CN112666728B - an electro-optic modulator - Google Patents
an electro-optic modulator Download PDFInfo
- Publication number
- CN112666728B CN112666728B CN201910978353.1A CN201910978353A CN112666728B CN 112666728 B CN112666728 B CN 112666728B CN 201910978353 A CN201910978353 A CN 201910978353A CN 112666728 B CN112666728 B CN 112666728B
- Authority
- CN
- China
- Prior art keywords
- doped region
- region
- vertical
- doped
- ridge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Abstract
本申请公开了一种电光调制器,包括脊波导,该脊波导包括脊型部和平板部;脊波导中设有第一掺杂区域和第二掺杂区域,该第一掺杂区域和第二掺杂区域的掺杂类型不同;其中,第一掺杂区域包括设于脊型部中且沿脊型部的延伸方向延伸的竖直区和水平区,以及沿脊型部的延伸方向间隔设置的多个垂直区;第二掺杂区域包括脊型部中除第一掺杂区域外的部分,并与第一掺杂区域的水平区、竖直区和垂直区邻接分别形成包括水平方向、竖直方向和垂直方向的PN结。本申请在脊波导中设计不同方向的多个PN结,扩大了耗尽区的范围,有效提高了调制效率,降低了光损耗,而且不引入额外的寄生电容,避免额外的电容影响调制带宽。
The present application discloses an electro-optic modulator, comprising a ridge waveguide, the ridge waveguide includes a ridge portion and a flat plate portion; a first doped region and a second doped region are arranged in the ridge waveguide, and the first doped region and the second doped region are arranged in the ridge waveguide. The doping types of the two doped regions are different; wherein, the first doped region includes a vertical region and a horizontal region which are arranged in the ridge portion and extend along the extending direction of the ridge portion, and are spaced along the extending direction of the ridge portion A plurality of vertical regions are set; the second doped region includes the part of the ridge except the first doped region, and is adjacent to the horizontal region, the vertical region and the vertical region of the first doped region respectively to form , the vertical direction and the vertical direction of the PN junction. The application designs multiple PN junctions in different directions in the ridge waveguide, which expands the range of the depletion region, effectively improves the modulation efficiency, reduces the optical loss, and does not introduce additional parasitic capacitance to avoid the additional capacitance affecting the modulation bandwidth.
Description
技术领域technical field
本申请涉及光器件技术领域,尤其涉及一种电光调制器。The present application relates to the technical field of optical devices, in particular to an electro-optical modulator.
背景技术Background technique
硅基电光调制器是硅基光电子芯片中最重要的有源器件之一,在高速光通信中有着极其重要的作用。其功能是将高速变化的电信号转变为高速变化的光信号。Silicon-based electro-optic modulator is one of the most important active devices in silicon-based optoelectronic chips, and plays an extremely important role in high-speed optical communication. Its function is to convert a high-speed changing electrical signal into a high-speed changing optical signal.
在单波25G以上应用场景的硅光芯片中,目前最可行、最常用的技术方案是基于等离子色散效应(Plasma dispersion effect)的载流子耗尽型调制器(Carrier DepletionModulator),其相移区(phase shifter)为脊波导结构,如图1所示,包括脊型部11’和平板部(slab部)12’,形成于脊型部11’中的P型掺杂13’和N型掺杂14’,P型掺杂13’和N型掺杂14’邻接形成沿脊型部的延伸方向延伸的竖直PN结。该结构的调制器,其PN结的耗尽层只在两个P型掺杂13’和N型掺杂14’的邻接处,对脊波导内传播的光信号的调制效率偏低,难以满足高速光通信对高速光调制器高调制效率的要求。In the silicon photonics chip with single-wavelength 25G and above application scenarios, the most feasible and commonly used technical solution is the carrier depletion modulator (Carrier Depletion Modulator) based on the plasma dispersion effect. (Phase shifter) is a ridge waveguide structure, as shown in Figure 1, including a ridge part 11' and a flat plate part (slab part) 12', and the P-type doping 13' and N-type doping formed in the ridge part 11' The dopant 14', the P-type doping 13' and the N-type doping 14' are adjacent to form a vertical PN junction extending along the extending direction of the ridge portion. In the modulator with this structure, the depletion layer of the PN junction is only at the adjacent place of the two P-type doping 13' and N-type doping 14', and the modulation efficiency of the optical signal propagating in the ridge waveguide is low, which is difficult to meet High-speed optical communication requires high modulation efficiency of high-speed optical modulators.
发明内容Contents of the invention
本申请的目的在于提供一种电光调制器,具有更高的光调制效率或更低的光损耗。The purpose of the present application is to provide an electro-optic modulator with higher light modulation efficiency or lower light loss.
为了实现上述目的之一,本申请提供了一种电光调制器,包括脊波导,所述脊波导包括脊型部和位于所述脊型部两侧的平板部;In order to achieve one of the above objects, the present application provides an electro-optic modulator, including a ridge waveguide, the ridge waveguide includes a ridge portion and flat plate portions located on both sides of the ridge portion;
所述脊波导中设有第一掺杂区域和第二掺杂区域,所述第一掺杂区域与所述第二掺杂区域的掺杂类型相反;A first doped region and a second doped region are provided in the ridge waveguide, and the doping type of the first doped region is opposite to that of the second doped region;
所述第一掺杂区域包括设于所述脊型部中且沿所述脊型部的延伸方向延伸的竖直区和水平区,以及沿所述脊型部的延伸方向间隔设置的多个垂直区,所述垂直区沿着与所述脊型部延伸方向垂直的方向延伸至所述脊型部一侧的平板部中;The first doped region includes a vertical region and a horizontal region arranged in the ridge portion and extending along the extending direction of the ridge portion, and a plurality of intervals arranged along the extending direction of the ridge portion a vertical area, the vertical area extends into the flat plate portion on one side of the ridge portion along a direction perpendicular to the extending direction of the ridge portion;
所述水平区、竖直区与所述垂直区相互连接在一起,所述水平区和所述竖直区的底部高于所述脊波导的底部,所述水平区的宽度小于所述脊型部的宽度;The horizontal area, the vertical area and the vertical area are connected together, the bottoms of the horizontal area and the vertical area are higher than the bottom of the ridge waveguide, and the width of the horizontal area is smaller than that of the ridge waveguide. the width of the section;
所述第二掺杂区域包括所述脊型部中除所述第一掺杂区域外的部分,所述第二掺杂区延伸至与所述垂直区相对的另一侧的平板部中;The second doped region includes a portion of the ridge portion except the first doped region, and the second doped region extends into a flat plate portion on the other side opposite to the vertical region;
所述第二掺杂区域与所述第一掺杂区域的水平区、竖直区和垂直区邻接分别形成包括水平方向、竖直方向和垂直方向的PN结。The second doped region is adjacent to the horizontal region, the vertical region and the vertical region of the first doped region to form a PN junction including the horizontal direction, the vertical direction and the vertical direction, respectively.
作为实施方式的进一步改进,所述第一掺杂区域的水平区位于所述竖直区的底部、中部或顶部。As a further improvement of the embodiment, the horizontal region of the first doped region is located at the bottom, middle or top of the vertical region.
作为实施方式的进一步改进,所述第一掺杂区域的水平区位于所述竖直区的一侧或两侧。As a further improvement of the embodiment, the horizontal region of the first doped region is located on one side or both sides of the vertical region.
作为实施方式的进一步改进,所述第一掺杂区域的水平区和竖直区的底部比所述脊波导的底部高出至少50nm。As a further improvement of the embodiment, the bottoms of the horizontal region and the vertical region of the first doped region are at least 50 nm higher than the bottom of the ridge waveguide.
作为实施方式的进一步改进,所述第一掺杂区域的水平区的厚度大于或等于30nm。As a further improvement of the embodiment, the thickness of the horizontal region of the first doped region is greater than or equal to 30 nm.
作为实施方式的进一步改进,所述所述多个垂直区沿所述脊型部的延伸方向等间距设置。As a further improvement of the embodiment, the plurality of vertical regions are arranged at equal intervals along the extending direction of the ridge portion.
作为实施方式的进一步改进,所述垂直区的占空比为20%~80%。As a further improvement of the embodiment, the duty cycle of the vertical region is 20%-80%.
作为实施方式的进一步改进,所述垂直区所在的平板部为本征区或第一轻掺杂区域;所述第一轻掺杂区域与所述第一掺杂区域的掺杂类型相同。As a further improvement of the embodiment, the slab portion where the vertical region is located is an intrinsic region or a first lightly doped region; the doping type of the first lightly doped region is the same as that of the first doped region.
作为实施方式的进一步改进,所述水平区的宽度大于或等于所述竖直区的宽度。As a further improvement of the embodiment, the width of the horizontal area is greater than or equal to the width of the vertical area.
作为实施方式的进一步改进,所述脊波导还包括第一重掺杂区域和第二重掺杂区域:所述第一重掺杂区域位于所述第一掺杂区域垂直区外侧与所述垂直区的末端连接,所述第一重掺杂区域与所述第一掺杂区域的掺杂类型相同,其掺杂浓度高于所述第一掺杂区域的掺杂浓度;所述第二重掺杂区域位于所述第二掺杂区域外侧与所述第二掺杂区域连接,所述第二重掺杂区域与所述第二掺杂区域的掺杂类型相同,其掺杂浓度高于所述第二掺杂区域的掺杂浓度;所述电光调制器还包括至少两个电极,所述第一重掺杂区域和第二重掺杂区域分别电连接所述两个电极。As a further improvement of the implementation, the ridge waveguide further includes a first heavily doped region and a second heavily doped region: the first heavily doped region is located outside the vertical region of the first doped region and is adjacent to the vertical The end of the region is connected, the doping type of the first heavily doped region is the same as that of the first doped region, and its doping concentration is higher than that of the first doped region; the second heavily doped region The doped region is located outside the second doped region and connected to the second doped region, the second heavily doped region has the same doping type as the second doped region, and its doping concentration is higher than The doping concentration of the second doped region; the electro-optic modulator further includes at least two electrodes, and the first heavily doped region and the second heavily doped region are respectively electrically connected to the two electrodes.
作为实施方式的进一步改进,所述垂直区延伸到所述平板部中的延伸长度大于或等于500nm。As a further improvement of the embodiment, the extension length of the vertical region into the flat plate portion is greater than or equal to 500 nm.
作为实施方式的进一步改进,所述脊波导还包括第一中掺杂区域和第二中掺杂区域:所述第一中掺杂区域位于所述第一掺杂区域与所述第一重掺杂区域之间,与所述垂直区的末端连接,所述第一中掺杂区域与所述第一掺杂区域的掺杂类型相同,其掺杂浓度高于所述第一掺杂区域的掺杂浓度,低于所述第一重掺杂区域的掺杂浓度;所述第二中掺杂区域位于所述第二掺杂区域与所述第二重掺杂区域之间,所述第二中掺杂区域与所述第二掺杂区域的掺杂类型相同,其掺杂浓度高于所述第二掺杂区域的掺杂浓度,低于所述第二重掺杂区域的掺杂浓度。As a further improvement of the embodiment, the ridge waveguide further includes a first moderately doped region and a second moderately doped region: the first moderately doped region is located between the first doped region and the first heavily doped Between the doped regions, connected to the end of the vertical region, the doping type of the first middle doped region is the same as that of the first doped region, and its doping concentration is higher than that of the first doped region The doping concentration is lower than the doping concentration of the first heavily doped region; the second medium doped region is located between the second doped region and the second heavily doped region, and the first The doping type of the second doped region is the same as that of the second doped region, and its doping concentration is higher than that of the second doped region, but lower than that of the second heavily doped region. concentration.
作为实施方式的进一步改进,所述垂直区延伸到所述平板部中的延伸长度在0~500nm之间。As a further improvement of the embodiment, the extension length of the vertical region into the flat plate part is between 0 nm and 500 nm.
本申请还提供了另一种电光调制器,包括脊波导,所述脊波导包括脊型部和位于所述脊型部两侧的平板部;The present application also provides another electro-optic modulator, which includes a ridge waveguide, and the ridge waveguide includes a ridge portion and flat plate portions located on both sides of the ridge portion;
所述脊波导中设有第一掺杂区域和第二掺杂区域,所述第一掺杂区域与所述第二掺杂区域的掺杂类型相反;A first doped region and a second doped region are provided in the ridge waveguide, and the doping type of the first doped region is opposite to that of the second doped region;
所述第一掺杂区域包括设于所述脊型部中且沿所述脊型部的延伸方向延伸的中部掺杂区,以及沿所述脊型部的延伸方向间隔设置的多个垂直掺杂区,所述垂直掺杂区沿着与所述脊型部延伸方向垂直的方向延伸至所述脊型部一侧的平板部中;所述垂直掺杂区与所述中部掺杂区相连;The first doped region includes a middle doped region arranged in the ridge portion and extending along the extension direction of the ridge portion, and a plurality of vertical doped regions arranged at intervals along the extension direction of the ridge portion. impurity region, the vertical doped region extends into the flat plate on one side of the ridge along a direction perpendicular to the extending direction of the ridge; the vertical doped region is connected to the central doped region ;
所述第二掺杂区域包括设于所述脊型部中分别位于所述第一掺杂区域的中部掺杂区两侧的两个侧掺杂区,以及位于所述第一掺杂区域上面的顶部掺杂区和/或下面的底部掺杂区;所述两个侧掺杂区通过所述顶部掺杂区和/或底部掺杂区相连;所述第二掺杂区域延伸至与所述垂直掺杂区相对的另一侧的平板部中;The second doped region includes two side doped regions located in the ridge portion on both sides of the central doped region of the first doped region, and located above the first doped region. The top doped region and/or the bottom doped region below; the two side doped regions are connected by the top doped region and/or the bottom doped region; the second doped region extends to the In the plate part on the other side opposite to the vertical doping region;
所述第二掺杂区域与所述第一掺杂区域邻接形成包括水平方向、竖直方向和垂直方向的PN结。The second doped region is adjacent to the first doped region to form a PN junction including a horizontal direction, a vertical direction and a vertical direction.
作为实施方式的进一步改进,所述第一掺杂区域的中部掺杂区的横截面为矩形;或者所述第一掺杂区域的中部掺杂区包括竖直区和水平区,所述竖直区和水平区相连。As a further improvement of the embodiment, the cross-section of the central doped region of the first doped region is rectangular; or the central doped region of the first doped region includes a vertical region and a horizontal region, and the vertical The zone is connected to the horizontal zone.
作为实施方式的进一步改进,所述垂直区所在的平板部为本征区或第一轻掺杂区域;所述第一轻掺杂区域与所述第一掺杂区域的掺杂类型相同。As a further improvement of the embodiment, the slab portion where the vertical region is located is an intrinsic region or a first lightly doped region; the doping type of the first lightly doped region is the same as that of the first doped region.
作为实施方式的进一步改进,所述第二掺杂区域的侧掺杂区的宽度大于或等于50nm,所述顶部掺杂区和所述底部掺杂区中的至少一个的厚度大于或等于50nm。As a further improvement of the embodiment, the width of the side doped region of the second doped region is greater than or equal to 50 nm, and the thickness of at least one of the top doped region and the bottom doped region is greater than or equal to 50 nm.
本申请的有益效果:在脊波导中设计不同方向的多个PN结,扩大了耗尽区的范围,有效提高了调制效率,降低了光损耗,而且不引入额外的寄生电容,避免额外的电容影响调制带宽。Beneficial effects of the application: multiple PN junctions in different directions are designed in the ridge waveguide, the range of the depletion region is expanded, the modulation efficiency is effectively improved, the optical loss is reduced, and no additional parasitic capacitance is introduced to avoid additional capacitance Affects modulation bandwidth.
附图说明Description of drawings
图1为常用脊波导的掺杂结构示意图;Figure 1 is a schematic diagram of the doping structure of a commonly used ridge waveguide;
图2为本申请实施例1的电光调制器示意图;FIG. 2 is a schematic diagram of the electro-optic modulator of
图3为本申请实施例1的脊波导的掺杂结构示意图;3 is a schematic diagram of the doping structure of the ridge waveguide in Example 1 of the present application;
图4为图3中横截面A-A示意图;Fig. 4 is a schematic diagram of cross section A-A in Fig. 3;
图5为图3中纵截面B-B示意图;Fig. 5 is a schematic diagram of longitudinal section B-B in Fig. 3;
图6为本申请实施例2的脊波导的掺杂结构示意图;FIG. 6 is a schematic diagram of the doping structure of the ridge waveguide in Example 2 of the present application;
图7为本申请实施例3的脊波导的掺杂结构示意图;FIG. 7 is a schematic diagram of the doping structure of the ridge waveguide in Example 3 of the present application;
图8为本申请实施例4的脊波导的掺杂结构示意图;FIG. 8 is a schematic diagram of the doping structure of the ridge waveguide in Example 4 of the present application;
图9为本申请实施例5的脊波导的掺杂结构示意图;FIG. 9 is a schematic diagram of the doping structure of the ridge waveguide in Example 5 of the present application;
图10为本申请实施例6的脊波导的掺杂结构示意图;FIG. 10 is a schematic diagram of the doping structure of the ridge waveguide in Embodiment 6 of the present application;
图11为图10中横截面C-C示意图;Fig. 11 is a schematic diagram of cross section C-C in Fig. 10;
图12为本申请实施例7的脊波导的掺杂结构示意图;FIG. 12 is a schematic diagram of the doping structure of the ridge waveguide in Example 7 of the present application;
图13为图12中横截面D-D示意图;Fig. 13 is a schematic diagram of cross section D-D in Fig. 12;
图14为本申请实施例8的电光调制器示意图。FIG. 14 is a schematic diagram of an electro-optic modulator according to Embodiment 8 of the present application.
具体实施方式Detailed ways
以下将结合附图所示的具体实施方式对本申请进行详细描述。但这些实施方式并不限制本申请,本领域的普通技术人员根据这些实施方式所做出的结构、方法、或功能上的变换均包含在本申请的保护范围内。The application will be described in detail below in conjunction with specific implementations shown in the accompanying drawings. However, these implementations do not limit the present application, and any structural, method, or functional changes made by those skilled in the art based on these implementations are included in the protection scope of the present application.
在本申请的各个图示中,为了便于图示,结构或部分的某些尺寸会相对于其它结构或部分夸大,因此,仅用于图示本申请的主题的基本结构。In each drawing of the present application, some dimensions of structures or parts are exaggerated relative to other structures or parts for convenience of illustration, and therefore, are only used to illustrate the basic structure of the subject matter of the present application.
另外,本文使用的例如“上”、“上方”、“下”、“下方”等表示空间相对位置的术语是出于便于说明的目的来描述如附图中所示的一个单元或特征相对于另一个单元或特征的关系。空间相对位置的术语可以旨在包括设备在使用或工作中除了图中所示方位以外的不同方位。例如,如果将图中的设备翻转,则被描述为位于其他单元或特征“下方”或“之下”的单元将位于其他单元或特征“上方”。因此,示例性术语“下方”可以囊括上方和下方这两种方位。设备可以以其他方式被定向(旋转90度或其他朝向),并相应地解释本文使用的与空间相关的描述语。当元件或层被称为在另一部件或层“上”、与另一部件或层“连接”时,其可以直接在该另一部件或层上、连接到该另一部件或层,或者可以存在中间元件或层。In addition, terms used herein such as "upper", "above", "under", "below", etc. to express relative positions in space are for convenience of description to describe a unit or feature as shown in the drawings relative to A relationship to another cell or feature. The terms of spatial relative position may be intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as "below" or "beneath" other elements or features would then be oriented "above" the other elements or features. Thus, the exemplary term "below" can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly. When an element or layer is referred to as being "on," "connected to" another element or layer, it can be directly on, connected to, or Intervening elements or layers may be present.
实施例1Example 1
如图2-5所示,该实施例的电光调制器至少包括脊波导10和两个电极20。其中,脊波导10包括脊型部11和脊型部11两侧的平板部12。脊波导10中设有第一掺杂区域13和第二掺杂区域14,该实施例中,第一掺杂区域13为P型掺杂,第二掺杂区域14为N型掺杂,当然,在其它实施例中,也可以是第一掺杂区域13为N型掺杂,第二掺杂区域14为P型掺杂。上述第一掺杂区域13包括设于脊型部11中且沿脊型部11的延伸方向(如图示y轴方向)延伸的竖直区132和水平区131,以及沿脊型部11的延伸方向间隔设置的多个垂直区133,该多个垂直区133沿着与脊型部11延伸方向垂直的方向(即图示x轴方向)延伸至脊型部11一侧的平板部12中。上述第一掺杂区域13的水平区131和竖直区132组成第一掺杂区域13的中部掺杂区,水平区131和竖直区132的底部高于脊波导10的底部,水平区131的宽度小于脊型部11的宽度,垂直区133也可称为垂直掺杂区。第二掺杂区域14包括脊型部11中除上述第一掺杂区域13外的部分、并延伸至与垂直区133相对的另一侧的平板部12中,主要包括设于脊型部11中位于第一掺杂区域13中部掺杂区两侧的两个侧掺杂区,以及位于中部掺杂区下面的底部掺杂区,在其它实施例中,也可以在第一掺杂区域13中部掺杂区的上面设置第二掺杂区域的顶部掺杂区。第二掺杂区域的两个侧掺杂区通过底部掺杂区或顶部掺杂区相连。该第二掺杂区域14与第一掺杂区域13的水平区131、竖直区132和垂直区133邻接分别形成包括水平方向P1、竖直方向P2和垂直方向P3的PN结。这里,水平区131与图示的xy平面平行,竖直区132与图示的yz平面平行,垂直区133与图示的xz平面平行。As shown in FIGS. 2-5 , the electro-optic modulator of this embodiment at least includes a
脊波导10的平板部12在上述第一掺杂区域13的垂直区133外侧还设有第一重掺杂区域16,在第二掺杂区域14外侧设有第二重掺杂区域17。其中,第一重掺杂区域16与第一掺杂区域13的垂直区133的末端连接,且第一重掺杂区域16与第一掺杂区域13的掺杂类型相同,其掺杂浓度高于第一掺杂区域13的掺杂浓度。第二重掺杂区域17与第二掺杂区域14连接,且第二重掺杂区域17与第二掺杂区域14的掺杂类型相同,其掺杂浓度高于第二掺杂区域14的掺杂浓度。该实施例中,第一掺杂区域13和第二掺杂区域14的掺杂浓度在1×1017cm-3~9×1018cm-3范围内;第一重掺杂区域16和第二重掺杂区域17的掺杂浓度在5×1019cm-3~1×1021cm-3范围内。第一重掺杂区域16和第二重掺杂区域17分别通过导电过孔30等方式电连接两个电极20。工作时,分别通过两个电极20施加电信号,使第一重掺杂区域16处于较低电势,第二重掺杂区域17处于较高电势。第一重掺杂区域16通过第一掺杂区域13的各垂直区133将低电势施加在第一掺杂区域13上,第二重掺杂区域17将高电势施加在第二掺杂区域14上,以在上述水平方向P1、竖直方向P2和垂直方向P3的PN结处均产生耗尽区,使光信号在脊波导内传播的有效折射率产生变化,从而改变光信号的相位,实现光信号的调制。该实施例的光调制器在脊波导中设计了不同方向的多个PN结,水平方向、竖直方向和垂直方向均有PN结,扩大了耗尽区的范围,有效提高了调制效率。The
该实施例中,第一掺杂区域13的水平区131和竖直区132的底部高于脊波导10的底部,水平区131的宽度L小于脊型部11的宽度、大于竖直区132的宽度,在其它实施例中,水平区131的宽度L也可以等于竖直区132的宽度,即水平区131和竖直区132一起形成的横截面为矩形。即在第一掺杂区域13两侧和底部的第二掺杂区域14是相互导通的,从而连接第二掺杂区域14的电极20只需设在脊型部11的一侧,与常用PN结设计的电光调制器的电极通用,不会引入额外的寄生电容,避免额外的电容影响调制带宽。虽然增加了PN结的数量,会影响结电容,但是可以通过设计合适的调制长度,获得所需要的消光比和带宽,以及较小的光学损耗。In this embodiment, the bottoms of the
该实施例中,第一掺杂区域13的水平区131和竖直区132的底部比脊波导10的底部高出至少50nm,即在第一掺杂区域13下面的第二掺杂区域14的厚度H1至少还有50nm,与第一掺杂区域13的水平区131形成水平方向P1的PN结,这里,第一掺杂区域13的水平区131的厚度H2大于或等于30nm。第一掺杂区域13两侧的第二掺杂区域14则分别与第一掺杂区域13的竖直区132和垂直区133形成竖直方向P2和垂直方向P3的PN结。该实施例中,第一掺杂区域13的水平区131位于竖直区132的底部两侧,与竖直区132一起形成横截面为“丄”型的掺杂区。该水平区131的上下表面均邻接第二掺杂区域14,形成两个背对的水平方向P1的PN结。竖直区132也分别与其两侧的第二掺杂区域14邻接,形成两个背对的竖直方向P2的PN结。每个垂直区133也分别与其前后的第二掺杂区域14邻接,形成两个背对的垂直方向P3的PN结,在脊型部11的延伸方向间隔地形成多对背对的垂直方向P3的PN结。该实施例中,多个垂直区133沿脊型部11的延伸方向等间距设置,垂直区133的占空比在20%~80%。各垂直区133之间的平板部12为本征区15,垂直区延伸到平板部中的延伸长度即该本征区15的宽度D大于或等于500nm,即第一重掺杂区域16到第二掺杂区域14之间的间距D至少500nm,以尽量减少光学损耗。当然,在其它实施例中,本征区15也可以有轻掺杂,由第一轻掺杂区替代,第一轻掺杂区域与第一掺杂区域的掺杂类型相同,其掺杂浓度在1×1016cm-3~1×1017cm-3范围内。In this embodiment, the bottom of the
实施例2Example 2
如图6所示,与实施例1不同的是,该实施例中第一掺杂区域的水平区只设在竖直区底部的一侧,与竖直区一起形成横截面为“L”型的掺杂区。该水平区的上下表面同样邻接第二掺杂区域,形成两个背对的水平方向的PN结。竖直区也分别与其两侧的第二掺杂区域邻接,形成两个背对的竖直方向的PN结。每个垂直区也分别与其前后的第二掺杂区域邻接,形成两个背对的垂直方向的PN结,在脊型部的延伸方向间隔地形成多对背对的垂直方向的PN结。该实施例中,水平区设在竖直区的右侧,在其它实施例中,也可以将水平区设在竖直区的左侧,与竖直区一起形成横截面为反“L”型的掺杂区。As shown in Figure 6, different from
实施例3Example 3
如图7所示,与实施例1不同的是,该实施例中的第一掺杂区域13的水平区131只设在竖直区132中部的一侧,与竖直区132一起形成横截面为类似横的“T”型的掺杂区。同样,竖直区132的底部高出脊波导10的底部至少50nm,即在第一掺杂区域13的下面至少还有50nm厚的第二掺杂区域14以导通第一掺杂区域13两侧的第二掺杂区域14。上述水平区131的上下表面同样邻接第二掺杂区域14,形成两个背对的水平方向的PN结。竖直区132也分别与其两侧的第二掺杂区域14邻接,形成两个背对的竖直方向的PN结。每个垂直区133也分别与其前后的第二掺杂区域14邻接,形成两个背对的垂直方向的PN结,在脊型部11的延伸方向间隔地形成多对背对的垂直方向的PN结。该实施例中,水平区131设在竖直区132的左侧,在其它实施例中,也可以将水平区131设在竖直区132的右侧或两侧均设置。As shown in Figure 7, different from
实施例4Example 4
如图8所示,与实施例1不同的是,该实施例中的第一掺杂区域13的水平区131分成两部分,一部分设在竖直区132左侧顶部,另一部分设在竖直区132右侧底部,与竖直区132一起形成横截面为“Z”型的掺杂区。位于顶部的部分水平区131的下面与第二掺杂区域14邻接,形成单个水平方向的PN结,位于底部的部分水平区131的上下表面同样都邻接第二掺杂区域14,形成两个背对的水平方向的PN结。竖直区132也分别与其两侧的第二掺杂区域14邻接,形成两个背对的竖直方向的PN结。每个垂直区133也分别与其前后的第二掺杂区域14邻接,形成两个背对的垂直方向的PN结,在脊型部11的延伸方向间隔地形成多对背对的垂直方向的PN结。As shown in Figure 8, different from
当然,在其它实施例中,第一掺杂区域的水平区还可以有不同的变形,也不限制其数量,比如水平区还可以与竖直区一起形成横截面为“十”字型、“土”字型、“王”字型或“T”型、“E”型等。Of course, in other embodiments, the horizontal region of the first doped region can also have different deformations, and its number is not limited. "Tu" type, "Wang" type or "T" type, "E" type, etc.
实施例5Example 5
如图9所示,该实施例的电光调制器包括脊波导10和两个电极,脊波导10两侧的第一重掺杂区域和第二重掺杂区域分别与两个电极电连接。其中,脊波导10包括脊型部11和位于脊型部11两侧的平板部12。脊波导10中设有第一掺杂区域13和第二掺杂区域14,第一掺杂区域13与第二掺杂区域14的掺杂类型相反,该实施例中,第一掺杂区域13为P型掺杂,第二掺杂区域14为N型掺杂,当然,在其它实施例中,也可以是第一掺杂区域13为N型掺杂,第二掺杂区域14为P型掺杂。其中,第一掺杂区域13包括设于脊型部11中且沿脊型部11的延伸方向(即图示的y轴方向)延伸的中部掺杂区134(可包括水平区和竖直区),以及沿脊型部11的延伸方向间隔设置的多个垂直掺杂区135(同上述各实施例中的垂直区),该垂直掺杂区135沿着与脊型部11延伸方向垂直的方向(即图示x轴方向)延伸至脊型部11一侧的平板部12中,垂直掺杂区135与中部掺杂区134相连。上述第二掺杂区域14包括设于脊型部11中分别位于第一掺杂区域13的中部掺杂区134两侧的两个侧掺杂区141,以及位于第一掺杂区域13下面的底部掺杂区142,两个侧掺杂区141通过底部掺杂区142相连。第二掺杂区域14延伸至与上述垂直掺杂区135相对的另一侧的平板部12中。第二掺杂区域14的两个侧掺杂区141分别与第一掺杂区域13的中部掺杂区134和垂直掺杂区135邻接,形成包括竖直方向P2和垂直方向P3的PN结;第二掺杂区域14的底部掺杂区142与第一掺杂区域13的中部掺杂区134邻接,形成水平方向P1的PN结。As shown in FIG. 9 , the electro-optic modulator of this embodiment includes a
同实施例1一样,脊波导外侧的第一重掺杂区域与第一掺杂区域13的垂直掺杂区135的末端连接,且第一重掺杂区域与第一掺杂区域13的掺杂类型相同,其掺杂浓度高于第一掺杂区域13的掺杂浓度。第二重掺杂区域与第二掺杂区域14连接,且第二重掺杂区域与第二掺杂区域14的掺杂类型相同,其掺杂浓度高于第二掺杂区域14的掺杂浓度。工作时,分别通过两个电极施加电信号,使第一重掺杂区域处于较低电势,第二重掺杂区域处于较高电势。第一重掺杂区域通过第一掺杂区域13的各垂直掺杂区135将低电势施加在第一掺杂区域13上,第二重掺杂区域将高电势施加在第二掺杂区域14上,以在上述水平方向P1、竖直方向P2和垂直方向P3的PN结处均产生耗尽区,使光信号在脊波导内传播的有效折射率产生变化,从而改变光信号的相位,实现光信号的调制。该实施例的光调制器在脊波导中设计了不同方向的多个PN结,水平方向、竖直方向和垂直方向均有PN结,扩大了耗尽区的范围,有效提高了调制效率。As in
该实施例中,第二掺杂区域14的侧掺杂141区的宽度d大于或等于50nm,底部掺杂区142的厚度h大于或等于50nm,两个侧掺杂区141通过底部掺杂区142相连。即在第一掺杂区域13两侧和底部的第二掺杂区域14是相互导通的,从而电连接第二掺杂区域14的电极只需设在脊型部11的一侧,与常用PN结设计的电光调制器的电极通用,不会引入额外的寄生电容,避免额外的电容影响调制带宽。虽然增加了PN结的数量,会影响结电容,但是可以通过设计合适的调制长度,获得所需要的消光比和带宽,以及较小的光学损耗。In this embodiment, the width d of the side doped 141 region of the second
同实施例一样,该实施例中,多个垂直掺杂区135沿脊型部11的延伸方向等间距设置,垂直掺杂区135的占空比为20%~80%。各垂直掺杂区135之间的平板部12为本征区15,该本征区15的宽度D大于或等于500nm,即第一重掺杂区域到第二掺杂区域14之间的间距D至少500nm,以尽量减少光学损耗。当然,在其它实施例中,本征区15也可以有轻掺杂,由第一轻掺杂区替代,第一轻掺杂区域与第一掺杂区域的掺杂类型相同,其掺杂浓度小于第一掺杂区域的掺杂浓度。Same as the embodiment, in this embodiment, a plurality of vertical
该实施例中,第一掺杂区域13的中部掺杂区134的横截面为矩形,在其它实施例中,第一掺杂区域13的中部掺杂区134还可以包括竖直区和水平区,竖直区和水平区相连,形成横截面为“十”字型、“土”字型、“干”字型、“王”字型、“丄”字型或“T”型、“E”型、“L”型、“Z”型等。中部掺杂区的水平区与第二掺杂区域的底部掺杂区邻接形成水平方向的PN结,中部掺杂区的竖直区与第二掺杂区域的两个侧掺杂区邻接形成竖直方向的PN结,垂直掺杂区间隔设置在第二掺杂区域的其中一个侧掺杂区中,与该侧掺杂区邻接形成多个垂直方向的PN结。In this embodiment, the cross-section of the central
实施例6Example 6
如图10和11所示,与实施例5一样,该实施例中,第一掺杂区域13包括设于脊型部11中且沿脊型部11的延伸方向(即图示的y轴方向)延伸的中部掺杂区134(可包括水平区和竖直区),以及沿脊型部11的延伸方向间隔设置的多个垂直掺杂区135(同上述各实施例中的垂直区),该垂直掺杂区135沿着与脊型部11延伸方向垂直的方向(即图示x轴方向)延伸至脊型部11一侧的平板部12中,垂直掺杂区135与中部掺杂区134相连。As shown in Figures 10 and 11, as in Embodiment 5, in this embodiment, the first
与实施例5不同的是,该实施例中,第二掺杂区域14包括设于脊型部11中分别位于第一掺杂区域13的中部掺杂区134两侧的两个侧掺杂区141,以及位于第一掺杂区域13上面的顶部掺杂区143,两个侧掺杂区141通过顶部掺杂区143相连。第二掺杂区域14延伸至与上述垂直掺杂区135相对的另一侧的平板部12中。第二掺杂区域14的两个侧掺杂区141分别与第一掺杂区域13的中部掺杂区134和垂直掺杂区135邻接,形成包括竖直方向P2和垂直方向P3的PN结;第二掺杂区域14的顶部掺杂区143与第一掺杂区域13的中部掺杂区134邻接,形成水平方向P1的PN结。The difference from Embodiment 5 is that in this embodiment, the second
该实施例中,第二掺杂区域14的侧掺杂141区的宽度d大于或等于50nm,顶部掺杂区143的厚度h大于或等于50nm,两个侧掺杂区141通过顶部掺杂区143相连。即在第一掺杂区域13两侧和顶部的第二掺杂区域14是相互导通的,从而电连接第二掺杂区域14的电极只需设在脊型部11的一侧,与常用PN结设计的电光调制器的电极通用,不会引入额外的寄生电容,避免额外的电容影响调制带宽。虽然增加了PN结的数量,会影响结电容,但是可以通过设计合适的调制长度,获得所需要的消光比和带宽,以及较小的光学损耗。该实施例中,第一掺杂区域13的垂直掺杂区135的高度与第二掺杂区域14的侧掺杂区141的高度相同,伸入到第二掺杂区域14的顶部掺杂区143中,将第二掺杂区域14的顶部掺杂区143分成类似梳状结构,垂直掺杂区135也与顶部掺杂区143邻接形成垂直方向的PN结,增大了垂直方向PN结的面积。In this embodiment, the width d of the side doped 141 region of the second
实施例7Example 7
如图12和13所示,与实施例6不同的是,该实施例中,第一掺杂区域13的垂直掺杂区135的高度低于第二掺杂区域14侧掺杂区141的高度,与第一掺杂区域13中部掺杂区134的高度相等。掺杂结构相对简单,方便生产。As shown in Figures 12 and 13, different from Embodiment 6, in this embodiment, the height of the vertical
实施例5-7中,第二掺杂区域包括两个侧掺杂区和一个顶部掺杂区或一个底部掺杂区,在其它实施例中,第二掺杂区域也可以同时包括底部掺杂区和顶部掺杂区。底部掺杂区和顶部掺杂区可以同时都连接两个侧掺杂区,或者顶部掺杂区和底部掺杂区中的一个同时连接两个侧掺杂区,另一个至少连接其中一个侧掺杂区。In Embodiment 5-7, the second doped region includes two side doped regions and a top doped region or a bottom doped region. In other embodiments, the second doped region may also include a bottom doped region at the same time. region and top doped region. The bottom doped region and the top doped region can be connected to two side doped regions at the same time, or one of the top doped region and the bottom doped region is connected to two side doped regions at the same time, and the other is connected to at least one of the side doped regions. Miscellaneous area.
实施例8Example 8
如图14所示,与实施例1不同的是,该实施例中电光调制器的脊波导还包括第一中掺杂区域18和第二中掺杂区域19。其中,第一中掺杂区域18位于第一掺杂区域13与第一重掺杂区域16之间,与垂直区133的末端连接。该第一中掺杂区域18与第一掺杂区域13的掺杂类型相同,其掺杂浓度高于第一掺杂区域13的掺杂浓度,低于第一重掺杂区域16的掺杂浓度。第二中掺杂区域19位于第二掺杂区域14与第二重掺杂区域17之间,该第二中掺杂区域19与第二掺杂区域14的掺杂类型相同,其掺杂浓度高于第二掺杂区域14的掺杂浓度,低于第二重掺杂区域17的掺杂浓度。这里,第一掺杂区域13和第二掺杂区域14的掺杂浓度在1×1017cm-3~9×1018cm-3范围内,第一中掺杂区域18和第二中掺杂区域19的掺杂浓度在1×1018cm-3~9×1019cm-3范围内,第一重掺杂区域16和第二重掺杂区域17的掺杂浓度在5×1019cm-3~1×1021cm-3范围内。As shown in FIG. 14 , different from
该实施例中,第一掺杂区域13的垂直区133延伸到平板部中的延伸长度即本征区15的宽度D在0~500nm的范围内,即第一中掺杂区域18到第二掺杂区域14之间的间距D在0~500nm的范围内。在其它实施例中,本征区15也可以有轻掺杂,由第一轻掺杂区替代,第一轻掺杂区域与第一掺杂区域的掺杂类型相同,其掺杂浓度在1×1016cm-3~1×1017cm-3范围内。In this embodiment, the extension length of the
上述各实施例中,脊波导的脊型部宽度优选在300~600nm范围内,P型掺杂优选硼作为掺杂杂质,N型掺杂优选磷作为掺杂杂质。In the above embodiments, the width of the ridge portion of the ridge waveguide is preferably in the range of 300-600 nm, the P-type doping is preferably boron as the doping impurity, and the N-type doping is preferably phosphorus as the doping impurity.
上文所列出的一系列的详细说明仅仅是针对本申请的可行性实施方式的具体说明,它们并非用以限制本申请的保护范围,凡未脱离本申请技艺精神所作的等效实施方式或变更均应包含在本申请的保护范围之内。The series of detailed descriptions listed above are only specific descriptions of the feasible implementation modes of the application, and they are not intended to limit the protection scope of the application. Any equivalent implementation mode or All changes should be included within the scope of protection of this application.
Claims (17)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910978353.1A CN112666728B (en) | 2019-10-15 | 2019-10-15 | an electro-optic modulator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910978353.1A CN112666728B (en) | 2019-10-15 | 2019-10-15 | an electro-optic modulator |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112666728A CN112666728A (en) | 2021-04-16 |
CN112666728B true CN112666728B (en) | 2023-06-20 |
Family
ID=75399916
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910978353.1A Active CN112666728B (en) | 2019-10-15 | 2019-10-15 | an electro-optic modulator |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112666728B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20240231132A9 (en) * | 2022-10-20 | 2024-07-11 | Nokia Solutions And Networks Oy | Silicon optical phase shifter with a series of p-n junctions |
CN115437167B (en) * | 2022-11-09 | 2023-02-10 | 上海阿米芯光半导体有限责任公司 | Phase shifter structure, phase shifter and traveling wave electrode modulator thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9515147D0 (en) * | 1994-07-25 | 1995-09-20 | Hyundai Electronics Ind | Semiconductor device and method of manufacturing the same |
CN1941438A (en) * | 2005-09-29 | 2007-04-04 | 株式会社东芝 | Semiconductor light-emitting device and producing method for the same |
CN101006382A (en) * | 2004-08-16 | 2007-07-25 | 卢森特技术有限公司 | High-speed semiconductor waveguide phase-shifter |
CN103226252A (en) * | 2013-05-06 | 2013-07-31 | 中国科学院半导体研究所 | Doping structure capable of improving modulation efficiency of depletion silicon-based electrooptical modulator |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SG2013082102A (en) * | 2012-11-05 | 2014-06-27 | Agency Science Tech & Res | Method for forming an optical modulator |
US10027420B2 (en) * | 2014-06-26 | 2018-07-17 | Luxtera, Inc. | Method and system for a silicon-based optical phase modulator with high modal overlap |
FR3078437B1 (en) * | 2018-02-23 | 2022-02-04 | St Microelectronics Crolles 2 Sas | PN JUNCTION |
-
2019
- 2019-10-15 CN CN201910978353.1A patent/CN112666728B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9515147D0 (en) * | 1994-07-25 | 1995-09-20 | Hyundai Electronics Ind | Semiconductor device and method of manufacturing the same |
CN101006382A (en) * | 2004-08-16 | 2007-07-25 | 卢森特技术有限公司 | High-speed semiconductor waveguide phase-shifter |
CN1941438A (en) * | 2005-09-29 | 2007-04-04 | 株式会社东芝 | Semiconductor light-emitting device and producing method for the same |
CN103226252A (en) * | 2013-05-06 | 2013-07-31 | 中国科学院半导体研究所 | Doping structure capable of improving modulation efficiency of depletion silicon-based electrooptical modulator |
Also Published As
Publication number | Publication date |
---|---|
CN112666728A (en) | 2021-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111665645B (en) | Electro-optical modulator | |
CN107615140B (en) | Semiconductor optical modulation element | |
US9429774B2 (en) | Optic modulator and method of manufacturing the same | |
JP2002540469A (en) | Semiconductor waveguide phase modulator | |
CN105934703A (en) | Electro-optical modulator with vertical capacitor structure | |
CN112666728B (en) | an electro-optic modulator | |
US20120063714A1 (en) | Electro-optic device and mach-zehnder optical modulator having the same | |
CN112068335B (en) | Doped structure array and optical modulator | |
US9823499B2 (en) | Patterned poly silicon structure as top electric contact to MOS-type optical modulators | |
JP2019049612A (en) | Optical modulator and method of manufacturing the same | |
KR20140000424A (en) | Semiconductor device and method of manufacturing the same | |
CN111610651B (en) | A silicon-based electro-optical modulator based on stressed silicon and a method for manufacturing the same | |
CN112652674B (en) | Waveguide type photoelectric detector | |
CN108490650A (en) | Cycle staggering waveguiding structure and Electro-optical Modulation structure and MZI structures | |
CN100430780C (en) | Semiconductor optoelectronic waveguide | |
CN101666919B (en) | Silicon slit waveguide electrode with etching tolerance | |
CN220208025U (en) | Optical modulator and optoelectronic integrated chip | |
US11988905B2 (en) | Phase shifter | |
CN103207464A (en) | Electro-optical switch or optical attenuator | |
KR102185939B1 (en) | Solar cell module | |
JP7569294B2 (en) | Semiconductor optical modulator | |
CN112433395B (en) | Silicon optical modulator and method for manufacturing the same | |
JP2009037013A (en) | Semiconductor optical modulator | |
CN111458907B (en) | Optical Bipolar Phase Shifter | |
CN115437167B (en) | Phase shifter structure, phase shifter and traveling wave electrode modulator thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20241024 Address after: No. 8, 22-85 Yu Tong Sen Street, Central, Singapore Patentee after: Singapore Paisi Technology Co.,Ltd. Country or region after: Singapore Address before: 215000 No.8 Xiasheng Road, Suzhou Industrial Park, Jiangsu Province Patentee before: InnoLight Technology (Suzhou) Ltd. Country or region before: China |