动添加10M NaOH调节培养基pH至7.0,发酵培养57~62小时直至糖耗完全终止,即得到含3,4-二羟基丁酸的发酵液。The obtained double bacteria co-cultivation system was fermented and cultured at 26 ° C and the shaking speed was 180 rpm. When the total OD of the system was 0.7, the final concentration of 1 mM IPTG was added for induction, and 10 M NaOH was manually added every 3 hours to adjust the culture. The pH of the base is adjusted to 7.0, and the fermentation is carried out for 57 to 62 hours until the sugar consumption is completely terminated, that is, a fermentation broth containing 3,4-dihydroxybutyric acid is obtained.
上述氧化葡萄糖酸杆菌及Escherichia coli 6KI活化方法同实施例1所述方法。The above-mentioned activation methods of Gluconobacter oxydans and Escherichia coli 6KI are the same as those described in Example 1.
实施例4:基因工程菌株Escherichia coli 6KI的构建Example 4: Construction of genetically engineered strain Escherichia coli 6KI
以大肠杆菌W3110(DE3)为出发菌株,采用Red重组技术(Datsenko KA et al.,2000,Proc.Natl.Acad.Sci.U S A.,97:6640-6645)对该菌株进行连续基因改造,大体步骤如下:Taking Escherichia coli W3110 (DE3) as the starting strain, the strain was continuously genetically modified by using Red recombination technology (Datsenko KA et al., 2000, Proc.Natl.Acad.Sci.US A., 97:6640-6645), The general steps are as follows:
(1)采用基因工程手段在大肠杆菌W3110(DE3)中敲除木糖异构酶基因xylA和2-酮基-3-脱氧木糖酸醛缩酶基因yjhH和yagE,阻断菌株利用木糖和木糖酸的内源性途径,构建菌株Escherichia coli 3K。(1) The xylose isomerase gene xylA and the 2-keto-3-deoxyxylonate aldolase genes yjhH and yagE were knocked out in Escherichia coli W3110(DE3) by genetic engineering, blocking the strain from using xylose and the endogenous pathway of xylonic acid to construct strain Escherichia coli 3K.
(2)采用基因工程手段在Escherichia coli 3K中敲除木糖酸操纵子转录抑制因子基因xynR,阻断转录抑制因子XynR对木糖酸操纵子的调控,增强木糖酸脱水酶及木糖酸转运蛋白的表达,加强目的产物合成代谢,构建菌株Escherichia coli 4K。(2) Knock out the xylonic acid operon transcriptional repressor gene xynR in Escherichia coli 3K by genetic engineering, block the regulation of the transcriptional repressor XynR on the xylonic acid operon, and enhance the xylonic acid dehydratase and xylonic acid The expression of transporter protein enhances the synthesis and metabolism of the target product, and the strain Escherichia coli 4K is constructed.
(3)采用基因工程手段在Escherichia coli 4K中敲除NADPH依赖型醛还原酶基因yqhD,阻断3,4-二羟基丁醛还原形成1,2,4-丁三醇,构建菌株Escherichia coli 5K。(3) Knock out the NADPH-dependent aldehyde reductase gene yqhD in Escherichia coli 4K by genetic engineering, block the reduction of 3,4-dihydroxybutyraldehyde to form 1,2,4-butanetriol, and construct strain Escherichia coli 5K .
(4)采用基因工程手段在Escherichia coli 5K中敲除乙醛酸还原酶基因yiaE,削弱中间产物2-酮基-3-脱氧木糖酸还原反应,增强目的产物合成代谢,构建菌株Escherichia coli 6K。(4) The glyoxylate reductase gene yiaE was knocked out in Escherichia coli 5K by genetic engineering, weakening the reduction reaction of the intermediate product 2-keto-3-deoxyxylonic acid, enhancing the synthesis and metabolism of the target product, and constructing the strain Escherichia coli 6K .
(5)采用基因工程手段将来源于月柄杆菌(Caulobacter crescentus)的木糖酸脱水酶基因xylD和来源于乳酸乳球菌(Lactococcus lactis)的支链-2-酮酸脱羧酶基因kdcA插入商业化质粒pACYCDuet-1(图1),PCR扩增基因表达框,组建操纵子并敲入至Escherichia coli 6K基因组原xynR位点,构建得到工程大肠杆菌菌株Escherichia coli6KI。(5) Commercially insert the xylonic acid dehydratase gene xylD from Caulobacter crescentus and the branched-2-keto acid decarboxylase gene kdcA from Lactococcus lactis by genetic engineering The plasmid pACYCDuet-1 (Fig. 1) was used to amplify the gene expression cassette by PCR, construct an operon and knock it into the original xynR site of the Escherichia coli 6K genome to construct an engineered Escherichia coli 6KI.
上述Escherichia coli 6KI基因工程菌株涉及的基因及相关改造方法已经部分由专利CN201710611460.1公开,其改造方法参见专利CN201710611460.1。The genes involved in the above-mentioned Escherichia coli 6KI genetically engineered strains and related transformation methods have been partially disclosed in patent CN201710611460.1, and the transformation methods are described in patent CN201710611460.1.
具体操作方法是:The specific operation method is:
(一)构建基因敲除工程菌(1) Construction of gene knockout engineering bacteria
(1)敲除方法:本发明所用基因敲除方法为Red重组敲除技术(Datsenko KA etal.,Proc.Natl.Acad.Sci.U S A.,2000,97:6640-6645)。该方法中,敲除所用质粒pKD4(CGSC7632)、pKD46(CGSC7669)、pCP20(CGSC14177)购自耶鲁大学质粒基因保藏中心。(1) Knockout method: The gene knockout method used in the present invention is the Red recombination knockout technology (Datsenko KA etal., Proc.Natl.Acad.Sci.US A., 2000, 97:6640-6645). In this method, the plasmids pKD4 (CGSC7632), pKD46 (CGSC7669) and pCP20 (CGSC14177) used for the knockout were purchased from the Yale University Plasmid Gene Collection.
(2)突变片段的获得:上述方法中所用的核苷酸突变片段具有目的敲除基因上下游两个同源臂及卡那霉素抗性基因表达盒。靶标基因的核苷酸突变片段通过重组PCR获得。(2) Obtainment of mutant fragments: The nucleotide mutant fragments used in the above method have two homology arms upstream and downstream of the target knockout gene and a kanamycin resistance gene expression cassette. The nucleotide mutation fragment of the target gene is obtained by recombinant PCR.
以xylA敲除为例,采用xylA上游引物一/xylA下游引物一以Escherichia coliK12基因组为模板扩增目的基因上游同源臂;采用xylA上游引物二/xylA下游引物二以质粒pKD4为模板扩增卡那霉素抗性基因表达盒;采用xylA上游引物三/xylA下游引物三以Escherichia coli K12基因组为模板扩增目的基因下游同源臂;两个同源臂与卡那霉素抗性基因表达盒进行重组PCR,获得xylA突变片段。其余基因yjhH、yagE、xynR、yqhD和yiaE突变片段获得方式与上述方法一致,其中所用核苷酸突变片段的引物序列如下:Taking xylA knockout as an example, use xylA upstream primer 1/xylA downstream primer 1 to amplify the upstream homology arm of the target gene with Escherichia coliK12 genome as template; use xylA
xylA上游引物一5’-GTAGTTAGAGGACAGTTTTAATAAG-3’xylA upstream primer-5'-GTAGTTAGAGGACAGTTTTAATAAG-3'
xylA下游引物一5’-AGCTCCAGCCTACACATTGAACTCCATAA-3’xylA downstream primer-5'-AGCTCCAGCCTACACATTGAACTCCATAA-3'
xylA上游引物二5’-ATTATGGAGTTCAATGTGTAGGCTGGAGCT-3’xylA upstream primer two 5'-ATTATGGAGTTCAATGTGTAGGCTGGAGCT-3'
xylA下游引物二5’-CTGCACAGTTAGCCGATGGGAATTAGCCATG-3’xylA downstream primer two 5'-CTGCACAGTTAGCCGATGGGAATTAGCCATG-3'
xylA上游引物三5’-ATGGCTAATTCCCATCGGCTAACTGTGCAG-3’xylA upstream primer three 5'-ATGGCTAATTCCCATCGGCTAACTGTGCAG-3'
xylA下游引物三5’-TCTGGCCGGCAATACCCAATGCTTT-3’xylA downstream primer three 5'-TCTGGCCGGCAATACCCAATGCTTT-3'
yjhH上游引物一5’-ATACGCGCAATACATTTACCGATAAAA-3’yjhH upstream primer-5'-ATACGCGCAATACATTTACCGATAAAA-3'
yjhH下游引物一5’-CTCCAGCCTACACTACCTCAGTTTC-3’yjhH downstream primer-5'-CTCCAGCCTACACTACCTCAGTTTC-3'
yjhH上游引物二5’-GGAAACTGAGGTAGTGTAGGCTGGA-3’yjhH upstream primer two 5'-GGAAACTGAGGTAGTGTAGGCTGGA-3'
yjhH下游引物二5’-ATGAGTTTCTCCATGGGAATTAGCC-3’yjhH downstream primer two 5'-ATGAGTTTCTCCATGGGAATTAGCC-3'
yjhH上游引物三5’-GGCTAATTCCCATGGAGAAACTCATGT-3’yjhH upstream primer three 5'-GGCTAATTCCCATGGAGAAACTCATGT-3'
yjhH下游引物三5’-TTCATCTGGATGTCCAGTTCGTAAT-3’yjhH downstream primer three 5'-TTCATCTGGATGTCCAGTTCGTAAT-3'
yagE上游引物一5’-CTCCATAAACGGGTTCTTATGCCTT-3’yagE upstream primer-5'-CTCCATAAACGGGTTCTTATGCCTT-3'
yagE下游引物一5’-CTCCAGCCTACACGAGATCTCCTTG-3’yagE downstream primer-5'-CTCCAGCCTACACGAGATCTCCTTG-3'
yagE上游引物二5’-GCAAGGAGATCTCGTGTAGGCTGGA-3’yagE upstream primer two 5'-GCAAGGAGATCTCGTGTAGGCTGGA-3'
yagE下游引物二5’-GTTATCGTCCGGCATGGGAATTAGC-3’yagE downstream primer two 5'-GTTATCGTCCGGCATGGGAATTAGC-3'
yagE上游引物三5’-GGCTAATTCCCATGCCGGACGATAA-3’yagE upstream primer three 5'-GGCTAATTCCCATGCCGGACGATAA-3'
yagE下游引物三5’-TCTGCATGCCGATCTCCCAATGCCC-3’yagE downstream primer three 5'-TCTGCATGCCGATCTCCCAATGCCC-3'
xynR上游引物一5’-AACGTGAAGTTCCTGCACTGTCT-3’xynR upstream primer-5'-AACGTGAAGTTCCTGCACTGTCT-3'
xynR下游引物一5’-GAAGCAGCTCCAGCCTACACAATGCTGGCATGTCCACGC-3’xynR downstream primer-5'-GAAGCAGCTCCAGCCTACACAATGCTGGCATGTCCACGC-3'
xynR上游引物二5’-AGCGTGGACATGCCAGCATTGTGTAGGCTGGAGCTGCTTC-3’xynR upstream primer two 5'-AGCGTGGACATGCCAGCATTGTGTAGGCTGGAGCTGCTTC-3'
xynR下游引物二5’-CTACGAGCCGGTCTAACGGCATGGGAATTAGCCATGGTCCA-3’xynR downstream primer two 5'-CTACGAGCCGGTCTAACGGCATGGGAATTAGCCATGGTCCA-3'
xynR上游引物三5’-GGACCATGGCTAATTCCCATGCCGTTAGACCGGCTCGT-3’xynR upstream primer three 5'-GGACCATGGCTAATTCCCATGCCGTTAGACCGGCTCGT-3'
xynR下游引物三5’-CTTTGTGGACTACGAGGAGGGA-3’xynR downstream primer three 5'-CTTTGTGGACTACGAGGAGGGA-3'
yqhD上游引物一5’-CCATACAACAAACGCACATCGGGCA-3’yqhD upstream primer-5'-CCATACAACAAACGCACATCGGGCA-3'
yqhD下游引物一5’-AGCTCCAGCCTACACTACTTGCTCCCTTTG-3’yqhD downstream primer-5'-AGCTCCAGCCTACACTACTTGCTCCCTTTG-3'
yqhD上游引物二5’-CAAAGGGAGCAAGTAGTGTAGGCTGGAGC-3’yqhD upstream primer two 5'-CAAAGGGAGCAAGTAGTGTAGGCTGGAGC-3'
yqhD下游引物二5’-TGAGGCGTAAAAAGCATGGGAATTAGCCATGG-3’yqhD downstream primer two 5'-TGAGGCGTAAAAAGCATGGGAATTAGCCATGG-3'
yqhD上游引物三5’-ATGGCTAATTCCCATGCTTTTTACGCCTCA-3’yqhD upstream primer three 5'-ATGGCTAATTCCCATGCTTTTTACGCCCTCA-3'
yqhD下游引物三5’-CTGAGGCATTTTTCAGGGCTTTGCCG-3’yqhD downstream primer three 5'-CTGAGGCATTTTCAGGGCTTTGCCG-3'
yiaE上游引物一5’-CGGGTGGTCACGACCTGAACATGC-3’yiaE upstream primer-5'-CGGGTGGTCACGACCTGAACATGC-3'
yiaE下游引物一5’-TCCAGCCTACACGCTTCTCTCCATT-3’yiaE downstream primer-5'-TCCAGCCTACACGCTTCTCTCCATT-3'
yiaE上游引物二5’-ATGGAGAGAAGCGTGTAGGCTGGAG-3’yiaE upstream primer two 5'-ATGGAGAGAAGCGTGTAGGCTGGAG-3'
yiaE下游引物二5’-CGCAGTCGCGGCATGGGAATTAGC-3’yiaE downstream primer two 5'-CGCAGTCGCGGCATGGGAATTAGC-3'
yiaE上游引物三5’-GCTAATTCCCATGCCGCGACTGCGT-3’yiaE upstream primer three 5'-GCTAATTCCCATGCCGCGACTGCGT-3'
yiaE下游引物三5’-CCAAAGTGGTAACGACGCCAGCTGA-3’yiaE downstream primer three 5'-CCAAAGTGGTAACGACGCCAGCTGA-3'
(3)感受态制备与电转:将pKD46质粒采用化学法导入目的菌株后,采用携带有50μg/mL壮观霉素抗性LB固体平板筛选重组菌株,验证后培养并进行感受态制备。采用携带有50μg/mL壮观霉素抗性50mL LB液体培养基培养重组菌株,30℃培养30分钟后加入终浓度为0.5mM IPTG诱导,待OD至0.5~0.6时6000转10分钟离心收菌。去上清后,菌体采用40mL 4℃预冷纯水洗涤2遍,再用40mL 4℃预冷10%甘油洗涤1遍。离心收集后的菌体采用150μL10%甘油重悬,并加入100ng/μL核苷酸突变片段混匀,分装至2个预冷的2mm电转杯。利用电转仪在电压2200V,电容25μF,电阻200Ω条件下电转。采用500μL LB液体重悬菌液,在37℃,180转摇床中孵育40分钟后涂布含有50μg/mL卡那霉素抗性平板,37℃培养箱培养12~13小时后,挑单一菌落PCR验证。(3) Competent preparation and electrotransformation: After the pKD46 plasmid was chemically introduced into the target strain, the recombinant strain was screened on a LB solid plate carrying 50 μg/mL spectinomycin resistance, and cultured and competently prepared after verification. The recombinant strains were cultured in 50 mL LB liquid medium with 50 μg/mL spectinomycin resistance, incubated at 30°C for 30 minutes, induced by adding IPTG with a final concentration of 0.5 mM, and centrifuged at 6000 rpm for 10 minutes when the OD reached 0.5-0.6. After removing the supernatant, the cells were washed twice with 40 mL of 4°C pre-cooled pure water, and then washed once with 40 mL of 40 mL of 4°C pre-cooled 10% glycerol. The cells collected by centrifugation were resuspended in 150 μL of 10% glycerol, mixed with 100 ng/μL of nucleotide mutant fragments, and distributed into two pre-cooled 2 mm electroporation cups. Use an electroporator under the conditions of a voltage of 2200V, a capacitance of 25μF, and a resistance of 200Ω. Use 500 μL of LB liquid to resuspend the bacterial solution, incubate at 37°C for 40 minutes in a shaker at 180 rpm, and coat a plate containing 50 μg/mL kanamycin resistance. After culturing in a 37°C incubator for 12-13 hours, pick a single colony. PCR verification.
(4)卡那霉素抗性基因消除:将PCR验证正确的菌株采用化学法导入pCP20质粒,在30℃,180转摇床中孵育40分钟后涂布含有40μg/mL氯霉素抗性LB平板,30℃培养箱培养16~17小时后挑取单一菌落进行验证。将验证正确的菌株接种至无抗LB液体培养基,放置42℃,180转摇床培养2代后,37℃划线培养。挑取同一菌落分别点板至LB无抗平板、40μg/mL氯霉素抗性LB平板和50μg/mL卡那霉素抗性平板上,培养12~13小时。选择无抗平板上生长的,但在抗性平板上不生长的菌落进行菌株PCR验证。将验证正确的菌株保菌,待用。(4) Elimination of kanamycin resistance gene: The strain verified by PCR was chemically introduced into pCP20 plasmid, incubated at 30°C, 180 rpm shaker for 40 minutes, and then coated with LB containing 40 μg/mL chloramphenicol resistance After culturing for 16-17 hours in a 30°C incubator, a single colony was picked for verification. The verified strains were inoculated into anti-anti-LB liquid medium, placed at 42°C, cultured on a shaker at 180 rpm for 2 generations, and then streaked at 37°C. Pick the same colony and spot it on LB non-antibody plate, 40 μg/mL chloramphenicol-resistant LB plate and 50 μg/mL kanamycin-resistant plate respectively, and culture for 12-13 hours. Select colonies that grow on non-resistant plates but do not grow on resistant plates for strain PCR verification. The correct strain will be verified and kept ready for use.
所敲除的木糖异构酶xylA基因序列长度为1323个碱基,其核苷酸序列如SEQ IDNO.1所示;敲除的2-酮基-3-脱氧木糖酸醛缩酶yjhH基因序列长度为906个碱基,其核苷酸序列如SEQ ID NO.2所示;敲除的2-酮基-3-脱氧木糖酸醛缩酶yagE基因序列长度为909个碱基,其核苷酸序列如SEQ ID NO.3所示;敲除的木糖酸操纵子转录抑制因子xynR基因序列长度为759个碱基,其核苷酸序列如SEQ ID NO.4所示;敲除的NADPH依赖型醛还原酶yqhD基因序列长度为1164个碱基,其核苷酸序列如SEQ ID NO.5所示;敲除的乙醛酸还原酶基因yiaE基因序列长度为975个碱基,其核苷酸序列如SEQ ID NO.6所示。The knocked-out xylose isomerase xylA gene sequence is 1323 bases in length, and its nucleotide sequence is shown in SEQ ID NO. The length of the gene sequence is 906 bases, and its nucleotide sequence is shown in SEQ ID NO.2; the length of the knockout 2-keto-3-deoxyxylonate aldolase yagE gene sequence is 909 bases, Its nucleotide sequence is shown in SEQ ID NO.3; the knockout xylon acid operon transcription inhibitor xynR gene sequence is 759 bases in length, and its nucleotide sequence is shown in SEQ ID NO.4; knockout The removed NADPH-dependent aldehyde reductase yqhD gene sequence is 1164 bases in length, and its nucleotide sequence is shown in SEQ ID NO. 5; the knocked out glyoxylate reductase gene yiaE gene sequence is 975 bases in length , and its nucleotide sequence is shown in SEQ ID NO.6.
(二)构建基因敲入工程菌(2) Construction of gene knock-in engineered bacteria
(1)基因克隆:分别携带有木糖酸脱水酶基因xylD与支链-2-酮酸脱羧酶基因kdcA的原始pET28a-xylD和pET28a-kdcA载体由通用生物系统(安徽)有限公司(滁州,中国,安徽)合成。木糖酸脱水酶基因xylD核苷酸序列如SEQ ID NO.7所示;支链-2-酮酸脱羧酶基因kdcA核苷酸序列如SEQ ID NO.8所示。以xylD核苷酸序列设计引物,并使用合成引物以pET28a-xylD为模板扩增得到xylD片段,该片段含有限制性酶切位点BamHI、SacI。扩增引物序列如下:(1) Gene cloning: The original pET28a-xylD and pET28a-kdcA vectors carrying the xylonic acid dehydratase gene xylD and the branched-2-keto acid decarboxylase gene kdcA respectively were provided by Universal Biosystems (Anhui) Co., Ltd. (Chuzhou, China) China, Anhui) synthesis. The nucleotide sequence of xylD dehydratase gene xylD is shown in SEQ ID NO.7; the nucleotide sequence of branched-chain-2-keto acid decarboxylase gene kdcA is shown in SEQ ID NO.8. Primers were designed based on the nucleotide sequence of xylD, and a synthetic primer was used to amplify the xylD fragment with pET28a-xylD as a template, and the fragment contained restriction sites BamHI and SacI. The amplification primer sequences are as follows:
上游引物5’-ATATGGATCCGATGCGTAGTGCCCT-3’,携带一个BamHI位点;Upstream primer 5'-ATATGGATCCGATGCGTAGTGCCCT-3', carrying a BamHI site;
下游引物5’-ATGCGAGCTCTTAATGATTATGGCG-3’,携带一个SacI位点。The downstream primer, 5'-ATGCGAGCTCTTAATGATTATGGCG-3', carries a SacI site.
(2)将步骤(1)PCR扩增得到的片段回收并与质粒pACYCDuet-1在限制性内切酶BamHI和SacI下进行酶切反应和核苷酸电泳。将回收的片段xylD及pACYCDuet-1进行连接反应,得到重组质粒pACYCDuet-xylD。(2) The fragment amplified by PCR in step (1) is recovered and subjected to restriction enzyme digestion reaction and nucleotide electrophoresis with plasmid pACYCDuet-1 under the restriction enzymes BamHI and SacI. The recovered fragment xylD and pACYCDuet-1 were ligated to obtain a recombinant plasmid pACYCDuet-xylD.
(3)以kdcA核苷酸序列设计引物,并使用合成引物以pET28a-kdcA为模板扩增得到kdcA片段,该片段含有限制性酶切位点BglII、XhoI。扩增引物序列如下:(3) Design primers based on the kdcA nucleotide sequence, and use synthetic primers to amplify with pET28a-kdcA as a template to obtain a kdcA fragment containing restriction sites BglII and XhoI. The amplification primer sequences are as follows:
上游引物5’-ATATAGATCTCATGTACACCGTTGGCG-3’,携带一个BglII位点;Upstream primer 5'-ATATAGATCTCATGTACACCGTTGGCG-3', carrying a BglII site;
下游引物5’-ATATCTCGAGTTACTTATTCTGTTC-3’,携带一个XhoI位点。The downstream primer, 5'-ATATCTCGAGTTACTTATTCTGTTC-3', carries an XhoI site.
(4)将步骤(3)PCR扩增得到的片段回收并与质粒pACYCDuet-xylD在限制性内切酶BglII和XhoI下进行酶切反应和核苷酸电泳。将回收的片段kdcA及pACYCDuet-xylD进行连接反应,得到重组质粒pACYCDuet-xylD-kdcA。(4) The fragment amplified by PCR in step (3) is recovered and subjected to restriction enzyme digestion reaction and nucleotide electrophoresis with plasmid pACYCDuet-xylD under the restriction enzymes BglII and XhoI. The recovered fragment kdcA and pACYCDuet-xylD were ligated to obtain the recombinant plasmid pACYCDuet-xylD-kdcA.
(5)以重组质粒pACYCDuet-xylD-kdcA序列设计引物,并使用合成引物以质粒pACYCDuet-xylD-kdcA为模板扩增基因敲入表达盒。所有基因敲入扩增引物序列如下:(5) Design primers with the sequence of recombinant plasmid pACYCDuet-xylD-kdcA, and use synthetic primers to amplify the gene knock-in expression cassette with plasmid pACYCDuet-xylD-kdcA as a template. All gene knock-in amplification primer sequences are as follows:
上游引物一5’-CTGGATCTGCGCCTGTTGGCCCCGA-3’,xynR上游同源臂扩增引物;Upstream primer-5'-CTGGATCTGCGCCTGTTGCCCCGA-3', xynR upstream homology arm amplification primer;
下游引物一5’-CCTAATGCAGGAGTCGCATAAATGCTGGCATGTCCACGCT-3’,xynR上游同源臂扩增引物;Downstream primer - 5'-CCTAATGCAGGAGTCGCATAAATGCTGGCATGTCCACGCT-3', xynR upstream homology arm amplification primer;
上游引物二5’-AGCGTGGACATGCCAGCATTTATGCGACTCCTGCATTAGG-3’,基因敲入表达盒扩增引物;Upstream primer two 5'-AGCGTGGACATGCCAGCATTTATGCGACTCCTGCATTAGG-3', gene knock-in expression cassette amplification primer;
下游引物二5’-GAAGCAGCTCCAGCCTACACCAAAAAACCCCTCAAGACCC-3’,基因敲入表达盒扩增引物;Downstream primer two 5'-GAAGCAGCTCCAGCCTACACCAAAAAACCCCTCAAGACCC-3', gene knock-in expression cassette amplification primer;
上游引物三5’-GGGTCTTGAGGGGTTTTTTGGTGTAGGCTGGAGCTGCTTC-3’,卡那霉素抗性基因表达盒扩增引物;Upstream primer three 5'-GGGTCTTGAGGGGTTTTTTGGTGTAGGCTGGAGCTGCTTC-3', kanamycin resistance gene expression cassette amplification primer;
下游引物三5’-CTACGAGCCGGTCTAACGGCATGGGAATTAGCCATGGTCC-3’,卡那霉素抗性基因表达盒扩增引物;Downstream primer three 5'-CTACGAGCCGGTCTAACGGCATGGGAATTAGCCATGGTCC-3', kanamycin resistance gene expression cassette amplification primer;
上游引物四5’-GGACCATGGCTAATTCCCATGCCGTTAGACCGGCTCGTAG-3’,xynR下游同源臂扩增引物;Upstream primer four 5'-GGACCATGGCTAATTCCCATGCCGTTAGACCGGCTCGTAG-3', xynR downstream homology arm amplification primer;
下游引物四5’-CGCTTGACCCGGAGCTGCAGACCCT-3’,xynR下游同源臂扩增引物;Downstream primer four 5'-CGCTTGACCCGGAGCTGCAGACCCT-3', xynR downstream homology arm amplification primer;
(6)将步骤(5)PCR扩增得到的xynR上下游同源臂、基因敲入表达盒、卡那霉素抗性基因表达盒核苷酸进行四片段重组PCR,获得基因敲入突变片段。(6) Perform four-segment recombination PCR on the xynR upstream and downstream homology arms, gene knock-in expression cassette, and kanamycin resistance gene expression cassette nucleotides amplified by PCR in step (5) to obtain gene knock-in mutant fragments .
(7)基因敲入方法与基因敲除方法一致,其突变片段获得方式为步骤(1)~(6),在Escherichia coli 6K进行基因敲入后获得工程菌株Escherichia coli 6KI。(7) The gene knock-in method is consistent with the gene knock-out method, and the mutant fragments are obtained in the steps (1) to (6), and the engineered strain Escherichia coli 6KI is obtained after the gene knock-in of Escherichia coli 6K.
其中,所表达的木糖酸脱水酶xylD基因序列长度为1788个碱基,其核苷酸序列如SEQ ID NO.7所示;表达的支链-2-酮酸脱羧酶kdcA基因序列长度为1644个碱基,其核苷酸序列如SEQ ID NO.8所示。表达载体pACYCDuet-xylD-kdcA图谱如图1所示。Wherein, the length of the expressed xylonate dehydratase xylD gene sequence is 1788 bases, and its nucleotide sequence is as shown in SEQ ID NO.7; the length of the expressed branched-chain-2-keto acid decarboxylase kdcA gene sequence is 1644 bases, and its nucleotide sequence is shown in SEQ ID NO.8. The map of the expression vector pACYCDuet-xylD-kdcA is shown in Figure 1.
上述重组大肠埃希氏菌Escherichia coli 6KI,为革兰氏阴性菌,需氧或兼性厌氧生长,较佳培养温度为37±1℃,可以在LB培养基上生长,并可以用于与野生型G.oxydans组合构建共培养体系,以木糖底物生产3,4-二羟基丁酸。The above-mentioned recombinant Escherichia coli 6KI is a gram-negative bacterium that grows aerobic or facultatively anaerobic, and the optimal culture temperature is 37±1°C. It can grow on LB medium and can be used with Wild-type G. oxydans combined to construct a co-culture system to produce 3,4-dihydroxybutyric acid from xylose substrate.
序列表sequence listing
<110>山东大学<110> Shandong University
<120>一种利用双菌共培养体系生产3,4-二羟基丁酸的方法<120> A method for producing 3,4-dihydroxybutyric acid using a double bacteria co-cultivation system
<141>2021-01-13<141>2021-01-13
<160>8<160>8
<210> 1<210> 1
<211> 1323<211> 1323
<212> DNA<212> DNA
<213> Escherichia coli<213> Escherichia coli
<221> 木糖异构酶xylA基因<221> Xylose isomerase xylA gene
<222>(1)…(1323)<222>(1)…(1323)
<400> 1<400> 1
atgcaagcct attttgacca gctcgatcgc gttcgttatg aaggctcaaa atcctcaaac 60atgcaagcct attttgacca gctcgatcgc gttcgttatg aaggctcaaa atcctcaaac 60
ccgttagcat tccgtcacta caatcccgac gaactggtgt tgggtaagcg tatggaagag 120ccgttagcat tccgtcacta caatcccgac gaactggtgt tgggtaagcg tatggaagag 120
cacttgcgtt ttgccgcctg ctactggcac accttctgct ggaacggggc ggatatgttt 180cacttgcgtt ttgccgcctg ctactggcac accttctgct ggaacggggc ggatatgttt 180
ggtgtggggg cgtttaatcg tccgtggcag cagcctggtg aggcactggc gttggcgaag 240ggtgtggggg cgtttaatcg tccgtggcag cagcctggtg aggcactggc gttggcgaag 240
cgtaaagcag atgtcgcatt tgagtttttc cacaagttac atgtgccatt ttattgcttc 300cgtaaagcag atgtcgcatt tgagtttttc cacaagttac atgtgccatt ttattgcttc 300
cacgatgtgg atgtttcccc tgagggcgcg tcgttaaaag agtacatcaa taattttgcg 360cacgatgtgg atgtttcccc tgagggcgcg tcgttaaaag agtacatcaa taattttgcg 360
caaatggttg atgtcctggc aggcaagcaa gaagagagcg gcgtgaagct gctgtgggga 420caaatggttg atgtcctggc aggcaagcaa gaagagagcg gcgtgaagct gctgtgggga 420
acggccaact gctttacaaa ccctcgctac ggcgcgggtg cggcgacgaa cccagatcct 480acggccaact gctttacaaa ccctcgctac ggcgcgggtg cggcgacgaa cccagatcct 480
gaagtcttca gctgggcggc aacgcaagtt gttacagcga tggaagcaac ccataaattg 540gaagtcttca gctgggcggc aacgcaagtt gttacagcga tggaagcaac ccataaattg 540
ggcggtgaaa actatgtcct gtggggcggt cgtgaaggtt acgaaacgct gttaaatacc 600ggcggtgaaa actatgtcct gtggggcggt cgtgaaggtt acgaaacgct gttaaatacc 600
gacttgcgtc aggagcgtga acaactgggc cgctttatgc agatggtggt tgagcataaa 660gacttgcgtc aggagcgtga acaactgggc cgctttatgc agatggtggt tgagcataaa 660
cataaaatcg gtttccaggg cacgttgctt atcgaaccga aaccgcaaga accgaccaaa 720cataaaatcg gtttccaggg cacgttgctt atcgaaccga aaccgcaaga accgaccaaa 720
catcaatatg attacgatgc cgcgacggtc tatggcttcc tgaaacagtt tggtctggaa 780catcaatatg attacgatgc cgcgacggtc tatggcttcc tgaaacagtt tggtctggaa 780
aaagagatta aactgaacat tgaagctaac cacgcgacgc tggcaggtca ctctttccat 840aaagagatta aactgaacat tgaagctaac cacgcgacgc tggcaggtca ctctttccat 840
catgaaatag ccaccgccat tgcgcttggc ctgttcggtt ctgtcgacgc caaccgtggc 900catgaaatag ccaccgccat tgcgcttggc ctgttcggtt ctgtcgacgc caaccgtggc 900
gatgcgcaac tgggctggga caccgaccag ttcccgaaca gtgtggaaga gaatgcgctg 960gatgcgcaac tgggctggga caccgaccag ttcccgaaca gtgtggaaga gaatgcgctg 960
gtgatgtatg aaattctcaa agcaggcggt ttcaccaccg gtggtctgaa cttcgatgcc 1020gtgatgtatg aaattctcaa agcaggcggt ttcaccaccg gtggtctgaa cttcgatgcc 1020
aaagtacgtc gtcaaagtac tgataaatat gatctgtttt acggtcatat cggcgcgatg 1080aaagtacgtc gtcaaagtac tgataaatat gatctgtttt acggtcatat cggcgcgatg 1080
gatacgatgg cactggcgct gaaaattgca gcgcgcatga ttgaagatgg cgagctggat 1140gatacgatgg cactggcgct gaaaattgca gcgcgcatga ttgaagatgg cgagctggat 1140
aaacgcatcg cgcagcgtta ttccggctgg aatagcgaat tgggccagca aatcctgaaa 1200aaacgcatcg cgcagcgtta ttccggctgg aatagcgaat tgggccagca aatcctgaaa 1200
ggccaaatgt cactggcaga tttagccaaa tatgctcagg aacatcattt gtctccggtg 1260ggccaaatgt cactggcaga tttagccaaa tatgctcagg aacatcattt gtctccggtg 1260
catcagagtg gtcgccagga acaactggaa aatctggtaa accattatct gttcgacaaa 1320catcagagtg gtcgccagga acaactggaa aatctggtaa accattatct gttcgacaaa 1320
taa 1323taa 1323
<210> 2<210> 2
<211> 906<211> 906
<212> DNA<212> DNA
<213> Escherichia coli<213> Escherichia coli
<221>2-酮基-3-脱氧木糖酸醛缩酶yjhH基因<221> 2-keto-3-deoxyxylonate aldolase yjhH gene
<222>(1)…(906)<222>(1)…(906)
<400> 2<400> 2
atgaaaaaat tcagcggcat tattccaccg gtatccagca cgtttcatcg tgacggaacc 60atgaaaaaat tcagcggcat tattccaccg gtatccagca cgtttcatcg tgacggaacc 60
cttgataaaa aggcaatgcg cgaagttgcc gacttcctga ttaataaagg ggtcgacggg 120cttgataaaa aggcaatgcg cgaagttgcc gacttcctga ttaataaagg ggtcgacggg 120
ctgttttatc tgggtaccgg tggtgaattt agccaaatga atacagccca gcgcatggca 180ctgttttatc tgggtaccgg tggtgaattt agccaaatga atacagccca gcgcatggca 180
ctcgccgaag aagctgtaac cattgtcgac gggcgagtgc cggtattgat tggcgtcggt 240ctcgccgaag aagctgtaac cattgtcgac gggcgagtgc cggtattgat tggcgtcggt 240
tccccttcca ctgacgaagc ggtcaaactg gcgcagcatg cgcaagccta cggcgctgat 300tccccttcca ctgacgaagc ggtcaaactg gcgcagcatg cgcaagccta cggcgctgat 300
ggtatcgtcg ccatcaaccc ctactactgg aaagtcgcac cacgaaatct tgacgactat 360ggtatcgtcg ccatcaaccc ctactactgg aaagtcgcac cacgaaatct tgacgactat 360
taccagcaga tcgcccgtag cgtcacccta ccggtgatcc tgtacaactt tccggatctg 420taccagcaga tcgcccgtag cgtcacccta ccggtgatcc tgtacaactt tccggatctg 420
acgggtcagg acttaacccc ggaaaccgtg acgcgtctgg ctctgcaaaa cgagaatatc 480acgggtcagg acttaacccc ggaaaccgtg acgcgtctgg ctctgcaaaa cgagaatatc 480
gttggcatca aagacaccat cgacagcgtt ggtcacttgc gtacgatgat caacacagtt 540gttggcatca aagacaccat cgacagcgtt ggtcacttgc gtacgatgat caacacagtt 540
aagtcggtac gcccgtcgtt ttcggtattc tgcggttacg atgatcattt gctgaatacg 600aagtcggtac gcccgtcgtt ttcggtattc tgcggttacg atgatcattt gctgaatacg 600
atgctgctgg gcggcgacgg tgcgataacc gccagcgcta actttgctcc ggaactctcc 660atgctgctgg gcggcgacgg tgcgataacc gccagcgcta actttgctcc ggaactctcc 660
gtcggcatct accgcgcctg gcgtgaaggc gatctggcga ccgctgcgac gctgaataaa 720gtcggcatct accgcgcctg gcgtgaaggc gatctggcga ccgctgcgac gctgaataaa 720
aaactactac aactgcccgc tatttacgcc ctcgaaacac cgtttgtctc actgatcaaa 780aaactactac aactgcccgc tatttacgcc ctcgaaacac cgtttgtctc actgatcaaa 780
tacagcatgc agtgtgtcgg gctgcctgta gagacatatt gcttaccacc gattcttgaa 840tacagcatgc agtgtgtcgg gctgcctgta gagacatatt gcttaccacc gattcttgaa 840
gcatctgaag aagcaaaaga taaagtccac gtgctgctta ccgcgcaggg cattttacca 900gcatctgaag aagcaaaaga taaagtccac gtgctgctta ccgcgcaggg cattttacca 900
gtctga 906gtctga 906
<210>3<210>3
<211> 909<211> 909
<212> DNA<212> DNA
<213> Escherichia coli<213> Escherichia coli
<221> 2-酮基-3-脱氧木糖酸醛缩酶yagE基因<221> 2-keto-3-deoxyxylonate aldolase yagE gene
<222>(1)…(909)<222> (1)…(909)
<400> 3<400> 3
atgccgcagt ccgcgttgtt cacgggaatc attccccctg tctccaccat ttttaccgcc 60atgccgcagt ccgcgttgtt cacgggaatc attccccctg tctccaccat ttttaccgcc 60
gacggccagc tcgataagcc gggcaccgcc gcgctgatcg acgatctgat caaagcaggc 120gacggccagc tcgataagcc gggcaccgcc gcgctgatcg acgatctgat caaagcaggc 120
gttgacggcc tgttcttcct gggcagcggt ggcgagttct cccagctcgg cgccgaagag 180gttgacggcc tgttcttcct gggcagcggt ggcgagttct cccagctcgg cgccgaagag 180
cgtaaagcca ttgcccgctt tgctatcgat catgtcgatc gtcgcgtgcc ggtgctgatc 240cgtaaagcca ttgcccgctt tgctatcgat catgtcgatc gtcgcgtgcc ggtgctgatc 240
ggcaccggcg gcaccaacgc ccgggaaacc atcgaactca gccagcacgc gcagcaggcg 300ggcaccggcg gcaccaacgc ccgggaaacc atcgaactca gccagcacgc gcagcaggcg 300
ggcgcggacg gcatcgtggt gatcaacccc tactactgga aagtgtcgga agcgaacctg 360ggcgcggacg gcatcgtggt gatcaacccc tactactgga aagtgtcgga agcgaacctg 360
atccgctatt tcgagcaggt ggccgacagc gtcacgctgc cggtgatgct ctataacttc 420atccgctatt tcgagcaggt ggccgacagc gtcacgctgc cggtgatgct ctataacttc 420
ccggcgctga ccgggcagga tctgactccg gcgctggtga aaaccctcgc cgactcgcgc 480ccggcgctga ccgggcagga tctgactccg gcgctggtga aaaccctcgc cgactcgcgc 480
agcaatatta tcggcatcaa agacaccatc gactccgtcg cccacctgcg cagcatgatc 540agcaatatta tcggcatcaa agacaccatc gactccgtcg cccacctgcg cagcatgatc 540
cataccgtca aaggtgccca tccgcacttc accgtgctct gcggctacga cgatcatctg 600cataccgtca aaggtgccca tccgcacttc accgtgctct gcggctacga cgatcatctg 600
ttcaataccc tgctgctcgg cggcgacggg gcgatatcgg cgagcggcaa ctttgccccg 660ttcaataccc tgctgctcgg cggcgacggg gcgatatcgg cgagcggcaa ctttgccccg 660
caggtgtcgg tgaatcttct gaaagcctgg cgcgacgggg acgtggcgaa agcggccggg 720caggtgtcgg tgaatcttct gaaagcctgg cgcgacgggg acgtggcgaa agcggccggg 720
tatcatcaga ccttgctgca aattccgcag atgtatcagc tggatacgcc gtttgtgaac 780tatcatcaga ccttgctgca aattccgcag atgtatcagc tggatacgcc gtttgtgaac 780
gtgattaaag aggcgatcgt gctctgcggt cgtcctgtct ccacgcacgt gctgccgccc 840gtgattaaag aggcgatcgt gctctgcggt cgtcctgtct ccacgcacgt gctgccgccc 840
gcctcgccgc tggacgagcc gcgcaaggcg cagctgaaaa ccctgctgca acagctcaag 900gcctcgccgc tggacgagcc gcgcaaggcg cagctgaaaa ccctgctgca acagctcaag 900
ctttgctga 909ctttgctga 909
<210> 4<210> 4
<211> 759<211> 759
<212> DNA<212> DNA
<213> Escherichia coli<213> Escherichia coli
<221> 木糖酸操纵子转录抑制因子xynR基因<221> xylonic acid operon transcriptional repressor xynR gene
<222>(1)…(759)<222> (1)…(759)
<400> 4<400> 4
atgccgatta ttcagtctgt tgaacgtgcg ttgcagatcc tcgacctgtt caacgagcag 60atgccgatta ttcagtctgt tgaacgtgcg ttgcagatcc tcgacctgtt caacgagcag 60
gccaccgagc ttaagatcac cgacatcagc aaactgatgg ggctgagcaa gagtaccctc 120gccaccgagc ttaagatcac cgacatcagc aaactgatgg ggctgagcaa gagtaccctc 120
cactcgctgc taaaaaccct gcagcttcac ggctatatcg atcagaaccc ggagaacggc 180cactcgctgc taaaaaccct gcagcttcac ggctatatcg atcagaaccc ggagaacggc 180
aagtatcgcc tcggcatgaa gctggtcgag cgcggccatt ttgtcgtggg ctccatcgat 240aagtatcgcc tcggcatgaa gctggtcgag cgcggccatt ttgtcgtggg ctccatcgat 240
attcggcaga aggcaaaagg ctggctgacg gagctgtccc ggcggaccgg gcagaccacc 300attcggcaga aggcaaaagg ctggctgacg gagctgtccc ggcggaccgg gcagaccacc 300
catctgggga tcctggacgg gcgtgaaggg gtctatatcg agaagattga aggcaagctg 360catctgggga tcctggacgg gcgtgaaggg gtctatatcg agaagattga aggcaagctg 360
gccgccatcg cctattcacg catcggccgc cgcctgccgg tgcacgccac cgccatcggc 420gccgccatcg cctattcacg catcggccgc cgcctgccgg tgcacgccac cgccatcggc 420
aaggtgttga ttgcctggct gggcgaggcc gagctgaacg ccctgctgga gggctatcag 480aaggtgttga ttgcctggct gggcgaggcc gagctgaacg ccctgctgga gggctatcag 480
tacactacct ttacgcccgc caccctcgcg tctcgcgaag ccttaatgag cgccctggcg 540tacactacct ttacgcccgc caccctcgcg tctcgcgaag ccttaatgag cgccctggcg 540
cagacccgcg agcaaggcta cgccctggac agcgaagaga acgagcaggg cgtgcgctgc 600cagacccgcg agcaaggcta cgccctggac agcgaagaga acgagcaggg cgtgcgctgc 600
gtggcggtgc cggtgtggaa ccacgagtcc cgcgtcatcg ccgccctgag cctgtcgacg 660gtggcggtgc cggtgtggaa ccacgagtcc cgcgtcatcg ccgccctgag cctgtcgacg 660
ctgacctccc gcgtggacga cgcggagctg gctaatttcc gcgagcagct tcagcaggcc 720ctgacctccc gcgtggacga cgcggagctg gctaatttcc gcgagcagct tcagcaggcc 720
gggctcgcgc tctcgcgcgc gctgggctac ccggcctga 759gggctcgcgc tctcgcgcgc gctgggctac ccggcctga 759
<210> 5<210> 5
<211> 1164<211> 1164
<212> DNA<212> DNA
<213> Escherichia coli<213> Escherichia coli
<221> NADPH依赖型醛还原酶yqhD基因<221> NADPH-dependent aldehyde reductase yqhD gene
<222>(1)…(1164)<222>(1)…(1164)
<400> 5<400> 5
atgaacaact ttaatctgca caccccaacc cgcattctgt ttggtaaagg cgcaatcgct 60atgaacaact ttaatctgca caccccaacc cgcattctgt ttggtaaagg cgcaatcgct 60
ggtttacgcg aacaaattcc tcacgatgct cgcgtattga ttacctacgg cggcggcagc 120ggtttacgcg aacaaattcc tcacgatgct cgcgtattga ttacctacgg cggcggcagc 120
gtgaaaaaaa ccggcgttct cgatcaagtt ctggatgccc tgaaaggcat ggacgtgctg 180gtgaaaaaaa ccggcgttct cgatcaagtt ctggatgccc tgaaaggcat ggacgtgctg 180
gaatttggcg gtattgagcc aaacccggct tatgaaacgc tgatgaacgc cgtgaaactg 240gaatttggcg gtattgagcc aaacccggct tatgaaacgc tgatgaacgc cgtgaaactg 240
gttcgcgaac agaaagtgac tttcctgctg gcggttggcg gcggttctgt actggacggc 300gttcgcgaac agaaagtgac tttcctgctg gcggttggcg gcggttctgt actggacggc 300
accaaattta tcgccgcagc ggctaactat ccggaaaata tcgatccgtg gcacattctg 360accaaattta tcgccgcagc ggctaactat ccggaaaata tcgatccgtg gcacattctg 360
caaacgggcg gtaaagagat taaaagcgcc atcccgatgg gctgtgtgct gacgctgcca 420caaacgggcg gtaaagagat taaaagcgcc atcccgatgg gctgtgtgct gacgctgcca 420
gcaaccggtt cagaatccaa cgcaggcgcg gtgatctccc gtaaaaccac aggcgacaag 480gcaaccggtt cagaatccaa cgcaggcgcg gtgatctccc gtaaaaccac aggcgacaag 480
caggcgttcc attctgccca tgttcagccg gtatttgccg tgctcgatcc ggtttatacc 540caggcgttcc attctgccca tgttcagccg gtatttgccg tgctcgatcc ggtttatacc 540
tacaccctgc cgccgcgtca ggtggctaac ggcgtagtgg acgcctttgt acacaccgtg 600tacaccctgc cgccgcgtca ggtggctaac ggcgtagtgg acgcctttgt acacaccgtg 600
gaacagtatg ttaccaaacc ggttgatgcc aaaattcagg accgtttcgc agaaggcatt 660gaacagtatg ttaccaaacc ggttgatgcc aaaattcagg accgtttcgc agaaggcatt 660
ttgctgacgc taatcgaaga tggtccgaaa gccctgaaag agccagaaaa ctacgatgtg 720ttgctgacgc taatcgaaga tggtccgaaa gccctgaaag agccagaaaa ctacgatgtg 720
cgcgccaacg tcatgtgggc ggcgactcag gcgctgaacg gtttgattgg cgctggcgta 780cgcgccaacg tcatgtgggc ggcgactcag gcgctgaacg gtttgattgg cgctggcgta 780
ccgcaggact gggcaacgca tatgctgggc cacgaactga ctgcgatgca cggtctggat 840ccgcaggact gggcaacgca tatgctgggc cacgaactga ctgcgatgca cggtctggat 840
cacgcgcaaa cactggctat cgtcctgcct gcactgtgga atgaaaaacg cgataccaag 900cacgcgcaaa cactggctat cgtcctgcct gcactgtgga atgaaaaacg cgataccaag 900
cgcgctaagc tgctgcaata tgctgaacgc gtctggaaca tcactgaagg ttccgatgat 960cgcgctaagc tgctgcaata tgctgaacgc gtctggaaca tcactgaagg ttccgatgat 960
gagcgtattg acgccgcgat tgccgcaacc cgcaatttct ttgagcaatt aggcgtgccg 1020gagcgtattg acgccgcgat tgccgcaacc cgcaatttct ttgagcaatt aggcgtgccg 1020
acccacctct ccgactacgg tctggacggc agctccatcc cggctttgct gaaaaaactg 1080acccacctct ccgactacgg tctggacggc agctccatcc cggctttgct gaaaaaactg 1080
gaagagcacg gcatgaccca actgggcgaa aatcatgaca ttacgttgga tgtcagccgc 1140gaagagcacg gcatgaccca actgggcgaa aatcatgaca ttacgttgga tgtcagccgc 1140
cgtatatacg aagccgcccg ctaa 1164cgtatatacg aagccgcccg ctaa 1164
<210> 6<210> 6
<211> 975<211> 975
<212> DNA<212> DNA
<213> Escherichia coli<213> Escherichia coli
<221>乙醛酸还原酶基因yiaE基因<221> Glyoxylate reductase gene yiaE gene
<222>(1)…(975)<222> (1)…(975)
<400>6<400>6
atgaagccgt ccgttatcct ctacaaagcc ttacctgatg atttactgca acgcctgcaa 60atgaagccgt ccgttatcct ctacaaagcc ttacctgatg atttactgca acgcctgcaa 60
gagcatttca ccgttcacca ggtggcaaac ctcagcccac aaaccgtcga acaaaatgca 120gagcatttca ccgttcacca ggtggcaaac ctcagcccac aaaccgtcga acaaaatgca 120
gcaatttttg ccgaagctga aggtttactg ggttcaaacg agaatgtaaa tgccgcattg 180gcaatttttg ccgaagctga aggtttactg ggttcaaacg agaatgtaaa tgccgcattg 180
ctggaaaaaa tgccgaaact gcgtgccaca tcaacgatct ccgtcggcta tgacaatttt 240ctggaaaaaa tgccgaaact gcgtgccaca tcaacgatct ccgtcggcta tgacaatttt 240
gatgtcgatg cgcttaccgc ccgaaaaatt ctgctgatgc acacgccaac cgtattaaca 300gatgtcgatg cgcttaccgc ccgaaaaatt ctgctgatgc acacgccaac cgtattaaca 300
gaaaccgtcg ccgatacgct gatggcgctg gtgttgtcta ccgctcgtcg ggttgtggag 360gaaaccgtcg ccgatacgct gatggcgctg gtgttgtcta ccgctcgtcg ggttgtggag 360
gtagcagaac gggtaaaagc aggcgaatgg accgcgagca taggcccgga ctggtacggc 420gtagcagaac gggtaaaagc aggcgaatgg accgcgagca taggcccgga ctggtacggc 420
actgacgttc accataaaac actgggcatt gtcgggatgg gacggatcgg catggcgctg 480actgacgttc accataaaac actgggcatt gtcgggatgg gacggatcgg catggcgctg 480
gcacaacgtg cgcactttgg cttcaacatg cccatcctct ataacgcgcg ccgccaccat 540gcacaacgtg cgcactttgg cttcaacatg cccatcctct ataacgcgcg ccgccaccat 540
aaagaagcag aagaacgctt caacgcccgc tactgcgatt tggatactct gttacaagag 600aaagaagcag aagaacgctt caacgcccgc tactgcgatt tggatactct gttacaagag 600
tcagatttcg tttgcctgat cctgccgtta actgatgaga cgcatcatct gtttggcgca 660tcagatttcg tttgcctgat cctgccgtta actgatgaga cgcatcatct gtttggcgca 660
gaacaattcg ccaaaatgaa atcctccgcc attttcatta atgccggacg tggcccggtg 720gaacaattcg ccaaaatgaa atcctccgcc attttcatta atgccggacg tggcccggtg 720
gttgacgaaa atgcactgat cgcagcattg cagaaaggcg aaattcacgc tgccgggctg 780gttgacgaaa atgcactgat cgcagcattg cagaaaggcg aaattcacgc tgccgggctg 780
gatgtcttcg aacaagagcc actgtccgta gattcgccgt tgctctcaat ggccaacgtc 840gatgtcttcg aacaagagcc actgtccgta gattcgccgt tgctctcaat ggccaacgtc 840
gtcgcagtac cgcatattgg atctgccacc catgagacgc gttatggcat ggccgcctgt 900gtcgcagtac cgcatattgg atctgccacc catgagacgc gttatggcat ggccgcctgt 900
gccgtggata atttgattga tgcgttacaa ggaaaggttg agaagaactg tgtgaatccg 960gccgtggata atttgattga tgcgttacaa ggaaaggttg agaagaactg tgtgaatccg 960
cacgtcgcgg actaa 975cacgtcgcgg actaa 975
<210> 7<210> 7
<211> 1788<211> 1788
<212> DNA<212> DNA
<213> Caulobacter crescentus<213> Caulobacter crescentus
<221>木糖酸脱水酶基因xylD核苷酸序列<221> Nucleotide sequence of xylonate dehydratase gene xylD
<222>(1)…(1788)<222> (1)…(1788)
<400> 7<400> 7
atgcgtagtg ccctgagtaa tcgtaccccg cgccgttttc gtagccgcga ttggtttgat 60atgcgtagtg ccctgagtaa tcgtaccccg cgccgttttc gtagccgcga ttggtttgat 60
aatccggatc atattgatat gaccgcactg tatctggaac gctttatgaa ttatggcatt 120aatccggatc atattgatat gaccgcactg tatctggaac gctttatgaa ttatggcatt 120
accccggaag aactgcgtag tggtaaaccg attattggca ttgcccagac cggtagtgat 180accccggaag aactgcgtag tggtaaaccg attattggca ttgcccagac cggtagtgat 180
attagtccgt gtaatcgcat tcatctggat ctggtgcagc gtgttcgcga tggcattcgc 240attagtccgt gtaatcgcat tcatctggat ctggtgcagc gtgttcgcga tggcattcgc 240
gatgccggtg gcattccgat ggaatttccg gttcatccga tttttgaaaa ttgccgtcgt 300gatgccggtg gcattccgat ggaatttccg gttcatccga tttttgaaaa ttgccgtcgt 300
ccgaccgccg cactggatcg caatctgagc tatctgggcc tggttgaaac cctgcatggt 360ccgaccgccg cactggatcg caatctgagc tatctgggcc tggttgaaac cctgcatggt 360
tatccgattg atgcagttgt tctgaccacc ggctgcgata aaaccacccc ggccggtatt 420tatccgattg atgcagttgt tctgaccacc ggctgcgata aaaccacccc ggccggtatt 420
atggcagcaa ccaccgtgaa tattccggcc attgttctga gcggcggtcc gatgctggat 480atggcagcaa ccaccgtgaa tattccggcc attgttctga gcggcggtcc gatgctggat 480
ggttggcatg aaaatgaact ggtgggcagc ggcaccgtta tttggcgcag tcgtcgcaaa 540ggttggcatg aaaatgaact ggtgggcagc ggcaccgtta tttggcgcag tcgtcgcaaa 540
ctggccgcag gcgaaattac cgaagaagag tttattgatc gtgcagcaag tagtgcaccg 600ctggccgcag gcgaaattac cgaagaagag tttattgatc gtgcagcaag tagtgcaccg 600
agcgccggcc attgtaatac catgggtaca gcaagcacca tgaatgcagt ggccgaagca 660agcgccggcc attgtaatac catgggtaca gcaagcacca tgaatgcagt ggccgaagca 660
ctgggcctga gtctgaccgg ctgcgccgct attccggccc cttatcgtga acgtggccag 720ctgggcctga gtctgaccgg ctgcgccgct attccggccc cttatcgtga acgtggccag 720
atggcatata aaaccggcca gcgcattgtt gatctggcat atgatgatgt gaaaccgctg 780atggcatata aaaccggcca gcgcattgtt gatctggcat atgatgatgt gaaaccgctg 780
gatattctga ccaaacaggc atttgaaaat gccattgcac tggttgcagc cgccggtggc 840gatattctga ccaaacaggc atttgaaaat gccattgcac tggttgcagc cgccggtggc 840
agcaccaatg cacagccgca tattgttgcc atggcccgtc atgccggcgt ggaaattacc 900agcaccaatg cacagccgca tattgttgcc atggcccgtc atgccggcgt ggaaattacc 900
gcagatgatt ggcgcgccgc atatgatatt ccgctgattg tgaatatgca gccggcaggc 960gcagatgatt ggcgcgccgc atatgatatt ccgctgattg tgaatatgca gccggcaggc 960
aaatatctgg gtgaacgttt tcatcgcgca ggtggtgccc cggcagtgct gtgggaactg 1020aaatatctgg gtgaacgttt tcatcgcgca ggtggtgccc cggcagtgct gtgggaactg 1020
ctgcagcagg gtcgcctgca tggcgatgtt ctgaccgtga ccggcaaaac catgagtgaa 1080ctgcagcagg gtcgcctgca tggcgatgtt ctgaccgtga ccggcaaaac catgagtgaa 1080
aatctgcagg gccgcgaaac cagcgatcgc gaagttattt ttccgtatca tgaaccgctg 1140aatctgcagg gccgcgaaac cagcgatcgc gaagttattt ttccgtatca tgaaccgctg 1140
gccgaaaaag ccggttttct ggttctgaaa ggcaatctgt ttgattttgc aattatgaaa 1200gccgaaaaag ccggttttct ggttctgaaa ggcaatctgt ttgattttgc aattatgaaa 1200
agcagtgtga ttggtgaaga atttcgtaaa cgctatctga gtcagccggg tcaggaaggt 1260agcagtgtga ttggtgaaga atttcgtaaa cgctatctga gtcagccggg tcaggaaggt 1260
gtgtttgaag cccgtgccat tgtttttgat ggcagcgatg attatcataa acgtattaat 1320gtgtttgaag cccgtgccat tgtttttgat ggcagcgatg attatcataa acgtattaat 1320
gacccggccc tggaaattga tgaacgttgc attctggtta ttcgcggtgc cggcccgatt 1380gacccggccc tggaaattga tgaacgttgc attctggtta ttcgcggtgc cggcccgatt 1380
ggctggccgg gtagtgcaga agtggtgaat atgcaaccgc cggatcatct gctgaaaaaa 1440ggctggccgg gtagtgcaga agtggtgaat atgcaaccgc cggatcatct gctgaaaaaa 1440
ggcattatga gcctgccgac cctgggtgac ggtcgccaga gcggtacagc agatagtccg 1500ggcattatga gcctgccgac cctgggtgac ggtcgccaga gcggtacagc agatagtccg 1500
agcattctga atgccagccc ggaaagcgcc attggtggcg gcctgagttg gctgcgcacc 1560agcattctga atgccagccc ggaaagcgcc attggtggcg gcctgagttg gctgcgcacc 1560
ggtgacacca ttcgcattga tctgaatacc ggccgctgcg atgccctggt tgatgaagca 1620ggtgacacca ttcgcattga tctgaatacc ggccgctgcg atgccctggt tgatgaagca 1620
accattgcag cccgtaaaca ggatggtatt ccggcagttc cggccaccat gaccccgtgg 1680accattgcag cccgtaaaca ggatggtatt ccggcagttc cggccaccat gaccccgtgg 1680
caggaaatct atcgtgcaca tgccagccag ctggataccg gtggtgttct ggaatttgca 1740caggaaatct atcgtgcaca tgccagccag ctggataccg gtggtgttct ggaatttgca 1740
gtgaaatatc aggatctggc cgcaaaactg ccgcgccata atcattaa 1788gtgaaatatc aggatctggc cgcaaaactg ccgcgccata atcattaa 1788
<210> 8<210> 8
<211> 1644<211> 1644
<212> DNA<212> DNA
<213> Lactococcus lactis<213> Lactococcus lactis
<221> 支链-2-酮酸脱羧酶基因kdcA核苷酸序列<221> Branched-chain-2-ketoacid decarboxylase gene kdcA nucleotide sequence
<222>(1)…(1644)<222>(1)…(1644)
<400> 8<400> 8
atgtacaccg ttggcgatta tctgctggat cgtctgcatg aactgggtat tgaagaaatt 60atgtacaccg ttggcgatta tctgctggat cgtctgcatg aactgggtat tgaagaaatt 60
tttggtgttc cgggtgacta taatctgcag tttctggatc agattattag tcgcgaagat 120tttggtgttc cgggtgacta taatctgcag tttctggatc agattattag tcgcgaagat 120
atgaaatgga ttggtaatgc caatgaactg aatgcaagtt atatggccga tggttatgcc 180atgaaatgga ttggtaatgc caatgaactg aatgcaagtt atatggccga tggttatgcc 180
cgcaccaaaa aagcagcagc ctttctgacc acctttggcg tgggtgaact gagtgcaatt 240cgcaccaaaa aagcagcagc ctttctgacc acctttggcg tgggtgaact gagtgcaatt 240
aatggtctgg ccggtagtta tgccgaaaat ctgccggtgg ttgaaattgt tggcagtccg 300aatggtctgg ccggtagtta tgccgaaaat ctgccggtgg ttgaaattgt tggcagtccg 300
accagcaaag ttcagaatga tggtaaattt gtgcatcata ccctggcaga tggcgatttt 360accagcaaag ttcagaatga tggtaaattt gtgcatcata ccctggcaga tggcgatttt 360
aaacatttta tgaaaatgca cgagccggtg accgcagccc gtaccctgct gaccgcagaa 420aaacatttta tgaaaatgca cgagccggtg accgcagccc gtaccctgct gaccgcagaa 420
aatgcaacct atgaaattga tcgtgtgctg agtcagctgc tgaaagaacg caaaccggtt 480aatgcaacct atgaaattga tcgtgtgctg agtcagctgc tgaaagaacg caaaccggtt 480
tatattaatc tgccggttga tgttgccgcc gccaaagcag aaaaaccggc cctgagtctg 540tatattaatc tgccggttga tgttgccgcc gccaaagcag aaaaaccggc cctgagtctg 540
gaaaaagaaa gcagcaccac caataccacc gaacaggtta ttctgagcaa aattgaagaa 600gaaaaagaaa gcagcaccac caataccacc gaacaggtta ttctgagcaa aattgaagaa 600
agcctgaaaa atgcacagaa accggttgtt attgcaggcc atgaagtgat tagctttggt 660agcctgaaaa atgcacagaa accggttgtt attgcaggcc atgaagtgat tagctttggt 660
ctggaaaaaa ccgtgaccca gtttgttagc gaaaccaaac tgccgattac caccctgaat 720ctggaaaaaa ccgtgaccca gtttgttagc gaaaccaaac tgccgattac caccctgaat 720
tttggtaaaa gtgcagtgga tgaaagcctg ccgagttttc tgggcatcta taatggcaaa 780tttggtaaaa gtgcagtgga tgaaagcctg ccgagttttc tgggcatcta taatggcaaa 780
ctgagtgaaa ttagtctgaa aaatttcgtg gaaagcgcag attttattct gatgctgggt 840ctgagtgaaa ttagtctgaa aaatttcgtg gaaagcgcag attttattct gatgctgggt 840
gttaaactga ccgatagcag caccggcgcc tttacccatc atctggatga aaataagatg 900gttaaactga ccgatagcag caccggcgcc tttacccatc atctggatga aaataagatg 900
attagcctga atatcgatga aggtattatt tttaacaagg tggttgaaga tttcgatttt 960attagcctga atatcgatga aggtattatt tttaacaagg tggttgaaga tttcgatttt 960
cgtgcagtgg tgagtagtct gagtgaactg aaaggcattg aatatgaagg tcagtatatt 1020cgtgcagtgg tgagtagtct gagtgaactg aaaggcattg aatatgaagg tcagtatatt 1020
gataagcagt atgaagagtt tattccgagt agcgccccgc tgagtcagga tcgcctgtgg 1080gataagcagt atgaagagtt tattccgagt agcgccccgc tgagtcagga tcgcctgtgg 1080
caggccgttg aaagtctgac ccagagtaat gaaaccattg ttgccgaaca gggtaccagc 1140caggccgttg aaagtctgac ccagagtaat gaaaccattg ttgccgaaca gggtaccagc 1140
tttttcggcg caagtaccat ttttctgaaa agtaatagcc gctttatcgg ccagccgctg 1200tttttcggcg caagtaccat ttttctgaaa agtaatagcc gctttatcgg ccagccgctg 1200
tggggtagta ttggttatac ctttccggca gccctgggca gccagattgc agataaagaa 1260tggggtagta ttggttatac ctttccggca gccctgggca gccagattgc agataaagaa 1260
agccgtcatc tgctgtttat tggcgatggt agtctgcagc tgaccgttca ggaactgggt 1320agccgtcatc tgctgtttat tggcgatggt agtctgcagc tgaccgttca ggaactgggt 1320
ctgagcattc gtgaaaaact gaatccgatt tgttttatta tcaacaacga cggctatacc 1380ctgagcattc gtgaaaaact gaatccgatt tgttttatta tcaacaacga cggctatacc 1380
gtggaacgtg aaattcatgg tccgacccag agttataatg atattccgat gtggaattac 1440gtggaacgtg aaattcatgg tccgacccag agttataatg atattccgat gtggaattac 1440
agcaaactgc cggaaacctt tggcgcaacc gaagatcgtg ttgttagtaa aattgtgcgt 1500agcaaactgc cggaaacctt tggcgcaacc gaagatcgtg ttgttagtaa aattgtgcgt 1500
accgaaaatg aatttgttag cgtgatgaaa gaagcacagg ccgatgttaa tcgtatgtat 1560accgaaaatg aatttgttag cgtgatgaaa gaagcacagg ccgatgttaa tcgtatgtat 1560
tggattgaac tggtgctgga aaaagaggat gcaccgaaac tgctgaaaaa gatgggcaaa 1620tggattgaac tggtgctgga aaaagaggat gcaccgaaac tgctgaaaaa gatgggcaaa 1620
ctgtttgccg aacagaataa gtaa 1644ctgtttgccg aacagaataa gtaa 1644
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110057551.1A CN112680484B (en) | 2021-01-15 | 2021-01-15 | A method for producing 3,4-dihydroxybutyric acid using a double bacteria co-cultivation system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110057551.1A CN112680484B (en) | 2021-01-15 | 2021-01-15 | A method for producing 3,4-dihydroxybutyric acid using a double bacteria co-cultivation system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112680484A CN112680484A (en) | 2021-04-20 |
CN112680484B true CN112680484B (en) | 2022-06-14 |
Family
ID=75458248
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110057551.1A Active CN112680484B (en) | 2021-01-15 | 2021-01-15 | A method for producing 3,4-dihydroxybutyric acid using a double bacteria co-cultivation system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112680484B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115094016B (en) * | 2022-06-30 | 2024-02-23 | 山东大学 | Recombinant escherichia coli knocked out glucose-6-phosphate isomerase gene and application thereof in production of 1,2,4-butanetriol |
CN115948482B (en) * | 2023-02-07 | 2024-02-09 | 中国科学院天津工业生物技术研究所 | Construction method and application of 2, 4-dihydroxybutyric acid biosynthesis pathway |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102676608A (en) * | 2012-06-12 | 2012-09-19 | 南京林业大学 | Method for preparing xylonic acid (salt) through whole-cell high-efficiency catalysis of xylose transformation |
CN103865959A (en) * | 2012-12-13 | 2014-06-18 | 中国科学院青岛生物能源与过程研究所 | Biological synthesis method of xylosic acid |
CN107312737A (en) * | 2017-07-25 | 2017-11-03 | 北京理工大学 | A kind of recombination bacillus coli, preparation method and the method for synthesizing 3,4 dihydroxy butyric acid |
CN109554386A (en) * | 2018-12-17 | 2019-04-02 | 山东大学 | A kind of utilizing works Escherichia coli are using Corncob hydrolysate as the method for substrate high yield D- xylonic |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016162712A1 (en) * | 2015-04-07 | 2016-10-13 | Metabolic Explorer | Modified microorganism for the optimized production of 2,4-dihydroxyburyrate |
-
2021
- 2021-01-15 CN CN202110057551.1A patent/CN112680484B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102676608A (en) * | 2012-06-12 | 2012-09-19 | 南京林业大学 | Method for preparing xylonic acid (salt) through whole-cell high-efficiency catalysis of xylose transformation |
CN103865959A (en) * | 2012-12-13 | 2014-06-18 | 中国科学院青岛生物能源与过程研究所 | Biological synthesis method of xylosic acid |
CN107312737A (en) * | 2017-07-25 | 2017-11-03 | 北京理工大学 | A kind of recombination bacillus coli, preparation method and the method for synthesizing 3,4 dihydroxy butyric acid |
CN109554386A (en) * | 2018-12-17 | 2019-04-02 | 山东大学 | A kind of utilizing works Escherichia coli are using Corncob hydrolysate as the method for substrate high yield D- xylonic |
Non-Patent Citations (2)
Title |
---|
3,4-二羟基丁酸及其内酯的合成研究进展;高玉等;《生命科学仪器》;20170430;第15卷(第2期);13-18 * |
Establishing a novel biosynthetic pathway for the production of 3,4-dihydroxybutyric acid from xylose in Escherichia coli;Wang, Jia等;《METABOLIC ENGINEERING》;20170531;第41卷;39-45 * |
Also Published As
Publication number | Publication date |
---|---|
CN112680484A (en) | 2021-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11781118B2 (en) | Preparation of L-amino acid deaminase mutant and application thereof | |
EP0431047A1 (en) | Ethanol production by genetically engineered escherichia coli strains | |
CN112143764B (en) | A kind of method for preparing brivaracetam intermediate compound catalyzed by biological enzyme | |
US9944957B2 (en) | Recombinant Escherichia coli for producing D-lactate and use thereof | |
CN112680484B (en) | A method for producing 3,4-dihydroxybutyric acid using a double bacteria co-cultivation system | |
CN112980711A (en) | Construction method of recombinant yarrowia lipolytica for efficiently and completely synthesizing hydroxytyrosol by using strong promoter | |
CN113564090B (en) | A method for constructing recombinant ectoine-producing bacteria and its application | |
CN111826372B (en) | Engineering strain for producing butanol using xylose and its construction method and application | |
CN110283800B (en) | Glucose oxidation enzyme mutant, double enzyme coexpression vectors and its application | |
CN109486871B (en) | Method for producing acetoin by fermentation of bacillus licheniformis engineering strain | |
CN114350630B (en) | L-pantolactone dehydrogenase, mutants and applications thereof | |
CN101177686A (en) | A kind of pyruvate oxidase gene, its recombinant expression plasmid and transformed bacterial strain | |
CN115895989A (en) | Escherichia coli with high succinic acid yield as well as preparation method and application thereof | |
CN111718950A (en) | A method for improving the fermentation production of pyruvate by engineering bacteria by knocking out the pyruvate transporter gene | |
CN108102941A (en) | The Gluconobacter oxvdans of one plant of glycerol dehydrogenase gene sequence of combination containing certain films and its application | |
CN109576287B (en) | CrpMApplication of gene in improving DHA stress tolerance of Gluconobacter strains | |
CN113528495A (en) | A kind of Bacillus subtilis stably expressing chitobiose deacetylase and its construction method and application | |
KR102754213B1 (en) | Novel Enterobacter cloacae sp. producing lactobionic acid and method for production of lactobionic acid using the Same | |
CN100432228C (en) | Ribotide sequence of 2-naphthanic acid degradation bacteria DNA segment and its preparation method and application | |
WO2024124711A1 (en) | Method for constructing l-valine-producing strain, l-valine-producing strain, and use thereof | |
CN114276970B (en) | Genetically engineered bacterium for producing 1, 3-propylene glycol | |
CN114015634B (en) | Recombinant Escherichia coli with high succinic acid production and its construction method and application | |
CN117603930B (en) | Recombinant bacterium for expressing mutant sirohem synthase | |
CN114381417B (en) | Method for improving tolerance of corynebacterium glutamicum to inhibitor | |
CN115011537B (en) | Engineering bacterium for producing high optical purity L-lactic acid by double anaerobic promoters and preparation method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |