CN112662605B - YH66_10715 gene-modified L-isoleucine-producing strain and its construction method and application - Google Patents
YH66_10715 gene-modified L-isoleucine-producing strain and its construction method and application Download PDFInfo
- Publication number
- CN112662605B CN112662605B CN202011631243.7A CN202011631243A CN112662605B CN 112662605 B CN112662605 B CN 112662605B CN 202011631243 A CN202011631243 A CN 202011631243A CN 112662605 B CN112662605 B CN 112662605B
- Authority
- CN
- China
- Prior art keywords
- seq
- polynucleotide
- isoleucine
- ala
- corynebacterium glutamicum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
本发明公开了YH66_10715基因改造的高产L‑异亮氨酸的菌株及其构建方法和应用。本发明将谷氨酸棒杆菌中野生型YH66_10715基因中引入点突变,使SEQ ID NO:1的第991位碱基由胞嘧啶(C)突变为胸腺嘧啶(T)所得到的核苷酸序列。本发明还提供一种重组菌株是将该多核苷酸序列导入产L‑异亮氨酸的谷氨酸棒杆菌中获得,重组菌株中包括含有点突变的YH66_10715基因,所获得的菌株与未改造的菌株相比,有利于生产高浓度的L‑异亮氨酸。The invention discloses a YH66_10715 gene-modified high-yield L-isoleucine strain and its construction method and application. In the present invention, a point mutation is introduced into the wild-type YH66_10715 gene in Corynebacterium glutamicum, and the nucleotide sequence obtained by mutating the 991st base of SEQ ID NO: 1 from cytosine (C) to thymine (T) . The present invention also provides a recombinant strain obtained by introducing the polynucleotide sequence into L-isoleucine-producing Corynebacterium glutamicum. The recombinant strain includes the YH66_10715 gene containing a point mutation. The obtained strain is the same as the unmodified strain. compared to the strains that were favorable for the production of high concentrations of L-isoleucine.
Description
技术领域technical field
本发明属于基因工程和微生物技术领域,具体涉及YH66_10715基因改造的生产L-异亮氨酸的菌株及其构建方法和应用。The invention belongs to the technical field of genetic engineering and microorganisms, and in particular relates to a L-isoleucine-producing strain genetically modified by YH66_10715 and a construction method and application thereof.
背景技术Background technique
L-异亮氨酸是人体八种必需氨基酸之一,同时又是三种支链氨基酸之一,因其特殊的结构和功能,在人类生命代谢中具有特别重要的地位。因此,已被广泛应用于食品、动物饲料和医药等行业。L-异亮氨酸的生产方法主要有蛋白质水解法、化学合成法和生物发酵法。生物发酵法因其原料成本低、易于控制、节能环保成为工业化生产的首选方法。目前,生产L-异亮氨酸的菌株主要是谷氨酸棒杆菌(Corynebacterium glutamicum)和大肠杆菌(Escherichia coli)。谷氨酸棒杆菌具有无内毒素、代谢同工酶少,有利于解除反馈抑制或转录衰减以及关键代谢酶抗反馈抑制能力强等特点,因此大多数研究者倾向于研究谷氨酸棒杆菌及其亚种,如谷氨酸棒杆菌(Brevibacterium flavum)和乳糖发酵短杆菌(Brevibacterium lactofermentum)等。L-Isoleucine is one of the eight essential amino acids in the human body and one of the three branched-chain amino acids. Because of its special structure and function, it has a particularly important position in the metabolism of human life. Therefore, it has been widely used in industries such as food, animal feed and medicine. The production methods of L-isoleucine mainly include protein hydrolysis, chemical synthesis and biological fermentation. Biological fermentation has become the preferred method for industrial production because of its low cost of raw materials, easy control, energy saving and environmental protection. Currently, L-isoleucine-producing strains are mainly Corynebacterium glutamicum and Escherichia coli. Corynebacterium glutamicum has the characteristics of no endotoxin, less metabolic isoenzymes, which is conducive to the release of feedback inhibition or transcriptional attenuation, and strong anti-feedback inhibition ability of key metabolic enzymes. Therefore, most researchers tend to study Corynebacterium glutamicum and Its subspecies, such as Corynebacterium glutamicum (Brevibacterium flavum) and Brevibacterium lactofermentum (Brevibacterium lactofermentum) and so on.
在谷氨酸棒杆菌中,葡萄糖被吸收到胞内后,经过一系列的酶学反应生成草酰乙酸。草酰乙酸进一步转化生成L-天冬氨酸,而后经过十步的生物反应生成L-异亮氨酸,中间又涉及到L-赖氨酸,L-蛋氨酸,L-丝氨酸以及L-缬氨酸等其他氨基酸的代谢途径。L-异亮氨酸生物合成途径的关键酶包括天冬氨酸激酶(Aspartate kinase,AK)、高丝氨酸脱氢酶(Homoserine dehydrogenase,HDH)、高丝氨酸激酶(Homoserine kinase,HSK)、苏氨酸脱水酶(Threonine dehydrogenase,TD)和乙酰羟基氨酸合酶(Acetohydroxy acid synthase,AHAS),而AHAS又是同时催化合成L-异亮氨酸和L-缬氨酸酶系的第一个酶,所以L-异亮氨酸的代谢调控是比较复杂的胞内合成的L-异亮氨酸经由BrnFE转运胞外,而胞外的L-异亮氨酸也会由BrnQ转运到胞内。In Corynebacterium glutamicum, after glucose is absorbed into the cell, oxaloacetate is generated through a series of enzymatic reactions. Oxaloacetic acid is further converted to L-aspartic acid, and then after ten steps of biological reaction, L-isoleucine is produced, and L-lysine, L-methionine, L-serine and L-valine are involved in the middle. Metabolic pathway of other amino acids such as acid. The key enzymes in the L-isoleucine biosynthesis pathway include aspartate kinase (AK), homoserine dehydrogenase (HDH), homoserine kinase (HSK), threonine Dehydratase (Threonine dehydrogenase, TD) and acetohydroxy acid synthase (Acetohydroxy acid synthase, AHAS), and AHAS is the first enzyme that catalyzes the synthesis of L-isoleucine and L-valine at the same time, Therefore, the metabolic regulation of L-isoleucine is relatively complex. The intracellularly synthesized L-isoleucine is transported extracellularly through BrnFE, and the extracellular L-isoleucine is also transported into the cell by BrnQ.
优良菌种的选育依然是高产L-异亮氨酸的关键,随着高通量筛选技术的发展,结合传统诱变技术,有助于找到未知性状的高产L-异亮氨酸突变株。这些突变株有可能改变L-异亮氨酸代谢途径上某一点的活性或者整个途径的重组整合,从而来提高产酸量。The selection of excellent strains is still the key to high-yield L-isoleucine. With the development of high-throughput screening technology, combined with traditional mutagenesis technology, it is helpful to find high-yield L-isoleucine mutants with unknown traits. . These mutants have the potential to alter the activity of a single point in the L-isoleucine metabolic pathway or to recombine the entire pathway to increase acid production.
虽然已筛选到一些可以提高L-异亮氨酸产量的菌株,但是为了满足日益增加的需求,仍需要找到更多高产L-异亮氨酸的突变株。Although some strains that can improve L-isoleucine production have been screened, in order to meet the increasing demand, more mutants with high L-isoleucine production still need to be found.
发明内容SUMMARY OF THE INVENTION
针对现有技术的不足,本发明提供一种多核苷酸及含有该多核苷酸的重组菌株,以及将重组菌株用于改善细菌的L-异亮氨酸生产能力。为了实现上述目的,本发明的发明人研究发现,具有L-异亮氨酸生产能力的谷氨酸棒杆菌ATCC15168基因组(GenBank:CP011309.1)中YH66_10715基因(GenBank:AKF27993.1),可以通过修饰该基因或改善其表达,获得L-异亮氨酸产量提高的重组菌株,与未改造的野生型菌株相比,重组菌株的产L-异亮氨酸能力更强。In view of the deficiencies of the prior art, the present invention provides a polynucleotide and a recombinant strain containing the polynucleotide, and the recombinant strain is used to improve the L-isoleucine production capacity of bacteria. In order to achieve the above object, the inventors of the present invention have found that the YH66_10715 gene (GenBank: AKF27993.1) in the genome of Corynebacterium glutamicum ATCC15168 (GenBank: CP011309.1) with L-isoleucine production ability can be obtained by The gene is modified or its expression is improved to obtain a recombinant strain with improved L-isoleucine production. Compared with the unmodified wild-type strain, the recombinant strain has a stronger L-isoleucine production capacity.
本发明采用如下技术方案实现:The present invention adopts the following technical scheme to realize:
本发明的第一方面,提供了生成L-异亮氨酸的细菌,其具有编码如SEQ ID NO:3所示的氨基酸序列的多核苷酸的改善的表达。根据本发明,所述改善的表达是所述多核苷酸表达增强,或者编码SEQ ID NO:3的氨基酸序列的多核苷酸具有点突变,或者编码SEQ IDNO:3的氨基酸序列的多核苷酸具有点突变且表达是增强的。In a first aspect of the present invention, there is provided an L-isoleucine-producing bacterium having improved expression of a polynucleotide encoding the amino acid sequence shown in SEQ ID NO:3. According to the present invention, the improved expression is enhanced expression of the polynucleotide, or the polynucleotide encoding the amino acid sequence of SEQ ID NO: 3 has a point mutation, or the polynucleotide encoding the amino acid sequence of SEQ ID NO: 3 has point mutated and expression is enhanced.
所述SEQ ID NO:3的氨基酸序列是基因YH66_10715编码的蛋白。The amino acid sequence of the SEQ ID NO: 3 is the protein encoded by the gene YH66_10715.
所述细菌与未修饰菌株相比具有增强的L-异亮氨酸生产能力。The bacteria have enhanced L-isoleucine production capacity compared to the unmodified strain.
在本发明中,术语“具有L-异亮氨酸生产能力的细菌”是指具有在培养基和/或细菌的细胞中以下述程度产生并累积目的L-异亮氨酸的能力,使得当细菌在培养基中培养时可以收集L-异亮氨酸的细菌。具有L-异亮氨酸生产能力的细菌可以是能够以比未修饰菌株可获得的量更大的量在培养基和/或细菌的细胞中积累目的L-异亮氨酸的细菌。In the present invention, the term "bacteria having L-isoleucine-producing ability" refers to the ability to produce and accumulate the desired L-isoleucine in the culture medium and/or cells of the bacteria to such an extent that when Bacteria with L-isoleucine can be collected when the bacteria are cultured in the medium. The bacterium having L-isoleucine-producing ability may be a bacterium capable of accumulating the desired L-isoleucine in the medium and/or cells of the bacteria in a larger amount than that obtainable by the unmodified strain.
术语“未修饰菌株”是指尚未以使得具有特定特征的方式进行修饰的对照菌株。即,未修饰菌株的实例包括野生型菌株和亲本菌株。The term "unmodified strain" refers to a control strain that has not been modified in such a way that it has specific characteristics. That is, examples of unmodified strains include wild-type strains and parental strains.
在本发明中,除非另有说明,术语“L-异亮氨酸”是指游离形式的L-异亮氨酸、其盐或其混合物。In the present invention, unless otherwise specified, the term "L-isoleucine" refers to L-isoleucine in free form, a salt thereof, or a mixture thereof.
所述多核苷酸可以编码与SEQ ID NO:3的氨基酸序列具有约90%或更高、约92%或更高、约95%或更高、约97%或更高、约98%或更高、或约99%或更高的序列同源性的氨基酸序列。如本文中使用的,术语“同源性”指两种多核苷酸或两种多肽模块之间的百分比同一性。可以通过使用本领域中已知的方法测定一种模块和另一种模块之间的序列同源性。例如,可以通过BLAST算法测定此类序列同源性。The polynucleotide may encode an amino acid sequence that is about 90% or more, about 92% or more, about 95% or more, about 97% or more, about 98% or more identical to the amino acid sequence of SEQ ID NO:3 Amino acid sequences of high, or about 99% or greater sequence homology. As used herein, the term "homology" refers to the percent identity between two polynucleotides or two polypeptide modules. Sequence homology between one module and another can be determined by using methods known in the art. Such sequence homology can be determined, for example, by the BLAST algorithm.
可以如下增强多核苷酸的表达:通过取代或突变表达调节序列、对多核苷酸序列引入突变、通过经由染色体插入或载体导入的多核苷酸拷贝数的增加、或其组合等。Expression of a polynucleotide can be enhanced by substituting or mutating expression regulatory sequences, introducing mutations to the polynucleotide sequence, by increasing the copy number of the polynucleotide via chromosomal insertion or introduction of a vector, or a combination thereof, and the like.
可以修饰多核苷酸的表达调节序列。表达调节序列控制与其可操作连接的多核苷酸的表达,并且例如可以包括启动子、终止子、增强子、沉默子等。多核苷酸可以具有起始密码子的变化。可以将多核苷酸掺入染色体的特定位点中,从而增加拷贝数。在本文,特定的位点可以包括例如转座子位点或基因间位点。另外,可以将多核苷酸掺入表达载体中,将所述表达载体导入宿主细胞中,从而增加拷贝数。The expression regulatory sequences of the polynucleotide can be modified. Expression regulatory sequences control the expression of polynucleotides to which they are operably linked, and can include, for example, promoters, terminators, enhancers, silencers, and the like. Polynucleotides can have changes in the initiation codon. Polynucleotides can be incorporated into chromosomes at specific sites, thereby increasing copy number. Herein, a specific site may include, for example, a transposon site or an intergenic site. Additionally, polynucleotides can be incorporated into expression vectors that are introduced into host cells to increase copy number.
在本发明的一种实施方式中,通过将多核苷酸或者具有点突变的多核苷酸掺入微生物染色体的特定位点中,从而增加拷贝数。In one embodiment of the invention, the copy number is increased by incorporating a polynucleotide or a polynucleotide with a point mutation into a specific site in the chromosome of a microorganism.
在本发明的一种实施方式中,通过将带有启动子序列的多核苷酸或者带有启动子序列的具有点突变的多核苷酸掺入微生物染色体的特定位点中,从而过表达所述核酸序列。In one embodiment of the invention, the overexpression of the said nucleic acid sequence.
在本发明的一种实施方式中,将多核苷酸或者具有点突变的多核苷酸掺入表达载体中,将所述表达载体导入宿主细胞中,从而增加拷贝数。In one embodiment of the present invention, a polynucleotide or a polynucleotide having a point mutation is incorporated into an expression vector, and the expression vector is introduced into a host cell to increase the copy number.
在本发明的一种实施方式中,将带有启动子序列的多核苷酸或者带有启动子序列的具有点突变的多核苷酸掺入表达载体中,将所述表达载体导入宿主细胞中,从而过表达所述氨基酸序列。In one embodiment of the present invention, a polynucleotide with a promoter sequence or a polynucleotide with a point mutation with a promoter sequence is incorporated into an expression vector, and the expression vector is introduced into a host cell, Thereby the amino acid sequence is overexpressed.
在本发明的一个具体实施方式中,所述多核苷酸可以包含SEQ ID NO:1的核苷酸序列。In a specific embodiment of the present invention, the polynucleotide may comprise the nucleotide sequence of SEQ ID NO:1.
在本发明的一种实施方式中,编码SEQ ID NO:3的氨基酸序列的多核苷酸的具有点突变,使得SEQ ID NO:3的氨基酸序列的第331位脯氨酸被不同的氨基酸所取代。In one embodiment of the invention, the polynucleotide encoding the amino acid sequence of SEQ ID NO: 3 has a point mutation such that proline at position 331 of the amino acid sequence of SEQ ID NO: 3 is replaced by a different amino acid .
根据本发明,优选第331位脯氨酸变为丝氨酸所取代。According to the present invention, the proline at position 331 is preferably replaced by serine.
根据本发明,SEQ ID NO:3所示的氨基酸序列,其中第331位脯氨酸变为丝氨酸所取代后的氨基酸序列如SEQ ID NO:4所示。According to the present invention, the amino acid sequence shown in SEQ ID NO: 3, wherein the amino acid sequence after the 331st position proline is replaced by serine is shown in SEQ ID NO: 4.
在本发明的一个实施方式中,所述具有点突变的多核苷酸序列是由SEQ ID NO:1所示多核苷酸序列第991位碱基发生突变而形成的。In one embodiment of the present invention, the polynucleotide sequence with point mutation is formed by mutating the 991st base of the polynucleotide sequence shown in SEQ ID NO: 1.
根据本发明,所述突变包括SEQ ID NO:1所示多核苷酸序列第991位碱基由胞嘧啶(C)突变为胸腺嘧啶(T)。According to the present invention, the mutation includes the mutation of the 991st base of the polynucleotide sequence shown in SEQ ID NO: 1 from cytosine (C) to thymine (T).
在本发明的一个实施方式中,所述具有点突变的多核苷酸序列包括SEQ ID NO:2所示的多核苷酸序列。In one embodiment of the present invention, the polynucleotide sequence with point mutation comprises the polynucleotide sequence shown in SEQ ID NO:2.
如本文中使用的,术语“可操作连接”指调节序列和多核苷酸序列之间的功能性连接,由此调节序列控制多核苷酸序列的转录和/或翻译。调节序列可以是能提高多核苷酸的表达水平的强启动子。调节序列可以是源自属于棒杆菌属的微生物的启动子或者可以是源自其它微生物的启动子。例如,启动子可以是trc启动子、gap启动子、tac启动子、T7启动子、lac启动子、trp启动子、araBAD启动子或cj7启动子。As used herein, the term "operably linked" refers to a functional linkage between a regulatory sequence and a polynucleotide sequence, whereby the regulatory sequence controls transcription and/or translation of the polynucleotide sequence. The regulatory sequence can be a strong promoter capable of increasing the expression level of the polynucleotide. Regulatory sequences may be promoters derived from microorganisms belonging to the genus Corynebacterium or may be promoters derived from other microorganisms. For example, the promoter can be a trc promoter, gap promoter, tac promoter, T7 promoter, lac promoter, trp promoter, araBAD promoter or cj7 promoter.
在本发明的一个具体实施方式中,所述启动子是编码SEQ ID NO:3的氨基酸序列的多核苷酸(YH66_10715)的启动子。In a specific embodiment of the present invention, the promoter is the promoter of the polynucleotide (YH66_10715) encoding the amino acid sequence of SEQ ID NO:3.
如本文中使用的,术语“载体”指含有基因的调节序列和基因序列并且配置为在合适的宿主细胞中表达靶基因的多核苷酸构建体。或者,载体又可以指多核苷酸构建体,其含有可用于同源重组的序列,从而由于对宿主细胞导入的载体,可以改变宿主细胞的基因组中的内源基因的调节序列,或者可以将可以表达的靶基因插入宿主的基因组的特定位点中。在这点上,本发明中使用的载体可以进一步包含选择标志物以确定载体对宿主细胞的导入或者载体对宿主细胞的染色体的插入。选择标志物可以包含赋予可选择表型,诸如药物抗性、营养缺陷型、针对细胞毒剂的抗性、或表面蛋白的表达的标志物。在用此类选择剂处理的环境中,由于仅表达选择标志物的细胞可以存活或者显示不同表型性状,可以选择经转化的细胞。As used herein, the term "vector" refers to a polynucleotide construct that contains a gene's regulatory and gene sequences and is configured to express a target gene in a suitable host cell. Alternatively, a vector may in turn refer to a polynucleotide construct containing sequences useful for homologous recombination such that, due to the vector introduced into the host cell, regulatory sequences of endogenous genes in the genome of the host cell may be altered, or may The expressed target gene is inserted into the host's genome at a specific site. In this regard, the vector used in the present invention may further comprise a selectable marker to determine the introduction of the vector into the host cell or the insertion of the vector into the chromosome of the host cell. Selectable markers can include markers that confer a selectable phenotype, such as drug resistance, auxotrophy, resistance to cytotoxic agents, or expression of surface proteins. In an environment treated with such selective agents, transformed cells can be selected because only cells expressing the selectable marker can survive or display different phenotypic traits.
在本发明的一些具体实施方式中,使用的载体是pK18mobsacB质粒,pXMJ19质粒。In some embodiments of the invention, the vector used is the pK18mobsacB plasmid, the pXMJ19 plasmid.
如本文中使用的,术语“转化”指将多核苷酸导入宿主细胞中,从而多核苷酸可以作为基因组外元件或者以插入宿主细胞的基因组中能复制。转化本发明中使用的载体的方法可以包括将核酸导入细胞的方法。另外,如相关技术中公开的,可以根据宿主细胞实施电脉冲方法。As used herein, the term "transformation" refers to the introduction of a polynucleotide into a host cell such that the polynucleotide is replicable as an extragenomic element or inserted into the genome of the host cell. The method of transforming the vector used in the present invention may include a method of introducing nucleic acid into cells. In addition, as disclosed in the related art, the electrical pulse method can be implemented according to the host cell.
根据本发明,所述细菌可以是属于棒杆菌属的微生物,例如嗜乙酰棒杆菌(Corynebacterium acetoacidophilum)、醋谷棒杆菌(Corynebacteriumacetoglutamicum)、美棒杆菌(Corynebacterium callunae)、谷氨酸棒杆菌(Corynebacterium glutamicum)、黄色短杆菌(Brevibacterium flavum)、乳糖发酵短杆菌(Brevibacterium lactofermentum)、产氨棒杆菌(Corynebacterium ammoniagenes)、北京棒杆菌(Corynebacterium pekinense)、解糖短杆菌(Brevibacterium saccharolyticum)、玫瑰色短杆菌(Brevibacterium roseum)、生硫短杆菌(Brevibacterium thiogenitalis)等。According to the present invention, the bacteria may be microorganisms belonging to the genus Corynebacterium, such as Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium glutamicum ), Brevibacterium flavum, Brevibacterium lactofermentum, Corynebacterium ammoniagenes, Corynebacterium pekinense, Brevibacterium saccharolyticum, Brevibacterium rose ( Brevibacterium roseum), Brevibacterium thiogenitalis, etc.
在本发明的一个实施方案中,所述属于棒杆菌属的微生物是谷氨酸棒杆菌ATCC15168。In one embodiment of the present invention, the microorganism belonging to the genus Corynebacterium is Corynebacterium glutamicum ATCC15168.
在本发明的一个实施方案中,所述属于棒杆菌属的微生物是谷氨酸棒杆菌YPILE001,已于2020年08月17日保藏于中国微生物菌种保藏管理委员会普通微生物中心,保藏地址:北京市朝阳区北辰西路1号院3号,邮编:100101,保藏机构简称:CGMCC,生物保藏编号为CGMCC No.20437。In one embodiment of the present invention, the microorganism belonging to the genus Corynebacterium is Corynebacterium glutamicum YPILE001, which has been deposited in the General Microorganism Center of the China Microorganism Culture Collection Administration Committee on August 17, 2020, and the deposit address: Beijing No. 3, No. 1 Courtyard, Beichen West Road, Chaoyang District, City, Zip Code: 100101, Abbreviation of the depositary institution: CGMCC, biological deposit number is CGMCC No.20437.
本发明的第二个方面,提供一种多核苷酸序列,由该多核苷酸序列编码的氨基酸序列,包括所述多核苷酸序列的重组载体,含有所述多核苷酸序列的重组菌株。The second aspect of the present invention provides a polynucleotide sequence, an amino acid sequence encoded by the polynucleotide sequence, a recombinant vector comprising the polynucleotide sequence, and a recombinant strain containing the polynucleotide sequence.
根据本发明,所述多核苷酸序列包括编码含有如SEQ ID NO:3所示的氨基酸序列的多肽的多核苷酸,所述序列的第331位脯氨酸被不同的氨基酸所取代。According to the present invention, the polynucleotide sequence includes a polynucleotide encoding a polypeptide comprising the amino acid sequence shown in SEQ ID NO: 3, the 331st proline of the sequence being substituted by a different amino acid.
根据本发明,优选第331位脯氨酸变为丝氨酸所取代。。According to the present invention, the proline at position 331 is preferably replaced by serine. .
根据本发明,SEQ ID NO:3所示的氨基酸序列,其中第331位脯氨酸变为丝氨酸所取代后的氨基酸序列如SEQ ID NO:4所示。According to the present invention, the amino acid sequence shown in SEQ ID NO: 3, wherein the amino acid sequence after the 331st position proline is replaced by serine is shown in SEQ ID NO: 4.
根据本发明,优选所述编码含有SEQ ID NO:3所示的氨基酸序列的多肽的多核苷酸序列含有如SEQ ID NO:1所示的多核苷酸序列。According to the present invention, preferably, the polynucleotide sequence encoding the polypeptide containing the amino acid sequence shown in SEQ ID NO:3 contains the polynucleotide sequence shown in SEQ ID NO:1.
在本发明的一个实施方式中,所述多核苷酸序列是由SEQ ID NO:1所示多核苷酸序列第991位碱基发生突变而形成的。In one embodiment of the present invention, the polynucleotide sequence is formed by mutating the 991st base of the polynucleotide sequence shown in SEQ ID NO: 1.
根据本发明,所述突变是指所述位点的碱基/核苷酸发生变化,所述突变方法可以选自诱变、PCR定点突变法、和/或同源重组等方法中的至少一种。在本发明中,优选采用PCR定点突变法和/或同源重组。According to the present invention, the mutation refers to a change in the base/nucleotide of the site, and the mutation method can be selected from at least one of mutagenesis, PCR site-directed mutagenesis, and/or homologous recombination methods. kind. In the present invention, PCR site-directed mutagenesis and/or homologous recombination are preferably employed.
根据本发明,所述突变包括SEQ ID NO:1所示多核苷酸序列第991位胞嘧啶(C)突变为胸腺嘧啶(T)。According to the present invention, the mutation includes the mutation of cytosine (C) at position 991 of the polynucleotide sequence shown in SEQ ID NO: 1 to thymine (T).
在本发明的一个实施方式中,所述多核苷酸序列包括SEQ ID NO:2所示的多核苷酸序列。In one embodiment of the present invention, the polynucleotide sequence includes the polynucleotide sequence shown in SEQ ID NO:2.
根据本发明,所述氨基酸序列包括如SEQ ID NO:4所示的氨基酸序列。According to the present invention, the amino acid sequence includes the amino acid sequence shown in SEQ ID NO:4.
根据本发明,所述重组载体是将所述多核苷酸序列导入质粒构建而成。According to the present invention, the recombinant vector is constructed by introducing the polynucleotide sequence into a plasmid.
在本发明的一个实施方式中,所述质粒为pK18mobsacB质粒。In one embodiment of the present invention, the plasmid is the pK18mobsacB plasmid.
在本发明的另一个实施方式中,所述质粒为pXMJ19质粒。In another embodiment of the present invention, the plasmid is the pXMJ19 plasmid.
具体地,可以将所述多核苷酸序列和所述质粒通过NEBuider重组系统构建成重组载体。Specifically, the polynucleotide sequence and the plasmid can be constructed into a recombinant vector through the NEBuider recombination system.
根据本发明,所述重组菌株含有所述的多核苷酸序列。According to the present invention, the recombinant strain contains the polynucleotide sequence.
作为本发明的一个实施方案,所述重组菌株的出发菌为谷氨酸棒杆菌YPILE001,生物保藏编号为CGMCC No.20437。As an embodiment of the present invention, the starting bacteria of the recombinant strain is Corynebacterium glutamicum YPILE001, and the biological deposit number is CGMCC No.20437.
作为本发明的一个实施方案,所述重组菌株的出发菌为ATCC 15168。As an embodiment of the present invention, the starting bacteria of the recombinant strain is ATCC 15168.
本发明的第三个方面,提供上述多核苷酸序列、由该多核苷酸序列编码的氨基酸序列、包括所述多核苷酸序列的重组载体、含有所述多核苷酸序列的重组菌株在生产L-异亮氨酸中的应用。The third aspect of the present invention provides the above-mentioned polynucleotide sequence, the amino acid sequence encoded by the polynucleotide sequence, the recombinant vector comprising the polynucleotide sequence, and the recombinant strain containing the polynucleotide sequence in the production of L - Application of isoleucine.
本发明的第四个方面,还提供一种生成L-异亮氨酸的重组菌株的构建方法。The fourth aspect of the present invention also provides a method for constructing a recombinant strain producing L-isoleucine.
根据本发明,所述构建方法包括如下步骤:According to the present invention, the construction method comprises the following steps:
改造宿主菌株中如SEQ ID NO:1所示的野生型YH66_10715基因的多核苷酸序列,使其第991位碱基发生突变,得到包含突变YH66_10715编码基因的重组菌株。The polynucleotide sequence of the wild-type YH66_10715 gene shown in SEQ ID NO: 1 in the host strain was modified, and the 991st base was mutated to obtain a recombinant strain comprising the mutated YH66_10715 encoding gene.
根据本发明的构建方法,所述改造包括诱变、PCR定点突变法、和/或同源重组等方法中的至少一种。According to the construction method of the present invention, the transformation includes at least one of mutagenesis, PCR site-directed mutagenesis, and/or homologous recombination.
根据本发明的构建方法,所述突变是指SEQ ID NO:1中第991位碱基由胞嘧啶(C)突变为胸腺嘧啶(T);具体地,所述包含突变YH66_10715编码基因的多核苷酸序列如SEQ IDNO:2所示。According to the construction method of the present invention, the mutation refers to the mutation of the 991st base in SEQ ID NO: 1 from cytosine (C) to thymine (T); specifically, the polynucleotide comprising the gene encoding the mutation YH66_10715 The acid sequence is shown in SEQ ID NO:2.
进一步地,所述构建方法包括如下步骤:Further, the construction method comprises the steps:
(1)改造如SEQ ID NO:1所示的野生型YH66_10715基因的核苷酸序列,使其第991位碱基发生突变,得到突变的YH66_10715基因多核苷酸序列;(1) transform the nucleotide sequence of the wild-type YH66_10715 gene as shown in SEQ ID NO: 1, so that the 991st base is mutated to obtain the mutated YH66_10715 gene polynucleotide sequence;
(2)将所述突变的多核酸序列与质粒连接,构建重组载体;(2) connecting the mutated polynucleotide sequence with a plasmid to construct a recombinant vector;
(3)将所述重组载体导入宿主菌株,得到所述包含突变YH66_10715编码基因的重组菌株。(3) introducing the recombinant vector into a host strain to obtain the recombinant strain comprising the gene encoding the mutation YH66_10715.
根据本发明的构建方法,所述步骤(1)包括:点突变的YH66_10715基因构建:根据未修饰菌株的基因组序列,合成两对扩增YH66_10715基因片段的引物P1和P2及P3和P4,通过PCR定点突变法在野生型YH66_10715基因SEQ ID NO:1中引入点突变,得到点突变的YH66_10715基因核苷酸序列SEQ ID NO:2,记为YH66_10715C991T。According to the construction method of the present invention, the step (1) comprises: constructing the YH66_10715 gene of the point mutation: according to the genome sequence of the unmodified strain, synthesizing two pairs of primers P1 and P2 and P3 and P4 for amplifying the YH66_10715 gene fragment, by PCR A point mutation was introduced into the wild-type YH66_10715 gene SEQ ID NO: 1 by site-directed mutagenesis, and the nucleotide sequence of the point-mutated YH66_10715 gene SEQ ID NO: 2 was obtained, denoted as YH66_10715 C991T .
在本发明的一个实施方式中,所述未修饰菌株基因组可以来源于ATCC15168菌株,其基因组序列GenBank:CP011309.1可以从NCBI网站获取。In one embodiment of the present invention, the genome of the unmodified strain can be derived from the ATCC15168 strain, whose genome sequence GenBank: CP011309.1 can be obtained from the NCBI website.
在本发明的一个实施方案中,所述步骤(1)中,所述引物为:In one embodiment of the present invention, in the step (1), the primer is:
P1:5'CAGTGCCAAGCTTGCATGCCTGCAGGTCGACTCTAGAAGTTCTTCGTTCACGATCC 3'(SEQID NO:5)P1: 5' CAGTGCCAAGCTTGCATGCCTGCAGGTCGACTCTAGAAGTTCTTCGTTCACGATCC 3' (SEQ ID NO: 5)
P2:5'GTTGATTGGAGCCTCGAAGCCTGAAACCAGACGGTGGTAG 3'(SEQ ID NO:6)P2: 5' GTTGATTGGAGCCTCGAAGCCTG A AACCAGACGGTGGTAG 3' (SEQ ID NO: 6)
P3:5'CTACCACCGTCTGGTTTCAGGCTTCGAGGCTCCAATCAAC 3'(SEQ ID NO:7)P3: 5' CTACCACCGTCTGGTT T CAGGCTTCGAGGCTCCAATCAAC 3' (SEQ ID NO: 7)
P4:5'CAGCTATGACCATGATTACGAATTCGAGCTCGGTACCCTGGAACGCCAGTTGGAAG3'(SEQID NO:8)P4: 5' CAGCTATGACCATGATTACGAATTCGAGCTCGGTACCCTGGAACGCCAGTTGGAAG3' (SEQ ID NO: 8)
在本发明的一个实施方案中,所述PCR扩增按如下方式进行:94℃预变性5min,94℃变性30s,52℃退火30s,以及72℃延伸40s(30个循环),72℃过度延伸10min。In one embodiment of the present invention, the PCR amplification is performed as follows: pre-denaturation at 94°C for 5 min, denaturation at 94°C for 30s, annealing at 52°C for 30s, and extension at 72°C for 40s (30 cycles), overextension at 72°C 10min.
在本发明的一个实施方案中,所述重叠PCR扩增按如下方式进行:94℃预变性5min,94℃变性30s,52℃退火30s,以及72℃延伸90s(30个循环),72℃过度延伸10min。In one embodiment of the present invention, the overlapping PCR amplification is carried out as follows: pre-denaturation at 94°C for 5 min, denaturation at 94°C for 30s, annealing at 52°C for 30s, and extension at 72°C for 90s (30 cycles), overrun at 72°C Extend for 10min.
根据本发明的构建方法,所述步骤(2)包括重组质粒的构建,包括:将分离纯化后的YH66_10715C991T和pK18mobsacB质粒,通过NEBuider重组系统组装,获得重组质粒。According to the construction method of the present invention, the step (2) includes the construction of recombinant plasmids, including: assembling the isolated and purified YH66_10715 C991T and pK18mobsacB plasmids through the NEBuider recombination system to obtain the recombinant plasmids.
根据本发明的构建方法,所述步骤(3)包括重组菌株的构建,将重组质粒转化至宿主菌株,得到重组菌株。According to the construction method of the present invention, the step (3) includes the construction of a recombinant strain, and the recombinant plasmid is transformed into a host strain to obtain a recombinant strain.
在本发明的一个实施方案中,所述步骤(3)的转化为电转化法。In one embodiment of the present invention, the conversion of step (3) is an electroconversion method.
在本发明的一个实施方式中,所述宿主菌株是ATCC 15168。In one embodiment of the invention, the host strain is ATCC 15168.
在本发明的一个实施方式中,所述宿主菌株为谷氨酸棒杆菌YPILE001,生物保藏编号为CGMCC No.20437。In one embodiment of the present invention, the host strain is Corynebacterium glutamicum YPILE001, and the biological deposit number is CGMCC No.20437.
在本发明的一个实施方式中,所述重组是通过同源重组实现的。In one embodiment of the invention, the recombination is achieved by homologous recombination.
本发明的第五个方面,还提供一种生成L-异亮氨酸的重组菌株的构建方法。The fifth aspect of the present invention also provides a method for constructing a recombinant strain producing L-isoleucine.
根据本发明,所述构建方法包括如下步骤:According to the present invention, the construction method comprises the following steps:
扩增YH66_10715的上下游同源臂片段、YH66_10715基因编码区及其启动子区序列,以同源重组的方式在宿主菌株的基因组中引入YH66_10715或YH66_10715C991T基因,以实现所述菌株过表达YH66_10715或YH66_10715C991T基因。Amplify the upstream and downstream homology arm fragments of YH66_10715, the YH66_10715 gene coding region and its promoter region sequence, and introduce the YH66_10715 or YH66_10715 C991T gene into the genome of the host strain by homologous recombination to achieve the strain overexpressing YH66_10715 or YH66_10715 C991T gene.
在本发明的一个实施方式中,扩增上游同源臂片段的引物是:In one embodiment of the present invention, the primer for amplifying the upstream homology arm fragment is:
P7:5'CAGTGCCAAGCTTGCATGCCTGCAGGTCGACTCTAGGTTTGCTTCCAAAGGCGTG3'P7: 5'CAGTGCCAAGCTTGCATGCCTGCAGGTCGACTCTAGGTTTGCTTCCAAAGGCGTG3'
P8:5'CGGGGTTTCAAACGCCACTCATTTCAGCGTCAGATG3'P8:5'CGGGGTTTCAAACGCCACTCATTTCAGCGTCAGATG3'
在本发明的一个实施方式中,扩增下游同源臂片段的引物是:In one embodiment of the present invention, the primers for amplifying the downstream homology arm fragments are:
P11:5'GAATTGTACTTCGACTGCTAATGCCGAAATAAGGCCGG3'P11:5'GAATTGTACTTCGACTGCTAATGCCGAAATAAGGCCGG3'
P12:5'CAGCTATGACCATGATTACGAATTCGAGCTCGGTACCCTGCCTTCTAAAACTGCCG 3'P12: 5'CAGCTATGACCATGATTACGAATTCGAGCTCGGTACCCTGCCTTCTAAAACTGCCG 3'
在本发明的一个实施方式中,扩增所述基因编码区及其启动子区序列的引物是:In one embodiment of the present invention, the primers for amplifying the coding region of the gene and the sequence of its promoter region are:
P9:5'CATCTG ACGCTGAAATGAGTGGCGTTTGAAACCCCG 3'(SEQ ID NO:13)P9: 5'CATCTG ACGCTGAAATGAGTGGCGTTTGAAACCCCG 3' (SEQ ID NO: 13)
P10:5'CCGGCCTTAT TTCGGCATTAGCAGTCGAAGTACAATTC 3'(SEQ ID NO:14)P10: 5' CCGGCCTTAT TTCGGCATTAGCAGTCGAAGTACAATTC 3' (SEQ ID NO: 14)
在本发明的一个实施方式中,再以前述P7/P12为引物,以扩增的上游同源臂片段、下游同源臂片段、基因编码区及其启动子区序列片段的三个片段混合为模板进行扩增,获得整合同源臂片段。In one embodiment of the present invention, the aforementioned P7/P12 is used as the primer, and the amplified upstream homology arm fragment, the downstream homology arm fragment, the gene coding region and the sequence fragment of the promoter region are mixed as The template is amplified to obtain integrated homology arm fragments.
在本发明的一个实施方式中,所采用的PCR体系:10×Ex Taq Buffer 5μL,dNTPMixture(各2.5mM)4μL,Mg2+(25mM)4μL,引物(10μM)各2μL,Ex Taq(5U/μL)0.25μL,总体积50μL;PCR扩增按如下方式进行:94℃预变性5min,94℃变性30s、52℃退火30s、72℃延伸180s(30个循环),72℃过度延伸10min。In one embodiment of the present invention, the PCR system used: 10×Ex Taq Buffer 5 μL, dNTP Mixture (2.5 mM each) 4 μL, Mg 2+ (25 mM) 4 μL, primers (10 μM) 2 μL each, Ex Taq (5U/ μL) 0.25 μL, total volume 50 μL; PCR amplification was performed as follows: pre-denaturation at 94°C for 5 min, denaturation at 94°C for 30s, annealing at 52°C for 30s, extension at 72°C for 180s (30 cycles), and overextension at 72°C for 10 min.
在本发明的一个实施方式中,采用NEBuider重组系统,将穿梭质粒PK18mobsacB和整合同源臂片段组装,获得整合质粒。In one embodiment of the present invention, the NEBuider recombination system is used to assemble the shuttle plasmid PK18mobsacB and the integrated homology arm fragment to obtain an integrated plasmid.
在本发明的一个实施方式中,将整合质粒转染宿主菌株,以同源重组的方式在宿主菌株的基因组中引入YH66_10715或YH66_10715C991T基因。In one embodiment of the present invention, the integrated plasmid is transfected into a host strain, and the YH66_10715 or YH66_10715 C991T gene is introduced into the genome of the host strain by means of homologous recombination.
在本发明的一个实施方式中,所述宿主菌株是谷氨酸棒杆菌YPILE001,生物保藏编号为CGMCC No.20437。In one embodiment of the present invention, the host strain is Corynebacterium glutamicum YPILE001, the biological deposit number is CGMCC No.20437.
在本发明的一个实施方式中,所述宿主菌株是ATCC 15168。In one embodiment of the invention, the host strain is ATCC 15168.
在本发明的一个实施方式中,所述宿主菌株是携带有SEQ ID NO:2所示多核苷酸序列的菌株。In one embodiment of the present invention, the host strain is a strain carrying the polynucleotide sequence shown in SEQ ID NO:2.
本发明的第六个方面,还提供一种生产L-异亮氨酸的重组菌株的构建方法。The sixth aspect of the present invention also provides a method for constructing a recombinant strain for producing L-isoleucine.
根据本发明,所述构建方法包括如下步骤:According to the present invention, the construction method comprises the following steps:
扩增YH66_10715基因编码区及启动子区序列,或YH66_10715C991T基因编码区及启动子区序列,构建过表达质粒载体,将所述载体转入宿主菌株中,以实现所述菌株过表达YH66_10715或YH66_10715C991T基因。Amplify the YH66_10715 gene coding region and the promoter region sequence, or the YH66_10715 C991T gene coding region and the promoter region sequence, construct an overexpression plasmid vector, and transfer the vector into the host strain to realize that the strain overexpresses YH66_10715 or YH66_10715 C991T gene.
在本发明的一个实施方式中,扩增所述基因编码区及其启动子区序列的引物是:In one embodiment of the present invention, the primers for amplifying the coding region of the gene and the sequence of its promoter region are:
P17:5'GCTTGCATGCCTGCAGGTCGACTCTAGAGGATCCCCGTGGCGTTTGAAACCCCG 3'(SEQID NO:21)P17: 5' GCTTGCATGCCTGCAGGTCGACTCTAGAGGATCCCCGTGGCGTTTGAAACCCCG 3' (SEQ ID NO: 21)
P18:5'ATCAGGCTGAAAATCTTCTCTCATCCGCCAAAACGAATTGTACTTCGACTGCTAA 3'(SEQID NO:22)。P18: 5'ATCAGGCTGAAAATCTTCTCTCATCCGCCAAAACGAATTGTACTTCGACTGCTAA 3' (SEQ ID NO: 22).
在本发明的一个实施方式中,所述PCR体系:10×Ex Taq Buffer 5μL,dNTPMixture(各2.5mM)4μL,Mg2+(25mM)4μL,引物(10μM)各2μL,Ex Taq(5U/μL)0.25μL,总体积50μL;所述PCR扩增按如下方式进行:94℃预变性5min,94℃变性30s、52℃退火30s、72℃延伸120s(30个循环),72℃过度延伸10min。In one embodiment of the present invention, the PCR system: 10×Ex Taq Buffer 5 μL, dNTP Mixture (2.5 mM each) 4 μL, Mg 2+ (25 mM) 4 μL, primers (10 μM) 2 μL each, Ex Taq (5U/μL) ) 0.25 μL, and the total volume was 50 μL; the PCR amplification was carried out as follows: pre-denaturation at 94°C for 5 min, denaturation at 94°C for 30s, annealing at 52°C for 30s, extension at 72°C for 120s (30 cycles), and over-extension at 72°C for 10 min.
在本发明的一个实施方式中,采用NEBuider重组系统,将穿梭质粒pXMJ19和带有自身启动子的YH66_10715或YH66_10715C991T片段组装,获得过表达质粒。In one embodiment of the present invention, the NEBuider recombination system is used to assemble the shuttle plasmid pXMJ19 and the YH66_10715 or YH66_10715 C991T fragment with its own promoter to obtain an overexpression plasmid.
在本发明的一个实施方式中,所述宿主菌株是谷氨酸棒杆菌YPILE001,生物保藏编号为CGMCC No.20437。In one embodiment of the present invention, the host strain is Corynebacterium glutamicum YPILE001, the biological deposit number is CGMCC No.20437.
在本发明的一个实施方式中,所述宿主菌株是ATCC 15168。In one embodiment of the invention, the host strain is ATCC 15168.
在本发明的一个实施方式中,所述宿主菌株是携带有SEQ ID NO:2所示多核苷酸序列的菌株。In one embodiment of the present invention, the host strain is a strain carrying the polynucleotide sequence shown in SEQ ID NO:2.
本发明获得重组菌株可以单独应用于发酵生产L-异亮氨酸中,也可以和其他产L-异亮氨酸的细菌混合发酵生产L-异亮氨酸。The recombinant strain obtained by the present invention can be used alone in fermentation to produce L-isoleucine, or can be mixed with other L-isoleucine-producing bacteria to produce L-isoleucine by fermentation.
本发明的另一个方面提供了生产L-异亮氨酸的方法,该方法包括培养所述细菌;并且从培养物中获得L-异亮氨酸。Another aspect of the present invention provides a method of producing L-isoleucine, the method comprising culturing the bacterium; and obtaining L-isoleucine from the culture.
可以在本领域中已知的培养条件下在合适的培养基中进行细菌的培养。培养基可以包含:碳源、氮源、微量元素、及其组合。在培养中,可以调节培养物的pH。此外,培养时可以包括防止气泡产生,例如通过使用消泡剂进行气泡产生的防止。此外,培养时可以包括将气体注射入培养物中。气体可以包括能够维持培养物的需氧条件的任何气体。在培养中,培养物的温度可以是20至45℃。可以从培养物回收生成的L-异亮氨酸,即用硫酸或氢氯酸等处理培养物,接着进行诸如阴离子交换层析、浓缩、结晶和等电点沉淀的方法的组合。Cultivation of bacteria can be carried out in a suitable medium under culture conditions known in the art. The medium may contain: carbon sources, nitrogen sources, trace elements, and combinations thereof. During cultivation, the pH of the culture can be adjusted. In addition, the culturing may include preventing the generation of air bubbles, for example, by using an antifoaming agent. In addition, culturing can include injecting a gas into the culture. The gas can include any gas capable of maintaining aerobic conditions of the culture. In the culture, the temperature of the culture may be 20 to 45°C. The resulting L-isoleucine can be recovered from the culture by treating the culture with sulfuric acid or hydrochloric acid, etc., followed by a combination of methods such as anion exchange chromatography, concentration, crystallization, and isoelectric precipitation.
本发明的有益效果The beneficial effects of the present invention
本发明通过对YH66_10715基因的敲除,发现该基因编码的产物对L-异亮氨酸生产能力产生影响,通过在编码序列引入点突变,或者增加该基因的拷贝数或过表达获得重组菌株,所获得的菌株与未改造的菌株相比,有利于生产高浓度的L-异亮氨酸。In the present invention, by knocking out the YH66_10715 gene, it is found that the product encoded by the gene has an impact on the L-isoleucine production capacity, and the recombinant strain is obtained by introducing point mutations in the coding sequence, or increasing the copy number or overexpression of the gene, The obtained strain is favorable for the production of high concentrations of L-isoleucine compared to the unmodified strain.
生物保藏说明Biological Preservation Instructions
谷氨酸棒杆菌(Corynebacterium glutamicum),保藏于中国微生物菌种保藏管理委员会普通微生物中心,保藏地址:北京市朝阳区北辰西路1号院3号,邮编:100101,保藏机构简称:CGMCC,保藏日期为2020年08月17日,生物保藏编号为CGMCC No.20437,菌株命名:YPILE001。Corynebacterium glutamicum (Corynebacterium glutamicum), deposited in the General Microbiology Center of the China Microbial Culture Collection Management Committee, preservation address: No. 3, No. 1, Beichen West Road, Chaoyang District, Beijing, zip code: 100101, preservation institution abbreviation: CGMCC, preservation The date is August 17, 2020, the biological deposit number is CGMCC No.20437, and the strain name is YPILE001.
具体实施方式Detailed ways
下文将结合具体实施例对本发明的技术方案做更进一步的详细说明。应当理解,下列实施例仅为示例性地说明和解释本发明,而不应被解释为对本发明保护范围的限制。凡基于本发明上述内容所实现的技术均涵盖在本发明旨在保护的范围内。The technical solutions of the present invention will be described in further detail below with reference to specific embodiments. It should be understood that the following examples are only for illustrating and explaining the present invention, and should not be construed as limiting the protection scope of the present invention. All technologies implemented based on the above content of the present invention are covered within the intended protection scope of the present invention.
除非另有说明,以下实施例中使用的原料和试剂均为市售商品,或者可以通过已知方法制备。下列实施例中未注明具体条件的实验方法,通常按照常规条件如Sambrook等人,分子克隆:实验室手册(New York:Cold Spring Harbor Laboratory Press,1989)中所述的条件,或按照制造厂商所建议的条件。Unless otherwise stated, the starting materials and reagents used in the following examples are commercially available or can be prepared by known methods. The experimental method of unreceipted specific conditions in the following examples, usually according to routine conditions such as people such as Sambrook, molecular cloning: conditions described in laboratory manual (New York:Cold Spring Harbor Laboratory Press, 1989), or according to manufacturer the proposed conditions.
除非另外定义或由背景清楚指示,否则在本公开中的全部技术与科学术语具有如本公开所属领域的普通技术人员通常理解的相同含义。Unless otherwise defined or clearly indicated by context, all technical and scientific terms used in this disclosure have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs.
以下实施例中培养所述菌株使用的基础培养基组成相同,在此基础培养基组成上添加相应需要的蔗糖、卡那霉素或氯霉素等,基础培养基组成如下:The basal medium used for culturing the bacterial strains in the following examples has the same composition, and correspondingly required sucrose, kanamycin or chloramphenicol are added to this basal medium composition, and the basal medium composition is as follows:
表1固体培养基的组成Table 1 Composition of solid medium
实施例1构建包含点突变的YH66_10715基因编码区的转化载体pK18-YH66_10715C991T Example 1 Construction of the transformation vector pK18-YH66_10715 C991T comprising the coding region of the YH66_10715 gene with a point mutation
依据NCBI公布的谷氨酸棒杆菌ATCC15168基因组(GenBank:CP011309.1)序列,设计并合成两对扩增YH66_10715基因(GenBank:AKF27993.1)编码区序列的引物,以等位基因置换的方式在菌株ATCC15168和高产异亮氨酸的谷氨酸棒杆菌YPILE001(生物保藏编号为CGMCC No.20437)中引入点突变,对应编码蛋白的氨基酸序列为SEQ ID NO:3,YH66_10715基因的核苷酸序列第991位胞嘧啶(C)变为胸腺嘧啶(T)(SEQ ID NO:2:YH66_10715C991T),对应编码蛋白的氨基酸序列第331位脯氨酸(P)变为丝氨酸(S)(SEQ ID NO:4:YH66_10715P331S)。引物设计如下(上海invitrogen公司合成):According to the genome sequence of Corynebacterium glutamicum ATCC15168 (GenBank: CP011309.1) published by NCBI, two pairs of primers for amplifying the coding region sequence of the YH66_10715 gene (GenBank: AKF27993.1) were designed and synthesized. Strain ATCC15168 and high isoleucine-producing Corynebacterium glutamicum YPILE001 (Biological Deposit No. CGMCC No. 20437) introduced point mutation, the amino acid sequence corresponding to the encoded protein is SEQ ID NO: 3, the nucleotide sequence of the YH66_10715 gene Cytosine (C) at position 991 is changed to thymine (T) (SEQ ID NO: 2: YH66_10715 C991T ), corresponding to the amino acid sequence of the encoded protein at position 331 proline (P) is changed to serine (S) (SEQ ID NO: 2) NO: 4: YH66_10715 P331S ). The primers were designed as follows (synthesized by Shanghai Invitrogen Company):
P1:5'CAGTGCCAAGCTTGCATGCCTGCAGGTCGACTCTAGAAGTTCTTCGTTCACGATCC 3'(SEQID NO:5)P1: 5' CAGTGCCAAGCTTGCATGCCTGCAGGTCGACTCTAG AAGTTCTTCGTTCACGATCC 3' (SEQ ID NO: 5)
P2:5'GTTGATTGGAGCCTCGAAGCCTGAAACCAGACGGTGGTAG 3'(SEQ ID NO:6)P2: 5' GTTGATTGGAGCCTCGAAGCCTGAAAACCAGACGGTGGTAG 3' (SEQ ID NO: 6)
P3:5'CTACCACCGTCTGGTTTCAGGCTTCGAGGCTCCAATCAAC 3'(SEQ ID NO:7)P3: 5' CTACCACCGTCTGGTTTCAGGCTTCGAGGCTCCAATCAAC 3' (SEQ ID NO: 7)
P4:5'CAGCTATGACCATGATTACGAATTCGAGCTCGGTACCCTGGAACGCCAGTTGGAAG3'(SEQID NO:8)P4: 5' CAGCTATGACCATGATTACGAATTCGAGCTCGGTACCCTGGAACGCCAGTTGGAAG3' (SEQ ID NO: 8)
构建方法:以谷氨酸棒杆菌ATCC15168为模板,分别以引物P1和P2,P3和P4,进行PCR扩增。Construction method: Take Corynebacterium glutamicum ATCC15168 as the template, and carry out PCR amplification with primers P1 and P2, P3 and P4 respectively.
PCR体系:10×Ex Taq Buffer 5μL,dNTP Mixture(各2.5mM)4μL,Mg2+(25mM)4μL,引物(10pM)各2μL,Ex Taq(5U/μL)0.25μL,总体积50μL。PCR system: 10×Ex Taq Buffer 5μL, dNTP Mixture (2.5mM each) 4μL, Mg 2+ (25mM) 4μL, primers (10pM) 2μL each, Ex Taq (5U/μL) 0.25μL, total volume 50μL.
所述PCR扩增按如下方式进行:94℃预变性5min,94℃变性30s、52℃退火30s、72℃延伸40s(30个循环),72℃过度延伸10min,获得两条大小分别约771bp和756bp,含有YH66_10715基因编码区的DNA片段(YH66_10715C991T-Up和YH66_10715C991T-Down)。The PCR amplification was carried out as follows: pre-denaturation at 94°C for 5 min, denaturation at 94°C for 30s, annealing at 52°C for 30s, extension at 72°C for 40s (30 cycles), and over-extension at 72°C for 10min to obtain two sizes of about 771bp and 771bp respectively. 756bp, containing the DNA fragment of the coding region of the YH66_10715 gene (YH66_10715 C991T -Up and YH66_10715 C991T- Down).
将YH66_10715C991T-Up和YH66_10715C991T-Down经琼脂糖凝胶电泳分离纯化后;再以上述两条DNA片段为模板,以P1和P4为引物,通过重叠PCR扩增出长约1628bp的YH66_10715C991T-Up-Down片段。YH66_10715 C991T -Up and YH66_10715 C991T -Down were separated and purified by agarose gel electrophoresis; the above two DNA fragments were used as templates, and P1 and P4 were used as primers to amplify YH66_10715 C991T- Up-Down snippets.
PCR体系:10×Ex Taq Buffer 5μL,dNTP Mixture(各2.5mM)4μL,Mg2+(25mM)4μL,引物(10pM)各2μL,Ex Taq(5U/μL)0.25μL,总体积50μL。PCR system: 10×Ex Taq Buffer 5μL, dNTP Mixture (2.5mM each) 4μL, Mg 2+ (25mM) 4μL, primers (10pM) 2μL each, Ex Taq (5U/μL) 0.25μL, total volume 50μL.
所述PCR扩增按如下方式进行:94℃预变性5min,94℃变性30s、52℃退火30s、72℃延伸90s(30个循环),72℃过度延伸10min。The PCR amplification was performed as follows: pre-denaturation at 94°C for 5 min, denaturation at 94°C for 30s, annealing at 52°C for 30s, extension at 72°C for 90s (30 cycles), and overextension at 72°C for 10 min.
此DNA片段导致ATCC15168的诱变菌株谷氨酸棒杆菌YPILE001(生物保藏编号为CGMCC No.20437)中YH66_10715基因编码区的第991位的胞嘧啶(C)变为胸腺嘧啶(T),最终导致编码蛋白的第331位氨基酸由脯氨酸(P)变为丝氨酸(S)。This DNA fragment causes the cytosine (C) at the 991st position in the coding region of the YH66_10715 gene in the mutagenic strain of ATCC15168 Corynebacterium glutamicum YPILE001 (Biodeposit No. CGMCC No. 20437) to be changed to thymine (T), resulting in The amino acid 331 of the encoded protein was changed from proline (P) to serine (S).
将pK18mobsacB质粒(购自Addgene公司)用XbaI酶切后,用琼脂糖凝胶电泳分离纯化YH66_10715C991T-Up-Down和线性化的pK18mobsacB质粒,再通过NEBuider重组系统组装,获得载体pK18-YH66_10715C991T,该质粒上含有卡那霉素抗性标记。并将载体pK18-YH66_10715C991T送测序公司测序鉴定,将含有正确点突变(C-T)的载体pK18-YH66_10715C991T保存备用。After the pK18mobsacB plasmid (purchased from Addgene) was digested with XbaI, the YH66_10715 C991T -Up-Down and linearized pK18mobsacB plasmids were separated and purified by agarose gel electrophoresis, and then assembled by the NEBuider recombination system to obtain the vector pK18-YH66_10715 C991T , This plasmid contains a kanamycin resistance marker. The vector pK18-YH66_10715 C991T was sent to a sequencing company for sequencing identification, and the vector pK18-YH66_10715 C991T containing the correct point mutation (CT) was kept for future use .
实施例2构建包含点突变的YH66_10715C991T的工程菌株Example 2 Construction of engineering strain of YH66_10715 C991T comprising point mutation
构建方法:将等位替换质粒pK18-YH66_10715C991T通过电击转化入高产异亮氨酸的谷氨酸棒杆菌YPILE001(生物保藏编号为CGMCC No.20437)中;对培养产生的单菌落分别通过引物P1和通用引物M13R进行鉴定,能扩增出大小约1527bp条带的菌株为阳性菌株。将阳性菌株在含15%蔗糖的培养基上培养;对培养产生的单菌落分别在含有卡那霉素和不含卡那霉素的培养基上培养,在不含卡那霉素的培养基上生长,而在含卡那霉素的培养基上不生长的菌株进一步采用如下引物(上海invitrogen公司合成)进行PCR鉴定:Construction method: The allelic replacement plasmid pK18-YH66_10715 C991T was transformed into the high isoleucine-producing Corynebacterium glutamicum YPILE001 (Biological Deposit No. CGMCC No. 20437) by electroporation; the single colonies produced by the culture were subjected to primer P1 It was identified with the universal primer M13R, and the strains that could amplify a band of about 1527bp were positive strains. The positive strains were cultured on the medium containing 15% sucrose; the single colonies produced by the culture were cultured on the medium containing kanamycin and without kanamycin, respectively, and the medium without kanamycin The strains that did not grow on the kanamycin-containing medium were further identified by PCR using the following primers (synthesized by Shanghai Invitrogen Company):
P5:5'AAGGACGGC AAGCCACTC 3'(SEQ ID NO:9)P5: 5' AAGGACGGC AAGCCACTC 3' (SEQ ID NO: 9)
P6:5'AGTTCGTAGA GGTCCTTG3'(SEQ ID NO:10)P6: 5'AGTTCGTAGAGGTCCTTG3' (SEQ ID NO: 10)
上述PCR扩增产物通过高温变性、冰浴后进行sscp电泳(以质粒pK18-YH66_10715C991T扩增片段为阳性对照,ATCC15168扩增片段为阴性对照,水作为空白对照),由于片段结构不同,电泳位置不同,因此片段电泳位置与阴性对照片段位置不一致且与阳性对照片段位置一致的菌株为等位替换成功的菌株。以引物P5和P6再次通过PCR扩增等位替换成功的菌株目的片段,并连接到PMD19-T载体测序,通过比对碱基序列确定是否替换成功;并将来自高产异亮氨酸的谷氨酸棒杆菌YPILE001(生物保藏编号为CGMCC No.20437)替换成功的突变株命名为YPI019。The above-mentioned PCR amplification product is subjected to sscp electrophoresis after high temperature denaturation and ice bath (with plasmid pK18-YH66_10715 C991T amplified fragment as positive control, ATCC15168 amplified fragment as negative control, and water as blank control), due to different fragment structures, electrophoresis position Therefore, the strains whose electrophoretic positions of the fragments are inconsistent with those of the negative control fragments and are the same as those of the positive control fragments are the strains with successful allelic substitution. Using primers P5 and P6 to amplify the target fragment of the successfully allelic replacement strain again by PCR, and connect it to the PMD19-T vector for sequencing, and determine whether the replacement is successful by comparing the base sequences; The mutant strain of Corynebacterium acidophilus YPILE001 (Biological Deposit No. CGMCC No. 20437) was successfully replaced and named as YPI019.
表2 sscp电泳的PAGE的制备Table 2 Preparation of PAGE for sscp electrophoresis
实施例3构建基因组上过表达YH66_10715或YH66_10715C991T基因的工程菌株Example 3 Construction of engineering strains overexpressing YH66_10715 or YH66_10715 C991T gene on the genome
依据NCBI公布的谷氨酸棒杆菌ATCC15168基因组(GenBank:CP011309.1)序列,设计并合成三对扩增上下游同源臂片段及YH66_10715基因编码区及启动子区序列的引物,以同源重组的方式在菌株谷氨酸棒杆菌YPILE001(生物保藏编号为CGMCC No.20437)中引入YH66_10715或YH66_10715C991T基因。According to the genome sequence of Corynebacterium glutamicum ATCC15168 (GenBank: CP011309.1) published by NCBI, three pairs of primers for amplifying the upstream and downstream homology arm fragments and the coding region and promoter region of the YH66_10715 gene were designed and synthesized. The YH66_10715 or YH66_10715 C991T gene was introduced into the strain Corynebacterium glutamicum YPILE001 (Biological Deposit No. CGMCC No. 20437).
引物设计如下(上海invitrogen公司合成):The primers were designed as follows (synthesized by Shanghai Invitrogen Company):
P7:5'CAGTGCCAAGCTTGCATGCCTGCAGGTCGACTCTAGGTTTGCTTCCAAAGGCGTG3'P7: 5'CAGTGCCAAGCTTGCATGCCTGCAGGTCGACTCTAGGTTTGCTTCCAAAGGCGTG3'
P8:5'CGGGGTTTCAAACGCCACTCATTTCAGCGTCAGATG 3'P8: 5'CGGGGGTTTCAAACGCCACTCATTTCAGCGTCAGATG 3'
P9:5'CATCTGACGCTGAAATGAGTGGCGTTTGAAACCCCG 3'P9: 5'CATCTGACGCTGAAATGAGTGGCGTTTGAAACCCCG 3'
P10:5'CCGGCCTTATTTCGGCATTAGCAGTCGAAGTACAATTC 3'P10: 5'CCGGCCTTATTTCGGCATTAGCAGTCGAAGTACAATTC 3'
P11:5'GAATTGTACTTCGACTGCTAATGCCGAAATAAGGCCGG 3'P11: 5'GAATTGTACTTCGACTGCTAATGCCGAAATAAGGCCGG 3'
P12:5'CAGCTATGACCATGATTACGAATTCGAGCTCGGTACCCTGCCTTCTAAAACTGCCG 3'P12: 5'CAGCTATGACCATGATTACGAATTCGAGCTCGGTACCCTGCCTTCTAAAACTGCCG 3'
构建方法:以谷氨酸棒杆菌ATCC15168或YPI019为模板,分别以引物P7/P8,P9/P10,P11/P12,进行PCR扩增,获得上游同源臂片段约735bp,YH66_10715或YH66_10715C991T基因片段约1470bp及下游同源臂片段约914bp,再以P7/P12为引物,用以上扩增的三个片段混合为模板进行扩增,获得整合同源臂片段。PCR反应结束后,对扩增的产物进行电泳回收,采用柱式DNA凝胶回收试剂盒进行回收所需要的约3119bp的DNA片段,采用NEBuider重组系统与经Xba I酶切回收的穿梭质粒pk18mobsacB相连接,获得整合质粒pk18mobsacB-YH66_10715或pk18mobsacB-YH66_10715C991T,质粒上含有卡那霉素抗性标记,可以通过卡那霉素筛选获得质粒整合到基因组上的重组子。Construction method: Take Corynebacterium glutamicum ATCC15168 or YPI019 as the template, and use primers P7/P8, P9/P10, P11/P12 to carry out PCR amplification to obtain the upstream homology arm fragment of about 735bp, YH66_10715 or YH66_10715 C991T gene fragment About 1470 bp and the downstream homology arm fragment of about 914 bp, and then using P7/P12 as the primer, the three amplified fragments above were mixed as the template for amplification, and the integrated homology arm fragment was obtained. After the PCR reaction, the amplified product was recovered by electrophoresis, and the required DNA fragment of about 3119 bp was recovered using a column-type DNA gel recovery kit. The NEBuider recombination system was used to phase with the shuttle plasmid pk18mobsacB recovered by Xba I digestion. Connect to obtain the integrated plasmid pk18mobsacB-YH66_10715 or pk18mobsacB-YH66_10715 C991T , the plasmid contains the kanamycin resistance marker, and the recombinant plasmid integrated into the genome can be obtained by kanamycin screening.
PCR体系:10×Ex Taq Buffer 5μL,dNTP Mixture(各2.5mM)4μL,Mg2+(25mM)4μL,引物(10pM)各2μL,Ex Taq(5U/μL)0.25μL,总体积50μL。PCR system: 10×Ex Taq Buffer 5μL, dNTP Mixture (2.5mM each) 4μL, Mg 2+ (25mM) 4μL, primers (10pM) 2μL each, Ex Taq (5U/μL) 0.25μL, total volume 50μL.
所述PCR扩增按如下方式进行:94℃预变性5min,94℃变性30s、52℃退火30s、72℃延伸180s(30个循环),72℃过度延伸10min。The PCR amplification was performed as follows: pre-denaturation at 94°C for 5 min, denaturation at 94°C for 30s, annealing at 52°C for 30s, extension at 72°C for 180s (30 cycles), and overextension at 72°C for 10 min.
将2个整合质粒分别电转化入谷氨酸棒杆菌YPILE001(生物保藏编号为CGMCCNo.20437)中,对培养产生的单菌落通过P13/P14引物进行PCR鉴定,PCR扩增出含有大小约1056bp的片段的为阳性菌株,扩增不到片段的为原菌。阳性菌株经15%蔗糖筛选后分别在含有卡那霉素和不含卡那霉素的培养基上培养,在不含卡那霉素的培养基上生长,而在含卡那霉素的培养基上不生长的菌株进一步采用P15/P16引物进行PCR鉴定,扩增出大小约845bp的菌为YH66_10715或YH66_10715C991T基因整合到菌株谷氨酸棒杆菌YPILE001(生物保藏编号为CGMCC No.20437)基因组上的菌株,其被命名为YPI-020(不含突变点)和YPI-021(含突变点)。The 2 integrated plasmids were electrotransformed into Corynebacterium glutamicum YPILE001 (Biological Deposit No. CGMCCNo.20437), and the single colony produced by the culture was identified by PCR with primers P13/P14, and PCR amplified a fragment containing a size of about 1056bp The positive strains are the positive strains, and the original strains are the ones that fail to amplify the fragments. Positive strains were screened with 15% sucrose and cultured on media containing kanamycin and without kanamycin, respectively. The strains that do not grow on the base are further identified by PCR using the P15/P16 primers, and the amplified bacteria with a size of about 845 bp are YH66_10715 or YH66_10715 C991T genes integrated into the genome of strain Corynebacterium glutamicum YPILE001 (Biological Preservation Number is CGMCC No.20437) The strains above were named YPI-020 (without mutation point) and YPI-021 (with mutation point).
P13:5'TGATGGATGG GCTCACTC 3'P13:5'TGATGGATGGGCTCACTC3'
P14:5'CGAACTCGAC GTTTTCATC 3'P14: 5'CGAACTCGACGTTTTTCATC3'
P15:5'CAGTACAAGTACGACAACG 3'P15: 5'CAGTACAAGTACGACAACG 3'
P16:5'CGAATTTGTA TAGCCTAG 3'P16: 5'CGAATTTGTATAGCCTAG3'
实施例4构建质粒上过表达YH66_10715或YH66_10715C991T基因的工程菌株Example 4 Engineering strains overexpressing YH66_10715 or YH66_10715 C991T genes on plasmids
依据NCBI公布的谷氨酸棒杆菌ATCC15168基因组(GenBank:CP011309.1)序列,设计并合成一对扩增YH66_10715基因编码区及启动子区序列的引物,引物设计如下(上海invitrogen公司合成):According to the sequence of Corynebacterium glutamicum ATCC15168 genome (GenBank: CP011309.1) published by NCBI, a pair of primers for amplifying the coding region and promoter region of the YH66_10715 gene were designed and synthesized. The primers were designed as follows (synthesized by Shanghai Invitrogen Company):
P17:5'GCTTGCATGCCTGCAGGTCGACTCTAGAGGATCCCCGTGGCGTTTGAAACCCCG 3'P17: 5' GCTTGCATGCCTGCAGGTCGACTCTAGAGGATCCCCGTGGCGTTTGAAACCCCG 3'
P18:5'ATCAGGCTGAAAATCTTCTCTCATCCGCCAAAACGAATTGTACTTCGACTGCTAA 3'P18: 5'ATCAGGCTGAAAATCTTCTCTCATCCGCCAAAACGAATTGTACTTCGACTGCTAA 3'
构建方法:以ATCC15168或YPI019为模板,以引物P17/P18进行PCR扩增,获得YH66_10715或YH66_10715C991T基因片段约1510bp,对扩增的产物进行电泳回收,采用柱式DNA凝胶回收试剂盒进行回收所需要的1510bp的DNA片段,采用NEBuider重组系统与经EcoR I酶切、回收的穿梭质粒pXMJ19相连接,获得过表达质粒pXMJ19-YH66_10715或pXMJ19-YH66_10715C991T。质粒上含有氯霉素抗性标记,可以通过氯霉素筛选获得质粒转化到菌株中。Construction method: Using ATCC15168 or YPI019 as the template, and using primers P17/P18 for PCR amplification, the YH66_10715 or YH66_10715 C991T gene fragment of about 1510bp was obtained. The amplified product was recovered by electrophoresis and recovered by column DNA gel recovery kit. The required DNA fragment of 1510bp was connected with the shuttle plasmid pXMJ19 digested and recovered by EcoR I using the NEBuider recombination system to obtain the overexpression plasmid pXMJ19-YH66_10715 or pXMJ19- YH66_10715C991T . The plasmid contains a chloramphenicol resistance marker, and the plasmid can be transformed into the strain by chloramphenicol screening.
PCR体系:10×Ex Taq Buffer 5μL,dNTP Mixture(各2.5mM)4μL,Mg2+(25mM)4μL,引物(10pM)各2μL,Ex Taq(5U/μL)0.25μL,总体积50μL。PCR system: 10×Ex Taq Buffer 5μL, dNTP Mixture (2.5mM each) 4μL, Mg 2+ (25mM) 4μL, primers (10pM) 2μL each, Ex Taq (5U/μL) 0.25μL, total volume 50μL.
所述PCR扩增按如下方式进行:94℃预变性5min,94℃变性30s、52℃退火30s、72℃延伸120s(30个循环),72℃过度延伸10min。The PCR amplification was performed as follows: pre-denaturation at 94°C for 5 min, denaturation at 94°C for 30s, annealing at 52°C for 30s, extension at 72°C for 120s (30 cycles), and overextension at 72°C for 10 min.
将质粒分别电转化入谷氨酸棒杆菌YPILE001(生物保藏编号为CGMCC No.20437)中,对培养产生的单菌落通过M13R(-48)和P18引物进行PCR鉴定,PCR扩增出含有大小约920bp的片段的为转入菌株,其被命名为YPI-022(不含点突变)和YPI-023(含点突变)。The plasmids were electro-transformed into Corynebacterium glutamicum YPILE001 (Biological Deposit No. CGMCC No. 20437), and the single colony produced by the culture was identified by M13R (-48) and P18 primers by PCR, and the PCR amplification contained a size of about 920bp. The fragments of the transformed strains were named YPI-022 (without point mutation) and YPI-023 (with point mutation).
实施例5构建基因组上缺失YH66_10715基因的工程菌株Example 5 Construction of the engineering strain that lacks the YH66_10715 gene on the genome
依据NCBI公布的谷氨酸棒杆菌ATCC15168基因组(GenBank:CP011309.1)序列,合成两对扩增YH66_10715基因编码区两端片段的引物,作为上下游同源臂片段。引物设计如下(上海英俊公司合成):According to the genome sequence of Corynebacterium glutamicum ATCC15168 (GenBank: CP011309.1) published by NCBI, two pairs of primers for amplifying the two ends of the coding region of the YH66_10715 gene were synthesized as upstream and downstream homology arm fragments. The primers are designed as follows (synthesized by Shanghai handsome company):
P19:5'CAGTGCCAAGCTTGCATGCCTGCAGGTCGACTCTAGAAAATTTGCAACTCTCGC 3'P19:5'CAGTGCCAAGCTTGCATGCCTGCAGGTCGACTCTAGAAAATTTGCAACTCTCGC3'
P20:5'CGGCTAGCTAAGTGAATTAGCGGTGACTCCTCATTGAC3'P20:5'CGGCTAGCTAAGTGAATTAGCGGTGACTCCTCATTGAC3'
P21:5'GTCAATGAGGAGTCACCGCTAATTCACTTAGCTAGCCG 3'P21: 5'GTCAATGAGGAGTCACCGCTAATTCACTTAGCTAGCCG 3'
P22:5'CAGCTATGACCATGATTACGAATTCGAGCTCGGTACCCAAAATGCTTTTCGACGTCC 3'P22: 5'CAGCTATGACCATGATTACGAATTCGAGCTCGGTACCCAAAATGCTTTTCGACGTCC 3'
以谷氨酸棒杆菌ATCC15168为模板,分别以引物P19/P20及P21/P22,进行PCR扩增,获得上游同源臂片段894bp及下游同源臂片段690bp。再用引物P19/P22进行OVER PCR得到整个同源臂片段1484bp。PCR反应结束后,对扩增的产物进行电泳回收,采用柱式DNA凝胶回收试剂盒进行回收所需要的1484bp的DNA片段,并通过NEBuider重组系统与经Xba I酶切回收的穿梭质粒pk18mobsacB质粒相连接,获得敲除质粒。该质粒上含有卡那霉素抗性标记。Using Corynebacterium glutamicum ATCC15168 as a template and primers P19/P20 and P21/P22, PCR amplification was performed to obtain an upstream homology arm fragment of 894 bp and a downstream homology arm fragment of 690 bp. OVER PCR was performed with primers P19/P22 to obtain the entire homology arm fragment of 1484 bp. After the PCR reaction, the amplified product was recovered by electrophoresis, and the required 1484bp DNA fragment was recovered by a column-type DNA gel recovery kit, and the shuttle plasmid pk18mobsacB plasmid recovered by NEBuider recombination system and Xba I digestion ligated to obtain a knockout plasmid. This plasmid contains a kanamycin resistance marker.
将敲除质粒电转化入谷氨酸棒杆菌YPILE001(生物保藏编号为CGMCC No.20437)中,对培养产生的单菌落分别通过如下引物(上海英俊公司合成)进行PCR鉴定:The knockout plasmid was electrotransformed into Corynebacterium glutamicum YPILE001 (Biological Deposit No. CGMCC No. 20437), and the single colonies produced by the culture were identified by PCR with the following primers (synthesized by Shanghai Yingjun Company):
P23:5'GCGCTGA CTATGCAGATTC 3'P23: 5'GCGCTGA CTATGCAGATTC 3'
P24:5'AAACT CGACC TTCACGTC 3'P24: 5'AAACT CGACC TTCACGTC 3'
上述PCR扩增出大小约1484bp及约2940bp的条带的菌株为阳性菌株,只扩增出2940bp条带的菌株为出发菌。阳性菌株在15%蔗糖培养基上筛选后分别在含有卡那霉素和不含卡那霉素的培养基上培养,在不含卡那霉素的培养基上生长,而在含卡那霉素的培养基上不生长的菌株进一步采用P23/P24引物进行PCR鉴定,扩增出大小为1484bp条带的菌株为YH66_10715基因编码区被敲除的基因工程菌株,其被命名为YPI-024。The strains that amplified bands of about 1484 bp and about 2940 bp by the above PCR were positive strains, and the strains that only amplified the 2940 bp band were the starting strains. Positive strains were screened on 15% sucrose medium and cultured on kanamycin-containing and kanamycin-free medium, respectively, and grown on kanamycin-free medium, while kanamycin-containing medium was grown on The strains that do not grow on the medium of nutrient-rich medium were further identified by PCR using the P23/P24 primers, and the strain with a 1484bp band amplified was a genetically engineered strain in which the coding region of the YH66_10715 gene was knocked out, and was named as YPI-024.
实施例6L-异亮氨酸发酵实验Example 6L-Isoleucine Fermentation Experiment
将实施例2-5构建的菌株和原始谷氨酸棒杆菌YPILE001(生物保藏编号为CGMCCNo.20437)在BLBIO-5GC-4-H型号的发酵罐(购自上海百仑生物科技有限公司)中以表3所示的培养基和表4所示发酵控制工艺进行发酵实验。每个菌株重复三次,结果如表5所示。The strains constructed in Example 2-5 and the original Corynebacterium glutamicum YPILE001 (Biological Deposit No. CGMCC No. 20437) were placed in the BLBIO-5GC-4-H model fermenter (purchased from Shanghai Bailun Biotechnology Co., Ltd.) Fermentation experiments were carried out with the medium shown in Table 3 and the fermentation control process shown in Table 4. Each strain was repeated three times and the results are shown in Table 5.
表3发酵培养基配方Table 3 Fermentation medium formula
表4发酵控制工艺Table 4 fermentation control process
表5L-异亮氨酸发酵实验结果Table 5L-Isoleucine Fermentation Test Results
结果如表5所示,在产异亮氨酸的工程菌谷氨酸棒杆菌YPILE001(生物保藏编号为CGMCC No.20437)中,对YH66_10715基因编码区进行点突变YH66_10715C991T都有助于L-异亮氨酸产量的提高;过表达YH66_10715、YH66_10715C991T有助提高L-异亮氨酸的产量,而对YH66_10715基因敲除,不利于L-异亮氨酸的积累。The results are shown in Table 5. In the isoleucine-producing engineering bacterium Corynebacterium glutamicum YPILE001 (biodeposit number: CGMCC No. 20437), the point mutation YH66_10715 C991T in the coding region of the YH66_10715 gene all contribute to L- Increase of isoleucine production; overexpression of YH66_10715 and YH66_10715 C991T helps to increase the production of L-isoleucine, while knockout of YH66_10715 gene is not conducive to the accumulation of L-isoleucine.
以上,对本发明的实施方式进行了说明。但是,本发明不限定于上述实施方式。凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The embodiments of the present invention have been described above. However, the present invention is not limited to the above-described embodiments. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included within the protection scope of the present invention.
序列表sequence listing
<110> 宁夏伊品生物科技股份有限公司<110> Ningxia Yipin Biotechnology Co., Ltd.
<120> YH66_10715基因改造的高产L-异亮氨酸的菌株及其构建方法和应用<120> YH66_10715 genetically modified high-yielding L-isoleucine strain and its construction method and application
<160> 28<160> 28
<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0
<210> 1<210> 1
<211> 1434<211> 1434
<212> DNA<212> DNA
<213> 谷氨酸棒杆菌(Corynebacterium glutamicum)<213> Corynebacterium glutamicum
<400> 1<400> 1
gtggcgtttg aaaccccgga agaaattgtc aagttcatca aggatgaaaa cgtcgagttc 60gtggcgtttg aaaccccgga agaaattgtc aagttcatca aggatgaaaa cgtcgagttc 60
gttgacgttc gattcaccga ccttcccggc accgagcagc acttcagcat cccagctgcc 120gttgacgttc gattcaccga ccttcccggc accgagcagc acttcagcat cccagctgcc 120
agcttcgatg cagatacagt cgaagaaggt ctcgcattcg acggatcctc gatccgtggc 180agcttcgatg cagatacagt cgaagaaggt ctcgcattcg acggatcctc gatccgtggc 180
ttcaccacga tcgacgaatc tgacatgaat ctcctgccag acctcggaac ggccaccctt 240ttcaccacga tcgacgaatc tgacatgaat ctcctgccag acctcggaac ggccaccctt 240
gatccattcc gcaaggcaaa gaccctgaac gttaagttct tcgttcacga tcctttcacc 300gatccattcc gcaaggcaaa gaccctgaac gttaagttct tcgttcacga tcctttcacc 300
cgcgaggcat tctcccgcga cccacgcaac gtagcacgca aggcagagca gtacctggca 360cgcgaggcat tctcccgcga cccacgcaac gtagcacgca aggcagagca gtacctggca 360
tccaccggca ttgcagacac ctgcaacttc ggcgccgagg ctgagttcta cctcttcgac 420tccaccggca ttgcagacac ctgcaacttc ggcgccgagg ctgagttcta cctcttcgac 420
tccgttcgct actccaccga gatgaactcc ggcttctacg aagtagatac cgaagaaggc 480tccgttcgct actccaccga gatgaactcc ggcttctacg aagtagatac cgaagaaggc 480
tggtggaacc gtggcaagga aaccaacctc gacggaaccc caaacctggg cgcaaagaac 540tggtggaacc gtggcaagga aaccaacctc gacggaaccc caaacctggg cgcaaagaac 540
cgcgtcaagg gtggctactt cccagtagca ccatacgacc aaaccgttga cgtgcgcgat 600cgcgtcaagg gtggctactt cccagtagca ccatacgacc aaaccgttga cgtgcgcgat 600
gacatggttc gcaacctcgc agcttccggc ttcgctcttg agcgtttcca ccacgaagtc 660gacatggttc gcaacctcgc agcttccggc ttcgctcttg agcgtttcca ccacgaagtc 660
ggtggcggac agcaggaaat caactaccgc ttcaacacca tgctccacgc ggcagatgat 720ggtggcggac agcaggaaat caactaccgc ttcaacacca tgctccacgc ggcagatgat 720
atccagacct tcaagtacat catcaagaac accgctcgcc tccacggcaa ggctgcaacc 780atccagacct tcaagtacat catcaagaac accgctcgcc tccacggcaa ggctgcaacc 780
ttcatgccta agccactggc tggcgacaac ggttccggca tgcacgctca ccagtccctc 840ttcatgccta agccactggc tggcgacaac ggttccggca tgcacgctca ccagtccctc 840
tggaaggacg gcaagccact cttccacgat gagtccggct acgcaggcct gtccgacatc 900tggaaggacg gcaagccact cttccacgat gagtccggct acgcaggcct gtccgacatc 900
gcccgctact acatcggcgg catcctgcac cacgcaggcg ctgttctggc gttcaccaac 960gcccgctact acatcggcgg catcctgcac cacgcaggcg ctgttctggc gttcaccaac 960
gcaaccctga actcctacca ccgtctggtt ccaggcttcg aggctccaat caacctggtg 1020gcaaccctga actcctacca ccgtctggtt ccaggcttcg aggctccaat caacctggtg 1020
tactcacagc gcaaccgttc cgctgctgtc cgtatcccaa tcaccggatc caacccaaag 1080tactcacagc gcaaccgttc cgctgctgtc cgtatcccaa tcaccggatc caacccaaag 1080
gcaaagcgca tcgaattccg cgctccagac ccatcaggca acccatacct gggcttcgca 1140gcaaagcgca tcgaattccg cgctccagac ccatcaggca acccatacct gggcttcgca 1140
gcgatgatga tggccggcct cgacggcatc aagaaccgca tcgagccaca cgctccagtg 1200gcgatgatga tggccggcct cgacggcatc aagaaccgca tcgagccaca cgctccagtg 1200
gacaaggacc tctacgaact gccaccagag gaagctgcat ccattccaca ggcaccaacc 1260gacaaggacc tctacgaact gccaccagag gaagctgcat ccattccaca ggcaccaacc 1260
tccctggaag catccctgaa ggcactgcag gaagacaccg acttcctcac cgagtctgac 1320tccctggaag catccctgaa ggcactgcag gaagacaccg acttcctcac cgagtctgac 1320
gtcttcaccg aggatctcat cgaggcgtac atccagtaca agtacgacaa cgagatctcc 1380gtcttcaccg aggatctcat cgaggcgtac atccagtaca agtacgacaa cgagatctcc 1380
ccagttcgcc tgcgcccaac cccgcaggaa ttcgaattgt acttcgactg ctaa 1434ccagttcgcc tgcgcccaac cccgcaggaa ttcgaattgt acttcgactg ctaa 1434
<210> 2<210> 2
<211> 1434<211> 1434
<212> DNA<212> DNA
<213> 谷氨酸棒杆菌(Corynebacterium glutamicum)<213> Corynebacterium glutamicum
<400> 2<400> 2
gtggcgtttg aaaccccgga agaaattgtc aagttcatca aggatgaaaa cgtcgagttc 60gtggcgtttg aaaccccgga agaaattgtc aagttcatca aggatgaaaa cgtcgagttc 60
gttgacgttc gattcaccga ccttcccggc accgagcagc acttcagcat cccagctgcc 120gttgacgttc gattcaccga ccttcccggc accgagcagc acttcagcat cccagctgcc 120
agcttcgatg cagatacagt cgaagaaggt ctcgcattcg acggatcctc gatccgtggc 180agcttcgatg cagatacagt cgaagaaggt ctcgcattcg acggatcctc gatccgtggc 180
ttcaccacga tcgacgaatc tgacatgaat ctcctgccag acctcggaac ggccaccctt 240ttcaccacga tcgacgaatc tgacatgaat ctcctgccag acctcggaac ggccaccctt 240
gatccattcc gcaaggcaaa gaccctgaac gttaagttct tcgttcacga tcctttcacc 300gatccattcc gcaaggcaaa gaccctgaac gttaagttct tcgttcacga tcctttcacc 300
cgcgaggcat tctcccgcga cccacgcaac gtagcacgca aggcagagca gtacctggca 360cgcgaggcat tctcccgcga cccacgcaac gtagcacgca aggcagagca gtacctggca 360
tccaccggca ttgcagacac ctgcaacttc ggcgccgagg ctgagttcta cctcttcgac 420tccaccggca ttgcagacac ctgcaacttc ggcgccgagg ctgagttcta cctcttcgac 420
tccgttcgct actccaccga gatgaactcc ggcttctacg aagtagatac cgaagaaggc 480tccgttcgct actccaccga gatgaactcc ggcttctacg aagtagatac cgaagaaggc 480
tggtggaacc gtggcaagga aaccaacctc gacggaaccc caaacctggg cgcaaagaac 540tggtggaacc gtggcaagga aaccaacctc gacggaaccc caaacctggg cgcaaagaac 540
cgcgtcaagg gtggctactt cccagtagca ccatacgacc aaaccgttga cgtgcgcgat 600cgcgtcaagg gtggctactt cccagtagca ccatacgacc aaaccgttga cgtgcgcgat 600
gacatggttc gcaacctcgc agcttccggc ttcgctcttg agcgtttcca ccacgaagtc 660gacatggttc gcaacctcgc agcttccggc ttcgctcttg agcgtttcca ccacgaagtc 660
ggtggcggac agcaggaaat caactaccgc ttcaacacca tgctccacgc ggcagatgat 720ggtggcggac agcaggaaat caactaccgc ttcaacacca tgctccacgc ggcagatgat 720
atccagacct tcaagtacat catcaagaac accgctcgcc tccacggcaa ggctgcaacc 780atccagacct tcaagtacat catcaagaac accgctcgcc tccacggcaa ggctgcaacc 780
ttcatgccta agccactggc tggcgacaac ggttccggca tgcacgctca ccagtccctc 840ttcatgccta agccactggc tggcgacaac ggttccggca tgcacgctca ccagtccctc 840
tggaaggacg gcaagccact cttccacgat gagtccggct acgcaggcct gtccgacatc 900tggaaggacg gcaagccact cttccacgat gagtccggct acgcaggcct gtccgacatc 900
gcccgctact acatcggcgg catcctgcac cacgcaggcg ctgttctggc gttcaccaac 960gcccgctact acatcggcgg catcctgcac cacgcaggcg ctgttctggc gttcaccaac 960
gcaaccctga actcctacca ccgtctggtt tcaggcttcg aggctccaat caacctggtg 1020gcaaccctga actcctacca ccgtctggtt tcaggcttcg aggctccaat caacctggtg 1020
tactcacagc gcaaccgttc cgctgctgtc cgtatcccaa tcaccggatc caacccaaag 1080tactcacagc gcaaccgttc cgctgctgtc cgtatcccaa tcaccggatc caacccaaag 1080
gcaaagcgca tcgaattccg cgctccagac ccatcaggca acccatacct gggcttcgca 1140gcaaagcgca tcgaattccg cgctccagac ccatcaggca acccatacct gggcttcgca 1140
gcgatgatga tggccggcct cgacggcatc aagaaccgca tcgagccaca cgctccagtg 1200gcgatgatga tggccggcct cgacggcatc aagaaccgca tcgagccaca cgctccagtg 1200
gacaaggacc tctacgaact gccaccagag gaagctgcat ccattccaca ggcaccaacc 1260gacaaggacc tctacgaact gccaccagag gaagctgcat ccattccaca ggcaccaacc 1260
tccctggaag catccctgaa ggcactgcag gaagacaccg acttcctcac cgagtctgac 1320tccctggaag catccctgaa ggcactgcag gaagacaccg acttcctcac cgagtctgac 1320
gtcttcaccg aggatctcat cgaggcgtac atccagtaca agtacgacaa cgagatctcc 1380gtcttcaccg aggatctcat cgaggcgtac atccagtaca agtacgacaa cgagatctcc 1380
ccagttcgcc tgcgcccaac cccgcaggaa ttcgaattgt acttcgactg ctaa 1434ccagttcgcc tgcgcccaac cccgcaggaa ttcgaattgt acttcgactg ctaa 1434
<210> 3<210> 3
<211> 477<211> 477
<212> PRT<212> PRT
<213> 谷氨酸棒杆菌(Corynebacterium glutamicum)<213> Corynebacterium glutamicum
<400> 3<400> 3
Met Ala Phe Glu Thr Pro Glu Glu Ile Val Lys Phe Ile Lys Asp GluMet Ala Phe Glu Thr Pro Glu Glu Ile Val Lys Phe Ile Lys Asp Glu
1 5 10 151 5 10 15
Asn Val Glu Phe Val Asp Val Arg Phe Thr Asp Leu Pro Gly Thr GluAsn Val Glu Phe Val Asp Val Arg Phe Thr Asp Leu Pro Gly Thr Glu
20 25 30 20 25 30
Gln His Phe Ser Ile Pro Ala Ala Ser Phe Asp Ala Asp Thr Val GluGln His Phe Ser Ile Pro Ala Ala Ser Phe Asp Ala Asp Thr Val Glu
35 40 45 35 40 45
Glu Gly Leu Ala Phe Asp Gly Ser Ser Ile Arg Gly Phe Thr Thr IleGlu Gly Leu Ala Phe Asp Gly Ser Ser Ile Arg Gly Phe Thr Thr Ile
50 55 60 50 55 60
Asp Glu Ser Asp Met Asn Leu Leu Pro Asp Leu Gly Thr Ala Thr LeuAsp Glu Ser Asp Met Asn Leu Leu Pro Asp Leu Gly Thr Ala Thr Leu
65 70 75 8065 70 75 80
Asp Pro Phe Arg Lys Ala Lys Thr Leu Asn Val Lys Phe Phe Val HisAsp Pro Phe Arg Lys Ala Lys Thr Leu Asn Val Lys Phe Phe Val His
85 90 95 85 90 95
Asp Pro Phe Thr Arg Glu Ala Phe Ser Arg Asp Pro Arg Asn Val AlaAsp Pro Phe Thr Arg Glu Ala Phe Ser Arg Asp Pro Arg Asn Val Ala
100 105 110 100 105 110
Arg Lys Ala Glu Gln Tyr Leu Ala Ser Thr Gly Ile Ala Asp Thr CysArg Lys Ala Glu Gln Tyr Leu Ala Ser Thr Gly Ile Ala Asp Thr Cys
115 120 125 115 120 125
Asn Phe Gly Ala Glu Ala Glu Phe Tyr Leu Phe Asp Ser Val Arg TyrAsn Phe Gly Ala Glu Ala Glu Phe Tyr Leu Phe Asp Ser Val Arg Tyr
130 135 140 130 135 140
Ser Thr Glu Met Asn Ser Gly Phe Tyr Glu Val Asp Thr Glu Glu GlySer Thr Glu Met Asn Ser Gly Phe Tyr Glu Val Asp Thr Glu Glu Gly
145 150 155 160145 150 155 160
Trp Trp Asn Arg Gly Lys Glu Thr Asn Leu Asp Gly Thr Pro Asn LeuTrp Trp Asn Arg Gly Lys Glu Thr Asn Leu Asp Gly Thr Pro Asn Leu
165 170 175 165 170 175
Gly Ala Lys Asn Arg Val Lys Gly Gly Tyr Phe Pro Val Ala Pro TyrGly Ala Lys Asn Arg Val Lys Gly Gly Tyr Phe Pro Val Ala Pro Tyr
180 185 190 180 185 190
Asp Gln Thr Val Asp Val Arg Asp Asp Met Val Arg Asn Leu Ala AlaAsp Gln Thr Val Asp Val Arg Asp Asp Met Val Arg Asn Leu Ala Ala
195 200 205 195 200 205
Ser Gly Phe Ala Leu Glu Arg Phe His His Glu Val Gly Gly Gly GlnSer Gly Phe Ala Leu Glu Arg Phe His His Glu Val Gly Gly Gly Gln
210 215 220 210 215 220
Gln Glu Ile Asn Tyr Arg Phe Asn Thr Met Leu His Ala Ala Asp AspGln Glu Ile Asn Tyr Arg Phe Asn Thr Met Leu His Ala Ala Asp Asp
225 230 235 240225 230 235 240
Ile Gln Thr Phe Lys Tyr Ile Ile Lys Asn Thr Ala Arg Leu His GlyIle Gln Thr Phe Lys Tyr Ile Ile Lys Asn Thr Ala Arg Leu His Gly
245 250 255 245 250 255
Lys Ala Ala Thr Phe Met Pro Lys Pro Leu Ala Gly Asp Asn Gly SerLys Ala Ala Thr Phe Met Pro Lys Pro Leu Ala Gly Asp Asn Gly Ser
260 265 270 260 265 270
Gly Met His Ala His Gln Ser Leu Trp Lys Asp Gly Lys Pro Leu PheGly Met His Ala His Gln Ser Leu Trp Lys Asp Gly Lys Pro Leu Phe
275 280 285 275 280 285
His Asp Glu Ser Gly Tyr Ala Gly Leu Ser Asp Ile Ala Arg Tyr TyrHis Asp Glu Ser Gly Tyr Ala Gly Leu Ser Asp Ile Ala Arg Tyr Tyr
290 295 300 290 295 300
Ile Gly Gly Ile Leu His His Ala Gly Ala Val Leu Ala Phe Thr AsnIle Gly Gly Ile Leu His His Ala Gly Ala Val Leu Ala Phe Thr Asn
305 310 315 320305 310 315 320
Ala Thr Leu Asn Ser Tyr His Arg Leu Val Pro Gly Phe Glu Ala ProAla Thr Leu Asn Ser Tyr His Arg Leu Val Pro Gly Phe Glu Ala Pro
325 330 335 325 330 335
Ile Asn Leu Val Tyr Ser Gln Arg Asn Arg Ser Ala Ala Val Arg IleIle Asn Leu Val Tyr Ser Gln Arg Asn Arg Ser Ala Ala Val Arg Ile
340 345 350 340 345 350
Pro Ile Thr Gly Ser Asn Pro Lys Ala Lys Arg Ile Glu Phe Arg AlaPro Ile Thr Gly Ser Asn Pro Lys Ala Lys Arg Ile Glu Phe Arg Ala
355 360 365 355 360 365
Pro Asp Pro Ser Gly Asn Pro Tyr Leu Gly Phe Ala Ala Met Met MetPro Asp Pro Ser Gly Asn Pro Tyr Leu Gly Phe Ala Ala Met Met Met
370 375 380 370 375 380
Ala Gly Leu Asp Gly Ile Lys Asn Arg Ile Glu Pro His Ala Pro ValAla Gly Leu Asp Gly Ile Lys Asn Arg Ile Glu Pro His Ala Pro Val
385 390 395 400385 390 395 400
Asp Lys Asp Leu Tyr Glu Leu Pro Pro Glu Glu Ala Ala Ser Ile ProAsp Lys Asp Leu Tyr Glu Leu Pro Pro Glu Glu Ala Ala Ser Ile Pro
405 410 415 405 410 415
Gln Ala Pro Thr Ser Leu Glu Ala Ser Leu Lys Ala Leu Gln Glu AspGln Ala Pro Thr Ser Leu Glu Ala Ser Leu Lys Ala Leu Gln Glu Asp
420 425 430 420 425 430
Thr Asp Phe Leu Thr Glu Ser Asp Val Phe Thr Glu Asp Leu Ile GluThr Asp Phe Leu Thr Glu Ser Asp Val Phe Thr Glu Asp Leu Ile Glu
435 440 445 435 440 445
Ala Tyr Ile Gln Tyr Lys Tyr Asp Asn Glu Ile Ser Pro Val Arg LeuAla Tyr Ile Gln Tyr Lys Tyr Asp Asn Glu Ile Ser Pro Val Arg Leu
450 455 460 450 455 460
Arg Pro Thr Pro Gln Glu Phe Glu Leu Tyr Phe Asp CysArg Pro Thr Pro Gln Glu Phe Glu Leu Tyr Phe Asp Cys
465 470 475465 470 475
<210> 4<210> 4
<211> 477<211> 477
<212> PRT<212> PRT
<213> 谷氨酸棒杆菌(Corynebacterium glutamicum)<213> Corynebacterium glutamicum
<400> 4<400> 4
Met Ala Phe Glu Thr Pro Glu Glu Ile Val Lys Phe Ile Lys Asp GluMet Ala Phe Glu Thr Pro Glu Glu Ile Val Lys Phe Ile Lys Asp Glu
1 5 10 151 5 10 15
Asn Val Glu Phe Val Asp Val Arg Phe Thr Asp Leu Pro Gly Thr GluAsn Val Glu Phe Val Asp Val Arg Phe Thr Asp Leu Pro Gly Thr Glu
20 25 30 20 25 30
Gln His Phe Ser Ile Pro Ala Ala Ser Phe Asp Ala Asp Thr Val GluGln His Phe Ser Ile Pro Ala Ala Ser Phe Asp Ala Asp Thr Val Glu
35 40 45 35 40 45
Glu Gly Leu Ala Phe Asp Gly Ser Ser Ile Arg Gly Phe Thr Thr IleGlu Gly Leu Ala Phe Asp Gly Ser Ser Ile Arg Gly Phe Thr Thr Ile
50 55 60 50 55 60
Asp Glu Ser Asp Met Asn Leu Leu Pro Asp Leu Gly Thr Ala Thr LeuAsp Glu Ser Asp Met Asn Leu Leu Pro Asp Leu Gly Thr Ala Thr Leu
65 70 75 8065 70 75 80
Asp Pro Phe Arg Lys Ala Lys Thr Leu Asn Val Lys Phe Phe Val HisAsp Pro Phe Arg Lys Ala Lys Thr Leu Asn Val Lys Phe Phe Val His
85 90 95 85 90 95
Asp Pro Phe Thr Arg Glu Ala Phe Ser Arg Asp Pro Arg Asn Val AlaAsp Pro Phe Thr Arg Glu Ala Phe Ser Arg Asp Pro Arg Asn Val Ala
100 105 110 100 105 110
Arg Lys Ala Glu Gln Tyr Leu Ala Ser Thr Gly Ile Ala Asp Thr CysArg Lys Ala Glu Gln Tyr Leu Ala Ser Thr Gly Ile Ala Asp Thr Cys
115 120 125 115 120 125
Asn Phe Gly Ala Glu Ala Glu Phe Tyr Leu Phe Asp Ser Val Arg TyrAsn Phe Gly Ala Glu Ala Glu Phe Tyr Leu Phe Asp Ser Val Arg Tyr
130 135 140 130 135 140
Ser Thr Glu Met Asn Ser Gly Phe Tyr Glu Val Asp Thr Glu Glu GlySer Thr Glu Met Asn Ser Gly Phe Tyr Glu Val Asp Thr Glu Glu Gly
145 150 155 160145 150 155 160
Trp Trp Asn Arg Gly Lys Glu Thr Asn Leu Asp Gly Thr Pro Asn LeuTrp Trp Asn Arg Gly Lys Glu Thr Asn Leu Asp Gly Thr Pro Asn Leu
165 170 175 165 170 175
Gly Ala Lys Asn Arg Val Lys Gly Gly Tyr Phe Pro Val Ala Pro TyrGly Ala Lys Asn Arg Val Lys Gly Gly Tyr Phe Pro Val Ala Pro Tyr
180 185 190 180 185 190
Asp Gln Thr Val Asp Val Arg Asp Asp Met Val Arg Asn Leu Ala AlaAsp Gln Thr Val Asp Val Arg Asp Asp Met Val Arg Asn Leu Ala Ala
195 200 205 195 200 205
Ser Gly Phe Ala Leu Glu Arg Phe His His Glu Val Gly Gly Gly GlnSer Gly Phe Ala Leu Glu Arg Phe His His Glu Val Gly Gly Gly Gln
210 215 220 210 215 220
Gln Glu Ile Asn Tyr Arg Phe Asn Thr Met Leu His Ala Ala Asp AspGln Glu Ile Asn Tyr Arg Phe Asn Thr Met Leu His Ala Ala Asp Asp
225 230 235 240225 230 235 240
Ile Gln Thr Phe Lys Tyr Ile Ile Lys Asn Thr Ala Arg Leu His GlyIle Gln Thr Phe Lys Tyr Ile Ile Lys Asn Thr Ala Arg Leu His Gly
245 250 255 245 250 255
Lys Ala Ala Thr Phe Met Pro Lys Pro Leu Ala Gly Asp Asn Gly SerLys Ala Ala Thr Phe Met Pro Lys Pro Leu Ala Gly Asp Asn Gly Ser
260 265 270 260 265 270
Gly Met His Ala His Gln Ser Leu Trp Lys Asp Gly Lys Pro Leu PheGly Met His Ala His Gln Ser Leu Trp Lys Asp Gly Lys Pro Leu Phe
275 280 285 275 280 285
His Asp Glu Ser Gly Tyr Ala Gly Leu Ser Asp Ile Ala Arg Tyr TyrHis Asp Glu Ser Gly Tyr Ala Gly Leu Ser Asp Ile Ala Arg Tyr Tyr
290 295 300 290 295 300
Ile Gly Gly Ile Leu His His Ala Gly Ala Val Leu Ala Phe Thr AsnIle Gly Gly Ile Leu His His Ala Gly Ala Val Leu Ala Phe Thr Asn
305 310 315 320305 310 315 320
Ala Thr Leu Asn Ser Tyr His Arg Leu Val Ser Gly Phe Glu Ala ProAla Thr Leu Asn Ser Tyr His Arg Leu Val Ser Gly Phe Glu Ala Pro
325 330 335 325 330 335
Ile Asn Leu Val Tyr Ser Gln Arg Asn Arg Ser Ala Ala Val Arg IleIle Asn Leu Val Tyr Ser Gln Arg Asn Arg Ser Ala Ala Val Arg Ile
340 345 350 340 345 350
Pro Ile Thr Gly Ser Asn Pro Lys Ala Lys Arg Ile Glu Phe Arg AlaPro Ile Thr Gly Ser Asn Pro Lys Ala Lys Arg Ile Glu Phe Arg Ala
355 360 365 355 360 365
Pro Asp Pro Ser Gly Asn Pro Tyr Leu Gly Phe Ala Ala Met Met MetPro Asp Pro Ser Gly Asn Pro Tyr Leu Gly Phe Ala Ala Met Met Met
370 375 380 370 375 380
Ala Gly Leu Asp Gly Ile Lys Asn Arg Ile Glu Pro His Ala Pro ValAla Gly Leu Asp Gly Ile Lys Asn Arg Ile Glu Pro His Ala Pro Val
385 390 395 400385 390 395 400
Asp Lys Asp Leu Tyr Glu Leu Pro Pro Glu Glu Ala Ala Ser Ile ProAsp Lys Asp Leu Tyr Glu Leu Pro Pro Glu Glu Ala Ala Ser Ile Pro
405 410 415 405 410 415
Gln Ala Pro Thr Ser Leu Glu Ala Ser Leu Lys Ala Leu Gln Glu AspGln Ala Pro Thr Ser Leu Glu Ala Ser Leu Lys Ala Leu Gln Glu Asp
420 425 430 420 425 430
Thr Asp Phe Leu Thr Glu Ser Asp Val Phe Thr Glu Asp Leu Ile GluThr Asp Phe Leu Thr Glu Ser Asp Val Phe Thr Glu Asp Leu Ile Glu
435 440 445 435 440 445
Ala Tyr Ile Gln Tyr Lys Tyr Asp Asn Glu Ile Ser Pro Val Arg LeuAla Tyr Ile Gln Tyr Lys Tyr Asp Asn Glu Ile Ser Pro Val Arg Leu
450 455 460 450 455 460
Arg Pro Thr Pro Gln Glu Phe Glu Leu Tyr Phe Asp CysArg Pro Thr Pro Gln Glu Phe Glu Leu Tyr Phe Asp Cys
465 470 475465 470 475
<210> 5<210> 5
<211> 56<211> 56
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 5<400> 5
cagtgccaag cttgcatgcc tgcaggtcga ctctagaagt tcttcgttca cgatcc 56cagtgccaag cttgcatgcc tgcaggtcga ctctagaagt tcttcgttca cgatcc 56
<210> 6<210> 6
<211> 40<211> 40
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 6<400> 6
gttgattgga gcctcgaagc ctgaaaccag acggtggtag 40gttgattgga gcctcgaagc ctgaaaccag acggtggtag 40
<210> 7<210> 7
<211> 40<211> 40
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 7<400> 7
ctaccaccgt ctggtttcag gcttcgaggc tccaatcaac 40ctaccaccgt ctggtttcag gcttcgaggc tccaatcaac 40
<210> 8<210> 8
<211> 56<211> 56
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 8<400> 8
cagctatgac catgattacg aattcgagct cggtaccctg gaacgccagt tggaag 56cagctatgac catgattacg aattcgagct cggtaccctg gaacgccagt tggaag 56
<210> 9<210> 9
<211> 18<211> 18
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 9<400> 9
aaggacggca agccactc 18aaggacggca agccactc 18
<210> 10<210> 10
<211> 18<211> 18
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 10<400> 10
agttcgtaga ggtccttg 18agttcgtaga ggtccttg 18
<210> 11<210> 11
<211> 55<211> 55
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 11<400> 11
cagtgccaag cttgcatgcc tgcaggtcga ctctaggttt gcttccaaag gcgtg 55cagtgccaag cttgcatgcc tgcaggtcga ctctaggttt gcttccaaag gcgtg 55
<210> 12<210> 12
<211> 36<211> 36
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 12<400> 12
cggggtttca aacgccactc atttcagcgt cagatg 36cggggtttca aacgccactc atttcagcgt cagatg 36
<210> 13<210> 13
<211> 36<211> 36
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 13<400> 13
catctgacgc tgaaatgagt ggcgtttgaa accccg 36catctgacgc tgaaatgagt ggcgtttgaa accccg 36
<210> 14<210> 14
<211> 38<211> 38
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 14<400> 14
ccggccttat ttcggcatta gcagtcgaag tacaattc 38ccggccttat ttcggcatta gcagtcgaag tacaattc 38
<210> 15<210> 15
<211> 38<211> 38
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 15<400> 15
gaattgtact tcgactgcta atgccgaaat aaggccgg 38gaattgtact tcgactgcta atgccgaaat aaggccgg 38
<210> 16<210> 16
<211> 56<211> 56
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 16<400> 16
cagctatgac catgattacg aattcgagct cggtaccctg ccttctaaaa ctgccg 56cagctatgac catgattacg aattcgagct cggtaccctg ccttctaaaa ctgccg 56
<210> 17<210> 17
<211> 18<211> 18
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 17<400> 17
tgatggatgg gctcactc 18tgatggatgg gctcactc 18
<210> 18<210> 18
<211> 19<211> 19
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 18<400> 18
cgaactcgac gttttcatc 19cgaactcgac gttttcatc 19
<210> 19<210> 19
<211> 19<211> 19
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 19<400> 19
cagtacaagt acgacaacg 19cagtacaagt acgacaacg 19
<210> 20<210> 20
<211> 18<211> 18
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 20<400> 20
cgaatttgta tagcctag 18cgaatttgta tagcctag 18
<210> 21<210> 21
<211> 54<211> 54
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 21<400> 21
gcttgcatgc ctgcaggtcg actctagagg atccccgtgg cgtttgaaac cccg 54gcttgcatgc ctgcaggtcg actctagagg atccccgtgg cgtttgaaac cccg 54
<210> 22<210> 22
<211> 55<211> 55
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 22<400> 22
atcaggctga aaatcttctc tcatccgcca aaacgaattg tacttcgact gctaa 55atcaggctga aaatcttctc tcatccgcca aaacgaattg tacttcgact gctaa 55
<210> 23<210> 23
<211> 54<211> 54
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 23<400> 23
cagtgccaag cttgcatgcc tgcaggtcga ctctagaaaa tttgcaactc tcgc 54cagtgccaag cttgcatgcc tgcaggtcga ctctagaaaa tttgcaactc tcgc 54
<210> 24<210> 24
<211> 38<211> 38
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 24<400> 24
cggctagcta agtgaattag cggtgactcc tcattgac 38cggctagcta agtgaattag cggtgactcc tcattgac 38
<210> 25<210> 25
<211> 38<211> 38
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 25<400> 25
gtcaatgagg agtcaccgct aattcactta gctagccg 38gtcaatgagg agtcaccgct aattcactta gctagccg 38
<210> 26<210> 26
<211> 57<211> 57
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 26<400> 26
cagctatgac catgattacg aattcgagct cggtacccaa aatgcttttc gacgtcc 57cagctatgac catgattacg aattcgagct cggtacccaa aatgcttttc gacgtcc 57
<210> 27<210> 27
<211> 19<211> 19
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 27<400> 27
gcgctgacta tgcagattc 19gcgctgacta tgcagattc 19
<210> 28<210> 28
<211> 18<211> 18
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 28<400> 28
aaactcgacc ttcacgtc 18aaactcgacc ttcacgtc 18
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011631243.7A CN112662605B (en) | 2020-12-30 | 2020-12-30 | YH66_10715 gene-modified L-isoleucine-producing strain and its construction method and application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011631243.7A CN112662605B (en) | 2020-12-30 | 2020-12-30 | YH66_10715 gene-modified L-isoleucine-producing strain and its construction method and application |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112662605A CN112662605A (en) | 2021-04-16 |
CN112662605B true CN112662605B (en) | 2022-09-06 |
Family
ID=75413056
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011631243.7A Active CN112662605B (en) | 2020-12-30 | 2020-12-30 | YH66_10715 gene-modified L-isoleucine-producing strain and its construction method and application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112662605B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117757704B (en) * | 2022-12-19 | 2024-08-27 | 元素驱动(杭州)生物科技有限公司 | Method for improving yield of Branched Chain Amino Acid (BCAA) and strain construction |
CN116463304B (en) * | 2023-06-14 | 2023-09-05 | 黑龙江伊品生物科技有限公司 | Threonine dehydrogenase gene mutant and application thereof |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2175351C2 (en) * | 1998-12-30 | 2001-10-27 | Закрытое акционерное общество "Научно-исследовательский институт "Аджиномото-Генетика" (ЗАО "АГРИ") | Escherichia coli dna fragment determining enhanced production of l-amino acids (variants) and method of l-amino acid producing |
CA2590662A1 (en) * | 1999-06-25 | 2001-01-04 | Basf Aktiengesellschaft | Corynebacterium glutamicum genes encoding metabolic pathway proteins |
JP6623690B2 (en) * | 2015-10-30 | 2019-12-25 | 味の素株式会社 | Method for producing glutamic acid-based L-amino acid |
-
2020
- 2020-12-30 CN CN202011631243.7A patent/CN112662605B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN112662605A (en) | 2021-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111979164B (en) | A recombinant strain producing L-lysine and its construction method and application | |
CN111979165B (en) | Recombinant strain for producing L-lysine and construction method and application thereof | |
CN112646766B (en) | Recombinant strain for producing L-glutamic acid by modifying gene BBD29_04920 as well as construction method and application thereof | |
CN112662605B (en) | YH66_10715 gene-modified L-isoleucine-producing strain and its construction method and application | |
CN112646767B (en) | Strain with enhanced L-glutamic acid productivity and construction method and application thereof | |
CN111961635B (en) | A recombinant strain producing L-lysine and its construction method and application | |
CN112592924B (en) | A kind of YH66_10325 genetically modified L-isoleucine-producing recombinant strain and its construction method and application | |
CN112625992B (en) | A kind of recombinant strain with modified gene BBD29_11265 producing L-glutamic acid and its construction method and application | |
CN112725253B (en) | A recombinant strain of modified gene BBD29_14900 and its construction method and application | |
CN112522175B (en) | A recombinant strain producing L-glutamic acid with modified gene BBD29_09525 and its construction method and application | |
CN112538491B (en) | A recombinant strain producing L-isoleucine based on YH66_08550 gene and its construction method and application | |
CN111471693A (en) | A lysine-producing Corynebacterium glutamicum and its construction method and application | |
JP7644133B2 (en) | L-lysine producing recombinant strain, its construction method and use | |
CN112501097B (en) | Recombinant strain for modifying YH66_06385 gene, construction method thereof and application of recombinant strain for producing L-isoleucine | |
CN112266891B (en) | A recombinant strain producing L-amino acid and its construction method and application | |
CN114369559B (en) | A recombinant strain producing L-amino acid and its construction method and application | |
CN112626098A (en) | Recombinant strain for modifying kgd gene, construction method thereof and application of recombinant strain for producing L-isoleucine | |
KR20230042224A (en) | Recombinant strains producing L-amino acids and their construction methods and applications | |
KR20230045051A (en) | Recombinant strains producing L-amino acids and their construction methods and applications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |