CN112666641B - Design method of broadband low-dispersion chirped mirror - Google Patents
Design method of broadband low-dispersion chirped mirror Download PDFInfo
- Publication number
- CN112666641B CN112666641B CN202110062472.XA CN202110062472A CN112666641B CN 112666641 B CN112666641 B CN 112666641B CN 202110062472 A CN202110062472 A CN 202110062472A CN 112666641 B CN112666641 B CN 112666641B
- Authority
- CN
- China
- Prior art keywords
- dispersion
- low
- layer
- mirror
- group delay
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Optical Elements Other Than Lenses (AREA)
Abstract
一种宽带低色散啁啾镜结构的设计方法,初始膜系结构为:
其中S表示基底,H和L分别代表光学厚度为λ/4的高低折射率材料,为底部高反射膜层,m1为高反射膜层的周期数,为对称的周期啁啾层,an为啁啾层系数,m2为周期啁啾层周期数,A为空气。本发明通过在高反膜层结构的低色散镜上加入周期啁啾层,使得不同波长在膜层内穿透过相同的光学厚度后同时反射,即通过给予所有波长相同的群延迟时间(groupdelay,GD),而使得群延迟色散(groupdelaydispersion,GDD)为零,同样实现了低色散效果。通过调整参数m1,an和m2,可调控不同带宽内的群延迟时间和反射率。宽带低色散啁啾镜有效提升了介质膜的低色散带宽,对于超快激光技术的发展具有最重要的意义。A design method of a broadband low-dispersion chirped mirror structure, the initial film structure is:
where S represents the substrate, H and L represent high and low refractive index materials with an optical thickness of λ/4, respectively, is the bottom high-reflection film layer, m 1 is the period number of the high-reflection film layer, is the symmetrical periodic chirp layer, an n is the chirp layer coefficient, m 2 is the period number of the periodic chirp layer, and A is air. In the present invention, a periodic chirped layer is added to the low-dispersion mirror of the high-reflection film layer structure, so that different wavelengths are reflected at the same time after passing through the same optical thickness in the film layer, that is, by giving all wavelengths the same group delay time (group delay time) , GD), and make the group delay dispersion (group delay dispersion, GDD) zero, and also achieve the effect of low dispersion. By adjusting the parameters m 1 , an and m 2 , the group delay time and reflectivity in different bandwidths can be regulated. The broadband low-dispersion chirped mirror effectively improves the low-dispersion bandwidth of the dielectric film, which is of the most important significance for the development of ultrafast laser technology.Description
技术领域technical field
本发明属于超快激光薄膜,特别是一种宽带低色散啁啾镜的设计方法。The invention belongs to an ultrafast laser thin film, in particular to a design method of a broadband low dispersion chirped mirror.
背景技术Background technique
随着超强超短激光技术的发展,激光脉冲已压缩至数飞秒,峰值功率可到达拍瓦量级,低色散镜是超短脉冲激光系统中最常用的光学元件之一,超强超短激光技术对光学薄膜提出了新的要求:更宽的工作带宽以及有效的色散控制。低色散镜通过在反射带宽内提供零群延迟色散(Group delay dispersion),保证超短脉冲在经过低色散镜反射后,仅发生传输方向的变化,不会产生额外的色散。但是因为低色散镜的反射带宽、色散和损伤阈值相互影响和制约,所以设计并制备出更宽反射带宽、更高损伤阈值的低色散镜是高功率超短脉冲激光器的一个研究重点。传统的高反镜由光学厚度为四分之一波长的高低折射率材料堆叠而成,其高反射低色散带宽与高低折射率比值呈正相关。如HfO2/SiO2组成的规整介质膜的反射带宽大约90nm,而TiO2/SiO2组成的规整介质膜系的反射带宽大约150nm。With the development of ultra-intense and ultra-short laser technology, laser pulses have been compressed to several femtoseconds, and the peak power can reach the petawatt level. Low-dispersion mirrors are one of the most commonly used optical components in ultra-short pulse laser systems. Short laser technology places new demands on optical thin films: wider operating bandwidth and effective dispersion control. By providing zero group delay dispersion (Group delay dispersion) within the reflection bandwidth, the low-dispersion mirror ensures that after the ultra-short pulse is reflected by the low-dispersion mirror, only the transmission direction changes without additional dispersion. However, because the reflection bandwidth, dispersion and damage threshold of low-dispersion mirrors influence and restrict each other, designing and fabricating low-dispersion mirrors with wider reflection bandwidth and higher damage threshold is a research focus of high-power ultrashort pulse lasers. Conventional high-reflection mirrors are made of stacks of high- and low-refractive-index materials with an optical thickness of a quarter wavelength, and their high-reflection and low-dispersion bandwidths are positively correlated with the ratio of high and low refractive indices. For example, the reflection bandwidth of the structured dielectric film composed of HfO 2 /SiO 2 is about 90 nm, while the reflection bandwidth of the structured dielectric film composed of TiO 2 /SiO 2 is about 150 nm.
随着超强超短激光往更高能量、更脉宽脉冲发展,激光脉冲的光谱超过200nm,传统规整膜系的低色散镜已经无法满足需求。因此,增加低色散镜的高反低色散带宽对于超强超短激光的发展至关重要。传统的四分之一波长厚度规整膜系结构低色散镜将所有的波长同时在表层反射而实现低色散,而该低色散带宽受限于高低折射率材料的折射率之比。With the development of ultra-intense and ultra-short lasers to higher energy and pulse width pulses, the spectrum of laser pulses exceeds 200 nm, and traditional low-dispersion mirrors with regular film systems can no longer meet the needs. Therefore, increasing the high-reflection and low-dispersion bandwidth of low-dispersion mirrors is crucial for the development of ultra-intense ultrashort lasers. The traditional quarter-wavelength thickness regular low-dispersion mirror reflects all wavelengths at the surface simultaneously to achieve low dispersion, and the low dispersion bandwidth is limited by the ratio of the refractive indices of high and low refractive index materials.
发明内容SUMMARY OF THE INVENTION
本发明解决的技术问题在于提出一种基于周期啁啾结构的低色散镜初始结构和设计方法,该低色散镜初始结构将周期啁啾层和高反射率层相结合,即在规整的四分之一波长膜厚的膜层上增加周期啁啾层,通过给所有波长同样的群延迟时间,同样可以实现低色散的效果。利用底部为高反层,顶部为周期啁啾层的低色散镜初始结构,并选择合适的参数,经过膜系设计软件优化之后可以得到所需的低色散镜。The technical problem solved by the present invention is to propose a low-dispersion mirror initial structure and design method based on a periodic chirped structure. A periodic chirped layer is added to a film with a thickness of one wavelength. By giving all wavelengths the same group delay time, the effect of low dispersion can also be achieved. Using the initial structure of the low-dispersion mirror with a high-reflection layer at the bottom and a periodically chirped layer at the top, and selecting appropriate parameters, the desired low-dispersion mirror can be obtained after optimization by the film system design software.
本发明解决的技术方案如下:The technical scheme solved by the present invention is as follows:
一种宽带低色散啁啾镜的设计方法,其特点在于基于周期啁啾层的低色散镜初始结构,初始膜系结构为:其中,S表示基底,H和L分别代表光学厚度为λ/4的高折射率材料、低折射率材料,为底部高反射膜层,m1为底部高反射膜层的周期数,为对称的周期啁啾层,an为单调递增或递减的数组的系数,m2为周期啁啾层周期数,A代表空气;A method for designing a broadband low-dispersion chirped mirror, which is characterized by an initial structure of a low-dispersion mirror based on a periodic chirped layer, and the initial film structure is: Among them, S represents the substrate, H and L represent the high-refractive index material and the low-refractive index material with an optical thickness of λ/4, respectively, is the bottom high-reflection film layer, m 1 is the period number of the bottom high-reflection film layer, is a symmetrical periodic chirp layer, an is the coefficient of the monotonically increasing or decreasing array, m 2 is the period number of the periodic chirp layer, and A represents air;
该结构通过给予所有波长相同的群延迟时间,使得各波长在膜层里传播同样的光学路程后同时反射,实现了更宽带宽的低色散效果。选择合适的参数之后并优化,可以得到所需的低色散镜最终结构。By giving all wavelengths the same group delay time, the structure enables each wavelength to propagate through the same optical path in the film and then reflect at the same time, thereby achieving a wider bandwidth and low dispersion effect. After selecting appropriate parameters and optimizing, the final structure of the desired low dispersion mirror can be obtained.
上述低色散镜初始结构和设计方法,其特点在于该方法包括如下步骤:The above-mentioned initial structure and design method of the low dispersion mirror are characterized in that the method comprises the following steps:
1)根据所需制备色散镜的群延迟时间、反射率、偏振、入射角度和带宽,选择合适的高折射率材料、低折射率材料,常用的高折射率材料有Nb2O5、Ta2O5、HfO2等,低折射率材料有SiO2,所述的高折射率材料的折射率nH和低折射率材料的折射率nL为实际镀膜实验中反演得到;1) According to the group delay time, reflectivity, polarization, incident angle and bandwidth of the dispersive mirror to be prepared, select appropriate high-refractive index materials and low-refractive index materials. Commonly used high-refractive index materials include Nb 2 O 5 , Ta 2 O 5 , HfO 2 , etc., the low refractive index material is SiO 2 , the refractive index n H of the high refractive index material and the refractive index n L of the low refractive index material are obtained by inversion in the actual coating experiment;
2)基于周期啁啾层的低色散镜初始结构:2) The initial structure of the low dispersion mirror based on the periodic chirp layer:
其中,S表示基底,H和L分别代表光学厚度为λ/4的高、低折射率材料,为底部高反射膜层,m1为高反射膜层的周期数,为对称的周期啁啾层,an为单调递增或递减的数组,m2为周期啁啾层周期数,A代表空气。选择合适的参数:高反射膜层的周期数m1一般选择在10-30,周期啁啾层啁啾系数an的选择范围为0.5-1.5,周期数m2的选择范围为1-20,m1和m2均为正整数;where S represents the substrate, H and L represent high and low refractive index materials with an optical thickness of λ/4, respectively, is the bottom high-reflection film layer, m 1 is the period number of the high-reflection film layer, is a symmetrical periodic chirp layer, an is an array of monotonically increasing or decreasing values, m 2 is the period number of the periodic chirp layer, and A represents air. Select appropriate parameters: the period number m 1 of the high-reflection film layer is generally selected in the range of 10-30, the selection range of the chirp coefficient an of the period chirped layer is 0.5-1.5, the selection range of the period number m 2 is 1-20, m 1 and m 2 are both positive integers;
3)确定低色散镜的基本参数,包括反射率、偏振态、入射角度、工作带宽、目标群延迟时间以及所用高低折射率材料,确定低色散镜初始结构的参数,包括m1、an和m 2的值,之后,利用膜系设计软件(TFCalc、Essential Macleod和Optilayer等)和相应的算法(variablemetric、gradualevolution和needleoptimization等)和相应的算法对膜系进行优化,得到最终所需要的结果;3) Determine the basic parameters of the low dispersion mirror, including reflectivity, polarization state, incident angle, working bandwidth, target group delay time, and high and low refractive index materials used, and determine the parameters of the initial structure of the low dispersion mirror, including m 1 , an and The value of m 2 , after that, use the film system design software (TFCalc, Essential Macleod and Optilayer, etc.) and the corresponding algorithm (variablemetric, gradientevolution, needleoptimization, etc.) and the corresponding algorithm to optimize the film system to obtain the final required results;
4)观察最终结果是否满足低色散镜所需指标要求。若未能达到所需低色散镜的群延迟时间要求,通过调整周期啁啾层腔的周期数m2,修改低色散镜初始结构参数,重复步骤2、3进行多次优化,直到最终满足低色散镜要求;若未能达到所需低色散镜的反射率要求,通过增加高反射率膜层周期数m1,重复步骤2、3多次优化,直到最终满足低色散镜要求;若未能达到低色散镜的带宽要求,通过调整周期啁啾层腔的系数an,重复步骤2、3,直到最终满足低色散镜要求。4) Observe whether the final result meets the index requirements of the low dispersion mirror. If the group delay time requirement of the required low dispersion mirror cannot be met, the initial structural parameters of the low dispersion mirror are modified by adjusting the period number m 2 of the periodic chirped layer cavity, and steps 2 and 3 are repeated for multiple optimizations until the final low dispersion mirror is satisfied. Dispersive mirror requirements; if the reflectivity requirements of the required low-dispersion mirrors cannot be met, by increasing the period m 1 of the high-reflection coating layer, repeat steps 2 and 3 for multiple optimizations until the requirements of the low-dispersion mirrors are finally met; To meet the bandwidth requirement of the low dispersion mirror, by adjusting the coefficient an of the periodic chirped layer cavity, repeat steps 2 and 3 until the requirements of the low dispersion mirror are finally met.
与现有技术相比,本发明技术效果Compared with the prior art, the technical effect of the present invention
1、提出一种低色散镜初始设计,利用规整的四分之一波长膜厚的膜层上增加周期啁啾层,通过给与所有波长同样的群延迟时间,从而实现低色散的效果,该设计利用啁啾层宽反射带宽的特点,可实现超宽带宽低色散镜。1. An initial design of a low dispersion mirror is proposed. The periodic chirped layer is added to the regular quarter-wavelength film thickness, and the effect of low dispersion is achieved by giving all wavelengths the same group delay time. The design utilizes the characteristics of the wide reflection bandwidth of the chirped layer to realize an ultra-wide bandwidth low dispersion mirror.
2、基于这一初始设计,可以在保证宽带低色散前提下进一步优化色散曲线,使得色散补偿更佳。2. Based on this initial design, the dispersion curve can be further optimized under the premise of ensuring broadband low dispersion, so that dispersion compensation is better.
附图说明Description of drawings
图1为本发明宽带低色散啁啾镜实施例一的初始膜系结构图。FIG. 1 is a structural diagram of the initial film system of the first embodiment of the broadband low dispersion chirped mirror of the present invention.
图2为本发明宽带低色散啁啾镜实施例一最终膜系结构。FIG. 2 is the final film structure of the first embodiment of the broadband low dispersion chirped mirror of the present invention.
图3为本发明宽带低色散啁啾镜实施例一的群延迟时间及反射率曲线图。FIG. 3 is a graph showing the group delay time and reflectivity of the first embodiment of the broadband low dispersion chirped mirror of the present invention.
图4为本发明宽带低色散啁啾镜实施例一的群延迟色散曲线图。FIG. 4 is a group delay dispersion curve diagram of the first embodiment of the broadband low dispersion chirped mirror of the present invention.
图5为本发明宽带低色散啁啾镜实施例二的初始膜系结构图。FIG. 5 is a structural diagram of the initial film system of the second embodiment of the broadband low-dispersion chirped mirror of the present invention.
图6为本发明宽带低色散啁啾镜实施例二最终膜系结构。FIG. 6 is the final film structure of the second embodiment of the broadband low-dispersion chirped mirror of the present invention.
图7为本发明宽带低色散啁啾镜实施例二的群延迟时间及反射率曲线图。FIG. 7 is a graph showing the group delay time and reflectivity of the second embodiment of the broadband low-dispersion chirped mirror of the present invention.
图8为本发明宽带低色散啁啾镜实施例二的群延迟色散曲线图。FIG. 8 is a group delay dispersion curve diagram of the second embodiment of the broadband low dispersion chirped mirror of the present invention.
具体实施方式Detailed ways
下面结合附图对本发明具体实施例进行详细说明,但不应以此限制本发明的保护范围。The specific embodiments of the present invention will be described in detail below with reference to the accompanying drawings, but the protection scope of the present invention should not be limited by this.
请参阅图1,图1为本发明基于周期啁啾结构的低色散镜结构示意图,如图所示,由周期啁啾层和高反射膜层组成,周期啁啾层在四分之一波长规整膜系高反层顶部。所述的高反射膜层、周期啁啾层由高低折射率材料交替组成。Please refer to FIG. 1. FIG. 1 is a schematic diagram of the structure of the low dispersion mirror based on the periodic chirped structure of the present invention. As shown in the figure, it is composed of a periodic chirped layer and a high reflection film layer, and the periodic chirped layer is regular at a quarter wavelength. The top of the high-reflection layer of the film system. The high-reflection film layer and the periodic chirped layer are alternately composed of high and low refractive index materials.
实施例一Example 1
该实施例的低色散镜指标为:群延迟时间120fs,群延迟色散0fs2,反射率>98.5%,P偏振光,入射角度为45度,相应带宽为200nm,中心波长为800nm。The indicators of the low dispersion mirror in this embodiment are: group delay time 120fs, group delay dispersion 0fs 2 , reflectivity>98.5%, P-polarized light, incident angle of 45 degrees, corresponding bandwidth of 200nm, and center wavelength of 800nm.
设计步骤如下:The design steps are as follows:
1、根据群延迟时间、群延迟色散及带宽要求,群延迟时间较大,带宽较宽,所以选择折射率较高的高折射率材料Ta2O5,低折射率材料为SiO2,高低折射率材料的折射率参数由柯西公式确定,如表1所示。1. According to the group delay time, group delay dispersion and bandwidth requirements, the group delay time is longer and the bandwidth is wider, so the high refractive index material Ta 2 O 5 with higher refractive index is selected, and the low refractive index material is SiO 2 , with high and low refractive index. The refractive index parameter of the rate material is given by the Cauchy formula OK, as shown in Table 1.
表1Table 1
2、根据低色散镜目标群延迟时间和群延迟色散值和反射率要求,选择合适的参数:m1=20,m2=11,an为首项a为0.75,公差为0.05,项数n为4的等差数列,得到基于周期啁啾结构的低色散镜的表达式为:S/(HL)20[(0.75H0.80L0.85H0.9L)(0.9H0.85L0.8H0.75L)]11/A,其中,S为熔石英基底,H和L分别代表光学厚度为λ/4的Ta2O5和SiO2材料,A代表空气。膜系结构如图1所示。2. According to the target group delay time of the low dispersion mirror, the group delay dispersion value and the reflectivity requirements, select the appropriate parameters: m 1 =20, m 2 =11, a n is the first item a is 0.75, the tolerance is 0.05, the number of items is n is an arithmetic sequence of 4, and the expression of the low-dispersion mirror based on the periodic chirped structure is: S/(HL) 20 [(0.75H0.80L0.85H0.9L)(0.9H0.85L0.8H0.75L)] 11 /A, where S is a fused silica substrate, H and L represent Ta 2 O 5 and SiO 2 materials with an optical thickness of λ/4, respectively, and A represents air. The membrane structure is shown in Figure 1.
3、基于S/(HL)20[(0.75H0.80L0.85H0.9L)(0.9H0.85L0.8H0.75L)]11/A的初始设计,参考波长为865nm,选择入射角为45度下的P偏振光,设定优化目标值:群延迟时间为120fs,目标群延迟色散为0fs2,通过膜系设计软件TFCalc进行优化,得到最终的膜系结构如图2所示。3. Based on the initial design of S/(HL) 20 [(0.75H0.80L0.85H0.9L)(0.9H0.85L0.8H0.75L)] 11 /A, the reference wavelength is 865nm, and the incident angle is selected at 45 degrees For the P-polarized light, set the optimal target value: the group delay time is 120fs, and the target group delay dispersion is 0fs 2 . The film system design software TFCalc is used to optimize, and the final film system structure is shown in Figure 2.
4、图3为满足要求的低色散镜反射率和群延迟时间曲线,图4为满足要求的低色散镜群延迟色散曲线,其中反射率在725-925nm大于98.5%,群延迟时间在725-925nm为120fs,群延迟色散在725-925nm为0±25fs2,得到最终满足低色散镜要求的膜系结构。4. Figure 3 shows the reflectivity and group delay time curve of the low dispersion mirror that meets the requirements, and Figure 4 is the group delay dispersion curve of the low dispersion mirror that meets the requirements. 925nm is 120fs, and the group retardation dispersion is 0±25fs 2 at 725-925nm, and the film structure that finally meets the requirements of low-dispersion mirrors is obtained.
实施例二Embodiment 2
该实施例的低色散镜指标为:群延迟时间140fs,群延迟色散0fs2,反射率>99.5%,P偏振光,入射角度为45度,相应带宽为240nm,中心波长为850nm。The indicators of the low dispersion mirror in this embodiment are: group delay time 140fs, group delay dispersion 0fs 2 , reflectivity>99.5%, P-polarized light, incident angle of 45 degrees, corresponding bandwidth of 240nm, and center wavelength of 850nm.
设计步骤如下:The design steps are as follows:
1、根据群延迟时间、群延迟色散及带宽要求,群延迟时间较大,带宽较宽,所以选择折射率较高的高折射率材料Nb2O5,低折射率材料为SiO2,高低折射率材料的折射率参数由柯西公式确定,如表2所示。1. According to the group delay time, group delay dispersion and bandwidth requirements, the group delay time is longer and the bandwidth is wider, so the high refractive index material Nb 2 O 5 with higher refractive index is selected, and the low refractive index material is SiO 2 , with high and low refractive index. The refractive index parameter of the rate material is given by the Cauchy formula OK, as shown in Table 2.
表2Table 2
2、根据低色散镜目标群延迟时间和群延迟色散值和反射率要求,选择合适的参数:m1=15,m2=16,an为首项a为0.8,公差为0.05,项数n为3的等差数列,得到基于周期啁啾结构的低色散镜的表达式为:S/(HL)15[(0.80H0.85L0.9H)(0.9L0.85H0.8L)]16/A,其中,S为熔石英基底,H和L分别代表光学厚度为λ/4的Nb2O5和SiO2材料,A代表空气。膜系结构如图1所示。2. According to the target group delay time of the low dispersion mirror, the group delay dispersion value and the reflectivity requirements, select the appropriate parameters: m 1 =15, m 2 =16, a n is the first item a is 0.8, the tolerance is 0.05, the number of items is n is an arithmetic sequence of 3, and the expression of the low-dispersion mirror based on the periodic chirped structure is: S/(HL) 15 [(0.80H0.85L0.9H)(0.9L0.85H0.8L)] 16 /A, Among them, S is a fused silica substrate, H and L represent Nb2O5 and SiO2 materials with an optical thickness of λ/ 4 , respectively, and A represents air. The membrane structure is shown in Figure 1.
3、基于S/(HL)15[(0.80H0.85L0.9H)(0.9L0.85H0.8L)]16/A的初始设计,参考波长为900nm,选择入射角为45度下的P偏振光,设定优化目标值:群延迟时间为140fs,目标群延迟色散为0fs2,通过膜系设计软件TFCalc进行优化,得到最终的膜系结构如图2所示。3. Based on the initial design of S/(HL) 15 [(0.80H0.85L0.9H)(0.9L0.85H0.8L)] 16 /A, the reference wavelength is 900nm, and the P-polarized light at an incident angle of 45 degrees is selected , set the optimization target value: the group delay time is 140fs, and the target group delay dispersion is 0fs 2 . The film system design software TFCalc is used to optimize, and the final film system structure is shown in Figure 2.
4、图3为满足要求的低色散镜反射率和群延迟时间曲线,图4为满足要求的低色散镜群延迟色散曲线,其中反射率在730-970nm大于99.5%,群延迟时间在730-970nm为140fs,群延迟色散在730-970nm为0fs2,得到最终满足低色散镜要求的膜系结构。4. Figure 3 is the reflectivity and group delay time curve of the low dispersion mirror that meets the requirements, and Figure 4 is the group delay dispersion curve of the low dispersion mirror that meets the requirements. 970nm is 140fs, and the group retardation dispersion is 0fs 2 at 730-970nm, and a film structure that finally meets the requirements of low dispersion mirrors is obtained.
本发明对于低色散镜的设计具有重要意义,有助于推动低色散镜在超快激光系统中应用。The invention has important significance for the design of the low dispersion mirror, and helps to promote the application of the low dispersion mirror in the ultrafast laser system.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110062472.XA CN112666641B (en) | 2021-01-18 | 2021-01-18 | Design method of broadband low-dispersion chirped mirror |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110062472.XA CN112666641B (en) | 2021-01-18 | 2021-01-18 | Design method of broadband low-dispersion chirped mirror |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112666641A CN112666641A (en) | 2021-04-16 |
CN112666641B true CN112666641B (en) | 2022-06-28 |
Family
ID=75415545
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110062472.XA Active CN112666641B (en) | 2021-01-18 | 2021-01-18 | Design method of broadband low-dispersion chirped mirror |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112666641B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113946005B (en) * | 2021-11-04 | 2023-09-15 | 温州大学 | Broadband high-laser damage threshold dispersion mirror structure |
CN115097556B (en) * | 2022-06-21 | 2023-06-23 | 厦门大学 | Dispersive thin film, optical fiber core insert, dispersive cavity mirror, resonant cavity device and laser |
CN117075240B (en) * | 2023-09-04 | 2025-03-18 | 中国科学院上海光学精密机械研究所 | Broadband low nonlinear optical effect chirped mirror and its design method |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5734503A (en) * | 1993-08-23 | 1998-03-31 | Szipocs; Robert | Dispersive dielectric mirror |
US6154318A (en) * | 1998-08-18 | 2000-11-28 | Coherent, Inc. | Group-delay-dispersive multilayer-mirror structures and method for designing same |
US6462878B1 (en) * | 1998-05-18 | 2002-10-08 | Spectra Physics Lasers, Inc. | Double chirped mirror |
CN1408068A (en) * | 1999-12-09 | 2003-04-02 | 费姆托激光产品股份有限公司 | Multilayer mirror |
CN101140332A (en) * | 2007-07-13 | 2008-03-12 | 四川大学 | Dielectric Film Structure Mirror for Chirped Pulse Amplification and Spectral Shaping |
CN106680911A (en) * | 2017-02-26 | 2017-05-17 | 中国科学院上海光学精密机械研究所 | Low-oscillation dispersion mirror structure and design method thereof |
CN111142178A (en) * | 2020-01-20 | 2020-05-12 | 中国科学院上海光学精密机械研究所 | Microstructure low-oscillation back-coated chirped mirror and preparation method thereof |
CN111208591A (en) * | 2020-01-13 | 2020-05-29 | 中国科学院上海光学精密机械研究所 | Broadband high-threshold combined medium low-dispersion mirror structure and design method thereof |
CN111221063A (en) * | 2020-01-20 | 2020-06-02 | 中国科学院上海光学精密机械研究所 | A mid-infrared broadband high-reflection ultrafast laser thin film |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT410721B (en) * | 2001-02-26 | 2003-07-25 | Femtolasers Produktions Gmbh | DISPERSIVE MULTI-LAYER MIRROR |
EP2908159B1 (en) * | 2014-02-13 | 2016-08-31 | Deutsches Elektronen-Synchrotron DESY | Chirped dichroic mirror and a source for broadband light pulses |
-
2021
- 2021-01-18 CN CN202110062472.XA patent/CN112666641B/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5734503A (en) * | 1993-08-23 | 1998-03-31 | Szipocs; Robert | Dispersive dielectric mirror |
US6462878B1 (en) * | 1998-05-18 | 2002-10-08 | Spectra Physics Lasers, Inc. | Double chirped mirror |
US6154318A (en) * | 1998-08-18 | 2000-11-28 | Coherent, Inc. | Group-delay-dispersive multilayer-mirror structures and method for designing same |
CN1408068A (en) * | 1999-12-09 | 2003-04-02 | 费姆托激光产品股份有限公司 | Multilayer mirror |
US6873464B1 (en) * | 1999-12-09 | 2005-03-29 | Femtolasers Produktions Gmbh | Multilayer mirror |
CN101140332A (en) * | 2007-07-13 | 2008-03-12 | 四川大学 | Dielectric Film Structure Mirror for Chirped Pulse Amplification and Spectral Shaping |
CN106680911A (en) * | 2017-02-26 | 2017-05-17 | 中国科学院上海光学精密机械研究所 | Low-oscillation dispersion mirror structure and design method thereof |
CN111208591A (en) * | 2020-01-13 | 2020-05-29 | 中国科学院上海光学精密机械研究所 | Broadband high-threshold combined medium low-dispersion mirror structure and design method thereof |
CN111142178A (en) * | 2020-01-20 | 2020-05-12 | 中国科学院上海光学精密机械研究所 | Microstructure low-oscillation back-coated chirped mirror and preparation method thereof |
CN111221063A (en) * | 2020-01-20 | 2020-06-02 | 中国科学院上海光学精密机械研究所 | A mid-infrared broadband high-reflection ultrafast laser thin film |
Non-Patent Citations (5)
Title |
---|
刘加,王胭脂.飞秒脉冲钛宝石激光器中的低振荡高色散镜对.《中国激光》.2018,第45卷(第10期),全文. * |
张宇晖,王胭脂.宽带高阈值低色散镜的性能研究.《中国激光》.2020,第47卷(第11期),全文. * |
王家杰.500nm带宽啁啾镜对的设计与应用.《应用光学》.2015,第36卷(第4期),648-651. * |
王胭脂.宽带啁啾镜对的设计和制备.《物理学报》.2013,第62卷(第20期),全文. * |
王胭脂.钛宝石激光器9.5fs脉冲输出中的啁啾镜色散补偿.《物理学报》.2010,第60卷(第1期),全文. * |
Also Published As
Publication number | Publication date |
---|---|
CN112666641A (en) | 2021-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112666641B (en) | Design method of broadband low-dispersion chirped mirror | |
CN112946796B (en) | Broadband high-reflection high-threshold low-dispersion mirror and design method thereof | |
CN106680911B (en) | The low oscillation dispersion mirror structure of one kind and its design method | |
CN111208591B (en) | Broadband high-threshold combined medium low-dispersion mirror structure and design method thereof | |
CN111221063B (en) | A mid-infrared broadband high-reflection ultrafast laser thin film | |
JP6362105B2 (en) | Optical element, optical system, and optical device having antireflection film | |
US6256434B1 (en) | Method and dielectric and/or semiconductor device for influencing the dispersion of electromagnetic radiation | |
JP2002528906A (en) | Multi-layer mirror distributed control | |
WO1999060675A1 (en) | Double chirped mirror | |
CN111142178B (en) | Microstructure low-oscillation back coated chirped mirror and preparation method thereof | |
JP2014122961A (en) | Optical element having antireflection film, optical system and optical equipment | |
CN109471211B (en) | Depolarization beam combiner film and design method thereof | |
CN105738989A (en) | High-dispersion lens structure based on HGTI | |
JP4171362B2 (en) | Transparent substrate with antireflection film | |
CN106507977B (en) | A kind of low-loss reflecting mirror | |
CN112764135B (en) | Narrow-band antireflection film with extremely low residual reflection | |
CN111123510A (en) | Design method of high dispersion mirror film system | |
CN111722311B (en) | Composite function dispersion mirror structure | |
CN113946005B (en) | Broadband high-laser damage threshold dispersion mirror structure | |
CN115933073A (en) | A zero-dispersion laser output coupling mirror and its design method | |
CN117239518A (en) | Optimization method for film thickness coefficient of laser sum frequency device | |
JP3232727B2 (en) | 2-wavelength anti-reflection coating | |
CN101140332B (en) | Dielectric Film Structure Mirror for Chirped Pulse Amplification and Spectral Shaping | |
CN106443848A (en) | Broadband laser film mirror | |
CN117075240A (en) | Broadband low nonlinear optical effect chirped mirror and its design method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |