CN112654700B - Gene coding system for constructing and detecting bioactive agents - Google Patents
Gene coding system for constructing and detecting bioactive agents Download PDFInfo
- Publication number
- CN112654700B CN112654700B CN201980058408.5A CN201980058408A CN112654700B CN 112654700 B CN112654700 B CN 112654700B CN 201980058408 A CN201980058408 A CN 201980058408A CN 112654700 B CN112654700 B CN 112654700B
- Authority
- CN
- China
- Prior art keywords
- protein
- ptp1b
- gene
- phosphatase
- promoter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/005—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/12—Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/47—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/20—Bacteria; Culture media therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/12—Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
- C12N9/1205—Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/60—Fusion polypeptide containing spectroscopic/fluorescent detection, e.g. green fluorescent protein [GFP]
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/80—Fusion polypeptide containing a DNA binding domain, e.g. Lacl or Tet-repressor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/16—Hydrolases (3) acting on ester bonds (3.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12R—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
- C12R2001/00—Microorganisms ; Processes using microorganisms
- C12R2001/01—Bacteria or Actinomycetales ; using bacteria or Actinomycetales
- C12R2001/185—Escherichia
- C12R2001/19—Escherichia coli
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y205/00—Transferases transferring alkyl or aryl groups, other than methyl groups (2.5)
- C12Y205/01—Transferases transferring alkyl or aryl groups, other than methyl groups (2.5) transferring alkyl or aryl groups, other than methyl groups (2.5.1)
- C12Y205/01001—Dimethylallyltranstransferase (2.5.1.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y205/00—Transferases transferring alkyl or aryl groups, other than methyl groups (2.5)
- C12Y205/01—Transferases transferring alkyl or aryl groups, other than methyl groups (2.5) transferring alkyl or aryl groups, other than methyl groups (2.5.1)
- C12Y205/0101—(2E,6E)-Farnesyl diphosphate synthase (2.5.1.10), i.e. geranyltranstransferase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y207/00—Transferases transferring phosphorus-containing groups (2.7)
- C12Y207/01—Phosphotransferases with an alcohol group as acceptor (2.7.1)
- C12Y207/01036—Mevalonate kinase (2.7.1.36)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y207/00—Transferases transferring phosphorus-containing groups (2.7)
- C12Y207/04—Phosphotransferases with a phosphate group as acceptor (2.7.4)
- C12Y207/04002—Phosphomevalonate kinase (2.7.4.2)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y301/00—Hydrolases acting on ester bonds (3.1)
- C12Y301/01—Carboxylic ester hydrolases (3.1.1)
- C12Y301/01048—Fusarinine-C ornithinesterase (3.1.1.48)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y401/00—Carbon-carbon lyases (4.1)
- C12Y401/01—Carboxy-lyases (4.1.1)
- C12Y401/01033—Diphosphomevalonate decarboxylase (4.1.1.33), i.e. mevalonate-pyrophosphate decarboxylase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y402/00—Carbon-oxygen lyases (4.2)
- C12Y402/03—Carbon-oxygen lyases (4.2) acting on phosphates (4.2.3)
- C12Y402/03017—Taxadiene synthase (4.2.3.17)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y402/00—Carbon-oxygen lyases (4.2)
- C12Y402/03—Carbon-oxygen lyases (4.2) acting on phosphates (4.2.3)
- C12Y402/03018—Abieta-7,13-diene synthase (4.2.3.18)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y402/00—Carbon-oxygen lyases (4.2)
- C12Y402/03—Carbon-oxygen lyases (4.2) acting on phosphates (4.2.3)
- C12Y402/03024—Amorpha-4,11-diene synthase (4.2.3.24)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y402/00—Carbon-oxygen lyases (4.2)
- C12Y402/03—Carbon-oxygen lyases (4.2) acting on phosphates (4.2.3)
- C12Y402/03056—Gamma-humulene synthase (4.2.3.56)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y503/00—Intramolecular oxidoreductases (5.3)
- C12Y503/03—Intramolecular oxidoreductases (5.3) transposing C=C bonds (5.3.3)
- C12Y503/03002—Isopentenyl-diphosphate DELTA-isomerase (5.3.3.2)
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Zoology (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Medicinal Chemistry (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Biomedical Technology (AREA)
- Gastroenterology & Hepatology (AREA)
- Biophysics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Virology (AREA)
- Toxicology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Enzymes And Modification Thereof (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
本发明涉及基因工程的领域。特别地,本发明涉及产生生物活性剂的操纵子的构建。例如,可构建操纵子以产生控制生物化学途径蛋白质(例如,蛋白磷酸酶、激酶和/或蛋白酶)功能的试剂。这种试剂可包括用于研究或控制与磷酸酶途径或表达水平中的异常相关的磷酸酶功能中的抑制剂和调节剂。融合蛋白,比如光活化的蛋白磷酸酶,可被基因编码且被表达为光控开关磷酸酶。提供用于控制活细胞内的磷酸酶功能或鉴定与细胞信号传导相关的蛋白磷酸酶的小分子抑制剂/活化剂/调节剂分子的系统。
The present invention relates to the field of genetic engineering. In particular, the invention relates to the construction of operons for the production of biologically active agents. For example, operons can be constructed to generate reagents that control the function of biochemical pathway proteins (eg, protein phosphatases, kinases, and/or proteases). Such reagents may include inhibitors and modulators useful in the study or control of phosphatase function associated with abnormalities in phosphatase pathways or expression levels. Fusion proteins, such as light-activated protein phosphatases, can be genetically encoded and expressed as light-switchable phosphatases. Provides a system for controlling phosphatase function in living cells or identifying small molecule inhibitor/activator/modulator molecules of protein phosphatases associated with cell signaling.
Description
政府支持声明Government Support Statement
本发明是在国家科学基金给予的授予号(Award)1750244和1804897下由政府支持进行。政府享有本发明的某些权利。This invention was made with government support under Award Nos. 1750244 and 1804897 awarded by the National Science Foundation. The government has certain rights in this invention.
技术领域Technical Field
本发明涉及基因工程的领域。特别地,本发明涉及产生生物活性剂的操纵子的构建。例如,可构建操纵子以产生控制生物化学途径蛋白质(例如,蛋白磷酸酶、激酶和/或蛋白酶)功能的试剂。这种试剂可包括可用于研究或控制与磷酸酶途径或表达水平中的异常相关的磷酸酶功能中的抑制剂和调节剂。融合蛋白,比如光活化的蛋白磷酸酶,可被基因编码且被表达为光控开关磷酸酶。提供用于控制活细胞内的磷酸酶功能或鉴定与细胞信号传导相关的蛋白磷酸酶的小分子抑制剂/活化剂/调节剂分子的系统。The present invention relates to the field of genetic engineering. In particular, the present invention relates to the construction of operons for producing bioactive agents. For example, operons can be constructed to produce reagents for controlling the functions of biochemical pathway proteins (e.g., protein phosphatases, kinases and/or proteases). Such reagents may include inhibitors and regulators that can be used to study or control the phosphatase functions associated with abnormalities in phosphatase pathways or expression levels. Fusion proteins, such as light-activated protein phosphatases, can be genetically encoded and expressed as light-controlled switch phosphatases. Systems for controlling the phosphatase functions in living cells or identifying small molecule inhibitors/activators/regulator molecules of protein phosphatases associated with cell signaling are provided.
背景技术Background Art
蛋白质磷酸化涉及细胞信号传导,因为其部分控制细胞分化、移动、增殖和死亡的位置和时机1-4;其失调与癌症、糖尿病、肥胖和阿尔茨海默氏疾病等紊乱有关5-9。对活细胞中磷酸化调节酶的活性施加时空控制的光学工具可阐明细胞传输、过滤和整合化学信号的机制10,11,揭示看似截然不同的生理过程(例如,记忆12和新陈代谢13)之间的联系并且促进用于磷酸化调节疗法(一类药物14)的新靶标的鉴定。因此,需要开发工具来控制、减少或增强活细胞中磷酸化调节酶的活性。Protein phosphorylation is implicated in cellular signaling because it controls, in part, the location and timing of cell differentiation, migration, proliferation, and death1-4 ; its dysregulation is associated with disorders such as cancer, diabetes, obesity, and Alzheimer's disease5-9 . Optical tools that exert spatiotemporal control over the activity of phospho-regulated enzymes in living cells could elucidate the mechanisms by which cells transmit, filter, and integrate chemical signals10,11 , reveal connections between seemingly disparate physiological processes (e.g., memory12 and metabolism13 ), and facilitate the identification of new targets for phospho-regulated therapeutics, a class of drugs14 . Therefore, there is a need to develop tools to control, reduce, or enhance the activity of phospho-regulated enzymes in living cells.
发明内容Summary of the invention
本发明涉及基因工程的领域。特别地,本发明涉及产生生物活性剂的操纵子的构建。例如,可构建操纵子以产生控制生物化学途径蛋白质(例如,蛋白磷酸酶、激酶和/或蛋白酶)功能的试剂。这种试剂可包括可用于研究或控制与磷酸酶途径或表达水平中的异常相关的磷酸酶功能中的抑制剂和调节剂。融合蛋白,比如光活化的蛋白磷酸酶,可被基因编码且被表达为光控开关磷酸酶。提供用于控制活细胞内的磷酸酶功能或鉴定与细胞信号传导相关的蛋白磷酸酶的小分子抑制剂/活化剂/调节剂分子的系统。The present invention relates to the field of genetic engineering. In particular, the present invention relates to the construction of operons for producing bioactive agents. For example, operons can be constructed to produce reagents for controlling the functions of biochemical pathway proteins (e.g., protein phosphatases, kinases and/or proteases). Such reagents may include inhibitors and regulators that can be used to study or control the phosphatase functions associated with abnormalities in phosphatase pathways or expression levels. Fusion proteins, such as light-activated protein phosphatases, can be genetically encoded and expressed as light-controlled switch phosphatases. Systems for controlling the phosphatase functions in living cells or identifying small molecule inhibitors/activators/regulator molecules of protein phosphatases associated with cell signaling are provided.
在一个实施方式中,本发明考虑了基因操纵子,其包括:a)提供;i)编码第一融合蛋白的第一基因,第一融合蛋白包括底物识别结构域和DNA结合结构域或RNA聚合酶的锚定单元(anchoring unit);ii)编码第二融合蛋白的第二基因,第二融合蛋白包括酶底物结构域和RNA聚合酶的锚定单元或DNA结合结构域;iii)包括所述DNA结合结构域的结合位点的第一DNA序列;iv)包括对于所述锚定单元和对于所述RNA聚合酶的接近第一的结合位点的第二DNA序列;v)编码第一酶的第三基因,其中所述第一酶能够修饰所述底物结构域,从而改变所述底物识别结构域的亲和力;vi)编码第二酶的第四基因,其中所述第二酶能够不修饰所述底物结构域;vii)报道基因,其编码至少一种在两个融合蛋白缔合后当所述RNA聚合酶和所述锚定单元结合至所述第二DNA序列结合位点时能够具有可检测输出的。在一个实施方式中,所述底物结构域是蛋白激酶的肽底物。在一个实施方式中,所述底物结构域是蛋白酪氨酸激酶的肽底物。在一个实施方式中,所述底物结构域是Src激酶(蛋白酪氨酸激酶)的肽底物。在一个实施方式中,所述底物识别结构域能够以其磷酸化状态结合至所述底物结构域。在一个实施方式中,所述底物识别结构域能够以其未磷酸化状态结合至所述底物结构域。在一个实施方式中,所述DNA结合结构域是434cI阻遏物且所述DNA结合位点是434cI阻遏物的结合序列。在一个实施方式中,所述锚定单元是RNA聚合酶的ω亚单元和所述第二DNA结合位点是RNA聚合酶的结合位点。在一个实施方式中,所述底物结构域是蛋白激酶的肽底物。在一个实施方式中,所述操纵子进一步包括蛋白质系统。在一个实施方式中,所述第一酶是蛋白磷酸酶。在一个实施方式中,所述第一酶是蛋白酪氨酸磷酸酶。在一个实施方式中,所述第一酶是蛋白酪氨酸磷酸酶1B。在一个实施方式中,所述第二酶是蛋白激酶。在一个实施方式中,所述第二酶是蛋白酪氨酸激酶。在一个实施方式中,所述第二酶是Src激酶。在一个实施方式中,产生可检测输出的所述报道蛋白是LuxAB生物报道分子(例如,输出是发光)。在一个实施方式中,产生可检测输出的所述报道蛋白是荧光蛋白质。在一个实施方式中,产生可检测输出的所述报道蛋白是mClover。在一个实施方式中,产生可检测输出的所述报道蛋白赋予抗生素抗性。在一个实施方式中,所述抗生素抗性是对大观霉素的。在一个实施方式中,所述操纵子进一步包括编码诱饵蛋白融合的基因,其包括:(i)不同于第一酶底物结构域的第二酶底物结构域和(ii)不特异性结合至DNA和/或RNA聚合酶的蛋白质,和编码第三酶的第五基因,其中所述第三酶能够在诱饵底物结构域上是活性的。在一个实施方式中,所述第一酶底物结构域(基础系统的)和所述第二酶底物结构域(诱饵的)二者是蛋白激酶的底物。在一个实施方式中,所述第一酶底物结构域(基础系统的)和所述第二酶底物结构域(诱饵的)二者是蛋白酪氨酸激酶的底物。在一个实施方式中,所述第一酶底物结构域(基础系统的)和所述第二酶底物结构域(诱饵的)二者是Src激酶的底物。在一个实施方式中,所述第一酶底物结构域(基础系统的)和所述第二底物结构域(诱饵的)二者是蛋白磷酸酶的底物。在一个实施方式中,所述第一酶底物结构域(基础系统的)和所述第二底物结构域(诱饵的)二者是蛋白酪氨酸磷酸酶的底物。在一个实施方式中,所述第一酶底物结构域(基础系统的)和所述第二底物结构域(诱饵的)二者是蛋白酪氨酸磷酸酶1B的底物。在一个实施方式中,所述第一酶是光调节酶。在一个实施方式中,所述第一酶是蛋白质-LOV2嵌合体。在一个实施方式中,所述第一酶是PTP1B-LOV2嵌合体。在一个实施方式中,产生可检测输出的所述蛋白质包括在非必需底物存在的情况下生成有毒的产物的蛋白质。在一个实施方式中,所述另外蛋白质是SacB,其将蔗糖转变为在大肠杆菌中是有毒的非结构多糖。在一个实施方式中,所述操纵子进一步包括表达载体和细菌细胞。In one embodiment, the present invention contemplates a gene operon comprising: a) providing; i) a first gene encoding a first fusion protein, the first fusion protein comprising a substrate recognition domain and a DNA binding domain or an anchoring unit of an RNA polymerase; ii) a second gene encoding a second fusion protein, the second fusion protein comprising an enzyme substrate domain and an anchoring unit or a DNA binding domain of an RNA polymerase; iii) a first DNA sequence comprising a binding site for the DNA binding domain; iv) a second DNA sequence comprising a binding site for the anchoring unit and for the RNA polymerase close to the first; v) a third gene encoding a first enzyme, wherein the first enzyme is capable of modifying the substrate domain, thereby changing the affinity of the substrate recognition domain; vi) a fourth gene encoding a second enzyme, wherein the second enzyme is capable of not modifying the substrate domain; vii) a reporter gene encoding at least one gene capable of having a detectable output when the RNA polymerase and the anchoring unit bind to the second DNA sequence binding site after the two fusion proteins are associated. In one embodiment, the substrate domain is a peptide substrate of a protein kinase. In one embodiment, the substrate domain is a peptide substrate of a protein tyrosine kinase. In one embodiment, the substrate domain is a peptide substrate of a Src kinase (protein tyrosine kinase). In one embodiment, the substrate recognition domain can bind to the substrate domain in its phosphorylated state. In one embodiment, the substrate recognition domain can bind to the substrate domain in its unphosphorylated state. In one embodiment, the DNA binding domain is a 434cI repressor and the DNA binding site is a binding sequence of a 434cI repressor. In one embodiment, the anchoring unit is an ω subunit of an RNA polymerase and the second DNA binding site is a binding site of an RNA polymerase. In one embodiment, the substrate domain is a peptide substrate of a protein kinase. In one embodiment, the operon further comprises a protein system. In one embodiment, the first enzyme is a protein phosphatase. In one embodiment, the first enzyme is a protein tyrosine phosphatase. In one embodiment, the first enzyme is a protein tyrosine phosphatase 1B. In one embodiment, the second enzyme is a protein kinase. In one embodiment, the second enzyme is a protein tyrosine kinase. In one embodiment, the second enzyme is a Src kinase. In one embodiment, the reporter protein that produces a detectable output is a LuxAB bioreporter (e.g., the output is luminescence). In one embodiment, the reporter protein that produces a detectable output is a fluorescent protein. In one embodiment, the reporter protein that produces a detectable output is mClover. In one embodiment, the reporter protein that produces a detectable output confers antibiotic resistance. In one embodiment, the antibiotic resistance is to spectinomycin. In one embodiment, the operon further includes a gene encoding a bait protein fusion, which includes: (i) a second enzyme substrate domain different from the first enzyme substrate domain and (ii) a protein that does not specifically bind to DNA and/or RNA polymerase, and a fifth gene encoding a third enzyme, wherein the third enzyme is active on the bait substrate domain. In one embodiment, both the first enzyme substrate domain (of the base system) and the second enzyme substrate domain (of the bait) are substrates of protein kinases. In one embodiment, both the first enzyme substrate domain (of the base system) and the second enzyme substrate domain (of the bait) are substrates of protein tyrosine kinases. In one embodiment, both the first enzyme substrate domain (of the base system) and the second enzyme substrate domain (of the bait) are substrates of Src kinase. In one embodiment, both the first enzyme substrate domain (of the base system) and the second substrate domain (of the bait) are substrates of protein phosphatases. In one embodiment, both the first enzyme substrate domain (of the base system) and the second substrate domain (of the bait) are substrates of protein tyrosine phosphatases. In one embodiment, both the first enzyme substrate domain (of the base system) and the second substrate domain (of the bait) are substrates of protein tyrosine phosphatases 1B. In one embodiment, the first enzyme is a light-regulated enzyme. In one embodiment, the first enzyme is a protein-LOV2 chimera. In one embodiment, the first enzyme is a PTP1B-LOV2 chimera. In one embodiment, the protein that produces a detectable output includes a protein that generates a toxic product in the presence of a non-essential substrate. In one embodiment, the additional protein is SacB, which converts sucrose into a non-structural polysaccharide that is toxic in Escherichia coli. In one embodiment, the operon further comprises an expression vector and a bacterial cell.
在一个实施方式中,本发明考虑了用于检测酶的抑制剂的系统,其包括:a)提供;i)包括编码酶的基因的操纵子;ii)细菌细胞;iii)小分子测试化合物;和b)将所述细菌与所述操纵子接触,使得所述接触的细菌能够产生可检测输出;c)在允许所述可检测输出的条件下,在所述测试化合物存在的情况下,生长所述接触的细菌;和d)评估测试化合物对所述可检测输出的影响。在一个实施方式中,所述酶是蛋白磷酸酶。在一个实施方式中,所述酶是蛋白酪氨酸磷酸酶。在一个实施方式中,所述酶是蛋白酪氨酸磷酸酶1B。In one embodiment, the present invention contemplates a system for detecting an inhibitor of an enzyme, comprising: a) providing; i) an operon comprising a gene encoding an enzyme; ii) a bacterial cell; iii) a small molecule test compound; and b) contacting the bacteria with the operon such that the contacted bacteria are capable of producing a detectable output; c) growing the contacted bacteria in the presence of the test compound under conditions that allow for the detectable output; and d) evaluating the effect of the test compound on the detectable output. In one embodiment, the enzyme is a protein phosphatase. In one embodiment, the enzyme is a protein tyrosine phosphatase. In one embodiment, the enzyme is protein tyrosine phosphatase 1B.
在一个实施方式中,本发明考虑了用于进化酶的抑制剂的方法,其包括:a)提供:i)包括编码酶的基因的操纵子;ii)细菌细胞文库,其中每种所述细菌细胞具有至少一种突变的代谢途径;b)生长所述细菌细胞文库;和c)筛选用于可检测输出的所述细菌细胞文库。在一个实施方式中,所述操纵子进一步包括表达载体。In one embodiment, the present invention contemplates a method for evolving an inhibitor of an enzyme, comprising: a) providing: i) an operon comprising genes encoding an enzyme; ii) a library of bacterial cells, wherein each of the bacterial cells has at least one mutated metabolic pathway; b) growing the library of bacterial cells; and c) screening the library of bacterial cells for detectable output. In one embodiment, the operon further comprises an expression vector.
在一个实施方式中,本发明考虑了用于相对于第二酶检测第一酶的选择性抑制剂的方法,包括:a)提供;i)如以上描述的包括细菌细胞文库的系统;和ii)小分子测试化合物;b)在测试化合物存在的情况下,生长所述细菌细胞文库;和c)评估测试化合物对可检测输出的影响。在一个实施方式中,系统进一步提供包括编码诱饵融合蛋白的基因的操纵子,所述诱饵融合蛋白包括;(i)不同于第一酶底物结构域的第二酶底物结构域和(ii)不特异性结合至DNA和/或RNA聚合酶的蛋白质。在一个实施方式中,所述操纵子进一步包括表达载体。In one embodiment, the present invention contemplates a method for detecting a selective inhibitor of a first enzyme relative to a second enzyme, comprising: a) providing; i) a system comprising a bacterial cell library as described above; and ii) a small molecule test compound; b) growing the bacterial cell library in the presence of the test compound; and c) evaluating the effect of the test compound on a detectable output. In one embodiment, the system further provides an operon comprising a gene encoding a bait fusion protein, the bait fusion protein comprising; (i) a second enzyme substrate domain different from the first enzyme substrate domain and (ii) a protein that does not specifically bind to a DNA and/or RNA polymerase. In one embodiment, the operon further comprises an expression vector.
在一个实施方式中,本发明考虑了用于相对于第二酶进化第一酶的选择性抑制剂的方法,包括;a)提供;如本文描述的包括具有突变的代谢途径的细菌细胞文库的系统;b)生长所述细菌细胞文库;和b)筛选用于可检测输出的细菌细胞文库。在一个实施方式中,方法进一步提供包括编码诱饵融合蛋白的基因的操纵子,诱饵融合蛋白包括;(i)不同于第一酶底物结构域的第二酶底物结构域和(ii)不特异性结合至DNA和/或RNA聚合酶的蛋白质。在一个实施方式中,所述操纵子进一步包括表达载体。In one embodiment, the present invention contemplates a method for evolving a selective inhibitor of a first enzyme relative to a second enzyme, comprising: a) providing; a system comprising a bacterial cell library having a metabolic pathway with mutations as described herein; b) growing the bacterial cell library; and b) screening the bacterial cell library for detectable output. In one embodiment, the method further provides an operon comprising a gene encoding a bait fusion protein, the bait fusion protein comprising: (i) a second enzyme substrate domain different from the first enzyme substrate domain and (ii) a protein that does not specifically bind to a DNA and/or RNA polymerase. In one embodiment, the operon further comprises an expression vector.
在一个实施方式中,本发明考虑了用于进化光控开关酶的方法,包括;a)提供;i)如本文描述的包括具有突变的光控开关酶的细菌细胞文库的系统;b)在至少两种不同的光条件下,生长细菌细胞文库;和c)比较所述两种不同光条件中每个光条件之间每个细胞的可检测输出的差异。在一个实施方式中,所述操纵子进一步包括表达载体。In one embodiment, the present invention contemplates a method for evolving a light-switchable enzyme, comprising: a) providing; i) a system as described herein comprising a bacterial cell library having a mutated light-switchable enzyme; b) growing the bacterial cell library under at least two different light conditions; and c) comparing the difference in detectable output per cell between each of the two different light conditions. In one embodiment, the operon further comprises an expression vector.
在一个实施方式中,本发明考虑了用于进化光控开关酶的方法,包括:a)提供;i)如本文描述的包括具有突变的光控开关酶的细菌细胞文库的系统;b)在其中活性是期望的第一光源下生长细菌细胞文库;c)随后在存在下述的情况下生长来自步骤b)的细菌细胞文库:(i)非必需底物和(ii)第二光源,其中活性不是期望的;d)随后筛选步骤c)的幸存者,用于突变的细菌细胞;和e)在第一光源和第二光源下检查突变的细菌细胞的活性。在一个实施方式中,方法进一步包括包含编码诱饵融合蛋白的基因的操纵子,诱饵融合蛋白包括:(i)不同于第一酶底物结构域的第二酶底物结构域;和(ii)不特异性结合至DNA和/或RNA聚合酶的蛋白质。在一个实施方式中,所述操纵子进一步包括表达载体。In one embodiment, the present invention contemplates a method for evolving a light-operated switch enzyme, comprising: a) providing; i) a system as described herein comprising a bacterial cell library having a mutated light-operated switch enzyme; b) growing the bacterial cell library under a first light source in which activity is desired; c) subsequently growing the bacterial cell library from step b) in the presence of: (i) a non-essential substrate and (ii) a second light source in which activity is not desired; d) subsequently screening the survivors of step c) for mutated bacterial cells; and e) examining the activity of the mutated bacterial cells under the first light source and the second light source. In one embodiment, the method further comprises an operon comprising a gene encoding a bait fusion protein, the bait fusion protein comprising: (i) a second enzyme substrate domain different from the first enzyme substrate domain; and (ii) a protein that does not specifically bind to a DNA and/or RNA polymerase. In one embodiment, the operon further comprises an expression vector.
在一个实施方式中,本发明考虑了用于进化酶的选择性突变体的方法,其包括:a)提供;如以上描述的包括具有突变的酶的细菌细胞文库的系统;b)生长细菌细胞文库和c)比较细胞之间的可检测输出以鉴定突变的酶。在一个实施方式中,方法进一步包括包含编码诱饵融合蛋白的基因的操纵子,诱饵融合蛋白包括:(i)不同于第一酶底物结构域的第二酶底物结构域;和(ii)不特异性结合至DNA和/或RNA聚合酶的蛋白质。在一个实施方式中,所述操纵子进一步包括表达载体。In one embodiment, the present invention contemplates a method for evolving selective mutants of an enzyme, comprising: a) providing; a system as described above comprising a bacterial cell library of an enzyme having mutations; b) growing the bacterial cell library and c) comparing detectable output between cells to identify the mutated enzyme. In one embodiment, the method further comprises an operon comprising a gene encoding a bait fusion protein, the bait fusion protein comprising: (i) a second enzyme substrate domain different from the first enzyme substrate domain; and (ii) a protein that does not specifically bind to a DNA and/or RNA polymerase. In one embodiment, the operon further comprises an expression vector.
在一个实施方式中,本发明考虑了用于进化对酶选择性的底物结构域的方法,其包括:a)提供;如以上描述的包括包含融合至DNA结合结构域的底物结构域的细菌细胞文库的方法;b)在第一酶的诱导物和非必需底物存在的情况下,生长细菌细胞文库;c)随后在第二酶的诱导物存在的情况下,生长来自步骤b)的细菌细胞文库;和d)随后筛选幸存者细菌细胞,从而鉴定结合至第一酶而不结合至第二酶的底物。在一个实施方式中,所述系统包括产生可检测输出的报道蛋白。在一个实施方式中,在非必需底物存在的情况下,报道蛋白生成有毒的产物。在一个实施方式中,系统进一步包括包含选自由第一酶的第一诱导型启动子和第二酶的第二诱导型启动子组成的组中的基因的操纵子,其中第二酶具有与第一酶相似的活性。In one embodiment, the present invention contemplates a method for evolving a substrate domain that is selective for an enzyme, comprising: a) providing; a method as described above comprising a bacterial cell library comprising a substrate domain fused to a DNA binding domain; b) growing the bacterial cell library in the presence of an inducer of the first enzyme and a non-essential substrate; c) subsequently growing the bacterial cell library from step b) in the presence of an inducer of the second enzyme; and d) subsequently screening the survivor bacterial cells to identify substrates that bind to the first enzyme but not to the second enzyme. In one embodiment, the system comprises a reporter protein that produces a detectable output. In one embodiment, the reporter protein generates a toxic product in the presence of a non-essential substrate. In one embodiment, the system further comprises an operon comprising a gene selected from the group consisting of a first inducible promoter of the first enzyme and a second inducible promoter of the second enzyme, wherein the second enzyme has an activity similar to the first enzyme.
在一个实施方式中,本发明考虑了使用包括操纵子的微生物生物传感器的方法,其中所述操纵子包括;a)提供报道基因和传感器融合蛋白基因;和b)表达具有翻译后修饰和报道基因的所述传感器融合蛋白。在一个实施方式中,所述表达的传感器融合蛋白具有蛋白酪氨酸磷酸酶底物结构域并且在作为附着至磷酸盐分子的所述蛋白酪氨酸磷酸酶底物结构域的识别结构域(SH2)的至少一种可表达的传感器融合蛋白存在的情况下,能够结合至所述DNA结合序列。在一个实施方式中,所述操纵子进一步包括编码下述的基因片段:i)作为能够附着至所述磷酸盐分子的蛋白酪氨酸磷酸酶底物结构域的第一可表达的传感器融合蛋白,所述第一可表达的传感器融合蛋白与DNA结合蛋白质可操作的组合;和ii)作为当附着至磷酸盐分子时,所述蛋白酪氨酸磷酸酶底物结构域的识别结构域(SH2)的第二可表达的传感器融合蛋白,所述第二可表达的传感器融合蛋白与RNA聚合酶的亚单元可操作的组合;和iii)个别可表达的片段,包括但不限于Src激酶蛋白、蛋白酪氨酸磷酸酶1B(PTP1B)并且缀合至能够结合至传感器融合蛋白的所述DNA结合蛋白质的所述转录活性结合序列,并且RNA聚合酶的所述亚单元与所述报道基因可操作的组合。In one embodiment, the present invention contemplates a method of using a microbial biosensor comprising an operon, wherein the operon comprises: a) providing a reporter gene and a sensor fusion protein gene; and b) expressing the sensor fusion protein having a post-translational modification and a reporter gene. In one embodiment, the expressed sensor fusion protein has a protein tyrosine phosphatase substrate domain and is capable of binding to the DNA binding sequence in the presence of at least one expressible sensor fusion protein that is a recognition domain (SH2) of the protein tyrosine phosphatase substrate domain attached to a phosphate molecule. In one embodiment, the operon further comprises gene fragments encoding: i) a first expressible sensor fusion protein as a protein tyrosine phosphatase substrate domain capable of attaching to the phosphate molecule, the first expressible sensor fusion protein being in operable combination with a DNA binding protein; and ii) a second expressible sensor fusion protein as a recognition domain (SH2) of the protein tyrosine phosphatase substrate domain when attached to a phosphate molecule, the second expressible sensor fusion protein being in operable combination with a subunit of RNA polymerase; and iii) individual expressible fragments, including but not limited to Src kinase protein, protein tyrosine phosphatase 1B (PTP1B) and conjugated to the transcriptionally active binding sequence of the DNA binding protein capable of binding to the sensor fusion protein, and the subunit of RNA polymerase being in operable combination with the reporter gene.
在一个实施方式中,本发明考虑了使用微生物生物传感器的方法,其包括;a)提供;i)操纵子,其中所述操纵子包括报道基因和传感器融合蛋白基因;ii)活细菌;和iii)所述蛋白酪氨酸磷酸酶的测试小分子抑制剂;b)表达具有翻译后修饰和报道基因的所述传感器融合蛋白;c)将所述细菌与所述测试小分子接触;和d)通过所述报道基因的表达确定是否所述测试小分子是所述蛋白磷酸酶的抑制剂。在一个实施方式中,所述表达的传感器融合蛋白具有蛋白酪氨酸磷酸酶底物结构域,其在作为附着至磷酸盐分子的所述蛋白酪氨酸磷酸酶底物结构域的识别结构域(SH2)的至少一种可表达的传感器融合蛋白存在的情况下能够结合至DNA结合序列。在一个实施方式中,所述表达的传感器融合蛋白具有蛋白酪氨酸磷酸酶1B底物结构域,其在作为附着至磷酸盐分子的所述蛋白酪氨酸磷酸酶底物结构域的识别结构域(SH2)的至少一种可表达的传感器融合蛋白存在的情况下能够结合至所述DNA结合序列。在一个实施方式中,所述操纵子进一步包括编码下述的基因片段:i)作为能够附着至与DNA-结合可操作的组合的所述磷酸盐分子的所述蛋白酪氨酸磷酸酶底物结构域的所述第一可表达的传感器融合蛋白;和ii)作为当附着至与RNA聚合酶的亚单元可操作的组合的磷酸盐分子时,所述蛋白酪氨酸磷酸酶底物结构域的识别结构域(SH2)的所述第二可表达的传感器融合蛋白;和iii)个别可表达的片段,其包括但不限于Src激酶蛋白、蛋白酪氨酸磷酸酶1B(PTP1B)并且缀合至能够结合至传感器融合蛋白的所述DNA结合蛋白质的所述转录活性结合序列,并且RNA聚合酶的所述亚单元与所述报道基因可操作的组合。在一个实施方式中,所述生物传感器进一步包括表达第二基因的操纵子组分。在一个实施方式中,所述生物传感器进一步包括表达不同于第一PTP的第二PTP的操纵子组分,用于鉴定对TPT酶之一的选择性的所述抑制剂。在一个实施方式中,所述测试小分子抑制剂包括但不限于松香烷型二萜、松香酸(AA)、二氢松香酸和其结构变体。In one embodiment, the present invention contemplates a method of using a microbial biosensor, comprising: a) providing; i) an operon, wherein the operon comprises a reporter gene and a sensor fusion protein gene; ii) live bacteria; and iii) a test small molecule inhibitor of the protein tyrosine phosphatase; b) expressing the sensor fusion protein having a post-translational modification and a reporter gene; c) contacting the bacteria with the test small molecule; and d) determining whether the test small molecule is an inhibitor of the protein phosphatase by expression of the reporter gene. In one embodiment, the expressed sensor fusion protein has a protein tyrosine phosphatase substrate domain that is capable of binding to a DNA binding sequence in the presence of at least one expressible sensor fusion protein that is a recognition domain (SH2) of the protein tyrosine phosphatase substrate domain attached to a phosphate molecule. In one embodiment, the expressed sensor fusion protein has a protein tyrosine phosphatase 1B substrate domain that is capable of binding to the DNA binding sequence in the presence of at least one expressible sensor fusion protein that is a recognition domain (SH2) of the protein tyrosine phosphatase substrate domain attached to a phosphate molecule. In one embodiment, the operon further comprises a gene fragment encoding: i) the first expressible sensor fusion protein as the protein tyrosine phosphatase substrate domain capable of attaching to the phosphate molecule in an operable combination with DNA-binding; and ii) the second expressible sensor fusion protein as the recognition domain (SH2) of the protein tyrosine phosphatase substrate domain when attached to a phosphate molecule in an operable combination with a subunit of an RNA polymerase; and iii) a separate expressible fragment, which includes but is not limited to Src kinase protein, protein tyrosine phosphatase 1B (PTP1B) and conjugated to the transcriptionally active binding sequence of the DNA binding protein capable of binding to the sensor fusion protein, and the subunit of the RNA polymerase is in an operable combination with the reporter gene. In one embodiment, the biosensor further comprises an operon component expressing a second gene. In one embodiment, the biosensor further comprises an operon component expressing a second PTP different from the first PTP for identifying the inhibitor selective for one of the TPTases. In one embodiment, the test small molecule inhibitors include, but are not limited to, abietane-type diterpenes, abietic acid (AA), dihydroabietic acid, and structural variants thereof.
在一个实施方式中,本发明考虑了使用微生物生物传感器的方法,包括:a)提供;i)操纵子,其中所述操纵子包括报道基因和传感器融合蛋白基因;ii)活细菌;和iii)所述蛋白酪氨酸磷酸酶的测试小分子抑制剂;b)表达具有翻译后修饰和报道基因的所述传感器融合蛋白;c)在所述细菌中表达所述可表达的传感器融合蛋白;d)将所述细菌与所述测试小分子接触;和e)通过所述报道基因的表达确定是否所述测试小分子是所述蛋白磷酸酶的抑制剂。在一个实施方式中,所述表达的传感器融合蛋白具有蛋白酪氨酸磷酸酶底物结构域并且在作为附着至磷酸盐分子的所述蛋白酪氨酸磷酸酶底物结构域的识别结构域(SH2)的至少一种可表达的传感器融合蛋白存在的情况下能够结合所述DNA结合序列。在一个实施方式中,表达的传感器融合蛋白具有蛋白酪氨酸磷酸酶1B底物结构域并且在作为附着至磷酸盐分子的所述蛋白酪氨酸磷酸酶底物结构域的识别结构域(SH2)的至少一种可表达的传感器融合蛋白和光控开关蛋白酪氨酸磷酸酶1B的个别可表达的片段存在的情况下能够结合所述DNA结合序列。在一个实施方式中,所述操纵子包括编码下述的基因片段:i)作为能够附着至与DNA结合蛋白质可操作的组合的所述磷酸盐分子的所述蛋白酪氨酸磷酸酶底物结构域的所述第一可表达的传感器融合蛋白;ii)作为当附着至与RNA聚合酶的亚单元可操作的组合的磷酸盐分子时所述蛋白酪氨酸磷酸酶底物结构域的识别结构域(SH2)的所述第二所述可表达的传感器融合蛋白;和iii)个别可表达的片段,包括但不限于Src激酶蛋白、蛋白酪氨酸磷酸酶1B(PTP1B)并且缀合至能够结合至传感器融合蛋白的所述DNA结合蛋白质的所述转录活性结合序列,并且所述RNA聚合酶的亚单元与所述报道基因可操作的组合。In one embodiment, the present invention contemplates a method of using a microbial biosensor, comprising: a) providing; i) an operon, wherein the operon comprises a reporter gene and a sensor fusion protein gene; ii) living bacteria; and iii) a test small molecule inhibitor of the protein tyrosine phosphatase; b) expressing the sensor fusion protein having a post-translational modification and a reporter gene; c) expressing the expressible sensor fusion protein in the bacteria; d) contacting the bacteria with the test small molecule; and e) determining whether the test small molecule is an inhibitor of the protein phosphatase by expression of the reporter gene. In one embodiment, the expressed sensor fusion protein has a protein tyrosine phosphatase substrate domain and is capable of binding to the DNA binding sequence in the presence of at least one expressible sensor fusion protein that is a recognition domain (SH2) of the protein tyrosine phosphatase substrate domain attached to a phosphate molecule. In one embodiment, the expressed sensor fusion protein has a protein tyrosine phosphatase 1B substrate domain and is capable of binding to the DNA binding sequence in the presence of at least one expressible sensor fusion protein that is a recognition domain (SH2) of the protein tyrosine phosphatase substrate domain attached to a phosphate molecule and a separately expressible fragment of the light-switchable protein tyrosine phosphatase 1B. In one embodiment, the operon includes gene segments encoding: i) the first expressible sensor fusion protein as the protein tyrosine phosphatase substrate domain capable of attaching to the phosphate molecule in operable combination with a DNA binding protein; ii) the second expressible sensor fusion protein as the recognition domain (SH2) of the protein tyrosine phosphatase substrate domain when attached to a phosphate molecule in operable combination with a subunit of an RNA polymerase; and iii) individual expressible segments including but not limited to Src kinase protein, protein tyrosine phosphatase 1B (PTP1B) and conjugated to the transcriptionally active binding sequence of the DNA binding protein capable of binding to the sensor fusion protein, and the subunit of the RNA polymerase in operable combination with the reporter gene.
在一个实施方式中,本发明考虑了用于提供用作潜在疗法的化学结构的变体的方法,包括:a)提供;i)包括提供改变的化学结构的代谢类萜化学结构产生途径的大肠杆菌细菌,其中所述代谢途径包括合成酶,其中所述大肠杆菌进一步包括检测PTP抑制的微生物生物传感器操纵子;和ii)酶系统的突变的合成酶;a)引入所述酶系统的突变的合成酶;c)在其中所述突变的合成酶或酶系统改变所述类萜化学结构的化学结构的条件下表达所述突变的合成酶;和d)确定是否所述改变的化学结构是作为用作潜在疗法的测试抑制剂的所述PTP的抑制剂。在一个实施方式中,所述代谢途径包括合成酶,所述酶包括但不限于萜合酶、细胞色素P450、卤化酶、甲基转移酶或类萜功能化酶。在一个实施方式中,所述类萜包括但不限于半日花烷型二萜。在一个实施方式中,所述类萜包括但不限于,松香烷型二萜。在一个实施方式中,所述类萜是松香酸。In one embodiment, the present invention contemplates a method for providing a variant of a chemical structure for use as a potential therapeutic, comprising: a) providing; i) an E. coli bacterium comprising a metabolic terpenoid chemical structure production pathway that provides an altered chemical structure, wherein the metabolic pathway comprises a synthase, wherein the E. coli further comprises a microbial biosensor operon that detects PTP inhibition; and ii) a mutant synthase of an enzyme system; a) introducing a mutant synthase of the enzyme system; c) expressing the mutant synthase under conditions where the mutant synthase or enzyme system alters the chemical structure of the terpenoid chemical structure; and d) determining whether the altered chemical structure is an inhibitor of the PTP as a test inhibitor for use as a potential therapeutic. In one embodiment, the metabolic pathway comprises a synthase, including but not limited to a terpene synthase, a cytochrome P450, a halogenase, a methyltransferase, or a terpenoid functionalizing enzyme. In one embodiment, the terpenoid includes but is not limited to a terpenoid-type diterpene. In one embodiment, the terpenoid includes but is not limited to abietic acid.
在一个实施方式中,本发明考虑了融合蛋白DNA构建体,其包括蛋白磷酸酶基因和所述磷酸酶基因内缀合的蛋白光开关基因,其中所述蛋白磷酸酶基因编码具有C-末端结构域的蛋白质和所述蛋白光开关基因编码具有N-末端α螺旋区的蛋白质,使得所述C-末端结构域被缀合至所述N-末端α螺旋区。在一个实施方式中,所述构建体进一步包括表达载体和活细胞。在一个实施方式中,所述蛋白磷酸酶是蛋白酪氨酸磷酸酶。在一个实施方式中,所述蛋白磷酸酶是蛋白酪氨酸磷酸酶1B(PTP1B)。在一个实施方式中,所述C-末端结构域编码PTP1B的α7螺旋。在一个实施方式中,所述构建体编码PTP1BPS-A。在一个实施方式中,所述构建体编码PTP1BPS-B。在一个实施方式中,所述蛋白磷酸酶是T-细胞蛋白酪氨酸磷酸酶(TC-PTP)。在一个实施方式中,所述蛋白光开关是光-氧-电压(LOV)结构域。在一个实施方式中,所述蛋白光开关是来自燕麦的向光素1的LOV2结构域。在一个实施方式中,所述LOV2结构域包括LOV2的A’a螺旋。在一个实施方式中,所述LOV2具有导致氨基酸突变的至少一种突变。这并不意味着限制这种突变。事实上,突变可包括但不限于来自所述基因的核苷酸置换、核苷酸的添加和核苷酸的删除。在一个实施方式中,所述突变是核苷酸的置换。在一个实施方式中,所述LOV2的A’a螺旋具有T406A突变。在一个实施方式中,所述蛋白光开关是光敏素蛋白。在一个实施方式中,所述光敏素蛋白是细菌光敏素蛋白。在一个实施方式中,所述细菌光敏素蛋白是来自沼泽红假单胞菌的细菌光敏素蛋白1(BphP1)。在一个实施方式中,所述蛋白光开关是具有人工生色团的光-氧-电压(LOV)结构域。在一个实施方式中,所述蛋白光开关是具有人工生色团的光敏素蛋白。In one embodiment, the present invention contemplates a fusion protein DNA construct comprising a protein phosphatase gene and a protein light switch gene conjugated within the phosphatase gene, wherein the protein phosphatase gene encodes a protein having a C-terminal domain and the protein light switch gene encodes a protein having an N-terminal alpha helical region, such that the C-terminal domain is conjugated to the N-terminal alpha helical region. In one embodiment, the construct further comprises an expression vector and a living cell. In one embodiment, the protein phosphatase is a protein tyrosine phosphatase. In one embodiment, the protein phosphatase is protein tyrosine phosphatase 1B (PTP1B). In one embodiment, the C-terminal domain encodes the α7 helix of PTP1B. In one embodiment, the construct encodes PTP1B PS -A. In one embodiment, the construct encodes PTP1B PS -B. In one embodiment, the protein phosphatase is a T-cell protein tyrosine phosphatase (TC-PTP). In one embodiment, the protein light switch is a light-oxygen-voltage (LOV) domain. In one embodiment, the protein light switch is the LOV2 domain of
在一个实施方式中,本发明考虑了融合蛋白,其包括蛋白磷酸酶和所述磷酸酶内缀合的蛋白光开关,其中所述蛋白磷酸酶具有C-末端结构域和所述蛋白光开关具有N-末端α螺旋区,使得所述C-末端结构域被缀合至所述N-末端α螺旋区。在一个实施方式中,所述融合蛋白进一步包括表达载体和活细胞。在一个实施方式中,所述蛋白磷酸酶是蛋白酪氨酸磷酸酶。在一个实施方式中,所述蛋白磷酸酶是蛋白酪氨酸磷酸酶1B(PTP1B)。在一个实施方式中,所述C-末端结构域编码α7螺旋。在一个实施方式中,所述融合蛋白是PTP1BPS-A。在一个实施方式中,所述融合蛋白是PTP1BPS-B。在一个实施方式中,所述蛋白磷酸酶是T-细胞蛋白酪氨酸磷酸酶(TC-PTP)。在一个实施方式中,所述蛋白光开关是光-氧-电压(LOV)结构域。在一个实施方式中,所述蛋白光开关是来自燕麦的向光素1的LOV2结构域。在一个实施方式中,所述LOV2结构域包括LOV2的A’a螺旋。在一个实施方式中,所述LOV2的A’a螺旋具有T406A突变。在一个实施方式中,所述蛋白光开关是具有人工生色团的光-氧-电压(LOV)结构域。在一个实施方式中,所述蛋白光开关是具有人工生色团的光敏素蛋白。在一个实施方式中,所述蛋白光开关是光敏素蛋白。在一个实施方式中,所述光敏素蛋白是细菌光敏素蛋白。在一个实施方式中,所述细菌光敏素蛋白是来自沼泽红假单胞菌的细菌光敏素蛋白1(BphP1)。在一个实施方式中,所述蛋白光开关是具有人工生色团的光-氧-电压(LOV)结构域。在一个实施方式中,所述蛋白光开关是具有人工生色团的光敏素蛋白。In one embodiment, the present invention contemplates a fusion protein comprising a protein phosphatase and a protein light switch conjugated within the phosphatase, wherein the protein phosphatase has a C-terminal domain and the protein light switch has an N-terminal alpha helical region, such that the C-terminal domain is conjugated to the N-terminal alpha helical region. In one embodiment, the fusion protein further comprises an expression vector and a living cell. In one embodiment, the protein phosphatase is a protein tyrosine phosphatase. In one embodiment, the protein phosphatase is a protein tyrosine phosphatase 1B (PTP1B). In one embodiment, the C-terminal domain encodes an α7 helix. In one embodiment, the fusion protein is PTP1B PS -A. In one embodiment, the fusion protein is PTP1B PS -B. In one embodiment, the protein phosphatase is a T-cell protein tyrosine phosphatase (TC-PTP). In one embodiment, the protein light switch is a light-oxygen-voltage (LOV) domain. In one embodiment, the protein light switch is the LOV2 domain of
在一个实施方式中,本发明考虑了使用融合蛋白的方法,其包括;a)提供;i)融合蛋白;ii)蛋白磷酸酶和iii)活细胞;和b)将所述融合蛋白引入所述活细胞中,使得所述光开关的照度(illumination)改变所述活细胞中的特征。在一个实施方式中,所述特征包括但不限于控制细胞移动、形态、控制细胞信号传导和具有调节作用。在一个实施方式中,所述调节作用包括但不限于失活、活化、可逆的失活和可逆的活化。在一个实施方式中,所述调节作用是剂量依赖性。在一个实施方式中,所述照度是450-500nm的范围内的光。在一个实施方式中,所述照度是600-800nm的范围内的光。在一个实施方式中,所述蛋白光开关经历光诱导的构象改变并且所述蛋白磷酸酶具有由所述构象变化而改变的变构性地调节的催化活性。在一个实施方式中,所述改变是增强的或减少的。在一个实施方式中,所述蛋白光开关是具有人工生色团的光-氧-电压(LOV)结构域。在一个实施方式中,所述蛋白光开关是具有人工生色团的光敏素蛋白。在一个实施方式中,所述活细胞具有活性。在一个实施方式中,所述活细胞在体内。在一个实施方式中,所述方法进一步包括在体内控制所述细胞活性的步骤。In one embodiment, the present invention contemplates a method of using a fusion protein, comprising: a) providing; i) a fusion protein; ii) a protein phosphatase and iii) a living cell; and b) introducing the fusion protein into the living cell such that the illumination of the light switch changes a feature in the living cell. In one embodiment, the feature includes, but is not limited to, controlling cell movement, morphology, controlling cell signaling, and having a regulatory effect. In one embodiment, the regulatory effect includes, but is not limited to, inactivation, activation, reversible inactivation, and reversible activation. In one embodiment, the regulatory effect is dose-dependent. In one embodiment, the illumination is light in the range of 450-500nm. In one embodiment, the illumination is light in the range of 600-800nm. In one embodiment, the protein light switch undergoes a light-induced conformational change and the protein phosphatase has an allosterically regulated catalytic activity that is changed by the conformational change. In one embodiment, the change is enhanced or reduced. In one embodiment, the protein light switch is a light-oxygen-voltage (LOV) domain having an artificial chromophore. In one embodiment, the protein photoswitch is a phytochrome protein with an artificial chromophore. In one embodiment, the living cell is active. In one embodiment, the living cell is in vivo. In one embodiment, the method further comprises the step of controlling the activity of the cell in vivo.
在一个实施方式中,本发明考虑了用于检测蛋白磷酸酶的小分子调节剂的方法,其包括:a)提供;i)包括蛋白磷酸酶和蛋白光开关的融合蛋白;ii)磷酸酶活性的可视读出;iii)光源,其中所述源能够发射光辐射;iv)活细胞;和v)小分子测试化合物;b)在所述活细胞中表达所述融合蛋白;c)将所述活细胞与所述小分子测试化合物接触;d)用所述光源照射所述细胞内的所述融合蛋白;e)测量磷酸酶活性的改变的可视读出,用于鉴定作为所述磷酸酶的所述活性的调节剂的所述小分子测试化合物;和f)使用所述调节小分子测试化合物,用于治疗展现出与所述磷酸酶相关的疾病的至少一种症状的患者。在一个实施方式中,所述方法进一步包括鉴定作为所述磷酸酶的活性的抑制剂的所述小分子测试化合物。在一个实施方式中,所述方法进一步包括鉴定作为所述磷酸酶的活性的活化剂的所述小分子测试化合物。在一个实施方式中,所述疾病包括但不限于糖尿病、肥胖、癌症、焦虑、自身免疫或神经变性病。在一个实施方式中,所述蛋白光开关是具有人工生色团的光-氧-电压(LOV)结构域。在一个实施方式中,所述蛋白光开关是具有人工生色团的光敏素蛋白。在一个实施方式中,所述方法进一步提供基于荧光的生物传感器,并且包括将所述基于荧光的生物传感器引入所述细胞的步骤。在一个实施方式中,所述方法进一步包括在体内控制所述细胞活性的步骤。在一个实施方式中,磷酸酶活性的所述可视读出选自由基于荧光的生物传感器、细胞形态的变化和细胞运动性的变化组成的组中。In one embodiment, the present invention contemplates a method for detecting a small molecule modulator of a protein phosphatase, comprising: a) providing; i) a fusion protein comprising a protein phosphatase and a protein photoswitch; ii) a visual readout of phosphatase activity; iii) a light source, wherein the source is capable of emitting light radiation; iv) a living cell; and v) a small molecule test compound; b) expressing the fusion protein in the living cell; c) contacting the living cell with the small molecule test compound; d) irradiating the fusion protein within the cell with the light source; e) measuring a visual readout of changes in phosphatase activity for identifying the small molecule test compound as a modulator of the activity of the phosphatase; and f) using the modulating small molecule test compound for treating a patient exhibiting at least one symptom of a disease associated with the phosphatase. In one embodiment, the method further comprises identifying the small molecule test compound as an inhibitor of the activity of the phosphatase. In one embodiment, the method further comprises identifying the small molecule test compound as an activator of the activity of the phosphatase. In one embodiment, the disease includes, but is not limited to, diabetes, obesity, cancer, anxiety, autoimmunity, or neurodegenerative disease. In one embodiment, the protein photoswitch is a light-oxygen-voltage (LOV) domain with an artificial chromophore. In one embodiment, the protein photoswitch is a phytochrome protein with an artificial chromophore. In one embodiment, the method further provides a fluorescence-based biosensor and includes the step of introducing the fluorescence-based biosensor into the cell. In one embodiment, the method further includes the step of controlling the activity of the cell in vivo. In one embodiment, the visual readout of phosphatase activity is selected from the group consisting of a fluorescence-based biosensor, a change in cell morphology, and a change in cell motility.
在一个实施方式中,本发明考虑了光控开关蛋白酪氨酸磷酸酶构建体,其包括缀合至C-末端变构结构域区域的蛋白光开关的N-末端α螺旋。在一个实施方式中,所述蛋白酪氨酸磷酸酶是蛋白酪氨酸磷酸酶1B(PTP1B)。在一个实施方式中,所述蛋白光开关是源自燕麦(野生燕麦)的向光素1的LOV2结构域。在一个实施方式中,所述酶构建体进一步包括表达载体。在一个实施方式中,本发明考虑了酶活性的生物传感器,其包括;a)如以上所述的底物结构域;b)底物识别结构域;c)第一荧光蛋白质;和d)第二荧光蛋白质。In one embodiment, the present invention contemplates a light-operated switch protein tyrosine phosphatase construct comprising an N-terminal alpha helix of a protein light switch conjugated to a C-terminal allosteric domain region. In one embodiment, the protein tyrosine phosphatase is protein tyrosine phosphatase 1B (PTP1B). In one embodiment, the protein light switch is the LOV2 domain of
在一个实施方式中,本发明提供用于检测调节酶活性的小分子的基因编码系统,其包括,a.可操作的组合中的第一区域,其包括:i.第一启动子;ii.编码第一融合蛋白的第一基因,所述第一融合蛋白包括连接至DNA结合蛋白质的底物识别结构域;iii.编码第二融合蛋白的第二基因,所述第二融合蛋白包括连接至能够将RNA聚合酶募集至DNA的蛋白质的底物结构域;iv.第二启动子;v.蛋白激酶的第三基因;vi.分子伴侣的第四基因;vii.蛋白磷酸酶的第五基因;b.可操作的组合中的第二区域,其包括:i.编码所述DNA结合蛋白质的操纵基因的第一DNA序列;ii.编码RNA聚合酶的结合位点的第二DNA序列;和iii.一个或多个感兴趣的基因(GOI)。在一个实施方式中,所述第一启动子是Pro1。在一个实施方式中,所述底物识别结构域是来自智人的底物同源性2(SH2)结构域。在一个实施方式中,所述DNA结合蛋白质是434噬菌体cI阻遏物。在一个实施方式中,所述底物结构域是所述激酶和所述磷酸酶二者的肽底物。在一个实施方式中,所述第二启动子是ProD。在一个实施方式中,能够将RNA聚合酶募集至DNA的所述蛋白质是RNA聚合酶的Ω亚单元(即,RpoZ或RPω)。在一个实施方式中,所述蛋白激酶是来自智人的Src激酶。在一个实施方式中,所述分子伴侣是来自智人的CDC37(即,Hsp90共伴侣)。在一个实施方式中,所述蛋白磷酸酶是来自智人的蛋白酪氨酸磷酸酶1B(PTP1B)。在一个实施方式中,所述操纵基因是434噬菌体cI阻遏物的操纵基因。在一个实施方式中,RNA聚合酶的所述结合位点是lacZ启动子的-35至-10区。在一个实施方式中,所述感兴趣的基因是SpecR,赋予对大观霉素的抗性的基因。在一个实施方式中,所述感兴趣的基因是LuxA和LuxB,产生发光输出的两个基因。在一个实施方式中,所述感兴趣的基因是赋予对抗生素的抗性的基因。在一个实施方式中,所述蛋白磷酸酶是来自智人的PTPN6。在一个实施方式中,所述蛋白磷酸酶是蛋白酪氨酸磷酸酶(PTP)。在一个实施方式中,所述蛋白磷酸酶是PTP的催化结构域。在一个实施方式中,(i)所述蛋白磷酸酶的催化结构域和(ii)PTP1B的催化结构域的X-射线晶体结构的比对产生小于或等于的均方跟偏差(RMSD)(如类似于PyMol函数对齐的函数定义的)。在一个实施方式中,所述蛋白磷酸酶的所述催化结构域与PTP1B的催化结构域具有至少34.1%序列同一性。在一个实施方式中,所述磷酸酶的所述催化结构域与PTP1B的催化结构域具有至少53.5%序列相似性。在一个实施方式中,所述蛋白激酶是蛋白酪氨酸激酶(PTK)。在一个实施方式中,所述蛋白激酶是PTK的催化结构域。在一个实施方式中,所述第一启动子是组成型启动子。在一个实施方式中,所述第二启动子是组成型启动子。在一个实施方式中,所述第一启动子是诱导型启动子。在一个实施方式中,所述第二启动子是诱导型启动子。在一个实施方式中,RNA聚合酶的所述结合位点包括部分第三启动子。在一个实施方式中,所述第一区域缺失分子伴侣的基因。在一个实施方式中,所述第一融合蛋白由连接能够将RNA聚合酶募集至DNA的蛋白质的底物识别结构域组成并且所述第二融合蛋白由连接至DNA结合蛋白质的底物结构域组成。在一个实施方式中,所述第一区域进一步含有包括与第一底物结构域不同的连接至不能够将RNA聚合酶募集至DNA的蛋白质的第二底物结构域的第三融合蛋白(即,“诱饵”)。在一个实施方式中,所述第三融合蛋白的所述底物结构域是所述激酶和所述磷酸酶二者的肽底物。在一个实施方式中,所述第三融合蛋白的所述底物结构域是所述激酶的肽底物,但是是所述磷酸酶的差的底物。在一个实施方式中,所述第一区域进一步含有第二蛋白磷酸酶的第六基因,其与第一蛋白磷酸酶不同并且其作用于所述第三融合蛋白的所述底物结构域。In one embodiment, the present invention provides a gene encoding system for detecting small molecules that regulate enzyme activity, which includes, a. a first region in an operable combination, which includes: i. a first promoter; ii. a first gene encoding a first fusion protein, the first fusion protein including a substrate recognition domain connected to a DNA binding protein; iii. a second gene encoding a second fusion protein, the second fusion protein including a substrate domain connected to a protein capable of recruiting RNA polymerase to DNA; iv. a second promoter; v. a third gene of a protein kinase; vi. a fourth gene of a molecular chaperone; vii. a fifth gene of a protein phosphatase; b. a second region in an operable combination, which includes: i. a first DNA sequence encoding an operator gene of the DNA binding protein; ii. a second DNA sequence encoding a binding site for RNA polymerase; and iii. one or more genes of interest (GOI). In one embodiment, the first promoter is Pro1. In one embodiment, the substrate recognition domain is a substrate homology 2 (SH2) domain from Homo sapiens. In one embodiment, the DNA binding protein is a 434 bacteriophage cI repressor. In one embodiment, the substrate domain is a peptide substrate for both the kinase and the phosphatase. In one embodiment, the second promoter is ProD. In one embodiment, the protein capable of recruiting RNA polymerase to DNA is the Ω subunit of RNA polymerase (i.e., RpoZ or RP ω ). In one embodiment, the protein kinase is the Src kinase from Homo sapiens. In one embodiment, the molecular chaperone is CDC37 from Homo sapiens (i.e., Hsp90 co-chaperone). In one embodiment, the protein phosphatase is the protein tyrosine phosphatase 1B (PTP1B) from Homo sapiens. In one embodiment, the operator is the operator of 434 bacteriophage cI repressor. In one embodiment, the binding site of RNA polymerase is -35 to -10 region of lacZ promoter. In one embodiment, the gene of interest is SpecR, a gene that confers resistance to spectinomycin. In one embodiment, the gene of interest is LuxA and LuxB, two genes that produce luminescent output. In one embodiment, the gene of interest is a gene that confers resistance to antibiotics. In one embodiment, the protein phosphatase is PTPN6 from Homo sapiens. In one embodiment, the protein phosphatase is a protein tyrosine phosphatase (PTP). In one embodiment, the protein phosphatase is the catalytic domain of PTP. In one embodiment, an alignment of the X-ray crystal structures of (i) the catalytic domain of the protein phosphatase and (ii) the catalytic domain of PTP1B produces less than or equal to The mean square root deviation (RMSD) of the alignment function (as defined by a function similar to the PyMol function alignment). In one embodiment, the catalytic domain of the protein phosphatase has at least 34.1% sequence identity with the catalytic domain of PTP1B. In one embodiment, the catalytic domain of the phosphatase has at least 53.5% sequence similarity with the catalytic domain of PTP1B. In one embodiment, the protein kinase is a protein tyrosine kinase (PTK). In one embodiment, the protein kinase is the catalytic domain of PTK. In one embodiment, the first promoter is a constitutive promoter. In one embodiment, the second promoter is a constitutive promoter. In one embodiment, the first promoter is an inducible promoter. In one embodiment, the second promoter is an inducible promoter. In one embodiment, the binding site of RNA polymerase includes part of the third promoter. In one embodiment, the first region lacks a gene for a molecular chaperone. In one embodiment, the first fusion protein consists of a substrate recognition domain connected to a protein capable of recruiting RNA polymerase to DNA and the second fusion protein consists of a substrate domain connected to a DNA binding protein. In one embodiment, the first region further contains a third fusion protein (i.e., "bait") comprising a second substrate domain that is different from the first substrate domain and is connected to a protein that is not capable of recruiting RNA polymerase to DNA. In one embodiment, the substrate domain of the third fusion protein is a peptide substrate for both the kinase and the phosphatase. In one embodiment, the substrate domain of the third fusion protein is a peptide substrate for the kinase, but is a poor substrate for the phosphatase. In one embodiment, the first region further contains a sixth gene for a second protein phosphatase that is different from the first protein phosphatase and acts on the substrate domain of the third fusion protein.
在一个实施方式中,本发明提供使用以下二者的方法:(i)检测调节酶活性的小分子的基因编码系统和(ii)用于类萜生物合成的基因编码途径以鉴定和/或构建调节酶活性的类萜,所述方法包括,a.提供,i.检测调节酶活性的小分子的基因编码系统,其包括,1.可操作的组合中的第一区域,其包括:a.第一启动子;b.编码第一融合蛋白的第一基因,所述第一融合蛋白包括连接至DNA结合蛋白质的底物识别结构域;c.编码第二融合蛋白的第二基因,所述第二融合蛋白包括连接至能够将RNA聚合酶募集至DNA的蛋白质的底物结构域;d.第二启动子;e.蛋白激酶的第三基因;f.分子伴侣的第四基因;g.蛋白磷酸酶的第五基因;2.可操作的组合中的第二区域,其包括:a.编码所述DNA结合蛋白质的操纵基因的第一DNA序列;b.编码RNA聚合酶的结合位点的第二DNA序列;c.一个或多个感兴趣的基因(GOI);ii.用于类萜生物合成的基因编码途径,其包括:1.生成直链类异戊二烯前体的途径;2.萜合酶(TS)的基因;3.多个大肠杆菌细菌;b.用下述两者转化所述细菌:(i)用于检测小分子的所述基因编码系统和(ii)用于类萜生物合成的所述基因编码途径,并且允许所述转化细菌复制;c.通过可测量的输出观察感兴趣的基因的表达。在一个实施方式中,生成直链类异戊二烯前体的所述途径生成法尼基焦磷酸(FPP)。在一个实施方式中,生成直链类异戊二烯前体的所述途径是酿酒酵母的全部或部分甲羟戊酸依赖性类异戊二烯途径。在一个实施方式中,生成直链类异戊二烯前体的所述途径通过质粒pMBIS进行。在一个实施方式中,所述感兴趣的基因是SpecR,赋予对大观霉素的抗性的基因。在一个实施方式中,所述TS基因在来自剩余的类萜途径的分开质粒(pTS)上进行。在一个实施方式中,所述TS基因对来自黄花蒿的紫穗槐二烯合酶(ADS)编码。在一个实施方式中,所述TS基因对来自北美冷杉的γ-蛇麻烯合酶(GHS)编码。在一个实施方式中,所述TS基因对北美冷杉的松香二烯合酶(ABS)编码,并且该基因与香叶基香叶基二磷酸合酶(GPPS)的基因进行可操作的组合。在一个实施方式中,所述TS基因为来自短叶红豆杉的紫杉烯合酶(TXS)编码,并且该基因与GGPPS的基因进行可操作的组合。在一个实施方式中,方法进一步包括,d.提取能够最高可测量的输出(例如,以大观霉素的最高浓度生长)的类萜;e.鉴定所述类萜;f.纯化所述类萜。在一个实施方式中,方法进一步包括,提供,g.哺乳动物细胞培养物,h.处理具有纯化的类萜的所述细胞培养物,i.测量由蛋白磷酸酶或蛋白激酶的活性的变化导致的生物化学作用。在一个实施方式中,方法进一步包括,j.提供,纯化的酶靶标,k.测量纯化的类萜对酶靶标的调节作用,l.量化该调节作用(例如,通过计算IC50)。在一个实施方式中,所述TS基因具有至少一个突变。在一个实施方式中,所述TS基因与功能化类萜的酶的基因可操作的组合。在一个实施方式中,所述TS基因与细胞色素P450的基因可操作的组合。在一个实施方式中,所述TS基因与来自巨大芽孢杆菌的细胞色素P450BM3的基因可操作的组合。在一个实施方式中,所述TS基因与卤化酶的基因可操作的组合。在一个实施方式中,所述TS基因与来自毒三素链霉素的6-卤化酶(SttH)的基因可操作的组合。在一个实施方式中,所述TS基因与来自Acaryochloris marina的钒卤素过氧化物酶(VHPO)的基因可操作的组合。在一个实施方式中,所述哺乳动物细胞是HepG2、Hela、Hek393t、MCF-7和/或Cho-hIR细胞。在一个实施方式中,所述细胞是BT474、SKBR3或MCF-7和MDA-MB-231细胞。在一个实施方式中,所述生物化学作用是胰岛素受体磷酸化,其可通过蛋白质印迹或酶联免疫吸附测定(ELISA)测量。在一个实施方式中,所述细胞是三阴性(TN)细胞系。在一个实施方式中,所述细胞是来自美国菌种保藏中心(ATCC)的TN细胞。在一个实施方式中,所述细胞是来自ATCC TCP-1002的TN细胞。在一个实施方式中,所述生物化学作用是细胞迁移。在一个实施方式中,所述生物化学作用是细胞活力。在一个实施方式中,所述生物化学作用是细胞增殖。在一个实施方式中,所述蛋白磷酸酶是来自智人的PTP1B。在一个实施方式中,所述蛋白激酶是来自智人的Src激酶。在一个实施方式中,所述感兴趣的基因赋予对抗生素的抗性。在一个实施方式中,所述感兴趣的基因是SacB,赋予对蔗糖的敏感性的基因。在一个实施方式中,所述感兴趣的基因赋予有条件的毒性(即,在外源添加的分子存在的情况下的毒性)。在一个实施方式中,所述感兴趣的基因是SpecR和SacB。在一个实施方式中,所述蛋白磷酸酶是野生型酶。在一个实施方式中,所述蛋白磷酸酶具有至少一个突变。在一个实施方式中,所述蛋白磷酸酶具有至少一个减少其对调节野生型蛋白磷酸酶的活性的小分子的敏感性的突变。在一个实施方式中,所述蛋白激酶是野生型酶。在一个实施方式中,所述蛋白激酶具有至少一个突变。在一个实施方式中,所述蛋白激酶具有至少一个减少其对调节野生型蛋白激酶的活性的小分子的敏感性的突变。在一个实施方式中,所述类萜的所述至少一种抑制蛋白磷酸酶。在一个实施方式中,所述类萜的所述至少一种抑制PTP。在一个实施方式中,所述类萜的所述至少一种抑制PTP1B。在一个实施方式中,所述类萜的所述至少一种活化蛋白磷酸酶。在一个实施方式中,所述类萜的所述至少一种活化PTP。在一个实施方式中,所述类萜的所述至少一种活化蛋白酪氨酸磷酸酶非受体型12(PTPN12)。在一个实施方式中,所述类萜的所述至少一种抑制蛋白激酶。在一个实施方式中,所述类萜的所述至少一种抑制PTK。在一个实施方式中,所述类萜的所述至少一种抑制Src激酶。在一个实施方式中,所述类萜的所述至少一种活化蛋白激酶。在一个实施方式中,所述类萜的所述至少一种活化PTK。在一个实施方式中,检测小分子的所述基因编码系统进一步含有下述两者:(i)包括与第一底物结构域不同的连接至不能将RNA聚合酶募集至DNA的蛋白质的第二底物结构域的第三融合蛋白和(ii)与第一蛋白磷酸酶不同的第二蛋白磷酸酶的第六基因。在一个实施方式中,检测小分子的所述基因编码系统进一步含有下述两者:(i)包括与第一底物结构域不同的连接至不能够将RNA聚合酶募集至DNA的蛋白质的第二底物结构域的第三融合蛋白和(ii)与第一蛋白激酶不同的第二蛋白激酶的第六基因。在一个实施方式中,类萜生物合成的所述基因编码途径替代地包括不同于TS基因的特征(identity)的途径的文库,使得转化后大部分细胞含有不同的TS基因(即,至少一个突变不同的基因)。在一个实施方式中,用于类萜生物合成的所述基因编码途径替代地包括不同于与SI基因可操作的组合的功能化类萜(例如,细胞色素P450或卤化酶)的基因的特征的途径的文库,使得转化后大部分细胞含有功能化类萜的不同基因(即,至少一个突变不同的基因)。在一个实施方式中,用于类萜生物合成的所述基因编码途径替代地包括途径的文库,在其中已经由真核互补的DNA(cDNA)文库的组分取代TS基因,使得转化后大部分细胞含有代替TS基因的不同基因。在一个实施方式中,用于类萜生物合成的所述基因编码途径替代地包括途径的文库,在其中由真核互补的DNA(cDNA)文库的组分伴随TS基因,使得转化后大部分细胞含有与TS基因可操作的组合的不同基因(例如,对于萜类功能化酶可编码的基因)。在一个实施方式中,用于检测小分子的所述基因编码系统替代地包括不同于蛋白磷酸酶基因的特征的这种系统的文库,使得转化后大部分细胞含有不同蛋白磷酸酶基因(即,至少一个突变不同的基因)。在一个实施方式中,用于类萜生物合成的所述基因编码途径生成调节野生型形式的所述蛋白磷酸酶的活性的类萜,从而使生长研究能够分离对小分子的调节作用较少敏感性的所述蛋白磷酸酶的突变体。在一个实施方式中,用于检测小分子的所述基因编码系统替代地包括不同于蛋白激酶基因的特征的这种系统的文库,使得转化后大部分细胞含有分开的蛋白激酶基因(即,至少一个突变不同的基因)。在一个实施方式中,用于类萜生物合成的所述基因编码途径生成调节野生型形式的所述蛋白激酶的活性的类萜,从而使生长研究能够分离对小分子的调节作用较少敏感性的所述蛋白激酶的突变体。在一个实施方式中,所述至少一种所述类萜调节野生型形式的所述蛋白磷酸酶的活性,而不调节突变形式的所述蛋白磷酸酶。在一个实施方式中,所述至少一种所述类萜调节所述第一蛋白磷酸酶的活性,而不调节所述第二蛋白磷酸酶的活性。在一个实施方式中,所述至少一种所述类萜调节野生型形式的所述蛋白激酶的活性,而不调节突变形式的所述蛋白激酶。在一个实施方式中,所述至少一种所述类萜调节所述第一蛋白激酶的活性,而不调节所述第二蛋白激酶的活性。In one embodiment, the present invention provides a method of using: (i) a gene encoding system for detecting small molecules that modulate enzyme activity and (ii) a gene encoding pathway for terpenoid biosynthesis to identify and/or construct terpenoids that modulate enzyme activity, the method comprising, a. providing, i. a gene encoding system for detecting small molecules that modulate enzyme activity, comprising, 1. a first region in operable combination, comprising: a. a first promoter; b. a first gene encoding a first fusion protein, the first fusion protein comprising a substrate recognition domain linked to a DNA binding protein; c. a second gene encoding a second fusion protein, the second fusion protein comprising a substrate domain linked to a protein capable of recruiting RNA polymerase to DNA; d. a second promoter; e. a third gene for a protein kinase; f. . a fourth gene for a molecular chaperone; g. a fifth gene for a protein phosphatase; 2. a second region in operable combination, comprising: a. a first DNA sequence encoding an operator gene for the DNA binding protein; b. a second DNA sequence encoding a binding site for an RNA polymerase; c. one or more genes of interest (GOI); ii. a gene encoding a pathway for terpenoid biosynthesis, comprising: 1. a pathway for producing linear isoprenoid precursors; 2. a gene for a terpene synthase (TS); 3. a plurality of E. coli bacteria; b. transforming the bacteria with the following: (i) the gene encoding system for detecting small molecules and (ii) the gene encoding pathway for terpenoid biosynthesis, and allowing the transformed bacteria to replicate; c. observing the expression of the gene of interest through a measurable output. In one embodiment, the pathway for producing linear isoprenoid precursors produces farnesyl pyrophosphate (FPP). In one embodiment, the pathway for producing linear isoprenoid precursors is all or part of the mevalonate-dependent isoprenoid pathway of Saccharomyces cerevisiae. In one embodiment, the pathway to generate linear isoprenoid precursors is carried out through the plasmid pMBIS. In one embodiment, the gene of interest is SpecR, a gene that confers resistance to spectinomycin. In one embodiment, the TS gene is carried out on a separate plasmid (pTS) from the remaining terpenoid pathways. In one embodiment, the TS gene encodes amorphadiene synthase (ADS) from Artemisia annua. In one embodiment, the TS gene encodes gamma-humulene synthase (GHS) from Abies abies. In one embodiment, the TS gene encodes absinadiene synthase (ABS) from Abies abies, and the gene is operably combined with the gene for geranylgeranyl diphosphate synthase (GPPS). In one embodiment, the TS gene encodes taxene synthase (TXS) from Taxus brevis, and the gene is operably combined with the gene for GGPPS. In one embodiment, the method further comprises, d. extracting the terpenoid capable of the highest measurable output (e.g., growth at the highest concentration of spectinomycin); e. identifying the terpenoid; f. purifying the terpenoid. In one embodiment, the method further comprises, g. providing a mammalian cell culture, h. treating the cell culture with purified terpenoid, i. measuring a biochemical effect resulting from a change in the activity of a protein phosphatase or protein kinase. In one embodiment, the method further comprises, j. providing a purified enzyme target, k. measuring the modulatory effect of the purified terpenoid on the enzyme target, l. quantifying the modulatory effect (e.g., by calculating an IC 50 ). In one embodiment, the TS gene has at least one mutation. In one embodiment, the TS gene is operably combined with a gene for an enzyme that functionalizes a terpenoid. In one embodiment, the TS gene is operably combined with a gene for a cytochrome P450. In one embodiment, the TS gene is operably combined with a gene for cytochrome P450BM3 from Bacillus megaterium. In one embodiment, the TS gene is operably combined with a gene for a halogenase. In one embodiment, the TS gene is an operable combination of a gene of a 6-halogenase (SttH) from streptomycin. In one embodiment, the TS gene is an operable combination of a gene of a vanadium halogen peroxidase (VHPO) from Acaryochloris marina. In one embodiment, the mammalian cell is a HepG2, Hela, Hek393t, MCF-7 and/or Cho-hIR cell. In one embodiment, the cell is a BT474, SKBR3 or MCF-7 and MDA-MB-231 cell. In one embodiment, the biochemical effect is insulin receptor phosphorylation, which can be measured by Western blot or enzyme-linked immunosorbent assay (ELISA). In one embodiment, the cell is a triple negative (TN) cell line. In one embodiment, the cell is a TN cell from the American Type Culture Collection (ATCC). In one embodiment, the cell is a TN cell from ATCC TCP-1002. In one embodiment, the biochemical effect is cell migration. In one embodiment, the biochemical effect is cell viability. In one embodiment, the biochemical effect is cell proliferation. In one embodiment, the protein phosphatase is PTP1B from Homo sapiens. In one embodiment, the protein kinase is Src kinase from Homo sapiens. In one embodiment, the gene of interest confers resistance to antibiotics. In one embodiment, the gene of interest is SacB, a gene that confers sensitivity to sucrose. In one embodiment, the gene of interest confers conditional toxicity (i.e., toxicity in the presence of an exogenously added molecule). In one embodiment, the genes of interest are SpecR and SacB. In one embodiment, the protein phosphatase is a wild-type enzyme. In one embodiment, the protein phosphatase has at least one mutation. In one embodiment, the protein phosphatase has at least one mutation that reduces its sensitivity to a small molecule that modulates the activity of the wild-type protein phosphatase. In one embodiment, the protein kinase is a wild-type enzyme. In one embodiment, the protein kinase has at least one mutation. In one embodiment, the protein kinase has at least one mutation that reduces its sensitivity to a small molecule that modulates the activity of the wild-type protein kinase. In one embodiment, the at least one of the terpenoids inhibits a protein phosphatase. In one embodiment, the at least one of the terpenoids inhibits PTP. In one embodiment, the at least one of the terpenoids inhibits PTP1B. In one embodiment, the at least one terpenoid activates a protein phosphatase. In one embodiment, the at least one terpenoid activates a PTP. In one embodiment, the at least one terpenoid activates protein tyrosine phosphatase non-receptor type 12 (PTPN12). In one embodiment, the at least one terpenoid inhibits a protein kinase. In one embodiment, the at least one terpenoid inhibits PTK. In one embodiment, the at least one terpenoid inhibits Src kinase. In one embodiment, the at least one terpenoid activates a protein kinase. In one embodiment, the at least one terpenoid activates a PTK. In one embodiment, the gene encoding system for detecting a small molecule further comprises both of the following: (i) a third fusion protein comprising a second substrate domain different from the first substrate domain linked to a protein that is unable to recruit RNA polymerase to DNA and (ii) a sixth gene for a second protein phosphatase different from the first protein phosphatase. In one embodiment, the gene encoding system for detecting small molecules further comprises both of the following: (i) a third fusion protein comprising a second substrate domain different from the first substrate domain linked to a protein that is incapable of recruiting RNA polymerase to DNA and (ii) a sixth gene for a second protein kinase different from the first protein kinase. In one embodiment, the gene encoding pathway for terpenoid biosynthesis alternatively comprises a library of pathways different from the identity of the TS gene, such that after transformation, most cells contain different TS genes (i.e., at least one gene with a different mutation). In one embodiment, the gene encoding pathway for terpenoid biosynthesis alternatively comprises a library of pathways different from the identity of genes for functionalized terpenoids (e.g., cytochrome P450 or halogenase) operably combined with SI genes, such that after transformation, most cells contain different genes for functionalized terpenoids (i.e., at least one gene with a different mutation). In one embodiment, the gene encoding pathway for terpenoid biosynthesis alternatively comprises a library of pathways in which the TS gene has been replaced by a component of a eukaryotic complementary DNA (cDNA) library, such that after transformation, most cells contain different genes in place of the TS gene. In one embodiment, the gene encoding pathway for terpenoid biosynthesis alternatively comprises a library of pathways in which the TS gene is accompanied by components of a eukaryotic complementary DNA (cDNA) library, such that after transformation, the majority of cells contain a different gene (e.g., a gene encoding an enzyme for terpenoid functionalization) in operable combination with the TS gene. In one embodiment, the gene encoding system for detecting small molecules alternatively comprises a library of such a system that is different in characteristics from the protein phosphatase gene, such that after transformation, the majority of cells contain different protein phosphatase genes (i.e., at least one gene that is mutated differently). In one embodiment, the gene encoding pathway for terpenoid biosynthesis generates terpenoids that modulate the activity of the wild-type form of the protein phosphatase, thereby enabling growth studies to isolate mutants of the protein phosphatase that are less sensitive to the modulatory effects of small molecules. In one embodiment, the gene encoding system for detecting small molecules alternatively comprises a library of such a system that is different in characteristics from the protein kinase gene, such that after transformation, the majority of cells contain separate protein kinase genes (i.e., at least one gene that is mutated differently). In one embodiment, the genetically encoded pathway for terpenoid biosynthesis produces terpenoids that modulate the activity of the wild-type form of the protein kinase, thereby enabling growth studies to isolate mutants of the protein kinase that are less sensitive to the modulatory effects of small molecules. In one embodiment, the at least one terpenoid modulates the activity of the wild-type form of the protein phosphatase, but not the mutant form of the protein phosphatase. In one embodiment, the at least one terpenoid modulates the activity of the first protein phosphatase, but not the second protein phosphatase. In one embodiment, the at least one terpenoid modulates the activity of the wild-type form of the protein kinase, but not the mutant form of the protein kinase. In one embodiment, the at least one terpenoid modulates the activity of the first protein kinase, but not the second protein kinase.
在一个实施方式中,本发明提供抑制剂检测操纵子,其包括,A:在第一启动子的控制下可操作的组合中的第一区域,其包括:i.编码包括底物识别同源性2结构域(SH2)和阻遏物的第一融合蛋白的第一DNA序列;ii.编码包括底物识别结构域的磷酸盐分子结合结构域、所述底物识别结构域和RNA聚合酶的ω亚单元(RpoZ或RPω)的第二融合蛋白的第二DNA序列;iii.编码细胞分裂周期37蛋白质(CDC37)的第三DNA序列;iv.蛋白磷酸酶;和B:在第二启动子的控制下可操作的组合中的第二区域,其包括:i.包括所述阻遏物的阻遏物结合结构域的操纵基因,ii.核糖体结合位点(RB);和iii.感兴趣的基因(GOI)。在一个实施方式中,所述SH2结构域是所述蛋白磷酸酶的底物识别结构域。在一个实施方式中,所述阻遏物是434噬菌体cI阻遏物。在一个实施方式中,所述底物识别结构域结合所述蛋白磷酸酶。在一个实施方式中,所述诱饵底物结构域是Src激酶基因。在一个实施方式中,所述操纵基因是434cI操纵基因。在一个实施方式中,所述感兴趣的基因编码抗生素蛋白质。在一个实施方式中,所述蛋白磷酸酶是蛋白酪氨酸磷酸酶。在一个实施方式中,所述第一启动子是组成型启动子。在一个实施方式中,所述第二启动子是诱导型启动子。In one embodiment, the present invention provides an inhibitor detection operon, which includes, A: a first region in an operable combination under the control of a first promoter, which includes: i. a first DNA sequence encoding a first fusion protein including a
在一个实施方式中,本发明提供使用抑制剂检测操纵子的方法,其包括,a.提供,i.检测操纵子,其包括A:在第一启动子的控制下可操作的组合中的第一区域,其包括:1.编码包括蛋白磷酸酶的底物识别同源性2结构域(SH2)和阻遏物结合结构域的第一融合蛋白的第一DNA序列;2.编码包括蛋白磷酸酶的底物识别结构域的磷酸盐分子结合结构域、所述蛋白磷酸酶的底物识别结构域和RNA聚合酶的ω亚单元(RpoZ或RPω)的第二融合蛋白的第二DNA序列;4.编码细胞分裂周期37(CDC37)蛋白质的第三DNA序列;5.蛋白磷酸酶;和B:在第二启动子的控制下可操作的组合中的第二区域,其包括:6.包括结合所述阻遏物的阻遏物结合结构域的操纵基因,7.核糖体结合位点(RB);和8.感兴趣的基因(GOI);和ii.具有缺失基因的甲羟戊酸途径操纵子,使得在包括用于产生类萜化合物的第二感兴趣的基因的第三启动子的控制下,所述途径操纵子不含有至少一个产生所述类萜化合物的所述途径中的基因,iii.在包括来自所述甲羟戊酸途径操纵子的所述缺失基因和第三感兴趣的基因的第四启动子的控制下的第四DNA序列;和iv.多个大肠杆菌细菌,和b.以用于表达所述第一感兴趣的基因所述第一操纵子转染所述大肠杆菌细菌;c.以用于表达所述第一和所述第二感兴趣的基因的所述甲羟戊酸途径操纵子转染所述大肠杆菌细菌;d.以用于表达所述第一和所述第二和所述第三感兴趣的基因的所述第四DNA序列转染所述大肠杆菌细菌;e.生长所述细胞,其中蛋白磷酸酶的所述抑制剂类萜化合物由所述细胞产生。在一个实施方式中,所述方法进一步包括步骤e.分离所述蛋白磷酸酶抑制剂分子并且提供哺乳动物细胞培养物,用于步骤f.处理所述细胞培养物用于减少所述蛋白磷酸酶的活性。在一个实施方式中,所述方法进一步提供用于诱导所述诱导型启动子的诱导物化合物和将所述细菌与所述化合物接触的步骤。在一个实施方式中,其中减少所述蛋白磷酸酶的活性的所述方法减少所述哺乳动物细胞的生长。在一个实施方式中,所述蛋白磷酸酶是人PTP1B。在一个实施方式中,所述蛋白磷酸酶是野生型。在一个实施方式中,所述蛋白磷酸酶具有至少一个突变。在一个实施方式中,所述缺失酶是萜合酶。在一个实施方式中,所述萜合酶选自由紫穗槐二烯合酶(ADS)和γ-蛇麻烯合酶(GHS)组成的组中。在一个实施方式中,所述第四DNA序列进一步包括香叶基香叶基二磷酸合酶(GPPS)并且所述缺失酶选自由松香二烯合酶(ABS)和紫杉烯合酶(TXS)组成的组中。在一个实施方式中,所述萜合酶是野生型。在一个实施方式中,所述萜合酶具有至少一个突变。在一个实施方式中,所述类萜化合物是类萜化合物的结构变体。在一个实施方式中,所述感兴趣的基因是抗生素基因。在一个实施方式中,所述感兴趣的基因各自是不同的抗生素基因。In one embodiment, the present invention provides a method for detecting an operon using an inhibitor, comprising: a. providing, i. detecting an operon, comprising A: a first region in a combination operable under the control of a first promoter, comprising: 1. a first DNA sequence encoding a first fusion protein comprising a
在一个实施方式中,所述基因编码检测操纵子系统,其包括;A部分:可操作的组合中的DNA的第一区域,其包括:编码第一启动子的DNA区域;编码第一融合蛋白的第一基因,所述第一融合蛋白包括连接至DNA结合蛋白质的底物识别结构域;编码第二融合蛋白的第二基因,所述第二融合蛋白包括连接至能够将RNA聚合酶募集至DNA的蛋白质的底物结构域;编码第二启动子的DNA区域;蛋白激酶的第三基因;分子伴侣的第四基因;蛋白磷酸酶的第五基因;B部分:在第二启动子的控制下可操作的组合中的DNA的第二区域,其包括:编码所述DNA结合蛋白质的操纵基因的第一DNA序列;编码RNA聚合酶的结合位点的第二DNA序列;和至少一个感兴趣的基因(GOI)。在一个实施方式中,所述底物识别结构域为底物同源性2(SH2)结构域。在一个实施方式中,所述DNA结合蛋白质是434噬菌体cI阻遏物。在一个实施方式中,所述底物结构域是所述激酶和所述磷酸酶二者的肽底物。在一个实施方式中,能够将RNA聚合酶募集至DNA的所述蛋白质是RNA聚合酶的ω亚单元(RPω)。在一个实施方式中,所述激酶的基因是Src激酶基因。在一个实施方式中,所述分子伴侣是CDC37。在一个实施方式中,所述分子伴侣是来自智人的Hsp90共伴侣。在一个实施方式中,所述操纵基因是434噬菌体cI操纵基因。在一个实施方式中,所述感兴趣的基因是抗生素抗性的基因。在一个实施方式中,所述抗生素抗性的基因产生允许细菌降解抗生素蛋白质的酶。在一个实施方式中,所述蛋白磷酸酶是蛋白酪氨酸磷酸酶1B。在一个实施方式中,A部分的所述第一和第二启动子是组成型启动子。在一个实施方式中,B部分的所述第二启动子是诱导型启动子。In one embodiment, the gene encoding detection operator system comprises: Part A: a first region of DNA in an operable combination, comprising: a DNA region encoding a first promoter; a first gene encoding a first fusion protein, the first fusion protein comprising a substrate recognition domain connected to a DNA binding protein; a second gene encoding a second fusion protein, the second fusion protein comprising a substrate domain connected to a protein capable of recruiting RNA polymerase to DNA; a DNA region encoding a second promoter; a third gene of a protein kinase; a fourth gene of a molecular chaperone; a fifth gene of a protein phosphatase; Part B: a second region of DNA in an operable combination under the control of a second promoter, comprising: a first DNA sequence encoding an operator gene of the DNA binding protein; a second DNA sequence encoding a binding site for an RNA polymerase; and at least one gene of interest (GOI). In one embodiment, the substrate recognition domain is a substrate homology 2 (SH2) domain. In one embodiment, the DNA binding protein is a 434 phage cI repressor. In one embodiment, the substrate domain is a peptide substrate for both the kinase and the phosphatase. In one embodiment, the protein capable of recruiting RNA polymerase to DNA is the ω subunit (RPω) of RNA polymerase. In one embodiment, the gene of the kinase is the Src kinase gene. In one embodiment, the molecular chaperone is CDC37. In one embodiment, the molecular chaperone is the Hsp90 co-chaperone from Homo sapiens. In one embodiment, the operator is the 434 phage cI operator. In one embodiment, the gene of interest is a gene for antibiotic resistance. In one embodiment, the gene for antibiotic resistance produces an enzyme that allows bacteria to degrade antibiotic proteins. In one embodiment, the protein phosphatase is protein tyrosine phosphatase 1B. In one embodiment, the first and second promoters of part A are constitutive promoters. In one embodiment, the second promoter of part B is an inducible promoter.
在一个实施方式中,本发明提供使用基因编码检测操纵子系统的方法,其包括,a.提供,i.抑制剂检测操纵子,其包括A部分:可操作的组合中的DNA的第一区域,其包括:1.编码第一启动子的DNA区域;2.编码第一融合蛋白的第一基因,所述第一融合蛋白包括连接至DNA结合蛋白质的底物识别结构域;3.编码第二融合蛋白的第二基因,所述第二融合蛋白包括连接至能够将RNA聚合酶募集至DNA的蛋白质的底物结构域;4.编码第二启动子的DNA区域;5.蛋白激酶的第三基因;6.分子伴侣的第四基因;7.蛋白磷酸酶的第五基因;B部分:在第二启动子的控制下,可操作的组合中的DNA的第二区域,其包括:8.编码所述DNA结合蛋白质的操纵基因的第一DNA序列;9.编码RNA聚合酶的结合位点的第二DNA序列;和10.至少一种感兴趣的基因(GOI)。ii.在包括产生类萜化合物的第二感兴趣的基因的第四启动子的控制下,不含有萜合酶基因甲羟戊酸盐-萜途径操纵子,iii.在包括所述萜合酶基因和第三感兴趣的基因的第五启动子的控制下,第四DNA序列;和iv.多个细菌,和b.以用于表达所述第一感兴趣的基因的所述抑制剂检测操纵子转染所述细菌;c.以用于表达所述所述第二感兴趣的基因的所述甲羟戊酸途径操纵子转染所述细菌;d.以用于表达所述第三感兴趣的基因的所述第四DNA序列转染所述细菌;e.生长表达所述三个感兴趣的基因的所述细菌细胞,其中所述抑制剂类萜化合物通过抑制所述蛋白磷酸酶的所述细菌细胞产生。在一个实施方式中,所述方法进一步包括步骤e.分离所述蛋白磷酸酶抑制剂分子并且提供哺乳动物细胞培养物,用于步骤f.处理所述细胞培养物用于减少所述蛋白磷酸酶的活性。在一个实施方式中,其中减少所述蛋白磷酸酶的活性的所述方法减少所述哺乳动物细胞的生长。在一个实施方式中,所述蛋白磷酸酶是人PTP1B。在一个实施方式中,所述蛋白磷酸酶是野生型。在一个实施方式中,所述蛋白磷酸酶具有至少一个突变。在一个实施方式中,所述甲羟戊酸途径操纵子包括用于表达甲羟戊酸激酶(ERG12)、磷酸甲羟戊酸激酶(ERG8)、甲羟戊酸焦磷酸脱羧酶(MVD1)、异戊烯基焦磷酸异构酶(IDI基因)和法尼基焦磷酸(FPP)合酶(ispA)的基因。在一个实施方式中,所述缺失酶是萜合酶。在一个实施方式中,所述萜合酶选自由紫穗槐二烯合酶(ADS)和γ-蛇麻烯合酶(GHS)组成的组中。在一个实施方式中,所述第四DNA序列进一步包括香叶基香叶基二磷酸合酶(GPPS),并且所述萜合酶选自由松香二烯合酶(ABS)和紫杉烯合酶(TXS)组成的组中。在一个实施方式中,所述萜合酶是野生型。在一个实施方式中,所述萜合酶具有至少一个突变。在一个实施方式中,所述类萜化合物是类萜化合物的结构变体。在一个实施方式中,所述感兴趣的基因是抗生素基因。在一个实施方式中,所述感兴趣的基因各自是不同的抗生素基因。在一个实施方式中,所述方法进一步提供用于诱导所述诱导型启动子的诱导物化合物和将所述细菌与所述化合物接触的步骤。In one embodiment, the present invention provides a method for using a gene-encoded detection operator system, which includes, a. providing, i. an inhibitor detection operator, which includes part A: a first region of DNA in an operable combination, which includes: 1. a DNA region encoding a first promoter; 2. a first gene encoding a first fusion protein, the first fusion protein including a substrate recognition domain linked to a DNA binding protein; 3. a second gene encoding a second fusion protein, the second fusion protein including a substrate domain linked to a protein capable of recruiting RNA polymerase to DNA; 4. a DNA region encoding a second promoter; 5. a third gene for a protein kinase; 6. a fourth gene for a molecular chaperone; 7. a fifth gene for a protein phosphatase; part B: a second region of DNA in an operable combination under the control of a second promoter, which includes: 8. a first DNA sequence of an operator gene encoding the DNA binding protein; 9. a second DNA sequence encoding a binding site for an RNA polymerase; and 10. at least one gene of interest (GOI). ii. a mevalonate-terpene pathway operon without a terpene synthase gene under the control of a fourth promoter comprising a second gene of interest producing terpenoid compounds, iii. a fourth DNA sequence under the control of a fifth promoter comprising the terpene synthase gene and a third gene of interest; and iv. a plurality of bacteria, and b. transfecting the bacteria with the inhibitor detection operon for expressing the first gene of interest; c. transfecting the bacteria with the mevalonate pathway operon for expressing the second gene of interest; d. transfecting the bacteria with the fourth DNA sequence for expressing the third gene of interest; e. growing the bacterial cells expressing the three genes of interest, wherein the inhibitor terpenoid compounds are produced by the bacterial cells inhibiting the protein phosphatase. In one embodiment, the method further comprises the step of e. isolating the protein phosphatase inhibitor molecule and providing a mammalian cell culture for step f. treating the cell culture for reducing the activity of the protein phosphatase. In one embodiment, wherein the method of reducing the activity of the protein phosphatase reduces the growth of the mammalian cells. In one embodiment, the protein phosphatase is human PTP1B. In one embodiment, the protein phosphatase is wild type. In one embodiment, the protein phosphatase has at least one mutation. In one embodiment, the mevalonate pathway operon includes genes for expressing mevalonate kinase (ERG12), phosphomevalonate kinase (ERG8), mevalonate pyrophosphate decarboxylase (MVD1), isopentenyl pyrophosphate isomerase (IDI gene) and farnesyl pyrophosphate (FPP) synthase (ispA). In one embodiment, the deleted enzyme is a terpene synthase. In one embodiment, the terpene synthase is selected from the group consisting of amorphadiene synthase (ADS) and γ-humulene synthase (GHS). In one embodiment, the fourth DNA sequence further includes geranylgeranyl diphosphate synthase (GPPS), and the terpene synthase is selected from the group consisting of abietadiene synthase (ABS) and taxene synthase (TXS). In one embodiment, the terpene synthase is wild type. In one embodiment, the terpene synthase has at least one mutation. In one embodiment, the terpenoid compound is a structural variant of a terpenoid compound. In one embodiment, the gene of interest is an antibiotic gene. In one embodiment, each of the genes of interest is a different antibiotic gene. In one embodiment, the method further provides an inducer compound for inducing the inducible promoter and the step of contacting the bacteria with the compound.
在一个实施方式中,本发明提供使用以下二者的方法:(i)用于检测调节酶活性的小分子的基因编码系统和(ii)用于聚酮(polyketide)生物合成的基因编码途径,以鉴定和/或构建调节酶活性的聚酮,所述方法包括,提供,用于检测调节酶活性的小分子的基因编码系统,其包括,可操作的组合中的第一区域,其包括:第一启动子;编码第一融合蛋白的第一基因,所述第一融合蛋白包括连接至DNA结合蛋白质的底物识别结构域;编码第二融合蛋白的第二基因,所述第二融合蛋白包括连接至能够将RNA聚合酶募集至DNA的蛋白质的底物结构域;第二启动子;蛋白激酶的第三基因;分子伴侣的第四基因;蛋白磷酸酶的第五基因;可操作的组合中的第二区域,其包括:编码所述DNA结合蛋白质的操纵基因的第一DNA序列;编码RNA聚合酶的结合位点的第二DNA序列;一个或多个感兴趣的基因(GOI);用于聚酮生物合成的基因编码途径,其包括:聚酮合酶的基因;多个大肠杆菌细菌。在一个实施方式中,所述聚酮合酶是6-脱氧红霉内酯B合酶(DEBS)。在一个实施方式中,所述聚酮合酶(PKS)是不同PKS组分的模块化组合(modular combination)。In one embodiment, the present invention provides a method using the following two: (i) a gene encoding system for detecting small molecules that regulate enzyme activity and (ii) a gene encoding pathway for polyketide biosynthesis to identify and/or construct polyketides that regulate enzyme activity, the method comprising providing a gene encoding system for detecting small molecules that regulate enzyme activity, which comprises a first region in an operable combination, which comprises: a first promoter; a first gene encoding a first fusion protein, the first fusion protein comprising a substrate recognition domain linked to a DNA binding protein; a second gene encoding a second fusion protein, the second fusion protein comprising a substrate domain linked to a protein capable of recruiting RNA polymerase to DNA; a second promoter; a third gene for a protein kinase; a fourth gene for a molecular chaperone; a fifth gene for a protein phosphatase; a second region in an operable combination, which comprises: a first DNA sequence encoding an operator gene for the DNA binding protein; a second DNA sequence encoding a binding site for an RNA polymerase; one or more genes of interest (GOI); a gene encoding pathway for polyketide biosynthesis, which comprises: a gene for a polyketide synthase; and a plurality of Escherichia coli bacteria. In one embodiment, the polyketide synthase is 6-deoxyerythrolide B synthase (DEBS). In one embodiment, the polyketide synthase (PKS) is a modular combination of different PKS components.
在一个实施方式中,本发明提供使用以下二者的方法:(i)用于检测调节酶活性的小分子的基因编码系统和(ii)用于聚酮生物合成的基因编码途径,以鉴定和/或构建调节酶活性的生物碱,所述方法包括,a.提供,用于检测调节酶活性的小分子的基因编码系统,包括,可操作的组合中的第一区域,其包括:第一启动子;编码第一融合蛋白的第一基因,所述第一融合蛋白包括连接至DNA结合蛋白质的底物识别结构域;编码第二融合蛋白的第二基因,所述第二融合蛋白包括连接至能够将RNA聚合酶募集至DNA的蛋白质的底物结构域;第二启动子;蛋白激酶的第三基因;分子伴侣的第四基因;蛋白磷酸酶的第五基因;可操作的组合中的第二区域,其包括:编码所述DNA结合蛋白质的操纵基因的第一DNA序列;编码RNA聚合酶的结合位点的第二DNA序列;一个或多个感兴趣的基因(GOI);用于聚酮生物合成的基因编码途径,其包括,生物碱生物合成的途径;多个大肠杆菌细菌。在一个实施方式中,本文描述了所述生物碱生物合成的途径。In one embodiment, the present invention provides a method using the following two: (i) a gene encoding system for detecting small molecules that modulate enzyme activity and (ii) a gene encoding pathway for polyketide biosynthesis to identify and/or construct an alkaloid that modulates enzyme activity, the method comprising, a. providing a gene encoding system for detecting small molecules that modulate enzyme activity, comprising, a first region in an operable combination, which comprises: a first promoter; a first gene encoding a first fusion protein, the first fusion protein comprising a substrate recognition domain connected to a DNA binding protein; a second gene encoding a second fusion protein, the second fusion protein comprising a substrate domain connected to a protein capable of recruiting RNA polymerase to DNA; a second promoter; a third gene for a protein kinase; a fourth gene for a molecular chaperone; a fifth gene for a protein phosphatase; a second region in an operable combination, which comprises: a first DNA sequence encoding an operator gene for the DNA binding protein; a second DNA sequence encoding a binding site for an RNA polymerase; one or more genes of interest (GOI); a gene encoding pathway for polyketide biosynthesis, which comprises, a pathway for alkaloid biosynthesis; a plurality of Escherichia coli bacteria. In one embodiment, the pathway for alkaloid biosynthesis is described herein.
在一个实施方式中,本发明提供工程化细菌细胞系,其包括表达质粒1、质粒2、质粒3和质粒4。In one embodiment, the present invention provides an engineered bacterial cell line comprising
在一个实施方式中,本发明提供磷酸酶抑制剂分子,其通过表达质粒1的细菌与诱导表达质粒2中的类萜合成途径操纵子和质粒3中的萜合酶的启动子的诱导物分子接触产生的,其中所述质粒2和质粒3在具有质粒1的所述细菌中共表达。在一个实施方式中,所述质粒2和所述质粒3在诱导型启动子的控制下。在一个实施方式中,所述细菌通过用于诱导所述启动子的可诱导的分子接触。In one embodiment, the present invention provides a phosphatase inhibitor molecule produced by contacting a
在一个实施方式中,本发明提供产生磷酸酶抑制剂分子的细菌菌株。在一个实施方式中,所述抑制剂是类萜分子。In one embodiment, the present invention provides a bacterial strain that produces a phosphatase inhibitor molecule. In one embodiment, the inhibitor is a terpenoid molecule.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
专利或申请文件含有至少一张彩色完成的附图。在要求和支付必要的费用后专利局将提供具有彩色附图的本专利或专利申请公开的副本。The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.
图1A-G阐释了开发光控开关磷酸酶,例如PTP1BPS的实施方式并且显示了示例性结果。1A-G illustrate an embodiment of developing a photoswitchable phosphatase, such as a PTP1B PS , and show exemplary results.
图1A阐释了PTP1BPS的设计的一个实施方式:LOV2的A’α螺旋的光诱导解旋使PTP1B的α7螺旋不稳定,因此,抑制催化。图1B阐释了详细阐述的一个实施方式:在PTP1B的竞争性抑制结构(橙色)中,α7螺旋是稳定的,并且WPD环(黑色)采用闭合、催化上胜任的构象。在载脂蛋白(apo)结构(黄色)中,使α7螺旋紊乱,并且WPD环(蓝色)采用打开、非活化构象。我们在同源的交叉点(1-7)将PTP1B的C-末端α7螺旋附着至LOV2的N-末端A’α螺旋以创建LOV2的光响应性使α7螺旋不稳定的嵌合体。图1C显示了一个实施方式的优化的示例性结果:构建体7展示出交叉变体的最大动态范围;7.1具有超过7的改善的活性,而7.1(T406A)具有超过7.1的改善的的动态范围。图1D显示了pNPP上PTP1BPS的活性的示例性分析,指示光影响kcat,但不影响Km。图1E显示了PTP1BPS的动态范围类似于不同大小的底物的。图1F显示了两个小分子:p-硝基苯基-磷酸盐(或pNPP)和4-甲基伞形酮基磷酸(或4MU)以及来自EGFR的肽结构域的示例性阐释。图1G显示了在455nm光存在和不存在的情况下,(A-D)交叉位置和(E-E4)连接体组合物不同的PTP1B-LOV2嵌合体的示例性活性。底物:4-甲基伞形酮基磷酸。FIG1A illustrates one embodiment of the design of the PTP1B PS : light-induced unwinding of the A' α helix of LOV2 destabilizes the α7 helix of PTP1B, thus inhibiting catalysis. FIG1B illustrates one embodiment of the detailed description: In the competitive inhibition structure of PTP1B (orange), the α7 helix is stabilized and the WPD loop (black) adopts a closed, catalytically competent conformation. In the apolipoprotein (apo) structure (yellow), the α7 helix is disordered and the WPD loop (blue) adopts an open, inactive conformation. We attached the C-terminal α7 helix of PTP1B to the N-terminal A' α helix of LOV2 at the homologous intersection (1-7) to create a photoresponsive α7 helix destabilized chimera of LOV2. FIG1C shows an exemplary result of the optimization of one embodiment: construct 7 exhibits the largest dynamic range of the intersection variants; 7.1 has improved activity over 7, and 7.1(T406A) has improved dynamic range over 7.1. Figure 1D shows an exemplary analysis of the activity of PTP1B PS on pNPP, indicating that light affects kcat , but not Km . Figure 1E shows that the dynamic range of PTP1B PS is similar to that of substrates of different sizes. Figure 1F shows an exemplary illustration of two small molecules: p-nitrophenyl-phosphate (or pNPP) and 4-methylumbelliferyl phosphate (or 4MU) and a peptide domain from EGFR. Figure 1G shows exemplary activities of PTP1B-LOV2 chimeras that differ in (AD) crossover position and (E-E4) linker composition in the presence and absence of 455 nm light. Substrate: 4-methylumbelliferyl phosphate.
图2A-J显示了PTP1BPS的示例性生物物理特性。Figure 2A-J shows exemplary biophysical properties of the PTP1B PS .
图2A显示了示例性突变,其(i)防止LOV2(C450M)中半胱氨酸加合物的形成、(ii)如果是LOV2(I532E、I539E和ΔJα)使A’α和Jα螺旋不稳定或(iii)破坏PTP1B(Y152A/Y153A)的变构网络,减少7.1的光敏性,除了I532E和C450M,降低其比活性。图2B显示了PTP1BPS至455nm光的示例性暴露减少其α-螺旋含量(CD222nm)。图2C显示了α-螺旋含量的示例性光学调制(即,δ222=CD222-黑暗-CD222-光)是必要的,但不足够用于催化活性的光学调制。虚线表示了PTP1BWT和LOV2WT的等摩尔溶液的δ222。图2D显示了PTP1B的催化结构域中六个色氨酸残基的示例性荧光,其使得能够光学监测其构象状态。图2E-F显示了PTP1BPS的(图2E)α-螺旋含量和(图2F)色氨酸荧光的示例性热回收。图2G显示了对于α-螺旋含量的热复位的示例性动力学常数大于色氨酸荧光的热复位的示例性动力学常数,这表明LOV2比PTP1B结构域复位更快速。对于最光敏的变体:7.1(T406A),该差异是最小的。图2H显示了PTP1BPS(蓝色)和载脂蛋白PTP1BWT(橙色)的晶体结构的示例性比对,指示了LOV2不会扭曲催化结构域的结构。PTP1BPS的LOV2结构域可不被分解;α7螺旋的开始处的柔性环可能导致LOV2在晶格中采用可变方向。显示PTP1B(黄色)的抑制结构的α6和α7螺旋用于参考。图2I显示了可容纳LOV2的PTP1BPS的晶体结构中的示例性空位(gap)。图2J显示了PTP1B-LOV2融合的示例性晶体是绿色的并且当用455nm光照射时变成透明的;因此,LOV2确实存在。A、C和G的误差线表示标准误差(n>3)。注意:PTP1BPS对应于来自图1的构建体7.1(T406A)。FIG2A shows exemplary mutations that (i) prevent the formation of cysteine adducts in LOV2 (C450M), (ii) destabilize the A'α and Jα helices in the case of LOV2 (I532E, I539E and ΔJα) or (iii) disrupt the allosteric network of PTP1B (Y152A/Y153A), reduce the photosensitivity by 7.1, except for I532E and C450M, reducing its specific activity. FIG2B shows exemplary exposure of PTP1B PS to 455 nm light to reduce its α-helical content (CD 222nm ). FIG2C shows exemplary optical modulation of α-helical content (i.e., δ 222 =CD 222-dark - CD 222-light ) is necessary, but not sufficient, for optical modulation of catalytic activity. The dashed line represents δ 222 of equimolar solutions of PTP1B WT and LOV2 WT . Figure 2D shows exemplary fluorescence of six tryptophan residues in the catalytic domain of PTP1B, which enables optical monitoring of its conformational state. Figures 2E-F show exemplary thermal recovery of (Figure 2E) α-helical content and (Figure 2F) tryptophan fluorescence of PTP1B PS . Figure 2G shows that the exemplary kinetic constant for thermal resetting of α-helical content is greater than the exemplary kinetic constant for thermal resetting of tryptophan fluorescence, indicating that LOV2 resets faster than the PTP1B domain. The difference is minimal for the most photosensitive variant: 7.1 (T406A). Figure 2H shows an exemplary alignment of the crystal structures of PTP1B PS (blue) and apolipoprotein PTP1B WT (orange), indicating that LOV2 does not distort the structure of the catalytic domain. The LOV2 domain of PTP1B PS may not be resolved; the flexible loop at the beginning of the α7 helix may cause LOV2 to adopt variable orientations in the lattice. The α6 and α7 helices of the inhibitory structure of PTP1B (yellow) are shown for reference. FIG2I shows an exemplary gap in the crystal structure of a PTP1B PS that can accommodate LOV2. FIG2J shows an exemplary crystal of a PTP1B-LOV2 fusion that is green and becomes transparent when illuminated with 455 nm light; therefore, LOV2 is indeed present. The error bars in A, C, and G represent standard error (n>3). Note: The PTP1B PS corresponds to construct 7.1 (T406A) from FIG1 .
图3A-D表明了具有PTP1B活性的示例性基于荧光的生物传感器。3A-D illustrate exemplary fluorescence-based biosensors having PTP1B activity.
图3A显示了PTP1B活性的传感器的一个实施方式。该传感器由激酶底物结构域、短的柔性连接体和被夹在两个荧光蛋白质(例如,青色荧光蛋白质和黄色荧光蛋白质)之间的磷酸化识别结构域组成。当传感器是以其未磷酸化状态时,两个荧光团之间的共振能量转移(FRET)导致CFP荧光减少和YFP荧光增加;当传感器是以其磷酸化状态时,FRET的不存在导致相反的作用。图3B显示了供体荧光(CFP)与接纳体荧光(YPet)的比例的示例性增加,证实存在Src激酶(即,酪氨酸激酶)。当另外添加(i)EDTA,其螯合Src的金属辅助因子或(ii)PTP1B,其使底物结构域去磷酸化时,该增加不发生。图3C显示了作为A的FRET传感器的另一种类的一个实施方式;该实施方式使用mClover3和mRuby3。这些蛋白质的激发和发射波长使得它们与基于LOV2的成像实验相容。图3D显示了用来自C的传感器示例性重复来自B的实验。FIG3A shows one embodiment of a sensor for PTP1B activity. The sensor consists of a kinase substrate domain, a short flexible linker, and a phosphorylation recognition domain sandwiched between two fluorescent proteins (e.g., cyan fluorescent protein and yellow fluorescent protein). When the sensor is in its unphosphorylated state, the phosphorylation between the two fluorophores is Resonance energy transfer (FRET) results in a decrease in CFP fluorescence and an increase in YFP fluorescence; the absence of FRET results in the opposite effect when the sensor is in its phosphorylated state. FIG. 3B shows an exemplary increase in the ratio of donor fluorescence (CFP) to acceptor fluorescence (YPet), confirming the presence of Src kinase (i.e., tyrosine kinase). This increase does not occur when (i) EDTA, which chelates metal cofactors of Src, or (ii) PTP1B, which dephosphorylates the substrate domain, is additionally added. FIG. 3C shows an embodiment of another class of FRET sensors as A; this embodiment uses mClover3 and mRuby3. The excitation and emission wavelengths of these proteins make them compatible with LOV2-based imaging experiments. FIG. 3D shows an exemplary repetition of the experiment from B with the sensor from C.
图4A-H表明了使用光构建体和荧光标签在活细胞内的磷酸酶活性的示例性证据。4A-H show exemplary evidence of phosphatase activity in living cells using photoconstructs and fluorescent tags.
图4A-C显示了在Cos-7细胞:(图4A)GFP-PTP1BPS、(图4B)GFP-PTP1BPS-A和(图4C)GFP-PTP1BPS-B中表达的三个构建体的实施方式。这里,GFP-PTP1BPS是绿色荧光蛋白(GFP)和来自图1B-C的7.1(T406A)的N-末端的融合体(不具有组氨酸标签);GFP-PTP1BPS-A是GFP-PTP1BPS和全长PTP1B的C-末端结构域的融合;和GFP-PTP1BPS-B是GFP-PTP1BPS和全长PTP1B的C-末端内质网(ER)锚形物(anchor)的融合(见下面)。GFP-PTP1BPS位于胞质溶胶和胞核,而GFP-PTP1BPS-A和GFP-PTP1BPS-B位于ER。图4D-H显示了PTP1BPS的基于细胞的研究的示例性结果。我们用含有(i)来自图3C-3D的FRET传感器和(ii)PTP1BPS或PTP1BPS/C450M(光不敏感的突变体)的质粒转化了Cos-7细胞。在该实验中,我们用447nm光照射单个细胞并且立即用561nm光使它们成像。FRET比例的光调节的变化(如图3中定义的)允许我们检测PTP1B活性的光调节的变化。图4D-E显示了在两个时间点:(图4D)用447nm光激发后立即和(图4E)1min后用PTP1BPS转化的示例性Cos-7细胞。FRET比例的轻微增加(深绿色至浅绿色)证实了PTP1B的光活化。(F-G)。在两个时间点:(图4F)用447nm光激发后立即和(G)1min后用PTP1BPS(C450M)转化了Cos-7细胞。FRET比例的可检测的变化的不存在指示D-E中观察的变化由PTP1B活性的光诱导的变化引起。图4H显示了在1min和2.67min后胞核(nuc)和胞质溶胶(cyt)中观察的FRET比例的示例性平均分数变化。PTP1BPS的变化比光不敏感的突变体PTP1BPS(C450M)的变化更高。误差线指示标准误差。Figures 4A-C show embodiments of three constructs expressed in Cos-7 cells: (Figure 4A) GFP-PTP1B PS , (Figure 4B) GFP-PTP1B PS -A, and (Figure 4C) GFP-PTP1B PS -B. Here, GFP-PTP1B PS is a fusion of green fluorescent protein (GFP) and the N-terminus of 7.1 (T406A) from Figures 1B-C (without a histidine tag); GFP-PTP1B PS -A is a fusion of GFP-PTP1B PS and the C-terminal domain of full-length PTP1B; and GFP-PTP1B PS -B is a fusion of GFP-PTP1B PS and the C-terminal endoplasmic reticulum (ER) anchor of full-length PTP1B (see below). GFP-PTP1B PS is localized in the cytosol and nucleus, while GFP-PTP1B PS -A and GFP-PTP1B PS -B are localized in the ER. Figure 4D-H shows exemplary results of cell-based studies of PTP1B PS . We transformed Cos-7 cells with plasmids containing (i) FRET sensors from Figures 3C-3D and (ii) PTP1B PS or PTP1B PS / C450M (light-insensitive mutants). In this experiment, we illuminated individual cells with 447nm light and immediately imaged them with 561nm light. Changes in the light regulation of the FRET ratio (as defined in Figure 3) allow us to detect changes in the light regulation of PTP1B activity. Figure 4D-E shows exemplary Cos-7 cells transformed with PTP1B PS at two time points: (Figure 4D) immediately after excitation with 447nm light and (Figure 4E) 1min later. A slight increase in the FRET ratio (dark green to light green) confirms the photoactivation of PTP1B. (FG). Cos-7 cells were transformed with PTP1B PS (C450M) at two time points: (FIG. 4F) immediately after excitation with 447 nm light and (G) 1 min later. The absence of detectable changes in FRET ratios indicates that the changes observed in DE are caused by light-induced changes in PTP1B activity. FIG. 4H shows exemplary mean fractional changes in FRET ratios observed in the nucleus (nuc) and cytosol (cyt) after 1 min and 2.67 min. The changes in PTP1B PS are higher than those in the light-insensitive mutant PTP1B PS (C450M). Error bars indicate standard errors.
图5A-C阐释了药物发现的实施方式。5A-C illustrate embodiments of drug discovery.
图5A显示了用于鉴定合成酶(右下图)的磷酸酶,即药物靶标(PTP1B的左上图)的示例性用途,其中然后,酶用于提供磷酸酶的抑制剂或调节剂分子,因此显示了使用酶来构建选择的蛋白质靶标的抑制剂的一般框架。图5B显示了结合口袋之间结构关系的示例性分析。基质比较了结合口袋1和能够功能化(例如,P450)或结合至(例如,PTP1B)口袋1内合成的配体的所有其他结合口袋(2至n个)之间的各个特性(例如,体积)。图5C显示了生物合成途径中结合口袋来结合中间体的能力的示例性比较。Fig. 5A shows an exemplary use of a phosphatase, i.e., a drug target (upper left figure of PTP1B), for identifying a synthetase (lower right figure), wherein the enzyme is then used to provide an inhibitor or modulator molecule of the phosphatase, thus showing a general framework for using an enzyme to construct an inhibitor of a selected protein target. Fig. 5B shows an exemplary analysis of structural relationships between binding pockets. The matrix compares each characteristic (e.g., volume) between binding
图6阐释了示出PTP1B的变构性地抑制(绿色)和竞争性地抑制(橙色)结构的覆盖的PTP1B(分别为PDB入口1t4j和2f71),显示了活性-调节构象变化:LOV2的α7螺旋的解旋(蓝色)导致其催化必要的WPD环(右)采用打开的、催化折中的构象。竞争(红色)和变构(黄色)抑制剂分别突出活性位点和变构位点。Figure 6 illustrates an overlay of PTP1B (PDB entries 1t4j and 2f71, respectively) showing allosterically inhibited (green) and competitively inhibited (orange) structures of PTP1B, demonstrating activity-regulated conformational changes: Unwinding of the α7 helix of LOV2 (blue) causes its catalytically essential WPD loop (right) to adopt an open, catalytically compromised conformation. Competitive (red) and allosteric (yellow) inhibitors highlight the active site and allosteric site, respectively.
图7A-B显示了结合亲和力的示例性分析。图7A显示了PTP1B的两个结合伙伴:LMO4和Stat3的实施方式。图7B显示了基于PTP1B的色氨酸荧光中结合诱导的变化的示例性结合等温线(配体是TCS 401,竞争性抑制剂)。Figures 7A-B show exemplary analyses of binding affinity. Figure 7A shows an embodiment of two binding partners of PTP1B: LMO4 and Stat3. Figure 7B shows an exemplary binding isotherm based on binding-induced changes in tryptophan fluorescence of PTP1B (ligand is TCS 401, a competitive inhibitor).
图8A-B阐释了PTP1B(浅蓝色)和STEP(橙色)的示例性结构比对,图8A,其仅具有31%序列同一性,显示了明显的结构相似性。图8B阐释了PTK6的示例性结构。STEP和PTK6二者拥有与LOV2的N-末端螺旋的驱动相容的C-末端α-螺旋(即,光调制构架类似于图1中描绘的)。Figures 8A-B illustrate exemplary structural alignments of PTP1B (light blue) and STEP (orange), Figure 8A, which have only 31% sequence identity, showing significant structural similarity. Figure 8B illustrates an exemplary structure of PTK6. Both STEP and PTK6 possess C-terminal α-helices that are compatible with the drive of the N-terminal helix of LOV2 (i.e., the light modulating framework is similar to that depicted in Figure 1).
图9A-B阐释了构建由红光调节的酶的示例性框架。我们将PTP1B的C-末端α-螺旋附着至BphP1的N-末端α-螺旋。Figure 9A-B illustrates an exemplary framework for constructing an enzyme regulated by red light.We attached the C-terminal α-helix of PTP1B to the N-terminal α-helix of BphP1.
图10A-B阐释了用于筛选PTP1B的光控开关变体的示例性操纵子。图10A显示了以其活性状态(这里远红外状态)PTP1B去磷酸化底物结构域,防止底物-SH2缔合,并且因此防止转录的示例性阐释。图10B显示了以其非活性状态(这里,红色状态)磷酸化的底物结构域结合SH2,允许抗生素抗性的基因的转录的示例性阐释。Figures 10A-B illustrate exemplary operons for screening light-operated switch variants of PTP1B. Figure 10A shows an exemplary illustration that PTP1B in its active state (here, far-red state) dephosphorylates the substrate domain, preventing substrate-SH2 association, and thus preventing transcription. Figure 10B shows an exemplary illustration that the substrate domain phosphorylated in its inactive state (here, red state) binds SH2, allowing transcription of a gene for antibiotic resistance.
图11A-B阐释了光控开关蛋白质进化的示例性策略。图11A阐释了我们将比较暴露于红光和红外光的复制板上菌落的生长,并且选择展示不同生长的菌落。图11B阐释了我们将进一步表征液体培养物中热门产物(hothit)的光敏性。Figures 11A-B illustrate an exemplary strategy for the evolution of photoswitchable proteins. Figure 11A illustrates that we will compare the growth of colonies on replicate plates exposed to red and infrared light, and select colonies that exhibit differential growth. Figure 11B illustrates that we will further characterize the photosensitivity of hothit in liquid culture.
图12A-B阐释了开发用于测量细胞内磷酸酶或激酶活性的示例性基于FRET的传感器。底物和SH2结构域的结合(图12A)增强或(图12B)减少FRET,其取决于构架。Figures 12A-B illustrate exemplary FRET-based sensors developed to measure intracellular phosphatase or kinase activity. Binding of substrate to the SH2 domain enhances (Figure 12A) or reduces (Figure 12B) FRET, depending on the architecture.
图13显示了成像实验的动画。我们将使得含有不同量的质膜、ER和胞质溶胶的亚细胞区(1-10μm)内的PTP1B PS失活,并且我们将使用荧光寿命成像以检查整个细胞中我们基于FRET的传感器(来自图12)的磷酸化状态。An animation of the imaging experiment is shown in Figure 13. We will inactivate PTP1B PS within subcellular compartments (1-10 μm) containing varying amounts of plasma membrane, ER, and cytosol, and we will use fluorescence lifetime imaging to examine the phosphorylation state of our FRET-based sensor (from Figure 12) in whole cells.
图14A-D阐释了导向药物设计和发现的示例性开始点。14A-D illustrate exemplary starting points for guided drug design and discovery.
图14A阐释了松香酸。图14B表明了通过以0-400uM的浓度(深至浅)的松香酸的PTP1B的抑制。不同拟合的分析指示非竞争性的或混合型抑制。图14C阐释了PTP1B的变构位点中对接(docked)的松香酸(绿色)。因为我们已经显示了松香酸结合至PTP1B的活性位点。插图以黑色突出了活性位点。图14D显示了已知的变构抑制剂(蓝色)的示例性X-射线晶体结构。FIG. 14A illustrates abietic acid. FIG. 14B shows inhibition of PTP1B by abietic acid at concentrations of 0-400 uM (dark to light). Analysis of different fits indicates non-competitive or mixed inhibition. FIG. 14C illustrates abietic acid docked in the allosteric site of PTP1B (green). As we have shown that abietic acid binds to the active site of PTP1B. The inset highlights the active site in black. FIG. 14D shows an exemplary X-ray crystal structure of a known allosteric inhibitor (blue).
图15A-D阐释了类萜合成途径的示例性图15A(甲羟戊酸盐可通过pMevT被合成或添加至媒介)。图15B显示了由用来自A的质粒(不具有P450)转化的大肠杆菌DH5a生成的示例性松香二烯(abietadiene)效价。图15C-D显示了图15C)产生松香二烯的菌株和图15D产生松香酸的菌株的下列产物的示例性GC-MS分析:(1)松香二烯、(2)左旋海松二烯和(3)松香酸(对于图15C以10,000离子计数和对于图15D以1,000离子计数)。注意:大肠杆菌DH5a避免蛋白质过度表达在代谢工程化中是常用的*4。Figures 15A-D illustrate an exemplary Figure 15A of a terpenoid synthesis pathway (mevalonate can be synthesized or added to the media by pMevT). Figure 15B shows an exemplary abietadiene titer produced by E. coli DH5a transformed with a plasmid from A (without P450). Figures 15C-D show exemplary GC-MS analysis of the following products of a strain producing abietadiene in Figure 15C) and a strain producing abietic acid in Figure 15D: (1) abietadiene, (2) levorotatory pinamaradiene, and (3) abietic acid (10,000 ion counts for Figure 15C and 1,000 ion counts for Figure 15D). Note: Avoiding protein overexpression in E. coli DH5a is common in metabolic engineering* 4 .
图16A-C阐释了示出立体化学、形状、大小和化学官能度的差异的示例性类萜。图16A顺时针方向地阐释了松香酸(1)、新松香酸(2)、左旋海松酸(3)、二氢松香酸(4)。图16B显示了在200uM抑制剂存在的情况下PTP1B对10mM的p-NP磷酸盐的示例性初始速率。没有抑制剂(图16C)。误差线=标准误差(n>5)。Figures 16A-C illustrate exemplary terpenoids showing differences in stereochemistry, shape, size, and chemical functionality. Figure 16A illustrates clockwise abietic acid (1), neoabietic acid (2), levopimaric acid (3), dihydroabietic acid (4). Figure 16B shows exemplary initial rates of PTP1B to 10 mM p-NP phosphate in the presence of 200 uM inhibitor. No inhibitor (Figure 16C). Error bars = standard error (n>5).
图17A-C显示了来自示例性研究的结果。图17A PTP1B(红色)和结合至松香酸的PTP1B(蓝色)的N-HSQC光谱。插图:PTP1B的晶体结构。图17B-C显示了在图17B对照的培养物提取物(ABSX)、产生松香二烯(ABS)的菌株和产生松香酸(ABS/BM3)的菌株和(图17C)各种浓度的松香酸和25uM的已知的变构抑制剂(BBR)存在的情况下,PTP1B的示例性色氨酸(W)荧光。误差线表示标准误差(n>5)。Figures 17A-C show results from an exemplary study. Figure 17A N-HSQC spectra of PTP1B (red) and PTP1B bound to abietic acid (blue). Inset: Crystal structure of PTP1B. Figures 17B-C show exemplary tryptophan (W) fluorescence of PTP1B in the presence of culture extracts of the control (ABS X ), abietic diene (ABS) producing strains and abietic acid (ABS/BM3) of Figure 17B and (Figure 17C) various concentrations of abietic acid and 25uM of a known allosteric inhibitor (BBR). Error bars represent standard errors (n>5).
图18A-B阐释了图18A立体化学和图18B形状中不同的示例性类萜。插图:ABS的I类位点中靶向诱变的残基。Figures 18A-B illustrate exemplary terpenoids that differ in stereochemistry Figure 18A and shape Figure 18B. Inset: Residues targeted for mutagenesis in the class I position of the ABS.
图19A-E阐释了示例性类萜图19A羧化的、图19B羟基化的和图19C卤化的二萜。图19D-E显示了图19D P450 BM3和图19E SttH中靶向诱变的示例性残基。Figures 19A-E illustrate exemplary terpenoids Figure 19A carboxylated, Figure 19B hydroxylated, and Figure 19C halogenated diterpenes. Figures 19D-E show exemplary residues for targeted mutagenesis in Figure 19D P450 BM3 and Figure 19E SttH.
图20阐释了UPPS的示例性WaterMap分析。相对于大量水,水分子的颜色对应于自由能。An exemplary WaterMap analysis of UPPS is illustrated in Figure 20. The color of the water molecules corresponds to the free energy relative to the bulk water.
图21A-E阐释了PTP1B抑制剂的示例性高通量筛选。21A-E illustrate an exemplary high throughput screen for PTP1B inhibitors.
图21A生长偶联(即,选择;策略1)。图21B)PTP1B活性的FRET传感器(策略2)。图21C)FRET传感器和图21D)PTP1B构象变化的色氨酸荧光(策略3和4)。图21E,类似于图21A中显示的操纵子的结果,其中用Lux取代Amp。误差线=SD(n≥3)。FIG. 21A Growth coupling (i.e., selection; strategy 1). FIG. 21B) FRET sensor for PTP1B activity (strategy 2). FIG. 21C) FRET sensor and FIG. 21D) tryptophan fluorescence for PTP1B conformational changes (
图22A-D阐释了PTP1B的示例性抑制。图22C中的误差线表示SE(n≥3独立反应)。Figures 22A-D illustrate exemplary inhibition of PTP1 B. Error bars in Figure 22C represent SE (n > 3 independent reactions).
图22A显示了竞争性抑制(黄色和橙色,PDB入口2F71)和变构性抑制(灰色和黑色,PDB入口1T4J)姿势中PTP1B的骨架的示例性比对。底物和竞争性抑制剂结合至活性位点导致WPD环来采用闭合的(橙色)构象,其通过变构网络使C-末端α7螺旋稳定;该螺旋在变构性抑制、非竞争性抑制和未抑制的结构中是不可分解的,其展示WPD-打开构象(黑色)。图22B显示了松香酸(AA)的化学结构的示例性阐释。图22C显示了在AA的增加浓度的存在下,pNPP的PTP1B-催化水解的示例性初始速率。线显示了对混合抑制的模型的拟合。图22D示例性阐释该模型,其中抑制剂(I)以不同的亲和力结合至酶(E)和酶-底物复合物(ES)。FIG. 22A shows an exemplary alignment of the backbone of PTP1B in competitive inhibition (yellow and orange, PDB entry 2F71) and allosteric inhibition (grey and black, PDB entry 1T4J) poses. Binding of substrate and competitive inhibitor to the active site causes the WPD loop to adopt a closed (orange) conformation, which stabilizes the C-terminal α7 helix through an allosteric network; the helix is indecomposable in allosterically inhibited, noncompetitively inhibited, and uninhibited structures, which exhibit a WPD-open conformation (black). FIG. 22B shows an exemplary illustration of the chemical structure of abietic acid (AA). FIG. 22C shows an exemplary initial rate of PTP1B-catalyzed hydrolysis of pNPP in the presence of increasing concentrations of AA. The line shows a fit to a model of mixed inhibition. FIG. 22D illustrates the model in which the inhibitor (I) binds to the enzyme (E) and the enzyme-substrate complex (ES) with different affinities.
图23A-C阐释了PTP1B-AA缔合的示例性NMR分析。23A-C illustrate exemplary NMR analysis of PTP1B-AA association.
图23A显示了在AA不存在和存在(10:1的PTP1B:AA)下收集的1H-15N-HSQC光谱之间的化学位移(Δ)的示例性加权差异。红色虚线描绘了大于均值以上的两个标准偏差(σ)的Δ值的阈值;灰色条标记了化学位移扩大至识别之外的残基。图23B阐释了PTP1B的示例性晶体结构(PDB入口3A5J,灰色)突出指定残基的位置(蓝色);覆盖变构位点(PDB入口1T4J,绿色)和活性位点(PDB入口3EB1,黄色)中的抑制剂,用于参考。具有显著的CSP的残基(即,Δ>Δ均值+2σ)遍及蛋白质(红色)分布,并且除了WPD环中的两个残基,已知的结合位点的外侧。图23C阐释了活性位点(上图)和已知的变构位点(下图)的示例性细节,抑制剂来自(图23B)覆盖物(overlaid)。Figure 23A shows an exemplary weighted difference in chemical shifts (Δ) between 1H-15N-HSQC spectra collected in the absence and presence of AA (10:1 PTP1B:AA). The red dashed line depicts the threshold for Δ values greater than two standard deviations (σ) above the mean; the gray bar marks the residues whose chemical shifts are expanded beyond the recognition. Figure 23B illustrates an exemplary crystal structure of PTP1B (PDB entry 3A5J, gray) highlighting the position of the specified residues (blue); overlays of inhibitors in the allosteric site (PDB entry 1T4J, green) and the active site (PDB entry 3EB1, yellow) are used for reference. Residues with significant CSPs (i.e., Δ>Δ mean + 2σ) are distributed throughout the protein (red) and, except for two residues in the WPD loop, outside the known binding site. Figure 23C illustrates exemplary details of the active site (top) and the known allosteric site (bottom), with inhibitors from (Figure 23B) overlays.
图24A-C阐释了AA结合位点的示例性突变分析。Figure 24A-C illustrates exemplary mutational analysis of the AA binding site.
图24A阐释了PTP1B的示例性晶体结构(灰色,PDB入口3A5J),其显示了在下述五个位点处引入的突变的位置:活性位点(红色)、变构位点(绿色)、位点1(橙色)、位点2(黄色)和L11环(蓝色)。覆盖BBR(变构位点,PDB入口1T4J)和TCS401(活性位点,PDB入口1C83)的结合配置用于参考。图24B阐释了在每个位点处引入的示例性破坏性突变。设计突变以改变靶向残基的大小和/或极性。表示为“YAYA”(Y152A/Y153A)的突变,其在之前的研究中被鉴定,减弱了C-末端和WPD环之间的变构通讯。图24C阐释了由来自(B)的突变引起的抑制(Eq.1中的F)中的示例性分数改变。遍及蛋白质分布的五个突变降低了通过AA和TCS401的抑制,但对通过BBR的抑制的作用忽略不计。大多数突变对AA和TCS401的相似作用表明了两种抑制剂结合至活性位点。误差线表示SE(来自Eq.1中每个V的n≥9独立测量的传播)。FIG. 24A illustrates an exemplary crystal structure of PTP1B (gray, PDB entry 3A5J), which shows the locations of mutations introduced at the following five sites: active site (red), allosteric site (green), site 1 (orange), site 2 (yellow), and L11 loop (blue). The binding configurations covering BBR (allosteric site, PDB entry 1T4J) and TCS401 (active site, PDB entry 1C83) are used for reference. FIG. 24B illustrates exemplary disruptive mutations introduced at each site. Mutations are designed to change the size and/or polarity of the targeted residues. Mutations represented as "YAYA" (Y152A/Y153A), which were identified in previous studies, weakened the allosteric communication between the C-terminus and the WPD loop. FIG. 24C illustrates exemplary fractional changes in inhibition (F in Eq. 1) caused by mutations from (B). Five mutations distributed throughout the protein reduce inhibition by AA and TCS401, but have negligible effects on inhibition by BBR. The similar effects of most mutations on AA and TCS401 suggest that both inhibitors bind to the active site. Error bars represent SE (propagation from n≥9 independent measurements for each V in Eq. 1).
图25A-D阐释了AA结合的示例性计算分析。Figure 25A-D illustrates exemplary computational analysis of AA binding.
图25A-B阐释了分子动力学模拟的示例性结果:(A)无AA的PTP1B的骨架迹线(trace)和图25B阐释了示例性氨基酸(AA)-结合状态。迹线的粗细指示了局部运动的振幅和方向(方法)。AA的结合增加了WPD、E和L10环的柔性。WPD和L10环含有具有显著的CSP的残基(红色),表明了MD和NMR分析的结果之间的一致性。图25C阐释了AA(绿色)的示例性代表性结合构象。在结合至活性位点,AA(i)与减弱R221和E115之间结合的R221形成氢键和(ii)防止当WPD环闭合时形成的W179和R221之间氢键(红色)的形成。两种作用增强了WPD环的构象动力学。图25D显示了对接计算的示例性结果,与混合型抑制一致:AA的结合防止WPD环闭合和破坏,但不排除,pNPP的结合(蓝色球)。Figure 25A-B illustrates the exemplary results of molecular dynamics simulation: (A) the skeleton trace (trace) of PTP1B without AA and Figure 25B illustrate the exemplary amino acid (AA)-binding state. The thickness of the trace indicates the amplitude and direction of the local motion (method). The combination of AA increases the flexibility of WPD, E and L10 rings. The WPD and L10 rings contain residues (red) with significant CSP, indicating the consistency between the results of MD and NMR analysis. Figure 25C illustrates the exemplary representative binding conformation of AA (green). In binding to the active site, AA (i) forms hydrogen bonds with R221 that weakens the combination between R221 and E115 and (ii) prevents the formation of hydrogen bonds (red) between W179 and R221 formed when the WPD ring is closed. Two effects enhance the conformational dynamics of the WPD ring. Figure 25D shows exemplary results of docking calculations, consistent with mixed-type inhibition: binding of AA prevents WPD ring closure and disruption, but does not exclude, binding of pNPP (blue spheres).
图26A-B阐释了示出立体化学、形状、大小和化学官能度的差异的示例性类萜。图26A)松香酸(AA)的结构类似物:长白楤木酸(CA)、异海松酸(IA)、脱氢枞酸(DeAA)和二氢松香酸(DiAA)。图26B)饱和度的差异产生效力的显著差异(即,IC 50),但没有选择性。误差线表示95%置信区间。Figures 26A-B illustrate exemplary terpenoids showing differences in stereochemistry, shape, size, and chemical functionality. Figure 26A) Structural analogs of abietic acid (AA): abietic acid (CA), isopimaric acid (IA), dehydroabietic acid (DeAA), and dihydroabietic acid (DiAA). Figure 26B) Differences in saturation produce significant differences in potency (i.e., IC50), but not selectivity. Error bars represent 95% confidence intervals.
图27A-C病理相关突变的分析。27A-C Analysis of pathology-associated mutations.
图27A阐释了动力学表征的突变的示例性柱状图。接近(<4A)五个或更多个网络残基的所有突变是“有影响的”(即,它们改变kcat或KM>50%或对抑制具有可检测的影响);相反地,非间接突变(non-consequential mutation)具有更少邻近网络残基。图27B阐释了PTP IB的示例性晶体结构(灰色,PDBruk 3A5J),突出了网络残基上有影响的突变的位置;颜色指示它们是否被引入生物物理研究中或在疾病中发现。图27C阐释了示例性的两个累积分布函数,描述了接近(i)疾病中鉴定的突变和(ii)位点的随机选择的网络残基的数量。两个分布彼此无法区分(P<0.05),表明疾病相关的突变不优选地在变构网络附近发生。Figure 27A illustrates an exemplary bar graph of a mutation characterized by kinetics. All mutations close to (<4A) five or more network residues are "influential" (i.e., they change kcat or KM >50% or have a detectable effect on inhibition); on the contrary, non-consequential mutations have fewer neighboring network residues. Figure 27B illustrates an exemplary crystal structure of PTP IB (gray, PDBruk 3A5J), highlighting the position of influential mutations on network residues; colors indicate whether they are introduced into biophysical studies or found in diseases. Figure 27C illustrates two exemplary cumulative distribution functions, describing the number of randomly selected network residues close to (i) mutations identified in the disease and (ii) sites. The two distributions are indistinguishable from each other (P<0.05), indicating that disease-related mutations do not preferably occur near the allosteric network.
图28A-D阐释了且显示了使用将PTP活性与感兴趣的基因(GOI)的输出联系的基因操纵子的示例性数据。Figures 28A-D illustrate and show exemplary data using a gene operon that links PTP activity to the output of a gene of interest (GOI).
图28A显示了操纵子A的实施方式。操纵子的实例。S,酪氨酸底物;P,磷酸根基团;cI,434噬菌体cI阻遏物;RpoZ和RPω,RNA聚合酶的ω亚单元;cI OP,434噬菌体cI阻遏物的结合序列;和RB,RNA聚合酶(RNAP)的结合位点。酪氨酸底物的磷酸化(通过c-Src激酶)导致底物-RPω融合体与SH2-cI融合体的结合;接着,该结合事件将RNA聚合酶定位于RB,触发GOI的转录。PTP1B将底物结构域去磷酸化,防止底物-RPω融合体和SH2-cI的缔合,从而,停止GOI的转录。接着,PTP1B失活重新使得能够GOI转录。图28B阐释了提出的用于膜可渗透的抑制剂的中通量筛选的一个实施方式:大肠杆菌的菌株用操纵子转化并且在小分子存在的情况下生长;PTP1B的小分子抑制剂以剂量依赖性方式调节GOI的转录(例如,发光、荧光或抗生素抗性的基因)。条形图显示了数据的预测趋势。图28C显示了操纵子B的实施方式。操纵子能够对于选择性抑制剂筛选。该操纵子包括操纵子A,其具有(i)第二底物-蛋白质融合体(红色),一种“诱饵”,其可结合至SH2-cI融合体,但未特异性结合至DNA或RNA聚合酶,和(ii)在诱饵的底物结构域上有活性的第二PTP(例如,TC-PTP)。因为,诱饵和SH2-cI之间的复合物不触发转录,诱饵通过与cI-底物竞争结合位点抑制转录。相应地,抑制PTP1B而不抑制TC-PTP(其使诱饵去磷酸化)的分子—即,选择性抑制剂—引起最大转录活化。相反地,抑制两种酶的分子导致较少活化。图28D显示了操纵子C的实施方式。该操纵子使得能够对光控开关酶筛选。该操纵子包括操纵子A的版本,其中PTP1B已经用PTP1B的光控开关版本替换。在该情况下,GOI的转录在不同光源下是不同的(例如,更高或更低)。在显示的实例中,光抑制PTP1B-LOV2嵌合体的活性,因此,增强GOI的转录。Figure 28A shows an embodiment of operon A. Example of an operon. S, tyrosine substrate; P, phosphate group; cI, 434 phage cI repressor; RpoZ and RPω , ω subunits of RNA polymerase; cI OP, binding sequence of 434 phage cI repressor; and RB, binding site of RNA polymerase (RNAP). Phosphorylation of the tyrosine substrate (by c-Src kinase) leads to binding of the substrate- RPω fusion to the SH2-cI fusion; this binding event then positions the RNA polymerase to the RB, triggering transcription of the GOI. PTP1B dephosphorylates the substrate domain, preventing the association of the substrate- RPω fusion and SH2-cI, thereby stopping transcription of the GOI. Then, inactivation of PTP1B re-enables transcription of the GOI. FIG. 28B illustrates an embodiment of a proposed medium-throughput screening for membrane-permeable inhibitors: strains of E. coli are transformed with operons and grown in the presence of small molecules; small molecule inhibitors of PTP1B regulate transcription of GOIs (e.g., genes for luminescence, fluorescence, or antibiotic resistance) in a dose-dependent manner. The bar graph shows the predicted trend of the data. FIG. 28C shows an embodiment of operon B. The operon can be screened for selective inhibitors. The operon includes operon A, which has (i) a second substrate-protein fusion (red), a "bait" that can bind to the SH2-cI fusion, but does not specifically bind to DNA or RNA polymerase, and (ii) a second PTP (e.g., TC-PTP) that is active on the substrate domain of the bait. Because the complex between the bait and SH2-cI does not trigger transcription, the bait inhibits transcription by competing with the cI-substrate for binding sites. Accordingly, molecules that inhibit PTP1B but not TC-PTP (which dephosphorylates the bait)—i.e., selective inhibitors—cause maximum transcriptional activation. On the contrary, molecules that inhibit both enzymes result in less activation. Figure 28D shows an embodiment of operon C. The operon enables screening of light-operated switchable enzymes. The operon includes a version of operon A in which PTP1B has been replaced with a light-operated switchable version of PTP1B. In this case, transcription of the GOI is different (e.g., higher or lower) under different light sources. In the example shown, light inhibits the activity of the PTP1B-LOV2 chimera, therefore, enhancing transcription of the GOI.
图29A-B显示了示出GOI的磷酸化依赖性表达的示例性初步结果。图29A显示了操纵子A的一个实施方式,其中GOI是细菌荧光素酶(LuxAB)。PTP1B抑制发光(即,减少GOI的转录),而PTP1B的催化非活化版本(PTP1B的抑制版本的模拟物)增强发光。图29B显示了操纵子A的一个实施方式,其中GOI是对大观霉素抗性的基因(SpecR)。PTP1B抑制大观霉素生长,而PTP1B的催化非活化版本(PTP1B的抑制版本的模拟物)增强生长。本文使用的是MidT底物。Figure 29A-B shows exemplary preliminary results of phosphorylation-dependent expression of GOI. Figure 29A shows an embodiment of operon A, wherein GOI is bacterial luciferase (LuxAB). PTP1B suppresses luminescence (i.e., reduces the transcription of GOI), and the catalytic non-activated version of PTP1B (the analogue of the inhibition version of PTP1B) enhances luminescence. Figure 29B shows an embodiment of operon A, wherein GOI is a gene (SpecR) to spectinomycin resistance. PTP1B suppresses spectinomycin growth, and the catalytic non-activated version of PTP1B (the analogue of the inhibition version of PTP1B) enhances growth. Used herein is MidT substrate.
图30A-B阐释了操纵子的优化。Figure 30A-B illustrates operon optimization.
图30A显示了来自A的操纵子的一个实施方式,其中GOI是细菌荧光素酶(LuxAB),PTP1B是缺失的,并且底物是来自Kras、midT、ShcA或EGFR的肽。尽管所有底物可通过Src激酶磷酸化,但是仅两个底物与SH2结构域结合足够紧密,以能够进行超过背景(0%阿拉伯糖)的显著发光。图30B显示了来自A的操纵子的一个实施方式(这里,在单个质粒上含有),其中GOI是细菌荧光素酶(LuxAB)且PTP1B是缺失的。底物结构域上的Y/F突变(蓝色)防止其被磷酸化。RBS位点触发Src激酶的表达。Figure 30A shows an embodiment of an operon from A, wherein GOI is bacterial luciferase (LuxAB), PTP1B is missing, and substrates are peptides from Kras, midT, ShcA or EGFR. Although all substrates can be phosphorylated by Src kinase, only two substrates bind tightly enough to the SH2 domain to enable significant luminescence above background (0% arabinose). Figure 30B shows an embodiment of an operon from A (here, contained on a single plasmid), wherein GOI is bacterial luciferase (LuxAB) and PTP1B is missing. The Y/F mutation (blue) on the substrate domain prevents it from being phosphorylated. The RBS site triggers the expression of Src kinase.
图31A-D阐释了操纵子的应用。Figure 31A-D illustrates the use of operons.
图31A阐释了PTP1B的微生物可合成的抑制剂的筛选的示例性构想。当用操纵子A(或操纵子B)的一个实施方式转化时,能够合成PTP1B-抑制代谢产物的细胞将产生与不产生这种代谢产物的细胞相比不同的GOI输出。因为,松香烷型二萜可(i)抑制PTP1B并且(ii)在大肠杆菌中合成,我们相信含有操纵子A和构建松香烷型二萜的途径两者的大肠杆菌的菌株可被“进化”以构建PTP1B的抑制剂。这里,GOI可以是发光或荧光(低通量)或抗生素抗性(高通量)的基因。图31B阐释了光控开关酶的筛选的示例性构想。考虑了PTP1B与LOV2或BphP1的融合体(这里,突出的螺旋显示了这两个蛋白质上的N-末端连接点)。对于该实例,用455nm光照射PTP1B-LOV2减小其活性;用650nm光照射PTP1B-BphP1融合体减少其活性,而用750nm光照射PTP1B-BphP1融合体增强其活性。当用操纵子C(其将含有这些融合体之一)转化时,细胞在不同照射条件下将产生不同GOI输出。图31C阐释了酶的选择性突变体的筛选的示例性构想。当用操纵子B的版本转化时,其中(i)PTP1B在诱饵上也有是有活性的和(ii)第二PTP(在我们的实例中的TC-PTP)是缺失的,当PTP1B仅在诱饵底物上有活性时,含有PTP1B的突变体的细胞将最有效地转录GOI。图31D阐释了选择性底物的筛选的示例性构想。当用操纵子B的版本转化时,其中(i)诱饵是缺失的,(ii)第一酶(在我们的实例中的PTP1B)在诱导型启动子下,(iii)第二PTP(在我们的实例中的TC-PTP)在第二诱导型启动子下,和(iv)GOI包括抗生素抗性的基因和在非必需底物存在的情况下产生有毒产物的基因,当含有突变的底物结构域的细胞结合至PTP1B,但不结合至TC-PTP时,其将在条件1(PTP1B的诱导物和非必需底物)和条件2(TC-PTP的诱导物)二者下生长。FIG. 31A illustrates an exemplary concept for screening for microbially synthesizable inhibitors of PTP1B. When transformed with an embodiment of operon A (or operon B), cells capable of synthesizing PTP1B-inhibiting metabolites will produce different GOI outputs than cells that do not produce such metabolites. Because abietane-type diterpenes can (i) inhibit PTP1B and (ii) be synthesized in E. coli, we believe that strains of E. coli containing both operon A and pathways for constructing abietane-type diterpenes can be "evolved" to construct inhibitors of PTP1B. Here, the GOI can be a gene for luminescence or fluorescence (low flux) or antibiotic resistance (high flux). FIG. 31B illustrates an exemplary concept for screening for light-operated switchable enzymes. Fusions of PTP1B with LOV2 or BphP1 are considered (here, the highlighted helix shows the N-terminal connection point on these two proteins). For this example, irradiation of PTP1B-LOV2 with 455 nm light reduced its activity; irradiation of the PTP1B-BphP1 fusion with 650 nm light reduced its activity, while irradiation of the PTP1B-BphP1 fusion with 750 nm light enhanced its activity. When transformed with Operon C (which would contain one of these fusions), cells would produce different GOI outputs under different irradiation conditions. FIG. 31C illustrates an exemplary concept for screening for selective mutants of an enzyme. When transformed with a version of Operon B in which (i) PTP1B is also active on the bait and (ii) the second PTP (TC-PTP in our example) is missing, cells containing a mutant of PTP1B will most efficiently transcribe the GOI when PTP1B is only active on the bait substrate. FIG. 31D illustrates an exemplary concept for screening for selective substrates. When transformed with a version of operon B in which (i) the bait is deleted, (ii) the first enzyme (PTP1B in our example) is under an inducible promoter, (iii) the second PTP (TC-PTP in our example) is under a second inducible promoter, and (iv) the GOI includes genes for antibiotic resistance and a gene that produces a toxic product in the presence of a non-essential substrate, cells containing a mutated substrate domain will grow under both condition 1 (inducer of PTP1B and non-essential substrate) and condition 2 (inducer of TC-PTP) when they bind to PTP1B but not to TC-PTP.
图32A-B呈现出进化上保守的变构网络的示例性证据。32A-B present exemplary evidence for an evolutionarily conserved allosteric network.
图32A涉及统计耦合分析的示例性结果。橙色和蓝色簇表示两组相互连接的残基,被称为“分区(sector)”,其在氨基酸的非随机分布中展现出强烈的组内相关性。突出变构位点(绿色抑制剂,PDB入口1T4J)、WPD环(紫色球)和活性位点(红色抑制剂,3EB1)用于参考。图32B涉及用MD模拟建模的PTP1B的口袋之间串扰的示例性分析。口袋表示为球,根据其沿着MD轨迹的持久性着色;每个球的大小指示其MD模拟中的平均体积。连接的粗细与口袋中间合并和分裂事件(即,通讯)的频率成正比。独立的两组相互连接的口袋与SCA中鉴定的分区紧密相联系,因此,表明这两个分区表示进化上保守的变构网络的不同结构域。在图1的PTP1B-LOV2融合体中,LOV2通过利用由分区A限定的变构网络调节PTP1B的活性。因此,用PTP家族的统计耦合分析鉴定分区A指示图1中描述的光控的构架广泛地应用于所有蛋白酪氨酸磷酸酶。Figure 32A relates to exemplary results of statistical coupling analysis. The orange and blue clusters represent two groups of interconnected residues, called "sectors", which exhibit strong intra-group correlations in the non-random distribution of amino acids. Highlight allosteric sites (green inhibitors, PDB entry 1T4J), WPD loops (purple balls) and active sites (red inhibitors, 3EB1) for reference. Figure 32B relates to an exemplary analysis of crosstalk between pockets of PTP1B modeled by MD simulation. Pockets are represented as balls, colored according to their persistence along the MD trajectory; the size of each ball indicates its average volume in the MD simulation. The thickness of the connection is proportional to the frequency of merging and splitting events (i.e., communication) in the middle of the pocket. The two independent groups of interconnected pockets are closely linked to the partitions identified in SCA, therefore, indicating that the two partitions represent different domains of the evolutionarily conserved allosteric network. In the PTP1B-LOV2 fusion of Figure 1, LOV2 regulates the activity of PTP1B by utilizing the allosteric network defined by partition A. Thus, the identification of partition A by statistical coupling analysis of the PTP family indicates that the architecture of light control described in Figure 1 is broadly applicable to all protein tyrosine phosphatases.
图33A-E阐释了连接酶的活性与感兴趣的基因(GOI)的表达的基因编码系统的实施方式。图33B-E中的误差线表示标准偏差,n=3个生物重复。Figures 33A-E illustrate embodiments of a genetically encoded system for ligating enzyme activity to expression of a gene of interest (GOI). Error bars in Figures 33B-E represent standard deviation, n=3 biological replicates.
图33A阐释了检测磷酸化依赖性蛋白质-蛋白质相互作用的细菌双杂交系统的实施方式。组分包括(i)融合至RNA聚合酶的ω亚单元的底物结构域(黄色)、(ii)融合至434噬菌体cI阻遏物的SH2结构域(浅蓝色)、(iii)434cI的操纵基因(深绿色)、(iv)RNA聚合酶的结合位点(紫色)、(v)Src激酶和(vi)PTP1B。底物结构域的Src-催化磷酸化使底物-SH2相互作用能够活化感兴趣的基因(GOI,黑色)的转录。底物结构域的PTP1B-催化去磷酸化防止该相互作用;PTP1B的抑制重新使其能够进行。图33B涉及来自图33A的双混合系统的实施方式,其(i)缺乏PTP1B和(ii)含有luxAB作为GOI。我们使用可诱导的质粒来增加特定组分的表达;Src的过度表达增强发光。图33C涉及来自图33A的双混合系统的实施方式,其(i)缺乏PTP1B和Src二者和(ii)包括“superbinder”SH2结构域(SH2*,即,具有增强其对磷酸肽的亲和力的突变的SH2结构域)、可变底物结构域和LuxAB作为GOI。我们使用可诱导的质粒来增加Src的表达;发光对p130cas和MidT最突出增加,表明Src作用于底物结构域两者。图33D涉及来自具有两种底物:p130cas或MidT之一的图33C的双混合系统的实施方式。我们使用第二质粒来过度表达(i)Src和PTP1B或(ii)Src和PTP1B的失活变体(C215S)。含有PTP1B或PTP1B(C215S)的系统之间发光的差异对于MidT是最大的,表明PTP1B作用于该底物。右:双混合系统的优化版本(bb030作为PTP1B的RBS)出现用于参考。图33E显示了使用包括SH2*、midT底物、优化的启动子和核糖体结合位点(PTP1B的bb034)和SpecR作为GOI的优化的B2H进行示例性生长偶联测定的结果。在图的顶部处阐释该系统。示例性生长结果表明PTP1B的失活使大肠杆菌的菌株能够携带该系统以在高浓度的大观霉素(>250μg/ml)存活。FIG33A illustrates an embodiment of a bacterial two-hybrid system for detecting phosphorylation-dependent protein-protein interactions. Components include (i) a substrate domain fused to the ω subunit of RNA polymerase (yellow), (ii) an SH2 domain fused to the 434 phage cI repressor (light blue), (iii) an operator of 434cI (dark green), (iv) a binding site for RNA polymerase (purple), (v) Src kinase, and (vi) PTP1B. Src-catalyzed phosphorylation of the substrate domain enables the substrate-SH2 interaction to activate transcription of the gene of interest (GOI, black). PTP1B-catalyzed dephosphorylation of the substrate domain prevents the interaction; inhibition of PTP1B re-enables it. FIG33B relates to an embodiment of the two-hybrid system from FIG33A that (i) lacks PTP1B and (ii) contains luxAB as GOI. We used inducible plasmids to increase expression of specific components; overexpression of Src enhanced luminescence. FIG33C relates to an embodiment of the two-hybrid system from FIG33A that (i) lacks both PTP1B and Src and (ii) includes a "superbinder" SH2 domain (SH2*, i.e., an SH2 domain with mutations that enhance its affinity for phosphopeptides), a variable substrate domain, and LuxAB as a GOI. We used an inducible plasmid to increase the expression of Src; luminescence increased most prominently for p130cas and MidT, indicating that Src acts on both substrate domains. FIG33D relates to an embodiment of the two-hybrid system from FIG33C with one of two substrates: p130cas or MidT. We used a second plasmid to overexpress (i) Src and PTP1B or (ii) Src and an inactive variant of PTP1B (C215S). The difference in luminescence between systems containing PTP1B or PTP1B(C215S) was greatest for MidT, indicating that PTP1B acts on this substrate. Right: An optimized version of the two-hybrid system (bb030 as the RBS of PTP1B) is presented for reference. FIG. 33E shows the results of an exemplary growth-coupled assay using an optimized B2H comprising SH2*, midT substrate, an optimized promoter and ribosome binding site (bb034 of PTP1B) and SpecR as the GOI. The system is illustrated at the top of the figure. The exemplary growth results show that inactivation of PTP1B enables strains of E. coli to carry the system to survive high concentrations of spectinomycin (>250 μg/ml).
图34阐释了用于优化图33中描绘的B2H系统的示例性实验。FIG. 34 illustrates an exemplary experiment for optimizing the B2H system depicted in FIG. 33 .
图35阐释了用于优化用于生长偶联测定的图33中描绘的B2H系统的示例性实验。FIG. 35 illustrates an exemplary experiment for optimizing the B2H system depicted in FIG. 33 for use in a growth-coupled assay.
图36A-C描绘了类萜的生物合成的示例性代谢途径。36A-C depict exemplary metabolic pathways for the biosynthesis of terpenoids.
图36A描绘了用于类萜生物合成的质粒负载途径:(i)pMBIS,其携带酿酒酵母的甲羟戊酸-依赖性类异戊二烯途径,将甲羟戊酸盐转变为异戊基焦磷酸(IPP)和法尼基焦磷酸(FPP)。(ii)pTS,其编码萜合酶(TS),和必要时香叶基香叶基二磷酸合酶(GPPS),将IPP和FPP转变为倍半萜烯和/或二萜。Figure 36A depicts plasmid loading pathways for terpenoid biosynthesis: (i) pMBIS, which carries the mevalonate-dependent isoprenoid pathway of Saccharomyces cerevisiae, converting mevalonate to isopentanyl pyrophosphate (IPP) and farnesyl pyrophosphate (FPP). (ii) pTS, which encodes a terpene synthase (TS) and, if necessary, a geranylgeranyl diphosphate synthase (GPPS), converting IPP and FPP to sesquiterpenes and/or diterpenes.
图36B描绘了示例性萜合酶:来自黄花蒿的紫穗槐二烯合酶(ADS)、来自北美冷杉的γ-蛇麻烯合酶(GHS)、来自北美冷杉的松香二烯合酶(ABS)和来自短叶红豆杉的紫杉烯合酶(TXS)。36B depicts exemplary terpene synthases: amorphadiene synthase (ADS) from Artemisia annua, gamma-humulene synthase (GHS) from Abies selengensis, abietadiene synthase (ABS) from Abies selengensis, and taxene synthase (TXS) from Taxus brevifolia.
图36C显示了含有(i)优化的细菌双混合(B2H)系统的实施方式(即,来自图33E的B2H系统)和(ii)用于类萜生物合成的途径的实施方式(即,来自图35A的途径)二者的大肠杆菌菌株的示例性生长偶联测定的结果。Figure 36C shows the results of an exemplary growth-coupled assay of an E. coli strain containing both (i) an embodiment of an optimized bacterial two-hybrid (B2H) system (i.e., the B2H system from Figure 33E) and (ii) an embodiment of a pathway for terpenoid biosynthesis (i.e., the pathway from Figure 35A).
图37A-C提供了通过大肠杆菌的不同菌株产生的类萜的抑制作用的示例性分析。Figures 37A-C provide exemplary analysis of the inhibitory effects of terpenoids produced by different strains of E. coli.
图37A描绘了包含(i)无抑制剂和(ii)从含ADS的菌株的培养发酵液的提取化合物的DMSO的抑制作用的我们分析的结果。图37B描绘了含有(i)来自含GHS的菌株(gHUM)的培养发酵液的提取化合物或(ii)来自包括GHS的L450Y突变体的菌株的培养发酵液的提取化合物的DMSO的抑制作用的我们分析的结果。图37C描绘了含有(i)无抑制剂、(ii)来自含ABS的菌株的培养发酵液的提取化合物、(iii)来自含TXS的菌株的培养发酵液的提取化合物和(iv)来自含ABS的催化失活变体的培养菌株的培养发酵液的提取化合物的DMSO的抑制作用的我们分析的结果。Figure 37A depicts the results of our analysis of the inhibitory effects of DMSO containing (i) no inhibitor and (ii) extracted compounds from the culture fermentation broth of strains containing ADS. Figure 37B depicts the results of our analysis of the inhibitory effects of DMSO containing (i) extracted compounds from the culture fermentation broth of strains containing GHS (gHUM) or (ii) extracted compounds from the culture fermentation broth of strains including the L450Y mutant of GHS. Figure 37C depicts the results of our analysis of the inhibitory effects of DMSO containing (i) no inhibitor, (ii) extracted compounds from the culture fermentation broth of strains containing ABS, (iii) extracted compounds from the culture fermentation broth of strains containing TXS, and (iv) extracted compounds from the culture fermentation broth of strains containing catalytically inactive variants of ABS.
图38显示了能够在大观霉素存在的情况下生长的GHS突变体的产物特征的示例性分析。FIG. 38 shows an exemplary analysis of the product profile of GHS mutants capable of growth in the presence of spectinomycin.
图39显示了将其他PTP的抑制与细胞存活联系的示例性B2H系统的分析。FIG. 39 shows analysis of an exemplary B2H system linking inhibition of other PTPs to cell survival.
图40A-E描绘了将酶活性与感兴趣的基因的表达联系的基因编码系统的示例性实施方式,并且那些实施方式应用于(i)抗性突变的预测、(ii)对抗抗性突变的抑制剂的构建和(ii)激酶抑制剂的进化。Figures 40A-E depict exemplary embodiments of genetically encoded systems that link enzyme activity to expression of a gene of interest, and those embodiments are applied to (i) prediction of resistance mutations, (ii) construction of inhibitors to counteract resistance mutations, and (ii) evolution of kinase inhibitors.
图40A描绘了检查潜在的抗性突变中的示例性第一步骤。通过进化代谢途径以产生抑制已知的药物靶标(例如,PTP1B)的分子;这些分子将允许在选择压力存在(例如,存在大观霉素,一种抗生素)的情况下赋予存活的感兴趣的基因(GOI)的表达。图40B描绘了检查潜在的抗性突变中的示例性第二步骤。在大肠杆菌的第二菌株中,我们将用赋予有条件的毒性(例如,SacB,其将蔗糖转变为果聚糖,一种有毒的产物)的第二感兴趣的基因(GOI2)替换最初感兴趣的基因;我们将进化药物靶标以变得对内源抑制剂是抗性的,而仍保留其活性。该突变体将防止有毒基因的表达。图40C描绘了对抗抗性突变中的示例性第三步骤。在大肠杆菌的第三菌株中,我们将进化产生抑制突变的药物靶标的分子的代谢途径。这样,我们预测—和通过我们的第二进化的途径,处理—可能导致对基于类萜的药物的抗性的突变。图40D描绘了检测Src激酶抑制剂的示例性基因编码系统。简言之,Src活性使有毒基因(GOI2)能够表达;接着,Src的抑制赋予存活。图40E表明了用于图40B中描述的B2H系统的最高原理(roof of principle)的一个实施方式。这里显示的系统包括两个GOI:SpecR和SacB。GOI的表达在大观霉素存在的情况下赋予存活;GOI的表达在蔗糖存在的情况下导致毒性。图像描绘了在各种浓度的蔗糖存在的情况下在大肠杆菌的菌株上进行的生长偶联测定的结果。携带活性形式的PTP1B的菌株(WT)比携带非活化形式的PTP1B的菌株(C215S)在高蔗糖浓度下生长地更好。FIG. 40A depicts an exemplary first step in examining potential resistance mutations. By evolving metabolic pathways to produce molecules that inhibit known drug targets (e.g., PTP1B); these molecules will allow expression of a gene of interest (GOI) that confers survival in the presence of selective pressure (e.g., the presence of spectinomycin, an antibiotic). FIG. 40B depicts an exemplary second step in examining potential resistance mutations. In a second strain of E. coli, we will replace the initial gene of interest with a second gene of interest (GOI2) that confers conditional toxicity (e.g., SacB, which converts sucrose to fructan, a toxic product); we will evolve the drug target to become resistant to the endogenous inhibitor while still retaining its activity. This mutant will prevent expression of the toxic gene. FIG. 40C depicts an exemplary third step in countering resistance mutations. In a third strain of E. coli, we will evolve metabolic pathways that produce molecules that inhibit the mutated drug target. In this way, we predict—and, through our second evolutionary pathway, address—mutations that may lead to resistance to terpenoid-based drugs. Figure 40D depicts an exemplary gene encoding system for detecting Src kinase inhibitors. In short, Src activity enables expression of a toxic gene (GOI2); then, inhibition of Src confers survival. Figure 40E shows an embodiment of the roof of principle for the B2H system described in Figure 40B. The system shown here includes two GOIs: SpecR and SacB. Expression of the GOI confers survival in the presence of spectinomycin; expression of the GOI leads to toxicity in the presence of sucrose. The image depicts the results of growth-coupled assays performed on strains of Escherichia coli in the presence of various concentrations of sucrose. The strain carrying the active form of PTP1B (WT) grows better at high sucrose concentrations than the strain carrying the inactivated form of PTP1B (C215S).
图41A描绘PTP1B抑制剂的进化的示例性策略。FIG. 41A depicts an exemplary strategy for the evolution of PTP1B inhibitors.
图41A描绘了用于鉴定萜合酶活性位点中的诱变的靶标的示例性结构分析。其显示了ABS(灰色,PDB入口3s9v)和TXS(蓝色,PDB入口3p5r)的I类活性位点与ABS(红色)上突出的靶向于位点-饱和诱变(SSM)的位点的位置的比对。TXS的底物类似物(黄色)出现用于参考。图41B描绘了用于将多样性引入代谢途径的文库的示例性策略:萜合酶上关键位点的SSM(如在a中)、整个萜合酶基因的易错PCR(ePCR)、萜功能化酶上位点的SSM(例如,P450)和整个萜功能化酶的ePCR的反复组合。图41C描绘了存在于具有各种含TS的菌株的提取物的DMSO样品中总类萜的示例性量化。简言之,我们在ADS上的六个位点(类似于图41A中显示的位点)进行位点-饱和诱变;我们将SSM文库铺在含有不同浓度大观霉素的琼脂平板上;我们挑选在含有高浓度(800μg/ml)大观霉素的板上生长的菌落并且使用每个菌落来接种单独的培养物;我们使用己烷覆盖物来提取分泌入每个培养物发酵液中的类萜;我们在旋转蒸发器中干燥己烷提取物并且在DMSO中再悬浮固体;并且我们使用GC-MS来量化存在于DMSO中的类萜的总量。图41D描绘了各种提取物对PTP1B的抑制效果的示例性分析。简言之,该图显示在图41C中量化的类萜存在的情况下,对硝基苯基磷酸盐(pNPP)的PTP1B-催化水解的初始速率。ADS的两个突变体(G439A和G400L)特别地生成有效的PTP1B抑制剂。FIG41A depicts an exemplary structural analysis for identifying targets for mutagenesis in the active site of a terpene synthase. It shows the alignment of the class I active sites of ABS (grey, PDB entry 3s9v) and TXS (blue, PDB entry 3p5r) with the positions of the sites highlighted on ABS (red) for targeting site-saturation mutagenesis (SSM). Substrate analogs of TXS (yellow) appear for reference. FIG41B depicts an exemplary strategy for introducing diversity into a library of metabolic pathways: an iterative combination of SSM of key sites on a terpene synthase (as in a), error-prone PCR (ePCR) of the entire terpene synthase gene, SSM of sites on a terpene functionalizing enzyme (e.g., P450), and ePCR of the entire terpene functionalizing enzyme. FIG41C depicts an exemplary quantification of total terpenoids present in DMSO samples of extracts with various TS-containing strains. Briefly, we performed site-saturation mutagenesis at six sites on ADS (similar to the sites shown in FIG. 41A ); we plated the SSM library on agar plates containing different concentrations of spectinomycin; we picked colonies that grew on plates containing high concentrations (800 μg/ml) of spectinomycin and used each colony to inoculate a separate culture; we used a hexane overlay to extract the terpenoids secreted into each culture broth; we dried the hexane extracts on a rotary evaporator and resuspended the solids in DMSO; and we used GC-MS to quantify the total amount of terpenoids present in DMSO. FIG. 41D depicts an exemplary analysis of the inhibitory effects of various extracts on PTP1B. Briefly, the figure shows the initial rate of PTP1B-catalyzed hydrolysis of p-nitrophenyl phosphate (pNPP) in the presence of the terpenoids quantified in FIG. 41C . Two mutants of ADS (G439A and G400L) specifically generated potent PTP1B inhibitors.
图42描绘了B2H活化和细胞存活之间的联系的示例性分析。大肠杆菌的示例性菌株含有(i)优化的细菌双混合(B2H)系统(图33E)和(ii)图36A中描绘的类萜途径二者。注意:仅当ABS或TXS存在时,pTS包括GGPPS;“Y/F”操纵子对应于B2H系统,其中底物结构域不能被磷酸化。在高浓度的大观霉素下的存活需要B2H系统的活化(即,底物结构域的磷酸化,一种被PTP1B的抑制促进的过程)。FIG42 depicts an exemplary analysis of the link between B2H activation and cell survival. An exemplary strain of E. coli contains both (i) an optimized bacterial two-hybrid (B2H) system ( FIG33E ) and (ii) the terpenoid pathway depicted in FIG36A . Note: pTS includes GGPPS only when ABS or TXS are present; the "Y/F" operon corresponds to a B2H system in which the substrate domain cannot be phosphorylated. Survival at high concentrations of spectinomycin requires activation of the B2H system (i.e., phosphorylation of the substrate domain, a process promoted by inhibition of PTP1B).
图43提供了携带各种萜合酶的大肠杆菌的菌株的示例性产物特征。对于该图,大肠杆菌的菌株携带(i)优化的B2H系统(图33E)和(ii)类萜途径(图36A)。对应每个特征的途径仅在pTS质粒的组成上不同,pTS质粒含有TXS(来自短叶红豆杉的紫杉烯合酶和来自加拿大紫杉的香叶基香叶基二磷酸合酶);GHS(来自北美冷杉的γ-蛇麻烯合酶);ADS(来自黄花蒿的紫穗槐二烯合酶);ABS(来自北美冷杉的松香二烯合酶和来自加拿大紫杉的香叶基香叶基二磷酸合酶);G400A(来自黄花蒿的紫穗槐二烯合酶的G400A突变体)和G439L(来自黄花蒿的紫穗槐二烯合酶的G439L突变体)。注意,ADS的两个突变体产生的产物特征与野生型酶(ADS)的不同;我们的结果指示产物由这两个突变体生成的产物比由野生型酶生成的那些更是抑制性的(图41E)。FIG43 provides exemplary product profiles of strains of E. coli carrying various terpene synthases. For this figure, strains of E. coli carry (i) an optimized B2H system ( FIG33E ) and (ii) a terpenoid pathway ( FIG36A ). The pathways corresponding to each profile differ only in the composition of the pTS plasmids, which contain TXS (taxene synthase from Taxus brevifolia and geranylgeranyl diphosphate synthase from Taxus canadensis); GHS (γ-humulene synthase from Abies abies); ADS (amorphadiene synthase from Artemisia annua); ABS (abietenyl synthase from Abies abies and geranylgeranyl diphosphate synthase from Taxus canadensis); G400A (G400A mutant of amorphadiene synthase from Artemisia annua) and G439L (G439L mutant of amorphadiene synthase from Artemisia annua). Note that the two mutants of ADS produce products with characteristics different from those of the wild-type enzyme (ADS); our results indicate that the products generated by these two mutants are more inhibitory than those generated by the wild-type enzyme (Figure 41E).
图44A-D提供了支持将B2H系统延伸至其他蛋白酪氨酸磷酸酶(PTP)的示例性基于结构和序列的证据。Figures 44A-D provide exemplary structure- and sequence-based evidence supporting the extension of the B2H system to other protein tyrosine phosphatases (PTPs).
图44A提供了示例性结构比对PTP1B和PTPN6,两种与B2H系统相容的PTP(参见用于相容性证据的更新A的图1e和7)。我们使用PyMol的对齐功能以将PTPN6的每种结构与PTP1B的催化结构域的(i)无配体(3A5J)或(ii)结合配体(2F71)的结构对齐。对齐功能进行序列比对,随后结构叠加,因此,有效地对齐两种蛋白质的催化结构域。图44B提供了PTP1B和PTPN6的示例性结构比较;PTP1B和PTPN6的对齐结构的均方跟偏差(RMSD)范围从0.75至图44C证明了PTP1B和PTPN6的催化结构域的示例性序列比对(EMBOSS Needle1)。图44D提供了PTP1B和TPPN6的催化结构域的示例性序列比较。序列共享34.1%序列同一性和53.5%序列相似性。概括来说,该图的结果指示我们的B2H系统可易于延伸至拥有催化结构域的PTP,该催化结构域(i)结构上类似于PTP1B的催化结构域(这里,我们定义结构相似性为这样的两个结构,当对齐时,具有≤RMSD的RMSD,框架类似于通过PyMol的对齐功能使用的一个),和/或(ii)序列类似于PTP1B的催化结构域(这里,我们定义序列相似性为≥34%序列同一性或≥53.5%序列相似性,如由EMBOSS Needle算法定义的)。Figure 44A provides an exemplary structural alignment of PTP1B and PTPN6, two PTPs that are compatible with the B2H system (see Figures 1e and 7 of Update A for evidence of compatibility). We used the alignment function of PyMol to align each structure of PTPN6 with the structure of the catalytic domain of PTP1B either (i) without ligand (3A5J) or (ii) with ligand (2F71). The alignment function performs sequence alignment followed by structural superposition, thus effectively aligning the catalytic domains of the two proteins. Figure 44B provides an exemplary structural comparison of PTP1B and PTPN6; the mean square root deviation (RMSD) of the aligned structures of PTP1B and PTPN6 ranges from 0.75 to 1.15. Figure 44C demonstrates an exemplary sequence alignment of the catalytic domains of PTP1B and PTPN6 (EMBOSS Needle 1 ). Figure 44D provides an exemplary sequence comparison of the catalytic domains of PTP1B and TPPN6. The sequences share 34.1% sequence identity and 53.5% sequence similarity. In summary, the results of this figure indicate that our B2H system can be easily extended to PTPs that possess a catalytic domain that is structurally similar to the catalytic domain of PTP1B (here, we define structural similarity as two structures that, when aligned, have ≤ RMSD of the RMSD, framework similar to the one used by the alignment function of PyMol), and/or (ii) sequence similarity to the catalytic domain of PTP1B (here, we defined sequence similarity as ≥34% sequence identity or ≥53.5% sequence similarity as defined by the EMBOSS Needle algorithm).
定义definition
如本文使用的,术语“操纵子”的使用可指在单个启动子的控制下的基因簇(如在操纵子的经典定义中的)和还可指包括多个操纵子的基因编码系统(例如,细菌双杂交系统)。As used herein, use of the term "operon" can refer to a cluster of genes under the control of a single promoter (as in the classical definition of an operon) and can also refer to a gene encoding system that includes multiple operons (e.g., the bacterial two-hybrid system).
如本文使用的,“磷酸化-调节酶”指调节磷酸化的蛋白质。As used herein, a "phosphorylation-regulating enzyme" refers to a protein that regulates phosphorylation.
如本文使用的,“磷酸化”指涉及将磷酸盐添加至有机化合物的生物化学过程。As used herein, "phosphorylation" refers to a biochemical process involving the addition of phosphate to an organic compound.
如本文使用的,“光遗传致动器”指经历光诱导的构象变化的基因可编码蛋白质。As used herein, an "optogenetic actuator" refers to a genetically encodable protein that undergoes a light-induced conformational change.
如本文使用的,“动态范围”指黑暗和光状态中活性的比例(即,黑暗中初始速率/在455nm光存在的情况下初始速率)。As used herein, "dynamic range" refers to the ratio of activity in the dark and light states (ie, initial rate in the dark/initial rate in the presence of 455 nm light).
如本文使用的,“操纵子”指由调节负责蛋白质合成的其他基因的多个基因构成的单元。As used herein, "operon" refers to a unit composed of multiple genes that regulate other genes responsible for protein synthesis.
如本文使用的,“可操作地连接”指一个或多个基因(即DNA序列)适当地在DNA分子中定位和定向,用于转录以从相同启动子被启动。可操作地连接至启动子的DNA序列意指DNA序列的表达在启动子的的转录启动调节下。As used herein, "operably linked" refers to one or more genes (i.e., DNA sequences) being appropriately positioned and oriented in a DNA molecule for transcription to be initiated from the same promoter. A DNA sequence operably linked to a promoter means that the expression of the DNA sequence is under the transcriptional initiation regulation of the promoter.
如本文使用的,“构建体”指工程化的分子,例如连接的DNA的碎片(piece)作为DNA构建体;作为源自DNA构建体的表达的一种连续序列的RNA构建体。As used herein, "construct" refers to an engineered molecule, such as linked pieces of DNA as a DNA construct; as a RNA construct, one continuous sequence derived from the expression of a DNA construct.
如本文使用的,“融合体(fusion)”指工程化的构建的表达产物,即几个连接序列的组合作为编码最初由两个基因编码的蛋白质-蛋白质融合体的一个分子或单个基因。As used herein, "fusion" refers to an engineered constructed expression product, ie, the combination of several linked sequences as one molecule or a single gene encoding a protein-protein fusion originally encoded by two genes.
如本文使用的,“表达载体”或“表达构建体”指为宿主细胞中的构建体的DNA表达设计的操纵子、质粒或病毒,其通常含有宿主细胞内可操作的启动子序列。As used herein, "expression vector" or "expression construct" refers to an operon, plasmid or virus designed for DNA expression of a construct in a host cell, which usually contains a promoter sequence operable in the host cell.
如本文使用的,“启动子”指启动特定DNA序列的转录的DNA区域。启动子位于朝向有义链的5'区域的转录开始位点附近。启动子可以是组成型启动子,比如哺乳动物细胞中的巨细胞病毒(CMV)启动子,或诱导型启动子,比如哺乳动物细胞中的四环素-诱导型启动子。As used herein, "promoter" refers to a DNA region that initiates transcription of a specific DNA sequence. The promoter is located near the transcription start site in the 5' region toward the sense strand. The promoter can be a constitutive promoter, such as the cytomegalovirus (CMV) promoter in mammalian cells, or an inducible promoter, such as a tetracycline-inducible promoter in mammalian cells.
如本文使用的,“转化”指递送至原核宿主细胞中的外源核酸序列或质粒,例如,插入宿主细胞或由宿主细胞吸收的表达质粒(例如质粒表达构建体)。As used herein, "transformation" refers to the delivery of an exogenous nucleic acid sequence or plasmid into a prokaryotic host cell, for example, an expression plasmid (eg, a plasmid expression construct) that is inserted into or taken up by a host cell.
如本文使用的,“转染”指将核酸序列插入真核细胞中。As used herein, "transfection" refers to the insertion of a nucleic acid sequence into a eukaryotic cell.
转化和转染可以是瞬时的,使得被引入宿主细胞中的核酸序列或质粒不会永久地并入细胞基因组中。稳定转化和转染指宿主细胞将外源核酸序列或质粒保留多代,无论核酸或质粒是否整合入宿主细胞的基因组中。Transformation and transfection can be transient, so that the nucleic acid sequence or plasmid introduced into the host cell is not permanently incorporated into the cell genome. Stable transformation and transfection refer to the host cell retaining the foreign nucleic acid sequence or plasmid for multiple generations, whether or not the nucleic acid or plasmid is integrated into the host cell's genome.
如本文使用的,关于细胞的“宿主”指旨在接收核酸序列或质粒或已经携带核酸序列或质粒的细胞,例如细菌。As used herein, "host" with respect to a cell refers to a cell, such as a bacterium, that is intended to receive a nucleic acid sequence or plasmid or that already carries a nucleic acid sequence or plasmid.
如本文使用的,“缀合物”指至少两个化合物的共价附着,例如,附着至磷酸酶蛋白质的光敏元件。As used herein, "conjugate" refers to the covalent attachment of at least two compounds, for example, a photosensitive element attached to a phosphatase protein.
如本文使用的,关于蛋白质构建体的“诱饵”不能结合至DNA和/或RNA聚合酶。As used herein, a "bait" with respect to a protein construct is incapable of binding to DNA and/or RNA polymerase.
具体实施方式DETAILED DESCRIPTION
本发明涉及基因工程的领域。特别地,本发明涉及产生生物活性剂的操纵子的构建。例如,可构建操纵子以产生控制生物化学途径蛋白质(例如,蛋白磷酸酶、激酶和/或蛋白酶)功能的试剂。这种试剂可包括可用于研究或控制与磷酸酶途径或表达水平异常相关的磷酸酶功能中的抑制剂和调节剂。融合蛋白,比如光活化的蛋白磷酸酶,可被基因编码且被表达为光控开关磷酸酶。提供用于控制活细胞内的磷酸酶功能或鉴定与细胞信号传导相关的蛋白磷酸酶的小分子抑制剂/活化剂/调节剂分子的系统。The present invention relates to the field of genetic engineering. In particular, the present invention relates to the construction of operons for producing bioactive agents. For example, operons can be constructed to produce reagents for controlling the functions of biochemical pathway proteins (e.g., protein phosphatases, kinases and/or proteases). Such reagents may include inhibitors and regulators that can be used to study or control phosphatase functions associated with phosphatase pathways or abnormal expression levels. Fusion proteins, such as light-activated protein phosphatases, can be genetically encoded and expressed as light-controlled switch phosphatases. Systems for controlling phosphatase functions in living cells or identifying small molecule inhibitors/activators/regulator molecules of protein phosphatases associated with cell signaling are provided.
本发明也涉及用于检测和/或构建生物活性剂的基因编码系统(例如,一个或多个操纵子)的组装。例如,可组装系统以便完成一个或多个目标,例如(i)以检测和/或合成影响调节酶(例如,蛋白磷酸酶、激酶和/或蛋白酶)活性的小分子;(ii)以检测和/或进化由光调节的调节酶(例如,光反应蛋白磷酸酶、激酶或蛋白酶)等。小分子调节剂可包括已知与人疾病相关或涉及引起或保持人疾病的磷酸酶的抑制剂;涉及或已知与人疾病(例如,糖尿病、肥胖和癌症)相关的磷酸酶活化剂;这种小分子可用作细胞信号传导的研究中的化学探针;作为结构开始点(即,指引)等,用于治疗人疾病的药物化合物的开发。光敏酶可包括融合至光遗传致动器(例如,如果向光素1是LOV结构域)的蛋白酪氨酸磷酸酶。这种融合体可用作对活细胞中的蛋白质酪氨酸磷酸化进行时空控制的工具。The present invention also relates to the assembly of genetically encoded systems (e.g., one or more operons) for detecting and/or constructing bioactive agents. For example, the system can be assembled to accomplish one or more goals, such as (i) to detect and/or synthesize small molecules that affect the activity of regulatory enzymes (e.g., protein phosphatases, kinases, and/or proteases); (ii) to detect and/or evolve regulatory enzymes regulated by light (e.g., light-responsive protein phosphatases, kinases, or proteases), etc. Small molecule modulators can include inhibitors of phosphatases known to be associated with human diseases or involved in causing or maintaining human diseases; phosphatase activators involved in or known to be associated with human diseases (e.g., diabetes, obesity, and cancer); such small molecules can be used as chemical probes in the study of cell signaling; as structural starting points (i.e., guides), etc., for the development of drug compounds for the treatment of human diseases. Photosensitive enzymes can include protein tyrosine phosphatases fused to optogenetic actuators (e.g., if
此外,提供了设计用于鉴定小分子抑制剂、活化剂或调节剂分子、的光控开关酶或生物组分(包括细胞内表达分子)的微生物操纵子,其包括,例如具有用于全细胞微生物筛选测定系统的组分的操纵子。使用本文描述的组合物、系统和方法发现的抑制剂/调节剂分子预期用于治疗疾病比如糖尿病、II型糖尿病、肥胖、癌症和阿尔茨海默氏疾病等与蛋白磷酸酶相关的其他紊乱。In addition, microbial operons designed to identify small molecule inhibitors, activators or modulator molecules, light-operated switchable enzymes or biological components (including intracellularly expressed molecules) are provided, including, for example, operons with components for whole-cell microbial screening assay systems. Inhibitor/modulator molecules discovered using the compositions, systems and methods described herein are expected to be used to treat diseases such as diabetes, type II diabetes, obesity, cancer and other disorders associated with protein phosphatases such as Alzheimer's disease.
在一个实施方式中,本发明涉及蛋白酪氨酸磷酸酶1B(PTP1B)。PTP1B代表该研究的有价值的开始点,因为四个原因:(i)它与糖尿病5、肥胖6、癌症30、焦虑31、炎症32、免疫应答7和胚胎干细胞中的神经特化33有关系,(ii)很好理解其亚细胞定位的机制(短C-末端锚形物将其连接至ER;该锚形物的蛋白质水解将其释放至胞质溶胶)2934。(iii)可容易地表达、纯化和分析35,(iv)它是一类结构上相似的酶(PTP)的成员,其可促进快速延伸构架(architecture)以使其可光控开关的。PTP1B表示用于测试光学控制的策略的实验易处理的模型系统和考虑了对其光学调制以允许详细分析各种不同的疾病和生理学过程的酶两者。In one embodiment, the present invention relates to protein tyrosine phosphatase 1B (PTP1B). PTP1B represents a valuable starting point for this research for four reasons: (i) it has been implicated in diabetes 5 , obesity 6 , cancer 30 , anxiety 31 , inflammation 32 , immune response 7 and neural specification in embryonic stem cells 33 , (ii) the mechanism of its subcellular localization is well understood (a short C-terminal anchor links it to the ER; proteolysis of the anchor releases it to the cytosol) 29 34 . (iii) it can be easily expressed, purified and analyzed 35 , and (iv) it is a member of a class of structurally similar enzymes (PTPs) that facilitate rapid extension of the architecture to make them photoswitchable. PTP1B represents both an experimentally tractable model system for testing strategies for optical control and an enzyme for which optical modulation is contemplated to allow detailed analysis of a variety of different diseases and physiological processes.
特别地涉及示例性图:图1、2、3、4、8、9、12和13描述了可用操纵子进化、改善或优化光遗传和成像技术(即,光敏酶和基因可编码生物传感器);图10和11描述了使用操纵子以进化、改善或优化光敏酶的策略;图5、6、14、15、16、17、18、19、20、28、29、30和31支撑了(i)用于检测和/或进化抑制已知的药物靶标的小分子的操纵子的开发和(ii)那些分子的随后表征;图22、23、24、25、26、27和32提供了抑制PTP1B的微生物可合成分子的动力学和和生物物理特性的实例。In particular, the exemplary figures: Figures 1, 2, 3, 4, 8, 9, 12 and 13 describe operons that can be used to evolve, improve or optimize optogenetic and imaging technologies (i.e., photosensitive enzymes and genetically encodeable biosensors); Figures 10 and 11 describe strategies for using operons to evolve, improve or optimize photosensitive enzymes; Figures 5, 6, 14, 15, 16, 17, 18, 19, 20, 28, 29, 30 and 31 support (i) the development of operons for detecting and/or evolving small molecules that inhibit known drug targets and (ii) the subsequent characterization of those molecules; Figures 22, 23, 24, 25, 26, 27 and 32 provide examples of the kinetics and biophysical properties of microbially synthesizable molecules that inhibit PTP1B.
I.与疾病有关的蛋白酪氨酸磷酸酶(PTP)和蛋白酪氨酸激酶(PTK)。I. Disease-related protein tyrosine phosphatases (PTPs) and protein tyrosine kinases (PTKs).
蛋白酪氨酸磷酸酶(PTP)和蛋白酪氨酸激酶(PTK)是两类酶,其有助于各种疾病(例如,糖尿病、癌症、动脉粥样硬化和阿尔茨海默氏疾病等)中的异常信号传导事件,并且理解疾病进展14,36。此外,它们涉及调节记忆力、恐惧、食欲、能量消耗和代谢,因此这种磷酸化调节酶的使用可揭露看似不同的生理学过程之间的联系14,22,13。Protein tyrosine phosphatases (PTPs) and protein tyrosine kinases (PTKs) are two classes of enzymes that contribute to aberrant signaling events in various diseases (e.g., diabetes, cancer, atherosclerosis, and Alzheimer's disease, among others) and to understanding disease progression14,36 . In addition, they are involved in regulating memory, fear, appetite, energy expenditure, and metabolism, so the use of such phosphorylation-regulated enzymes can reveal connections between seemingly disparate physiological processes14,22,13 .
本文描述了使用光作为用于控制PTP和PTK的光控开关构建体的实施方式。相应地,除了用于鉴定与特定疾病(比如糖尿病等,包括疾病的亚型,即早发型、晚发型等的,和特定类型的癌症)相关的PTP和/或PTK的特定等位基因(即基因序列或蛋白质)—或其他它们调节的酶,并且用于筛选和测试用于治疗与这些等位基因相关的疾病的分子(包括小分子)的用途,如本文描述的开发的PTP和PTK的光控开关构建体的实例应当对于理解健康的和患病的细胞如何处理化学信号的感兴趣的生物医学研究人员是广泛有用的。Embodiments of light-controlled switch constructs for controlling PTPs and PTKs are described herein. Accordingly, in addition to being used to identify specific alleles (i.e., gene sequences or proteins) of PTPs and/or PTKs associated with specific diseases (such as diabetes, etc., including subtypes of the disease, i.e., early-onset, late-onset, etc., and specific types of cancer) - or other enzymes that they regulate, and for screening and testing molecules (including small molecules) for treating diseases associated with these alleles, the examples of light-controlled switch constructs of PTPs and PTKs developed as described herein should be widely useful for understanding how healthy and diseased cells process chemical signals for interested biomedical researchers.
尽管其他参考文献描述了蛋白质的光控制,其包括使用LOV2缀合物,这些参考文献不提及使用磷酸酶。Fan等,“Optical Control Of Biological Processes By Light-Switchable Proteins.”Wiley Interdiscip Rev Dev Biol.4(5):545-554.2015。该参考文献描述了蓝光-氧-电压-感受(LOV)结构域,其包括来自燕麦向光素的LOV2 C-末端α-螺旋,被称为Jα。LOV结构域的连接可笼避(cage)感兴趣的蛋白质(POI),而光诱导的LOV结构域构象变化导致其解笼(uncage)。作为一个实例,肽激酶抑制剂可通过与LOV2的C-末端融合被笼避。暴露于光导致用于细胞中光调节蛋白激酶活性的抑制剂的解笼。WO2011133493。2011年10月27日公布的“Allosteric regulation of kinase activity.”。该参考文献描述了融合蛋白,其包括激酶(作为实例包括酪氨酸激酶(Src)、丝氨酸/苏氨酸激酶(p38))和配体结合结构域,例如光调节的LOV结构域(其中考虑了配体结合的照度),其被插入N-末端和/或C-末端中或催化结构域附近,以使用光依赖性激酶产生变构调节。此外,LOV结构域包括来自燕麦向光素I的LOV2结构域和/或Ja结构域。日文的WO2012111772(A1),英语摘要。该参考文献摘要描述了用于钙信号传导的光学控制的多肽,其包括包含SEQ ID NO:1的LOV2结构域的氨基酸序列或与SEQ ID NO:1具有至少80%序列同一性的氨基酸序列。构建体具有LOV2结构域,随后在构建体的N末端处具有LOV2-Jα光开关。US8859232。“Geneticallyencoded photomanipulation of protein and peptide activity.”,2014年10月14日发布。该参考文献描述了包括蛋白光开关的融合蛋白,和光操纵融合蛋白的活性以研究蛋白质功能和分析亚细胞活性的方法,以及诊断和治疗方法。更特别地,融合蛋白包括融合至包括光、氧或燕麦(燕麦(oat))向光素1的电压(LOV2)结构域的蛋白光开关的感兴趣的蛋白质,其中融合蛋白的照度活化感兴趣的蛋白质或使感兴趣的蛋白质失活。感兴趣的蛋白质是人蛋白质的功能结构域。作为实例,向光素1(404-547)的LOV2-Jα序列被融合至RacI的N-末端,以便其闭合构象中的LOV结构域将可逆地阻断效应子与RacI的结合。Although other references describe light control of proteins, including the use of LOV2 conjugates, these references do not mention the use of phosphatases. Fan et al., "Optical Control Of Biological Processes By Light-Switchable Proteins." Wiley Interdiscip Rev Dev Biol. 4(5):545-554. 2015. This reference describes a blue light-oxygen-voltage-sensing (LOV) domain that includes the C-terminal α-helix of LOV2 from oat phototropin, referred to as Jα. Attachment of the LOV domain can cage a protein of interest (POI), while light-induced conformational changes in the LOV domain lead to its uncage. As an example, a peptide kinase inhibitor can be caged by fusion to the C-terminus of LOV2. Exposure to light leads to uncage of inhibitors for light-regulated protein kinase activity in cells. WO2011133493. "Allosteric regulation of kinase activity." published on October 27, 2011. This reference describes fusion proteins comprising a kinase (including as examples tyrosine kinase (Src), serine/threonine kinase (p38)) and a ligand binding domain, such as a light-regulated LOV domain (wherein the illumination of ligand binding is taken into account), which is inserted into the N-terminus and/or C-terminus or near the catalytic domain to produce allosteric regulation using a light-dependent kinase. In addition, the LOV domain includes a LOV2 domain and/or a Ja domain from oat phototropin I. WO2012111772 (A1) in Japanese, abstract in English. This reference abstract describes a polypeptide for optical control of calcium signaling comprising an amino acid sequence comprising the LOV2 domain of SEQ ID NO: 1 or an amino acid sequence having at least 80% sequence identity with SEQ ID NO: 1. The construct has a LOV2 domain followed by a LOV2-Jα photoswitch at the N-terminus of the construct. US8859232. "Genetically encoded photomanipulation of protein and peptide activity.", published on October 14, 2014. This reference describes fusion proteins including protein photoswitches, and methods of light-manipulating the activity of fusion proteins to study protein function and analyze subcellular activity, as well as diagnostic and therapeutic methods. More particularly, the fusion protein includes a protein of interest fused to a protein photoswitch including a light, oxygen, or voltage (LOV2) domain of oat (oat) phototropin 1, wherein illumination of the fusion protein activates the protein of interest or inactivates the protein of interest. The protein of interest is a functional domain of a human protein. As an example, the LOV2-Jα sequence of phototropin 1 (404-547) is fused to the N-terminus of Racl so that the LOV domain in its closed conformation will reversibly block binding of the effector to Racl.
A.蛋白酪氨酸磷酸酶(PTP)。A. Protein tyrosine phosphatase (PTP).
蛋白酪氨酸磷酸酶(PTP)是一类调节酶,在其各种不同的疾病中展示异常活性。因此,对这些酶的变构通讯的详细绘制可揭示影响其催化状态的生理相关的—和可能是治疗有用的—扰动(即突变、翻译后修饰或结合事件)的结构基础。该研究将蛋白酪氨酸磷酸酶IB(PTP IB)的详细生物物理研究与大规模生物信息学分析结合,以检查PTP中的变构通讯。X-射线晶体学、分子动力学模拟和基于序列的统计分析的结果指示,PTP IB具有广泛分布的变构网络,其在整个PTP家族中进化上是保守的,并且来自动力学研究的发现显示该网络在序列多样的PTP中是功能上完整的。在该研究中解决的变构网络揭示了靶向PTP变构抑制剂的新位点,并且有助于解释各种疾病相关突变的功能影响。Protein tyrosine phosphatases (PTPs) are a class of regulatory enzymes that exhibit abnormal activity in their various diseases. Therefore, the detailed drawing of the allosteric communication of these enzymes can reveal the structural basis of physiologically relevant-and possibly therapeutically useful-perturbations (i.e., mutations, post-translational modifications, or binding events) that affect their catalytic state. This study combines the detailed biophysical study of protein tyrosine phosphatases IB (PTP IB) with large-scale bioinformatics analysis to examine the allosteric communication in PTPs. The results of X-ray crystallography, molecular dynamics simulations, and sequence-based statistical analysis indicate that PTP IB has a widely distributed allosteric network that is evolutionarily conservative throughout the PTP family, and the findings from dynamics studies show that the network is functionally complete in sequence-diverse PTPs. The allosteric network solved in this study reveals a new site for targeting PTP allosteric inhibitors, and helps to explain the functional impact of various disease-related mutations.
在一个实施方式中,如本文描述的酪氨酸磷酸酶和光敏蛋白质可附着至药物,用于医学治疗。与EP2116263相反,2009年11月11日公开的“Reversibly light-switchabledrug-conjugates.”未提及酪氨酸磷酸酶,并且其描述了附着至光异构基团B并且还附着至用于医学治疗的药物(这些基团没有一个是基因可编码的)的蛋白磷酸酶钙调磷酸酶的光控开关缀合物。EP2116263中作为一个实例,通过抑制蛋白磷酸酶钙调磷酸酶抑制肿瘤生长。对于近UV(例如370nm)或近IR(例如740nm)诱导的活性的光异构基团B不包括光反应植物蛋白质向光素1LOV2 N-末端α螺旋。In one embodiment, tyrosine phosphatases and photosensitive proteins as described herein can be attached to drugs for medical treatment. In contrast to EP2116263, "Reversibly light-switchable drug-conjugates." published on November 11, 2009, does not mention tyrosine phosphatases, and describes a light-switchable conjugate of the protein phosphatase calcineurin attached to a photoisomerization group B and also attached to a drug for medical treatment (none of these groups is genetically encodable). As an example in EP2116263, tumor growth is inhibited by inhibiting the protein phosphatase calcineurin. The photoisomerization group B for activity induced by near UV (e.g. 370nm) or near IR (e.g. 740nm) does not include the N-terminal alpha helix of the photoresponsive plant protein phototropin 1LOV2.
考虑了受体PTP用于缀合至光敏感蛋白质,如本文描述的。相反,Karunarathne等,“Subcellular optogenetics–controlling signaling and single-cell behavior.”JCell Sci.128(1):15-25,2015描述了光敏结构域,比如细菌光-氧-电压-感受(LOV和LOV2)结构域,包括C-末端螺旋Jα区域,其连接至受体酪氨酸激酶(RTKs),没有具体的实施例,没有提及酪氨酸磷酸酶或植物向光素1LOV2 N-末端α螺旋。显示了肌醇5-磷酸酶的光活化,但肌醇5-磷酸酶不是蛋白磷酸酶。Receptor PTPs are contemplated for conjugation to light-sensitive proteins, as described herein. In contrast, Karunarathne et al., "Subcellular optogenetics-controlling signaling and single-cell behavior." J Cell Sci. 128(1): 15-25, 2015, describe light-sensitive domains, such as bacterial light-oxygen-voltage-sensing (LOV and LOV2) domains, including a C-terminal helical Jα region, which is linked to receptor tyrosine kinases (RTKs), without specific examples, and without mentioning tyrosine phosphatases or the
B.酪氨酸残基的酶促磷酸化。B. Enzymatic phosphorylation of tyrosine residues.
酪氨酸残基的酶促磷酸化在细胞功能中起作用,并且在多种疾病(例如糖尿病、癌症、自身免疫失调和Noonan综合征)中被异常地调节。它受两类结构上柔性的—和动态可调节的—酶:催化酪氨酸残基的ATP依赖性磷酸化的蛋白酪氨酸激酶(PTK),和催化磷酸酪氨酸的水解去磷酸化的蛋白酪氨酸磷酸酶(PTP)协同作用的控制(5,6)。通过这些酶对活性-调节的结构扰动(即,突变、翻译后修饰或结合事件)的应答的机制的详细理解,从而可阐明它们对各种疾病的贡献,并且促进设计新的PTK-或PTP-靶向疗法。在过去的几十年中,许多生物物理研究已剖析了PTK的催化机制和调节功能(7,8),其是药物制剂的常见靶标。(9)相反,PTP的详细分析已经落后了。(10)这些酶表示了生物医学见解和治疗潜力的未开发来源(没有PTP抑制剂已经清除临床试验);因此,它们是该研究的焦点。Enzymatic phosphorylation of tyrosine residues plays a role in cellular function and is aberrantly regulated in a variety of diseases, such as diabetes, cancer, autoimmune disorders, and Noonan syndrome. It is controlled by the concerted action of two classes of structurally flexible—and dynamically regulatable—enzymes: protein tyrosine kinases (PTKs), which catalyze the ATP-dependent phosphorylation of tyrosine residues, and protein tyrosine phosphatases (PTPs), which catalyze the hydrolytic dephosphorylation of phosphotyrosine (5, 6). A detailed understanding of the mechanisms by which these enzymes respond to activity-regulated structural perturbations (i.e., mutations, post-translational modifications, or binding events) will elucidate their contributions to various diseases and facilitate the design of new PTK- or PTP-targeted therapies. Over the past several decades, numerous biophysical studies have dissected the catalytic mechanisms and regulatory functions of PTKs, which are common targets for pharmaceutical agents (7, 8). (9) In contrast, detailed analysis of PTPs has lagged behind. (10) These enzymes represent an untapped source of biomedical insights and therapeutic potential (no PTP inhibitors have cleared clinical trials); therefore, they are the focus of this research.
PTP使用两个环对酪氨酸残基去磷酸化。八个-残基P-环通过带正电的精氨酸结合磷酸盐部分,其使附近的半胱氨酸能够亲核攻击,并且十个-残基WPD环含有普通酸催化剂—天冬氨酸—使酪氨酸离去基团质子化且使磷酸酶中间体水解^11-13)。在催化期间,P-环保持固定,而WPD环在打开和闭合状态之间移动~10A;核磁共振(NMR)分析显示该移动控制催化的速率(14)。PTP uses two loops to dephosphorylate tyrosine residues. The eight-residue P-loop binds a phosphate moiety via a positively charged arginine, which enables nucleophilic attack by a nearby cysteine, and the ten-residue WPD loop contains a common acid catalyst—aspartic acid—that protonates the tyrosine leaving group and hydrolyzes the phosphatase intermediate (11-13). During catalysis, the P-loop remains fixed, while the WPD loop moves ~10 Å between open and closed states; nuclear magnetic resonance (NMR) analysis shows that this movement controls the rate of catalysis (14).
用于治疗糖尿病、肥胖和乳腺癌的药物靶标的蛋白酪氨酸磷酸酶IB(PTP IB)的最近分析,指示其WPD环的运动受延伸至其C-末端的变构网络调节(图1B)(15,16)。该网络通过以下两者:(i)替换其C-末端a7螺旋的抑制剂(17,18)和(ii)破坏(α)7螺旋和WPD环之间的通讯的突变(15)而易受调制;使在PTP1B和其他PTP中能够变构通讯的残基的特定收集仍没有完全解决。Recent analysis of protein tyrosine phosphatase IB (PTP IB), a drug target for the treatment of diabetes, obesity, and breast cancer, indicates that the motion of its WPD loop is regulated by an allosteric network extending to its C-terminus (Fig. 1B) (15, 16). This network is susceptible to modulation by both (i) inhibitors that replace its C-terminal a7 helix (17, 18) and (ii) mutations that disrupt communication between the (α)7 helix and the WPD loop (15); the specific collection of residues that enable allosteric communication in PTP1B and other PTPs remains incompletely resolved.
蛋白酪氨酸磷酸酶1B(PTP1B)。PTP1B表示有价值的用于鉴定潜在疗法的工具,因为至少四个原因:(i)它牵涉糖尿病5、肥胖6、癌症30、焦虑31、炎症32、免疫应答7和胚胎干细胞的神经特化33,(ii)很好理解其亚细胞定位的基础机制(短C-末端锚形物将其连接至ER;该锚形物的蛋白水解将其释放至胞质溶胶)2934。(iii)其可被容易地表达、纯化和分析35,(iv)它是一类结构上相似的可促进快速延伸构架以使其是光控开关的酶(PTP)的成员。因此,PTP1B表示用于测试光学控制的策略的实验易处理的模型系统,也是其光学调制允许详细分析各种不同疾病和生理学过程的酶。Protein tyrosine phosphatase 1B (PTP1B). PTP1B represents a valuable tool for identifying potential therapeutics for at least four reasons: (i) it has been implicated in diabetes5 , obesity6 , cancer30 , anxiety31 , inflammation32 , immune responses7, and neural specification of embryonic stem cells33 , (ii) the mechanisms underlying its subcellular localization are well understood (a short C-terminal anchor links it to the ER; proteolysis of this anchor releases it into the cytosol) 2934. (iii) it can be readily expressed, purified, and analyzed35 , and (iv) it is a member of a class of structurally similar enzymes (PTPs) that promote rapid extension of their framework, making them photoswitchable. Therefore, PTP1B represents an experimentally tractable model system for testing strategies for optical control, and an enzyme whose optical modulation allows detailed analysis of a variety of different diseases and physiological processes.
空间调节和细胞内信号传导。通过示例,PTP1B表明光控开关酶对研究细胞内信号传导中空间调节的价值。假设通过以下使受体酪氨酸激酶失活:(i)内体和ER之间的接触37,38,(ii)质膜和ER的延伸区域之间的接触39和(iii)通过其部分蛋白水解和释放入胞液中实现直接蛋白质-蛋白质相互作用34。PTP1B-底物相互作用的不同机制(或位置)的作用在确定那些相互作用的结果中的角色理解较差。表明了PTP1B的位置和其在信号传导中的作用之间的关系的证据在肿瘤发生的研究中已经呈现。抑制PTP1B可抑制乳腺癌30,40、肺癌3,41、结肠直肠癌9和前列腺癌42,43中肿瘤生长和转移,同时其上调在淋巴瘤中的作用类似3,44。最近证据表明前一种作用可由抑制胞质PTP1B引起45;后者的原因不清楚。目前,没有工具来调查空间上不同的PTP1B亚群对相同细胞内肿瘤相关的信号传导事件的不同影响。PTP1B的光控开关变体代表这种工具。Spatial regulation and intracellular signaling. By way of example, PTP1B demonstrates the value of photoswitchable enzymes for studying spatial regulation in intracellular signaling. Receptor tyrosine kinases are hypothesized to be inactivated by: (i) contacts between endosomes and the ER37,38 , (ii) contacts between the plasma membrane and extended regions of the ER39 , and (iii) direct protein-protein interactions through their partial proteolysis and release into the cytosol34 . The role of different mechanisms (or locations) of PTP1B-substrate interactions in determining the outcome of those interactions is poorly understood. Evidence suggesting a relationship between the location of PTP1B and its role in signaling has emerged from studies of tumorigenesis. Inhibition of PTP1B suppresses tumor growth and metastasis in breast cancer30,40 , lung cancer3,41 , colorectal cancer9 , and prostate cancer42,43 , while its upregulation has similar effects in lymphoma3,44 . Recent evidence suggests that the former effect may be caused by inhibition of cytoplasmic PTP1B45 ; the cause of the latter is unclear. Currently, there are no tools to investigate the differential effects of spatially distinct PTP1B subpopulations on tumor-associated signaling events within the same cell. Photoswitchable variants of PTP1B represent such a tool.
网络生物学。信号传导网络通常表示通过线(相互作用)连接的节点(蛋白质)46。这种图捕获了生物化学中继系统(relay system)的连通性,但模糊了空间背景—单个相互作用在多个位置发生并且可能刺激多个信号传导效果的能力。该研究开发了一套将能够详细研究空间背景在引导信号通过生物化学网络传播的作用的工具;这种检查有助于理解PTP1B在细胞信号传导(和与肿瘤发生相关的过程)中的作用,并且通常与细胞内空间上不同的亚群中存在的任何酶的研究有关。Network biology. Signaling networks typically represent nodes (proteins) connected by lines (interactions) 46 . Such diagrams capture the connectivity of biochemical relay systems but obscure spatial context—the ability of a single interaction to occur at multiple locations and potentially stimulate multiple signaling effects. This study develops a set of tools that will enable detailed investigation of the role of spatial context in directing the propagation of signals through biochemical networks; such examinations are useful for understanding the role of PTP1B in cellular signaling (and processes relevant to tumorigenesis) and are generally relevant to the study of any enzyme present in spatially distinct subpopulations within cells.
II.光遗传致动器。II. Optogenetic Actuators.
光遗传致动器(经历光诱导的构象变化的基因可编码蛋白质)提供了在光学控制下安排生物化学事件的方便方式。单独或当融合至其他蛋白质时,它们能够在活细胞中以毫秒和亚微米分辨率进行生物分子传输、结合和催化的光学操作。我们的方式解决了现存技术中两个主要缺陷:观察性干扰和照明使事故减半(half the story)。现存的用光控制酶活性的策略干扰蛋白质产生、定位和相互作用(通常通过设计)的天然模式,因此,进行直接问诊和/或控制那些模式—其确定如何处理生物化学信号—是困难的。有几种用光控制蛋白激酶的方法,但没有用于控制蛋白磷酸酶的类似方法。由于信号传导网络受两类酶的协同作用调节,所以那些网络的全面控制和/或详细分析需要两种控制方法。Optogenetic actuators (genetically encodable proteins that undergo light-induced conformational changes) provide a convenient way to orchestrate biochemical events under optical control. Alone or when fused to other proteins, they enable optical manipulation of biomolecular transport, binding, and catalysis in living cells with millisecond and submicron resolution. Our approach addresses two major flaws in existing techniques: observational interference and illumination half the story. Existing strategies for controlling enzyme activity with light interfere with the natural patterns of protein production, localization, and interaction (usually by design), so it is difficult to directly interrogate and/or control those patterns, which determine how biochemical signals are processed. There are several methods for controlling protein kinases with light, but there are no similar methods for controlling protein phosphatases. Because signal transduction networks are regulated by the synergistic action of two classes of enzymes, comprehensive control and/or detailed analysis of those networks requires two control methods.
本文描述的实施方式包括:(i)在不破坏其野生型活性的情况下用光控制蛋白质活性的方法和(ii)在如下特别重要的蛋白质上的该方法的证明:蛋白质酪氨酸磷酸酶1B(PTP1B),一种用于治疗糖尿病、肥胖和癌症的细胞信号传导的调节剂和一种验证的药物靶标。没有已知的光控开关蛋白酪氨酸磷酸酶。该文件中报道的PTP1B-LOV2构建体是第一个。(ii)LOV2的N-末端α螺旋在大多数研究(甚至对光开关的综述)中都被忽略,并且还没有被用作酶的光调制的排他性连接点。Embodiments described herein include: (i) methods for controlling protein activity with light without destroying its wild-type activity and (ii) demonstration of this method on a particularly important protein: protein tyrosine phosphatase 1B (PTP1B), a regulator of cell signaling and a validated drug target for the treatment of diabetes, obesity, and cancer. There are no known photoswitchable protein tyrosine phosphatases. The PTP1B-LOV2 construct reported in this document is the first. (ii) The N-terminal alpha helix of LOV2 has been ignored in most studies (even reviews of photoswitches) and has not been used as an exclusive attachment point for light modulation of the enzyme.
通过将该酶的C-末端变构结构域融合至蛋白光开关的N-末端α螺旋(即,来自燕麦的向光素1的LOV2结构域)上,我们开发了PTP1B的光控开关版本。我们提出了这样的证据,这种通用构架—在远离PTP1B的活性位点(最小破坏性)的LOV2位置上是独特的—可延伸至其他PTP,并且可能PTK。例如,我们使用统计耦合分析以显示在我们的PTP1B设计中利用的变构网络在整个PTP家族中保留。We developed a photoswitchable version of PTP1B by fusing the enzyme's C-terminal allosteric domain to the N-terminal alpha helix of a protein photoswitch (i.e., the LOV2 domain of
单独或当融合至其他蛋白质时,光遗传致动器能够以毫秒和亚微米分辨率进行生物分子传输、结合和催化的光学操作15,16。至少三个缺陷限制其用于详细研究信号传导网络:观察性干扰。现存的用光控制酶活性的策略干扰蛋白质产生、定位和相互作用16,17(通常通过设计)的天然模式,因此,进行那些模式的直接问诊—其确定如何处理生物化学信号10—是困难的。照明使事故减半。有几种用光控制蛋白激酶的方法18,19,但没有用于控制蛋白磷酸酶的类似方法。由于信号传导网络受两类酶的协同作用调节,所以那些网络的详细分析需要两种控制的方法。有限的致动器的调色板(palette)。使亚细胞能够控制酶活性的光遗传致动器需要使用蓝色或绿色的光15。这些波长展示出明显的光毒性20,遭受短的生物渗透深度21,和由于其光谱相似性,将致动限制为单个信号传导事件,而不是同时的多个事件。Alone or when fused to other proteins, optogenetic actuators enable optical manipulation of biomolecular transport, binding, and catalysis with millisecond and submicrometer resolution15,16 . At least three drawbacks limit their use for detailed studies of signaling networks: Observational perturbations. Existing strategies for controlling enzyme activity with light perturb the natural patterns of protein production, localization, and interaction16,17 (usually by design), so direct interrogation of those patterns—which determine how biochemical signals are processed10 —is difficult. Illumination halves the odds. There are several methods for controlling protein kinases with light18,19 , but no similar methods for controlling protein phosphatases. Because signaling networks are regulated by the concerted action of two classes of enzymes, detailed analysis of those networks requires two methods of control. A limited palette of actuators. Optogenetic actuators that enable subcellular control of enzyme activity require the use of blue or green light15 . These wavelengths exhibit significant phototoxicity 20 , suffer from short biological penetration depths 21 , and, due to their spectral similarity, limit actuation to single signaling events rather than simultaneous multiple events.
A.光控开关构建体:相对于其他示例性技术的优势。A. Photoswitch constructs: advantages over other exemplary technologies.
如本文描述的,光控开关描述了蛋白质-蛋白质构架(例如,PTP1B-LOV2融合体),以其单体形式是光学活性的。参考文献,WO2013016693。“Near-infrared light-activatedproteins.”公布日期2013年1月31日,依靠同源二聚化。相反,与WO2013016693中的不同,如本文描述的光学控制超过蛋白质的更大范围,其包括需要同源二聚化的那些和不需要同源二聚化的那些二者。此外,该参考文献描述了感光模块的类型,其包括植物中发现的蓝光-敏感的黄素蛋白;使用黄素腺嘌呤二核苷酸(BLUF)的蓝光光感受器;光、氧或电压感受(LOV)类型,其包括植物和细菌光感受器;和对光敏感的植物/微生物光敏素,即红色-至-NIR区域中光诱导的螺旋旋转。实施例更特别地描述的是基于细菌光敏素(Bph)的光活化的融合蛋白,使用融合至蛋白质比如蛋白磷酸酶、蛋白激酶、膜受体等的来自类球红细菌(BphG)的光反应α螺旋。修饰大肠杆菌,以便展示出这些表达的融合蛋白的光活性水平,即在红色-至-NIR光存在或不存在的情况下。尽管在对光应答中描述了表达融合蛋白的大肠杆菌中的蓝色变化,但是这些蓝色细菌是使用光活化融合蛋白的远红外/NIR-光的结果,所述融合蛋白又在Xgal存在的情况下活化lacZ表达,而不是对暴露于蓝光的光响应。然而,没有具体提及酪氨酸磷酸酶或植物向光素1LOV2 N-末端α螺旋。事实上,关于光遗传的评论倾向于将LOV2描述为具有一个末端螺旋:C-末端Jα螺旋。而有研究/专利指示简单的LOV2结构域的插入能够进行光控制,它们依赖于以下假设,Jα螺旋正在解旋以产生控制效果,不是如本文描述的Aα螺旋。As described herein, the light-operated switch describes a protein-protein framework (e.g., PTP1B-LOV2 fusion) that is optically active in its monomeric form. Reference, WO2013016693. "Near-infrared light-activated proteins." Publication date January 31, 2013, relies on homodimerization. In contrast, unlike in WO2013016693, the optical control described herein exceeds a larger range of proteins, including both those that require homodimerization and those that do not require homodimerization. In addition, the reference describes types of photosensitive modules, including blue light-sensitive flavoproteins found in plants; blue light photoreceptors using flavin adenine dinucleotide (BLUF); light, oxygen or voltage sensing (LOV) types, including plant and bacterial photoreceptors; and plant/microorganism phytochromes that are sensitive to light, i.e., light-induced helical rotations in the red-to-NIR region. The examples more particularly describe fusion proteins based on the light activation of bacterial phytochromes (Bph), using a light-responsive alpha helix from Rhodobacter sphaeroides (BphG) fused to proteins such as protein phosphatases, protein kinases, membrane receptors, etc. E. coli were modified so as to display the level of photoactivity of these expressed fusion proteins, i.e. in the presence or absence of red-to-NIR light. Although blue color changes in E. coli expressing fusion proteins were described in response to light, these blue bacteria were the result of far-red/NIR-light using photoactivated fusion proteins, which in turn activated lacZ expression in the presence of Xgal, rather than photoresponse to exposure to blue light. However, there is no specific mention of tyrosine phosphatases or
B.用光控制蛋白酪氨酸磷酸酶和蛋白酪氨酸激酶的“无笼”方法。B. A "cage-free" approach to control protein tyrosine phosphatases and protein tyrosine kinases using light.
当前的使用光控制酶活性(与其浓度或位置相对)的策略依赖于基于笼的系统:光反应蛋白质当融合至感兴趣的酶时,控制其活性位点的访问16,47。不幸地,这种构架可改变酶对结合伙伴的亲和力并且改变其对活性调节修饰(例如,磷酸化)的敏感性16,18。这些效果使得用光遗传来研究信号传导复杂化。该研究将开发“无笼”、基于变构的光学控制方法,其最小化酶和其底物(和其他结合伙伴)之间的干扰。该方法将帮助保存蛋白质定位、相互作用和翻译后修饰的天然模式,因此,促进那些模式对细胞内信号传导的影响的研究。Current strategies for using light to control enzyme activity (as opposed to its concentration or location) rely on cage-based systems: light-responsive proteins, when fused to an enzyme of interest, control access to its active site16,47 . Unfortunately, this architecture can alter the enzyme's affinity for binding partners and change its sensitivity to activity-regulating modifications (e.g., phosphorylation) 16,18 . These effects complicate the study of signaling using optogenetics. This study will develop a "cage-free," allosteric-based optical control approach that minimizes interference between the enzyme and its substrates (and other binding partners). The approach will help preserve native patterns of protein localization, interactions, and post-translational modifications, thereby facilitating studies of the effects of those patterns on intracellular signaling.
2.基因编码的光控开关磷酸酶。没有基因可编码光控开关磷酸酶;该建议中开发的嵌合体将是第一个。PTP1B的光控开关变体将能够详细研究各种不同感兴趣的PTP1 B-调节过程(例如,胰岛素、内源性大麻素和表皮生长因子信号传导49,51,以及细胞粘合和迁移52)。一般而言,光控开关磷酸酶将提供用于研究细胞生物学的有用的工具类别(特别地和光控开关激酶相呼应,其能够进行互补实验)。2. Genetically encoded photoswitchable phosphatases. No genes encode photoswitchable phosphatases; the chimeras developed in this proposal would be the first. Photoswitchable variants of PTP1B would enable detailed studies of a variety of PTP1B-regulated processes of interest (e.g., insulin, endocannabinoid, and epidermal growth factor signaling49,51 , and cell adhesion and migration52 ). In general, photoswitchable phosphatases would provide a useful class of tools for studying cell biology (particularly in concert with photoswitchable kinases, which would enable complementary experiments).
假设:PTP和PTK的催化结构域拥有C-末端a-螺旋,所述C-末端a-螺旋远离其活性位点,仍能够调节其催化活性(对于至少酶的子集—该功能的普遍性是未知的)23,24。我们假设,该螺旋与来自燕麦的向光素1的光-氧电压2(LOV2)结构域—一种具有响应蓝光解旋的末端螺旋的感光结构域25,26—的N-末端a-螺旋的融合将生产酶-LOV2嵌合体,其展示光依赖性催化活性,仍保留其天然底物特异性和结合亲和力。Hypothesis: The catalytic domains of PTPs and PTKs possess a C-terminal α-helix that is distal to their active site yet capable of modulating their catalytic activity (for at least a subset of enzymes—the universality of this function is unknown) 23, 24. We hypothesized that fusion of this helix with the N-terminal α-helix of the light-oxygen voltage 2 (LOV2) domain from
实验方法:我们在同源的交叉点处将PTP1B的C-末端a-螺旋附着至LOV2的N-末端a-螺旋,并且我们将评估光活化对所得嵌合体的催化活性的影响。该尝试将涉及使用(i)动力学测定和结合研究以表征底物特异性和光控开关构建体的结合亲和力和(ii)晶体学和光谱学分析以检查光控制的结构基础。通过这些研究提供信息,我们将我们的方法延伸至纹状体富集的蛋白酪氨酸磷酸酶(STEP)和蛋白酪氨酸激酶6(PTK6),分别牵涉阿尔茨海默氏疾病和三阴性乳腺癌的酶。Experimental approach: We attach the C-terminal a-helix of PTP1B to the N-terminal a-helix of LOV2 at a homologous junction, and we will assess the effect of photoactivation on the catalytic activity of the resulting chimera. This effort will involve the use of (i) kinetic assays and binding studies to characterize the substrate specificity and binding affinity of the photoswitch constructs and (ii) crystallographic and spectroscopic analyses to examine the structural basis of photocontrol. Informed by these studies, we extend our approach to striatal-enriched protein tyrosine phosphatases (STEP) and protein tyrosine kinase 6 (PTK6), enzymes implicated in Alzheimer's disease and triple-negative breast cancer, respectively.
我们将组合精密的生物物理研究、合成生物学和荧光显微镜以(i)开发这样的蛋白质构架,其能够光学控制蛋白酪氨酸磷酸酶(PTP)和蛋白酪氨酸激酶(PTK),而不会干扰其野生型活性或结合特异性,(ii)进化通过红光调节的PTP和PTK,和(iii)开发成像方法以研究活细胞中空间定位的信号传导事件。We will combine precision biophysical studies, synthetic biology, and fluorescence microscopy to (i) develop protein architectures that enable optical control of protein tyrosine phosphatases (PTPs) and protein tyrosine kinases (PTKs) without perturbing their wild-type activity or binding specificity, (ii) evolve PTPs and PTKs that are regulated by red light, and (iii) develop imaging methods to study spatially localized signaling events in living cells.
我们将以PTP1B开始我们的研究,PTP1B是一种验证的治疗糖尿病、肥胖和乳腺癌的药物靶标和其光遗传工具将特别地用于解决当前的知识的空缺(例如,空间上不同的PTP1B亚群促进或抑制肿瘤的生长的作用22)的酶。使用其作为模型,我们将通过将它们延伸至其他PTP和PTK建立我们的方法的普遍性。We will begin our studies with PTP1B, an enzyme that is a validated drug target for the treatment of diabetes, obesity, and breast cancer and for which optogenetic tools will be particularly useful to address gaps in current knowledge (e.g., the role of spatially distinct PTP1B subpopulations in promoting or inhibiting tumor growth 22 ). Using this as a model, we will establish the generalizability of our approaches by extending them to other PTPs and PTKs.
C.PTP1B的光控开关变体。C. Photoswitchable variants of PTP1B.
我们的第一个目标寻求使用LOV2(一种具有响应蓝光解旋的末端螺旋的蛋白质)来控制PTP1B(一种用于C-末端a-螺旋的解旋通过扭曲其催化必要的WPD环破坏活性的酶)的活性(图1AB,图6)。为了评估该目标的可行性,我们构建了五个PTP1B-LOV2嵌合体(在同源交叉点处连接):三个嵌合体对4-甲基伞形磷酸酯(4M)显示光依赖性催化活性(图1G)。随后对一种嵌合体的突变分析指示,将PTP1B连接至LOV2的a-螺旋中的突变可改善催化活性和动态范围(DR,黑暗/光活性的比例;图1G)。我们通过筛选少量构建体来构建—和开始优化—光控开关PTP1B-LOV2嵌合体的能力表明,合理的设计将允许我们构建足够用于细胞内信号传导研究的嵌合体。我们注意到:我们大多数光控开关嵌合体具有2.2的DR;先前的成像研究表明,3-10的DR足够控制细胞内信号传导218,19。Our first goal sought to use LOV2, a protein with a terminal helix that unwinds in response to blue light, to control the activity of PTP1B, an enzyme whose unwinding of the C-terminal a-helix destroys activity by twisting its catalytically essential WPD loop (Fig. 1AB, Fig. 6). To assess the feasibility of this goal, we constructed five PTP1B-LOV2 chimeras (linked at homologous intersections): three chimeras showed light-dependent catalytic activity toward 4-methylumbelliferyl phosphate (4M) (Fig. 1G). Subsequent mutational analysis of one chimera indicated that mutations in the a-helix that connects PTP1B to LOV2 improved catalytic activity and dynamic range (DR, ratio of dark/light activity; Fig. 1G). Our ability to construct—and begin to optimize—a photoswitchable PTP1B-LOV2 chimera by screening a small number of constructs suggested that rational design would allow us to construct chimeras sufficient for intracellular signaling studies. We note that most of our photoswitchable chimeras have a DR of 2.2; previous imaging studies have shown that a DR of 3–10 is sufficient to control intracellular signaling218,19 .
更具体地说,图1C展示了相对于其他类型的光学控制的一些差异。顶部图的y-轴指示在黑暗中每种构建体的活性(即,PTP1B催化的对硝基苯基磷酸酯水解的初始速率);底部图的y-轴指示在黑暗和光状态下的活性比例(即,在黑暗中的初始速率/在455nm光存在的情况下的初始速率),即动态范围。More specifically, Figure 1C demonstrates some differences relative to other types of optical control. The y-axis of the top graph indicates the activity of each construct in the dark (i.e., the initial rate of p-nitrophenyl phosphate hydrolysis catalyzed by PTP1B); the y-axis of the bottom graph indicates the ratio of activity in the dark and light states (i.e., initial rate in the dark/initial rate in the presence of 455 nm light), i.e., the dynamic range.
黑色条显示交叉点不同的一组八个初始构建体的活性和动态范围(参见图1B的底部)。这些构建体的一些是光控开关,而一些不是。版本7显示了最大光控开关能力—动态范围是约1.8。The black bars show the activity and dynamic range of a set of eight initial constructs with different crossing points (see bottom of Figure 1B). Some of these constructs are photoswitchable and some are not.
更特别地,颜色与不同类型的构建体相关。黑色:不同交叉点(对于交叉点,参见图1B);灰色:连接体的不同分区(参见,以下连接体部分);浅蓝色:Jα螺旋—这是在LOV2结构域的C-末端;深蓝色:A'α螺旋—这是在LOV2结构域的N-末端,并且因此,在将其连接至PTP1B的区域上;黄色:PTP1B的α7螺旋—这是在PTP1B的C-末端,并且因此,在将PTP1B连接至LOV2的区域上;橙色:组合:来自先前颜色的位点的组合,另外信息参见以下。More specifically, the colors are associated with different types of constructs. Black: different junctions (for junctions, see Figure 1B); Gray: different partitions of the linker (see, Linker section below); Light blue: Jα helix—this is at the C-terminus of the LOV2 domain; Dark blue: A'α helix—this is at the N-terminus of the LOV2 domain, and therefore, in the region that connects it to PTP1B; Yellow: α7 helix of PTP1B—this is at the C-terminus of PTP1B, and therefore, in the region that connects PTP1B to LOV2; Orange: Combination: combination of sites from previous colors, see below for additional information.
这些结果是令人惊讶的,部分是因为最近对光遗传学的评论显示,光控制活性需要LOV2的Jα螺旋(其中Jα是C-末端螺旋,其以抵靠(against)LOV域核心的折叠状态驻留)附着至感兴趣的蛋白质,参见Repina,N.A.,Rosenbloom,A.,Mukherjee,A.,Schaffer,D.V.&Kane,R.S.At Light Speed:Advances in Optogenetic Systems for Regulating CellSignaling and Behavior.Annu.Rev.Chem.Biomol.Eng.8,13–39(2017)。用蓝光的光活化将LOV核心与其结合的黄素发色团FMN之间的非共价相互作用通过保守的半胱氨酸残基转化为共价相互作用。伴随的光诱导的构象变化使Jα螺旋移开远离蛋白质核心,导致融合的效应子结构域(例如,phot1的激酶结构域)解笼。由于蛋白质-辅因子键的自发衰减,Jα螺旋在几分钟内恢复至其黑暗状态笼状构象。These results are surprising, in part because a recent review of optogenetics showed that light-controlled activity requires the Jα helix of LOV2 (where Jα is a C-terminal helix that resides in a folded state against the LOV domain core) to be attached to the protein of interest, see Repina, N.A., Rosenbloom, A., Mukherjee, A., Schaffer, D.V. & Kane, R.S. At Light Speed: Advances in Optogenetic Systems for Regulating Cell Signaling and Behavior. Annu. Rev. Chem. Biomol. Eng. 8, 13–39 (2017). Photoactivation with blue light converts the non-covalent interaction between the LOV core and its bound flavin chromophore FMN into a covalent interaction through a conserved cysteine residue. The accompanying light-induced conformational change moves the Jα helix away from the protein core, resulting in the uncaging of the fused effector domain (e.g., the kinase domain of phot1). The Jα helix returns to its dark state cage-like conformation within minutes due to spontaneous decay of the protein-cofactor bond.
天然AsLOV2结构域的几个限制促使人们努力工程化改进的变体。首先,当融合至外源蛋白质结构域时,Jα螺旋的自发分离(undocking)可导致相对高的黑暗状态活性,导致AsLOV2解笼后的低动态范围(26)。例如,光诱导的DNA结合系统LovTAP在黑暗和照明状态之间的DNA亲和力只具有五倍的变化(27)。为了解决这个问题,Strickland等(26)使用合理的设计将四个突变引入AsLOV2中,这稳定了Jα与LOV核心的对接。这使LovTAP的动态范围从5倍增加至70倍,方法可应用于其他LOV结构域光遗传系统,以减少黑暗状态活性。AsLOV2融合体对连接体长度以及附着的结构域的大小和结构也特别地敏感(28,29),因此,每个新的融合蛋白开关需要优化,以实现哺乳动物细胞中低黑暗状态和高光状态活性。Several limitations of the native AsLOV2 domain have prompted efforts to engineer improved variants. First, spontaneous undocking of the Jα helix when fused to an exogenous protein domain can result in relatively high dark state activity, leading to a low dynamic range after AsLOV2 uncaging (26). For example, the light-induced DNA binding system LovTAP has only a five-fold change in DNA affinity between the dark and illuminated states (27). To address this issue, Strickland et al. (26) used rational design to introduce four mutations into AsLOV2, which stabilized the docking of Jα to the LOV core. This increased the dynamic range of LovTAP from 5-fold to 70-fold, and the method can be applied to other LOV domain optogenetic systems to reduce dark state activity. AsLOV2 fusions are also particularly sensitive to linker length and the size and structure of the attached domain (28, 29), so each new fusion protein switch needs to be optimized to achieve low dark state and high light state activity in mammalian cells.
与Jα螺旋-蛋白质嵌合体相反,如本文显示,A’α螺旋而不Jα螺旋附着至感兴趣的蛋白质以形成光控开关构建体,例如PTPB1。In contrast to Jα helix-protein chimeras, as shown herein, the A'α helix rather than the Jα helix is attached to the protein of interest to form a photoswitchable construct, such as PTPB1.
示例性连接体。Exemplary linkers.
图1C的灰色条显示了版本7的突变体的活性和动态范围,其中连接体已被重新分区。换句话说,版本7具有以下连接体区域:LSHEDLATTL,其中加下划线的区域“LSHED”对应于PTP1B的C-末端,而区域“LATTL”对应于LOV2的N-末端。版本7.1具有序列LSHEDATTL;版本7.2具有序列LSHEDTTL等。这里,我们发现版本7.1与版本7具有相同动态范围,但活性更高。因此,我们使用版本7.1用于进一步优化。The grey bars in Figure 1C show the activity and dynamic range of mutants of
示例性突变体。Exemplary mutants.
浅蓝色条显示了版本7.1的突变体的活性和动态范围,其中Jα螺旋含有螺旋-稳定的突变。奇怪的是,这些提高了7.1的活性,但未提高其动态范围。The light blue bars show the activity and dynamic range of mutants of version 7.1 that contain helix-stabilizing mutations in the Jα helix. Curiously, these improved the activity of 7.1 but not its dynamic range.
深蓝色条显示了版本7.1的突变体的活性和动态范围,其中A’α螺旋含有螺旋-稳定的突变。这些突变之一(T406A)提高了动态范围;我们使用该版本进一步研究。The dark blue bars show the activity and dynamic range of mutants of version 7.1, in which the A' α helix contains helix-stabilizing mutations. One of these mutations (T406A) improved the dynamic range; we used this version for further studies.
黄色条显示了版本7.1的突变体的活性和动态范围,其中PTP1B的α7具有螺旋-稳定的突变;橙色条显示了版本7.1的突变体的活性和动态范围,其中组合多个突变。与黄色和橙色条相关的构建体没有一个显示提高的7.1(T406A)的特性。The yellow bars show the activity and dynamic range of mutants of version 7.1, in which α7 of PTP1B has a helix-stabilizing mutation; the orange bars show the activity and dynamic range of mutants of version 7.1, in which multiple mutations are combined. None of the constructs associated with the yellow and orange bars showed improved properties of 7.1(T406A).
最小破坏性方法。两个动力学研究指示,我们用于光控制的构架不干扰天然底物特异性或PTP1B的结合行为:(i)嵌合体E3(来自图1D)对对硝基苯基磷酸酯(pN)的活性分析指示,光影响kcat,但不影响Km(图2K和L)。(ii)对三种不同大小的底物(4M、pN和肽)的活性分析显示,所有三种的DR相同(图2L-K)。两个研究的结果与我们假设的光控制机制一致:LOV2诱导的PTP1B的C-末端a-螺旋的解旋破坏了其催化必要的WPD环的移动,WPD环控制了催化的速率,但对底物结合亲和力影响很小。Minimally disruptive approach. Two kinetic studies indicate that the framework we used for light control does not interfere with the native substrate specificity or binding behavior of PTP1B: (i) Activity analysis of chimeric E3 (from Figure 1D) on p-nitrophenyl phosphate (pN) indicated that light affected kcat , but not Km (Figures 2K and L). (ii) Activity analysis on three substrates of different sizes (4M, pN, and peptide) showed that the DRs were the same for all three (Figures 2L-K). The results of both studies are consistent with our hypothesized mechanism of light control: LOV2-induced unwinding of the C-terminal α-helix of PTP1B disrupts the movement of its catalytically essential WPD loop, which controls the rate of catalysis but has little effect on substrate binding affinity.
生物物理研究。光控开关嵌合体表达的效价(-100mg/L)足以进行详细的生物物理分析。我们对嵌合体E3进行了一组初步的这些分析。(i)我们使用圆形二色性(CD)以检查光活化对其二级结构的影响;光谱测量指示光活化减少了a-螺旋含量(222nm;图2B)。(ii)我们使用222nm处的振幅以测量a-螺旋含量的活化后恢复时间:Tr-30s(图2E)。该值类似于先前开发的基于LOV2的光控开关构建体的恢复时间,(iii)我们使用色氨酸荧光以测量色氨酸残基的活化后恢复时间:Tr-50s(图2F)。色氨酸荧光是PTP1B构象的粗略度量(与LOV2中的一个相比,其具有七个色氨酸残基)。因此,该较慢的恢复时间表明PTP1B比LOV2需要更长时间重新折叠。(iv)我们鉴定了一组结晶条件(以前用于结晶PTP1 BWt的那些条件)以生长E3的晶体(图2F)。(V)我们收集了PTP1 BWt的二维1H-15N HSQC光谱,并且指定了-65%的非脯氨酸峰。这些最近的NMR实验必须包括PTP1B-LOV2嵌合体;但是我们容易进行它们(一次尝试)表明嵌合体的相似分析是直接的。PTP1B-LOV2嵌合体的实验易处理性将能使具有不同光物理特性的变体能够进行全面的生物物理分析。Biophysical studies. The titer (-100 mg/L) of the photoswitch chimera expression was sufficient for detailed biophysical analysis. We performed a preliminary set of these analyses on chimera E3. (i) We used circular dichroism (CD) to examine the effects of photoactivation on its secondary structure; spectral measurements indicated that photoactivation reduced the a-helix content (222 nm; FIG. 2B ). (ii) We used the amplitude at 222 nm to measure the post-activation recovery time of the a-helix content: T r -30s ( FIG. 2E ). This value is similar to the recovery time of the previously developed LOV2-based photoswitch construct, (iii) we used tryptophan fluorescence to measure the post-activation recovery time of the tryptophan residue: T r -50s ( FIG. 2F ). Tryptophan fluorescence is a rough measure of the PTP1B conformation (which has seven tryptophan residues compared to the one in LOV2). Therefore, this slower recovery time indicates that PTP1B takes longer to refold than LOV2. (iv) We identified a set of crystallization conditions (those previously used to crystallize PTP1 B W t) to grow crystals of E3 (Fig. 2F). (V) We collected a two-dimensional 1 H- 15 N HSQC spectrum of PTP1 B W t and assigned a non-proline peak at -65%. These recent NMR experiments must include the PTP1B-LOV2 chimera; but our ease in performing them (in one attempt) suggests that similar analysis of the chimera is straightforward. The experimental tractability of the PTP1B-LOV2 chimera will enable comprehensive biophysical analysis of variants with different photophysical properties.
示例1.开发“无笼”方法以用光控制蛋白酪氨酸磷酸酶和激酶。本部分开发了将酶放置于光学控制下而不破坏其天然相互作用的方法。我们将用PTP1B表明该方法,然后,将其延伸至STEP和PTK6。当我们具有在光和黑暗状态之间展现出三到十倍的活性变化的PTP1B-LOV2嵌合体时,以及当我们鉴定了促进微调PTP1B、STEP和PTK6的光控开关变体的光物理特性的基于结构的设计规则时,我们将知道我们是成功的。Example 1. Development of a "cage-free" approach to control protein tyrosine phosphatases and kinases with light. This section develops methods to place enzymes under optical control without disrupting their natural interactions. We will demonstrate this approach with PTP1B and then extend it to STEP and PTK6. When we have a PTP1B-LOV2 chimera that exhibits a three- to ten-fold change in activity between the light and dark states, and when we identify structure-based design rules that facilitate fine-tuning of the photophysical properties of light-operated switch variants of PTP1B, STEP, and PTK6, we will know that we are successful.
D.PTP1B的光控开关变体的开发。D. Development of photoswitchable variants of PTP1B.
本部分中的工作假定——并且用晶体学、动力学和结合研究尝试证实——位于远离活性位点的光遗传致动系统不太可能破坏位于附近的致动系统的野生型行为。初步PTP1B-LOV2嵌合体的动力学研究(即,其中PTP1B的C-末端螺旋连接至来自燕麦的向光素1的LOV2结构域的N-末端螺旋的嵌合体)支持该假说:光通过影响kcat而不是Km抑制其活性,并且它们在4-甲基伞形酮基磷酸酯(4M)(一种模型底物)上显示野生型动力学(图1G和图2K)。kcat而不是Km的光调制表明LOV2利用变构网络以扭曲WPD环(图6)。The work in this section assumes—and attempts to confirm with crystallographic, kinetic, and binding studies—that optogenetic actuation systems located far from the active site are unlikely to disrupt the wild-type behavior of actuation systems located nearby. Kinetic studies of preliminary PTP1B-LOV2 chimeras (i.e., chimeras in which the C-terminal helix of PTP1B is linked to the N-terminal helix of the LOV2 domain of
我们的初始构建体,其代表首先报道的示例光控开关蛋白磷酸酶,将促进不同嵌合体构架的功能优势的系统研究。我们特别感兴趣的是了解(i)连接PTP1B和LOV2的连接体的长度和(ii)LOV2的末端螺旋的稳定性如何影响催化活性和动态范围。我们将通过结合光谱分析与动力学研究来研究这些关系。光谱分析将显示不同PTP1B-LOV2嵌合体在照度下如何重排的(例如,我们将使用CD和荧光光谱来测量a-螺旋含量和色氨酸荧光的光调制),并且动力学研究将揭示那些重排对催化活性和动态范围的影响。Our initial constructs, which represent the first reported example of a photoswitchable protein phosphatase, will facilitate systematic studies of the functional advantages of different chimera architectures. We are particularly interested in understanding how (i) the length of the linker connecting PTP1B and LOV2 and (ii) the stability of the terminal helix of LOV2 affect catalytic activity and dynamic range. We will investigate these relationships by combining spectroscopic analysis with kinetic studies. Spectroscopic analysis will show how different PTP1B-LOV2 chimeras rearrange under illumination (e.g., we will use CD and fluorescence spectroscopy to measure photomodulation of a-helical content and tryptophan fluorescence), and kinetic studies will reveal the effects of those rearrangements on catalytic activity and dynamic range.
我们的生物物理分析结果将有助于优化我们的嵌合体,用于体外细胞研究。我们将靶向具有以下特性的嵌合体(以下称为PTP1BPS):3-10的动态范围(DR)、Tr~15-60s的恢复时间和野生型活性(以其活化状态)。以前的光遗传研究表明这些属性使细胞信号传导能够光学控制2,18,19。我们注意到:PTP1B的生物物理研究指示去除其C-末端a-螺旋可减少其活性四分之三(a factor of four)57;相应地,我们相信LOV2可调节PTP1B的活性至少四倍(当然,LOV2可与简单的截断的那些相比更明显触发结构扭曲。The results of our biophysical analyses will help optimize our chimeras for in vitro cellular studies. We will target chimeras (hereafter referred to as PTP1B PS ) with the following properties: a dynamic range (DR) of 3-10 s, a recovery time of Tr ∼15-60 s relative to wild-type activity (in its activated state). Previous optogenetic studies have shown that these properties enable optical control of cellular signaling2,18,19 . We note that biophysical studies of PTP1B indicate that removal of its C-terminal α-helix reduces its activity by a factor of four 57 ; accordingly, we believe that LOV2 may modulate the activity of PTP1B by at least fourfold (of course, LOV2 may trigger structural distortions that are more pronounced than those of simple truncations).
E.PTP1B-底物和PTP1B-蛋白质相互作用的表征。E. Characterization of PTP1B-substrate and PTP1B-protein interactions.
我们将通过使用动力学分析评估LOV2对PTP1B的底物特异性的影响。特别地,我们将比较PTP1BWT和PTP1BPS对以下三种底物的活性:(i)对硝基苯基磷酸酯,一种酪氨酸磷酸酶的一般底物、(ii)ETGTEEpYMKMDLG,一种与PTP1B密切相关的PTP底物和(iii)RRLIEDAEpYAARG,一种对PTP1B特异性的底物。比较这些底物的kcat和Km值(图2K显示示例动力学研究)将揭示PTP1BWt和PTP1BPS的催化活性和特异性的差异。这些研究还将允许我们来评估光控开关能力(即,DR)的底物依赖性。通常假定光调制不依赖与底物。然而,这种假设没有生物化学基础(特别地在基于笼的系统中,其中底物可以不同亲和力结合,因此具有与笼形蛋白竞争的不同能力)。我们将测试其。We will evaluate the effect of LOV2 on the substrate specificity of PTP1B by using kinetic analysis. In particular, we will compare the activity of PTP1BWT and PTP1BPS on the following three substrates: (i) p-nitrophenyl phosphate, a general substrate of tyrosine phosphatases, (ii) ETGTEepYMKMDLG, a PTP substrate closely related to PTP1B, and (iii) RRLIEDAEpYAARG, a substrate specific for PTP1B. Comparison of the kcat and Km values of these substrates (Figure 2K shows an example kinetic study) will reveal differences in the catalytic activity and specificity of PTP1BWT and PTP1BPS . These studies will also allow us to evaluate the substrate dependence of the light-controlled switching ability (i.e., DR). It is usually assumed that light modulation is independent of the substrate. However, this assumption has no biochemical basis (especially in cage-based systems, where substrates can bind with different affinities and therefore have different abilities to compete with cage proteins). We will test it.
我们将通过测量两种酶对PTP1BWT的两个天然结合伴侣:LM04和Stat3的亲和力,来评估PTP1BPS参与与PTP1BWT相同的蛋白质-蛋白质相互作用的能力。基于PTP1B的色氨酸荧光变化的结合等温线将促进该研究(图7)。We will assess the ability of PTP1B PS to participate in the same protein-protein interactions as PTP1B WT by measuring the affinity of both enzymes for two natural binding partners of PTP1B WT : LM04 and Stat3. Binding isotherms based on tryptophan fluorescence changes of PTP1B will facilitate this study (Figure 7).
我们的PTP1BWT和PTP1BPS的生物化学比较可能看起来很乏味,但是我们认为该分析对建立未来光遗传学观察与野生型过程的相关性是必要的。The biochemical comparison of our PTP1B WT and PTP1B PS may seem tedious, but we feel that this analysis is necessary to establish the relevance of future optogenetic observations to wild-type processes.
生物结构表征。我们将通过使用X-射线晶体学和NMR光谱研究在PTP1BPS中光控制的结构基础。X-射线晶体结构将显示LOV2如何影响PTP1B的结构(并且反之亦然);NMR光谱将显示LOV2如何调节催化活性。对于晶体学研究,我们将通过筛选先前用于LOV2、PTP1B和LOV2-蛋白质嵌合体(其全部具有晶体结构有2,35,58)的结晶条件在其黑暗状态下结晶PTP1BPS(我们将使用C450S突变,其防止半胱氨酸加合物的形成2,26);初步结果表明些用于生长PTP1BWT晶体的那些也产生PTP1B-LOV2嵌合体的晶体(图2J)。对于NMR研究,我们将使用异核单量子相干(HSQC)光谱和横向弛豫优化光谱(TROSY)来监控照射之前和之后PTP1BPS的构象和骨架动力学的变化。(我们注意到:骨架1H、13C和15N化学位移已分配给PTP1B和LOV259 ,60)。Biostructural Characterization. We will investigate the structural basis of photocontrol in PTP1B PS by using X-ray crystallography and NMR spectroscopy. X-ray crystal structures will show how LOV2 affects the structure of PTP1B (and vice versa); NMR spectroscopy will show how LOV2 modulates catalytic activity. For crystallographic studies, we will crystallize PTP1B PS in its dark state (we will use the C450S mutation, which prevents the formation of cysteine adducts2,26 ) by screening crystallization conditions previously used for LOV2, PTP1B, and LOV2-protein chimeras (all of which have crystal structures2,35,58 ); preliminary results show that those used to grow PTP1B WT crystals also produce crystals of the PTP1B-LOV2 chimera (Figure 2J). For NMR studies, we will use heteronuclear single quantum coherence (HSQC) spectroscopy and transverse relaxation optimization spectroscopy (TROSY) to monitor changes in the conformation and backbone dynamics of PTP1B PS before and after irradiation. (We note that backbone 1 H, 13 C, and 15 N chemical shifts have been assigned to PTP1B and LOV2 59 , 60 ).
G.研究活细胞中亚细胞信号传导事件的示例性成像方法。G. Exemplary imaging methods for studying subcellular signaling events in living cells.
本部分使用PTP1BPS(PTP1B-LOV2嵌合体)以开发使用共焦显微术探查和研究亚细胞信号传导事件的方法。我们将知道当我们可以使亚细胞区域内失活,用基于FRET的传感器监测该失活的效果和分开PTP1B的不同亚群(例如,ER结合的胞质的)对传感器磷酸化的贡献时,这个目标是成功的。This section uses the PTP1B PS (PTP1B-LOV2 chimera) to develop methods to probe and study subcellular signaling events using confocal microscopy. We will know that this goal is successful when we can inactivate subcellular regions, monitor the effects of this inactivation with a FRET-based sensor, and separate the contributions of different subpopulations of PTP1B (e.g., ER-bound, cytoplasmic) to sensor phosphorylation.
假设。PTP和PTK的亚细胞定位由接近其催化核心的结构域控制23,24。我们假设这些结构域对光控开关嵌合体的附着将供给它们野生型定位模式,并且能够使用共焦显微术研究PTP和PTK在空间上不同的亚群对细胞信号传导的贡献。实验方法:在细胞内,PTP1B存在于两个空间上不同的亚群:附着至内质网的胞质表面,并且游离于胞质溶胶中—其短(-80残基)C-末端ER锚形物的蛋白水解的结果。我们将(i)使得野生型PTP1B(PTP1 BWT)的ER锚形物附着至我们的PTP1B-LOV2嵌合体,(ii)比较所得嵌合体与PTP1BWT嵌合体的亚细胞定位,(iii)使用共焦显微术—结合用于磷酸酶活性的基于FRET的传感器—来控制和监测细胞内的PTP1B活性,和(iv)开发反应扩散模型以评估PTP1B的空间上不同亚群对传感器磷酸化随时间和空间变化的贡献。该工作将为研究活细胞中空间定位的信号传导事件产生通用方法。Hypothesis. The subcellular localization of PTPs and PTKs is controlled by domains close to their catalytic cores23,24 . We hypothesized that attachment of these domains to photoswitchable chimeras would confer their wild-type localization pattern and enable the study of the contribution of spatially distinct subpopulations of PTPs and PTKs to cellular signaling using confocal microscopy. Experimental Approach: Within cells, PTP1B exists in two spatially distinct subpopulations: attached to the cytoplasmic surface of the endoplasmic reticulum, and free in the cytosol—the result of proteolysis of its short (-80 residues) C-terminal ER anchor. We will (i) attach the ER anchor of wild-type PTP1B (PTP1 B WT ) to our PTP1B-LOV2 chimeras, (ii) compare the subcellular localization of the resulting chimeras with that of PTP1B WT chimeras, (iii) use confocal microscopy—in conjunction with a FRET-based sensor for phosphatase activity—to control and monitor PTP1B activity within cells, and (iv) develop a reaction-diffusion model to assess the contribution of spatially distinct subpopulations of PTP1B to temporal and spatial changes in sensor phosphorylation. This work will generate a general approach for studying spatially localized signaling events in living cells.
PTP1BPS的定位。Localization of PTP1B PS .
为了检查活细胞中PTP1BPS的定位,我们将在COS-7细胞中表达三种变体(i)PTP1BPS_C45os、(ii)附着至仅含有跨膜结构域(但不含有蛋白水解位点)的PTP1BWT的C-末端ER锚形物的短片段(-20氨基酸29)的PTP1BPS_c45os和(iii)附着至PTP1BWT的全部C-末端ER锚形物(~80氨基酸29)的PTP1 BPS-c45os。我们假设这些构建体将分别具有(i)胞质定位模式、(ii)ER-结合定位模式和(iii)胞质的和ER-结合(即,野生型)定位模式两者。使用共焦显微术,我们将通过使用LOV2的荧光以定位每个嵌合体来测试该假设70。(在这些研究中,我们将用荧光标记的SEC61B(一种ER相关的传输复合物)定位ER71。以其荧光状态锁定LOV2的C450S突变,将防止成像期间的光活化)。To examine the localization of PTP1B PS in living cells, we will express three variants in COS-7 cells (i) PTP1B PS _ C 45os, (ii) PTP1B PS _ c45os attached to a short fragment (-20 amino acids 29 ) of the C-terminal ER anchor of PTP1B WT containing only the transmembrane domain (but not the proteolytic site), and (iii) PTP1 B PS -c45os attached to the entire C-terminal ER anchor of PTP1B WT (-80 amino acids 29 ). We hypothesize that these constructs will have (i) a cytoplasmic localization pattern, (ii) an ER-bound localization pattern, and (iii) both a cytoplasmic and ER-bound (i.e., wild-type) localization pattern, respectively. Using confocal microscopy, we will test this hypothesis by using the fluorescence of LOV2 to localize each chimera 70 . (In these studies, we will localize the ER using fluorescently labeled SEC61B, an ER-associated transport complex. 71 Locking the C450S mutation of LOV2 in its fluorescent state will prevent photoactivation during imaging).
COS-7细胞,源自非洲绿猴肾组织的成纤维细胞样细胞,特别是与上述分析相兼容,有三个原因:(i)它们大而扁平,因此促进空间分隔的亚细胞区域的成像72,(ii)它们与商业上可得的转染剂相容73,(iii)诱导内吞作用71和钙蛋白酶表达74(这两个过程影响亚细胞活性和PTP1B的定位)的方法很好开发用于这些细胞。COS-7 cells, fibroblast-like cells derived from African green monkey kidney tissue, are particularly compatible with the above analysis for three reasons: (i) they are large and flat, thus facilitating imaging of spatially separated subcellular regions72 , (ii) they are compatible with commercially available transfection reagents73, and (iii) methods for inducing endocytosis71 and calpain expression74 (both processes that affect subcellular activity and localization of PTP1B) are well developed for these cells.
活细胞中PTP1BPS的控制。我们将通过共焦显微术与用于蛋白质磷酸化的基于FRET的传感器配对来检查亚细胞区域内PTP1B的活性(由Umezawa group开发的54;图12)。该传感器将由激酶底物结构域、短的柔性连接体和磷酸化识别结构域组成——所有被夹在两种荧光蛋白(Clover,绿色荧光蛋白和mRuby2,红色荧光蛋白质)之间。底物结构域的磷酸化将导致其结合至识别结构域,从而调节(即,增强或或减少)两种荧光蛋白之间的FRET。使用与PTP1B和src相容的底物和SH2结构域23,55的我们的初步传感器响应磷酸化展现出FRET的20%变化。我们将尝试通过筛选不同的底物结构域、SH2结构域和连接体长度来进一步优化我们的传感器。Ouyang等建立了用于Src激酶活性的FRET传感器,其当磷酸化时展现出-120%的FRET变化55。我们将使用该传感器的架构—或可能是传感器本身—来报告我们的设计。Control of PTP1B PS in living cells. We will examine the activity of PTP1B in subcellular regions by confocal microscopy paired with a FRET-based sensor for protein phosphorylation (developed by the Umezawa group 54 ; FIG. 12 ). The sensor will consist of a kinase substrate domain, a short flexible linker, and a phosphorylation recognition domain—all sandwiched between two fluorescent proteins (Clover, green fluorescent protein and mRuby2, red fluorescent protein). Phosphorylation of the substrate domain will cause it to bind to the recognition domain, thereby modulating (i.e., enhancing or reducing) the FRET between the two fluorescent proteins. Our preliminary sensor using substrates and SH2 domains compatible with PTP1B and src 23 , 55 exhibited a 20% change in FRET in response to phosphorylation. We will attempt to further optimize our sensor by screening different substrate domains, SH2 domains, and linker lengths. Ouyang et al. established a FRET sensor for Src kinase activity that exhibited a -120% FRET change when phosphorylated 55 . We will use the architecture of this sensor—or possibly the sensor itself—to report on our design.
在我们的成像实验中,我们将使用455nm激光以使亚细胞区域(1-10urn圈)内的PTP1B失活和荧光寿命成像显微镜(FLIM)来监测由失活引起的传感器磷酸化的变化(图13)。对于这些实验,我们将使用siRNA来消耗PTP1 BWT和SEC61B以标记ER。输出将是一系列图像,其中像素的强度与Clover的荧光寿命(和,因此,传感器磷酸化的程度)成比例。In our imaging experiments, we will use a 455nm laser to inactivate PTP1B within subcellular regions (1-10 μm circles) and fluorescence lifetime imaging microscopy (FLIM) to monitor changes in sensor phosphorylation caused by inactivation (Figure 13). For these experiments, we will use siRNA to deplete PTP1 B WT and SEC61B to label the ER. The output will be a series of images where the intensity of the pixel is proportional to the fluorescence lifetime of Clover (and, therefore, the extent of sensor phosphorylation).
用该研究,我们特别感兴趣研究(i)PTPIBps活化/失活的位置、(ii)活化/失活区域的大小和(iii)传感器的磷酸化状态变化的位置和时间之间的关系。我们将使用反应扩散模型研究这些关系。方程式1提供了简单的控制方程式示例:With this study, we are particularly interested in studying the relationship between (i) the location of activation/inactivation of PTPIBps, (ii) the size of the activation/inactivation region, and (iii) the location and time of changes in the phosphorylation state of the sensor. We will use the reaction-diffusion model to study these relationships.
勇敢与磷酸化的传感器(SP)。这里,Ds是传感器的扩散系数;KS是结合至未磷酸化的传感器的酪氨酸激酶的浓度;PSp是结合至磷酸化的传感器的PTP1B的浓度;P和Sp分别是游离PTP1B和游离磷酸化的传感器的浓度;k^at和k^at分别是酪氨酸激酶和PTP1B的催化常数;和k%n是传感器-PTP1B缔合的动力学常数。假定激酶和磷酸酶仅与它们的产物弱结合(假设以后可容易地重新检查)。我们还可以使用比如BioNetGen的工具补充该模型,BioNetGen是基于网络的平台,用于从用户指定的生物分子相互作用的机制和位置的规则来产生生物化学相互作用75;可适应细胞异质性的这种工具(例如,细胞器和其他隔室),将有助于支持和扩展我们的动力学模型。Brave with phosphorylated sensor ( Sp ). Here, Ds is the diffusion coefficient of the sensor; Ks is the concentration of tyrosine kinase bound to the unphosphorylated sensor; Psp is the concentration of PTP1B bound to the phosphorylated sensor; P and Sp are the concentrations of free PTP1B and free phosphorylated sensor, respectively; k^ at and k^ at are the catalytic constants of the tyrosine kinase and PTP1B, respectively; and k% n is the kinetic constant for sensor-PTP1B association. Kinases and phosphatases are assumed to bind only weakly to their products (an assumption that can be easily re-examined later). We can also supplement this model with tools such as BioNetGen, a web-based platform for generating biochemical interactions from user-specified rules for the mechanism and location of biomolecular interactions75 ; such tools that can adapt to cellular heterogeneity (e.g., organelles and other compartments) will help to support and extend our kinetic model.
我们假设,在胞质PTP1BPS存在的情况下,其中磷酸酶自由扩散的我们的动力学模型的版本将更精确地捕获传感器的磷酸化状态(在从辐射区域指定的时间和位置)。相反,在ER-结合PTP1BPS存在的情况下,其中磷酸酶不能自由扩散的模型的版本将更精确地捕获传感器的行为。针对成像数据的任一模型的回归,将能够评估胞质的和ER-结合的PTP1B对传感器磷酸化随着时间和空间变化的贡献程度。We hypothesized that in the presence of cytosolic PTP1B PS , a version of our kinetic model in which the phosphatase diffuses freely will more accurately capture the phosphorylation state of the sensor (at a specified time and location from the radiation region). In contrast, in the presence of ER-bound PTP1B PS , a version of the model in which the phosphatase cannot diffuse freely will more accurately capture the behavior of the sensor. Regression of either model against imaging data will enable assessment of the extent to which cytosolic and ER-bound PTP1B contribute to changes in sensor phosphorylation over time and space.
图像分析。ER作为遍布整个细胞的泡状网络存在;使完全是ER或完全是胞质溶胶的亚细胞区域失活是困难的。为了能够分析在空间上不同的PTP1B亚群,因此,我们必须评估辐射的不同区域中的ER量。ER异质性(-20-100pm)和辐照(-1-10pm)的长度尺度的差异将允许这种评估。我们将用两个度量:(i)标记的ER的总荧光和(ii)标记的ER的各向异性工作。通过促进评估照明区域中胞质的和ER-结合的PTP1B的种群,这两个度量将有助于我们来评估那些种群对传感器磷酸化变化的贡献。Image Analysis. The ER exists as a vesicular network throughout the cell; inactivating subcellular regions that are either entirely ER or entirely cytosol is difficult. To be able to analyze spatially distinct subpopulations of PTP1B, we must therefore assess the amount of ER in different regions that are irradiated. Differences in ER heterogeneity (-20-100 pm) and length scales of irradiation (-1-10 pm) will allow for such assessments. We will work with two metrics: (i) total fluorescence of labeled ER and (ii) anisotropy of labeled ER. By facilitating assessment of populations of cytosolic and ER-bound PTP1B in the illuminated region, these two metrics will help us assess the contribution of those populations to changes in sensor phosphorylation.
空间调控和细胞内信号传导。Spatial regulation and intracellular signaling.
通过示例,PTP1B表明了光控开关酶对研究细胞内信号传导的空间调控的价值。假设通过以下使受体酪氨酸激酶失活:(i)内体与ER之间的接触37,38,(ii)质膜与ER的延伸区域之间的接触39,和(iii)通过其部分蛋白水解和释放入胞质溶胶中能够进行直接蛋白质-蛋白质相互作用34。PTP1B-底物相互作用的不同机制(或位置)在确定那些相互作用的结果中的作用理解甚少。表明了PTP1B的位置和其在信号传导中的作用之间的关系的证据在肿瘤发生的研究中出现。抑制PTP1B可抑制乳腺癌30,40、肺癌3,41、结肠直肠癌9和前列腺癌42,43中肿瘤生长和转移,而其上调在淋巴瘤中作用类似3,44。最近证据表明前一种作用可由抑制胞质PTP1B引起45;后者的原因不清楚。目前,没有工具来调查空间上不用的PTP1B亚群的对相同细胞内肿瘤相关的信号传导事件的不同影响。PTP1B的光控开关变体代表这种工具。By way of example, PTP1B illustrates the value of photoswitchable enzymes for studying the spatial regulation of intracellular signaling. Receptor tyrosine kinases are hypothesized to be inactivated by: (i) contacts between endosomes and the ER37,38 , (ii) contacts between the plasma membrane and extended regions of the ER39 , and (iii) enabling direct protein-protein interactions through their partial proteolysis and release into the cytosol34 . The role of different mechanisms (or locations) of PTP1B-substrate interactions in determining the outcome of those interactions is poorly understood. Evidence suggesting a relationship between the location of PTP1B and its role in signaling has emerged from studies of tumorigenesis. Inhibition of PTP1B suppresses tumor growth and metastasis in breast cancer30,40 , lung cancer3,41 , colorectal cancer9 , and prostate cancer42,43 , while its upregulation has similar effects in lymphoma3,44 . Recent evidence suggests that the former effect may be caused by inhibition of cytoplasmic PTP1B45 ; the cause of the latter is unclear. Currently, there are no tools to investigate the differential effects of spatially distinct PTP1B subpopulations on tumor-associated signaling events within the same cell. Photoswitchable variants of PTP1B represent such a tool.
网络生物学。信号传导网络通常表示通过线(相互作用)连接的节点(蛋白质)46。这种图捕获了生物化学中继系统的连通性,但模糊了空间背景—单个相互作用在多个位置发生,并且可能刺激多个信号传导效果的能力。该研究开发了一套工具将能够详细研究空间背景在引导信号通过信号生物化学网络传播的作用;例如,理解PTP1B在细胞信号传导(和与肿瘤发生相关的过程)中的作用,并且通常与细胞内空间上不同的亚群中存在的任何酶的研究有关。Network biology. Signaling networks are typically represented as nodes (proteins) connected by lines (interactions) 46 . Such diagrams capture the connectivity of biochemical relay systems but obscure spatial context—the ability of a single interaction to occur at multiple locations and potentially stimulate multiple signaling effects. The tools developed in this study will enable detailed studies of the role of spatial context in directing the propagation of signals through signaling biochemical networks; for example, understanding the role of PTP1B in cellular signaling (and processes relevant to tumorigenesis), and generally relevant to the study of any enzyme present in spatially distinct subpopulations within cells.
蛋白酪氨酸磷酸酶和激酶的方法的一般化。Generalization of the method to protein tyrosine phosphatases and kinases.
两个观察表明用于光控制的我们的构架(即,LOV2的N-末端与酶的C-末端a-螺旋的附着)广泛地应用于PTP和PTK。(i)结构比对显示所有PTP都拥有或具有一些突变,可拥有与PTP1B相同的变构通讯网络(图8A)23。(ii)PTK含有C-末端a-螺旋,其在其活性位点的远端,但还能够调节其催化活性(图8B)61。Two observations suggest that our framework for light control (i.e., attachment of the N-terminus of LOV2 to the C-terminal α-helix of the enzyme) is broadly applicable to PTPs and PTKs. (i) Structural alignments show that all PTPs possess, or with some mutations, the same allosteric communication network as PTP1B (Fig. 8A) 23 . (ii) PTKs contain a C-terminal α-helix that is distal to their active site but is also able to modulate their catalytic activity (Fig. 8B) 61 .
我们将通过构建纹状体富含的蛋白酪氨酸磷酸酶(STEP)和蛋白酪氨酸激酶6的光控开关变体来评估我们方法的通用性(PTK6;图8A)。STEP是神经元特异性磷酸酶,其在几种神经紊乱,主要是阿尔茨海默氏疾病、精神分裂症和药物上瘾中过度活跃62,63。PTK6(其可在一些信号传导途径中与PTP1B正交(orthogonally)起作用)在近似70%的三阴性乳腺癌中表达,并且促进转移50,64。STEP和PTK6的光控开关变体(都存在于细胞内多个空间上不同的亚群中50,62),将能够详细研究其细胞内信号传导作用,其仍然被差地表征。We will evaluate the generality of our approach by constructing photoswitchable variants of striatal-enriched protein tyrosine phosphatase (STEP) and protein tyrosine kinase 6 (PTK6; Figure 8A). STEP is a neuron-specific phosphatase that is overactive in several neurological disorders, primarily Alzheimer's disease, schizophrenia, and drug addiction62,63 . PTK6, which may act orthogonally to PTP1B in several signaling pathways, is expressed in approximately 70% of triple-negative breast cancers and promotes metastasis50,64 . Photoswitchable variants of STEP and PTK6, both of which are present in multiple spatially distinct subpopulations within cells50,62 , will enable detailed study of their intracellular signaling roles, which remain poorly characterized.
对于STEP和PTK6,我们将通过使用几种动力学测定开发和测量光控开关嵌合体的底物特异性。对于STEP,我们将使用类似于以PTP1B采用的那些测定。对于PTK6,我们将使用由Promega,Inc.开发的ADP-Glo试剂盒65。与任何肽底物相容的该测定将由PTK-催化的肽磷酸化产生的ADP转变为发光信号。对于这两种酶,我们将收集最佳嵌合体的晶体结构。For STEP and PTK6, we will develop and measure the substrate specificity of photoswitch chimeras by using several kinetic assays. For STEP, we will use assays similar to those employed with PTP1B. For PTK6, we will use the ADP-Glo kit developed by Promega, Inc. 65 . This assay, which is compatible with any peptide substrate, converts the ADP generated by PTK-catalyzed peptide phosphorylation into a luminescent signal. For both enzymes, we will collect crystal structures of the best chimeras.
用于在哺乳动物细胞中或在微生物细胞的操纵子内表达的示例性光控开关构建体序列。在一些实施方式中,可优化序列用于微生物表达。Exemplary photoswitch construct sequences for expression in mammalian cells or within an operon in microbial cells. In some embodiments, sequences can be optimized for microbial expression.
PPTP1B-LOV2,版本7.1(T406A):DNA序列SEQ ID NO:XX:PPTP1B-LOV2, version 7.1 (T406A): DNA sequence SEQ ID NO: XX:
蛋白质序列:SEQ ID NO:XX:Protein sequence: SEQ ID NO: XX:
PTP1B-LOV2,版本7.1(S286A):DNA序列:SEQ ID NO:XX:PTP1B-LOV2, version 7.1 (S286A): DNA sequence: SEQ ID NO: XX:
蛋白质序列:SEQ ID NO:XX:Protein sequence: SEQ ID NO: XX:
TCPTP-LOV2,最佳版本:TCPTP-LOV2, the best version:
DNA序列:SEQ ID NO:XX:DNA sequence: SEQ ID NO: XX:
加下划线的字母指示来自PTP1B的序列。蛋白质序列:SEQ ID NO:XX: Underlined letters indicate sequences from PTP1B. Protein sequence: SEQ ID NO: XX:
TCPTP-LOV2 V2:DNA序列:SEQ ID NO:XX:TCPTP-LOV2 V2: DNA sequence: SEQ ID NO: XX:
蛋白质序列:SEQ ID NO:XX:Protein sequence: SEQ ID NO: XX:
FRET传感器。考虑了Forster共振能量转移(FRET)用于监测活细胞中PTP1B的活性。当用Src激酶处理时,传感器展示出FRET信号降低20%(图21B)。先前的成像研究指示,FRET20%的变化足以监测细胞内激酶活性54-56。为了在成像研究中提高空间分辨率,我们将尝试进一步优化我们的传感器(并将其用于体外测量PTP1B的活性)。FRET sensor. Forster resonance energy transfer (FRET) was considered for monitoring the activity of PTP1B in living cells. When treated with Src kinase, the sensor exhibited a 20% decrease in FRET signal (Figure 21B). Previous imaging studies have indicated that a 20% change in FRET is sufficient to monitor intracellular kinase activity54-56 . In order to improve the spatial resolution in imaging studies, we will attempt to further optimize our sensor (and use it to measure the activity of PTP1B in vitro).
示例性FRET传感器:加下划线的mClover3-SH2-连接体-加粗底物–加下划线的和加粗mRuby3。Exemplary FRET sensor: underlined mClover3-SH2 -linker - bold substrate - underlined and bold mRuby3 .
mClover3-mRuby3:DNA序列:SEQ ID NO:XX:mClover3-mRuby3: DNA sequence: SEQ ID NO: XX:
蛋白质序列:SEQ ID NO:XX:Protein sequence: SEQ ID NO: XX:
示例性哺乳动物表达载体用于在哺乳动物细胞中表达光控开关构建体。Exemplary mammalian expression vectors are used to express photoswitch constructs in mammalian cells.
对于插入哺乳动物表达载体,例如慢病毒载体,pAcGFP1-C1(Clontech);PTP1B-LOV2(上面);启动子,例如CMV:SEQ ID NO:XX:GCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTCTATATAAGCAGAGCTGGTTTAGTGAACCGTCAGATC;RBS,例如Kozak共有翻译起始位点:GCCACCATG;基因内间隔区,例如P2A:DNA序列:SEQ ID NO:XX:GGCAGCGGCGCCACCAACTTCTCCCTGCTGAAGCAGGCCGGCGACGTGGAGGAGAACCCCGGCCCC;蛋白质序列:GSGATNFSLLKQAGDVEENPGP等。For insertion into mammalian expression vectors, such as lentiviral vectors, pAcGFP1-C1 (Clontech); PTP1B-LOV2 (above); promoter, such as CMV: SEQ ID NO:XX: GCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTCTATATAAGCAGAGCTGGTTTAGTGAACCGTCAGATC; RBS, such as Kozak consensus translation start site: GCCACCATG; intragenic spacer, such as P2A: DNA sequence: SEQ ID NO:XX: GGCAGCGGCGCCACCAACTTCTCCCTGCTGAAGCAGGCCGGCGACGTGGAGGAGAACCCCGGCCCC; protein sequence: GSGATNFSLLKQAGDVEENPGP, etc.
示例性FRET传感器包括:启动子:与以上相同;RBS:与以上相同等。Exemplary FRET sensors include: Promoter: same as above; RBS: same as above, and the like.
考虑了示例性FRET传感器以避免LOV2的激发/发射波长(455/495,我们注意到LOV2仅是弱的荧光70)和我们的FRET对(Clover的505/515和mRuby2的560/605)之间的重叠。而我们仍然希望在成像期间看到一些串扰,以前的三色成像研究71表明其将不会干扰我们进行本部分中描述的实验的能力。An exemplary FRET sensor was considered to avoid overlap between the excitation/emission wavelengths of LOV2 (455/495, which we noted was only weakly fluorescent70 ) and our FRET pair (505/515 for Clover and 560/605 for mRuby2). While we still expected to see some crosstalk during imaging, previous three-color imaging studies71 indicated that it would not interfere with our ability to perform the experiments described in this section.
考虑的实施方式包括但不限于侵袭性伪足形成和EGFR调节。Contemplated embodiments include, but are not limited to, invadopodia formation and EGFR modulation.
考虑了PTP1B的光控开关变体以确定通过蛋白水解从ER释放的胞质PTP1B是否专门负责调节侵袭性伪足的形成,或ER结合PTP1B是否可起到相似的作用。侵袭性伪足——使基质能够降解的富含肌动蛋白的突起的——形成促进了癌细胞侵入和转移45。Photoswitchable variants of PTP1B were considered to determine whether cytosolic PTP1B released from the ER by proteolysis is specifically responsible for regulating invadopodia formation, or whether ER-bound PTP1B may play a similar role. The formation of invadopodia—actin-rich protrusions that enable matrix degradation—facilitates cancer cell invasion and metastasis45 .
PTP1B和PTK6二者调节表皮生长因子受体(EGFR),一种在许多癌症和炎症性疾病中展示处异常活性的细胞增殖和迁移的调节剂51,76。我们将使用通过红光刺激的PTP1B变体和通过蓝光刺激的PTK6变体(或反之亦然)来进行PTP1B和PTK6对细胞不同区域内EGFR调节的协同贡献的组合分析。Both PTP1B and PTK6 regulate epidermal growth factor receptor (EGFR), a regulator of cell proliferation and migration that exhibits aberrant activity in many cancers and inflammatory diseases 51, 76. We will perform a combined analysis of the synergistic contribution of PTP1B and PTK6 to EGFR regulation in different regions of the cell using PTP1B variants stimulated by red light and PTK6 variants stimulated by blue light (or vice versa).
第I部分、第II部分和第V部分的参考文献列于以下并通过引用并入本文:References for Part I, Part II, and Part V are listed below and are incorporated herein by reference:
1.Wray,J.,Kalkan,T.,Gomez-Lopez,S.,Eckardt,D.,Cook,A.,Kemler,R.&Smith,A.Inhibition of glycogen synthase kinase-3alleviates Tcf3repression ofthe pluripotency network and increases embryonic stem cell resistance todifferentiation.Nat.Cell Biol.13,838-45(2011).1.Wray,J.,Kalkan,T.,Gomez-Lopez,S.,Eckardt,D.,Cook,A.,Kemler,R.&Smith,A.Inhibition of glycogen synthase kinase-3alleviates Tcf3repression of the pluripotency network and increases embryonic stem cell resistance to differentiation. Nat. Cell Biol. 13, 838-45 (2011).
2.Wu,Y.I.,Frey,D.,Lungu,O.I.,Jaehrig,A.,Schlichting,I.,Kuhlman,B.&Hahn,K.M.A genetically encoded photoactivatable Rac controls the motility ofliving cells.Nature 461,104-108(2009).2. Wu, Y. I., Frey, D., Lungu, O. I., Jaehrig, A., Schlichting, I., Kuhlman, B. & Hahn, K. M. A genetically encoded photoactivatable Rac controls the motility of living cells. Nature 461, 104-108 (2009).
3.Liu,H.,Wu,Y.,Zhu,S.,Liang,W.,Wang,Z.,Wang,Y.,Lv,T.,Yao,Y.,Yuan,D.&Song,Y.PTP1B promotes cell proliferation and metastasis through activatingsrc and ERK1/2 in non-small cell lung cancer.Cancer Lett.359,218-225(2015).3. Liu, H., Wu, Y., Zhu, S., Liang, W., Wang, Z., Wang, Y., Lv, T., Yao, Y., Yuan, D. & Song, Y. PTP1B promotes cell proliferation and metastasis through activatingsrc and ERK1/2 in non-small cell lung cancer. Cancer Lett.359,218-225(2015).
4.Danial,N.N.&Korsmeyer,S.J.Cell Death:Critical Control Points.Cell116,205-219(2004).4. Danial, N. N. & Korsmeyer, S. J. Cell Death: Critical Control Points. Cell 116, 205-219 (2004).
5.Johnson,T.O.,Ermolieff,J.&Jirousek,M.R.Protein tyrosine phosphatase1B inhibitors for diabetes.Nat.Rev.Drug Discov.1,696-709(2002).5. Johnson, T. O., Ermolieff, J. & Jirousek, M. R. Protein tyrosine phosphatase1B inhibitors for diabetes. Nat. Rev. Drug Discov. 1, 696-709 (2002).
6.Koren,S.&Fantus,I.G.Inhibition of the protein tyrosine phosphatasePTP1B:potential therapy for obesity,insulin resistance and type-2 diabetesmellitus.Best Pract.Res.Clin.Endocrinol.Metab.21,621-640(2007).6. Koren, S. & Fantus, I.G. Inhibition of the protein tyrosine phosphatasePTP1B: potential therapy for obesity, insulin resistance and type-2 diabetesmellitus. Best Pract. Res. Clin. Endocrinol. Metab. 21, 621-640 (2007).
7.Pike,K.a,Hutchins,A.P.,Vinette,V.,Theberge,J.-F.,Sabbagh,L.,Tremblay,M.L.&Miranda-Saavedra,D.Protein tyrosine phosphatase 1B isaregulator of the interleukin-10-induced transcriptional program inmacrophages.Sci.Signal.7,ra43(2014).7.Pike, K.a, Hutchins, A.P., Vinette, V., Theberge, J.-F., Sabbagh, L., Tremblay, M.L. & Miranda-Saavedra, D. Protein tyrosine phosphatase 1B isaregulator of the interleukin-10-induced transcriptional program inmacrophages.Sci.Signal.7,ra43(2014).
8.Rhee,I.&Veillette,a.Protein tyrosine phosphatases in lymphocyteactivation and autoimmunity.Nat.Immunol.13,439-447(2012).8. Rhee, I. & Veillette, a. Protein tyrosine phosphatases in lymphocyte activation and autoimmunity. Nat. Immunol. 13, 439-447 (2012).
9.Zhu,S.,Bjorge,J.D.&Fujita,D.J.PTP1B contributes to the oncogenicproperties of colon cancer cells through Src activation.Cancer Res.67,10129-10137(2007).9. Zhu, S., Bjorge, J.D. & Fujita, D.J. PTP1B contributes to the oncogenicproperties of colon cancer cells through Src activation. Cancer Res. 67, 10129-10137 (2007).
10.Volinsky,N.&Kholodenko,B.N.Complexity of receptor tyrosine kinasesignal processing.Cold Spring Harb.Perspect.Biol.5,(2013).10. Volinsky, N. & Kholodenko, B. N. Complexity of receptor tyrosine kinase signal processing. Cold Spring Harb. Perspect. Biol. 5, (2013).
11.Kennedy,M.B.Signal-Processing Machines at the PostsynapticDensity.Science.290,750-754(2000).11.Kennedy, M.B.Signal-Processing Machines at the PostsynapticDensity.Science.290,750-754(2000).
12.Lee,H.K.,Takamiya,K.,Han,J.S.,Man,H.,Kim,C.H.,Rumbaugh,G.,Yu,S.,Ding,L.,He,C,Petralia,R.S.,Wenthold,R.J.,Gallagher,M.&Huganir,R.L.Phosphorylation of the AMPA receptor GluR1 subunit is required forsynaptic plasticity and retention of spatial memory.Cell 112,631-643(2003).12.Lee, H.K., Takamiya, K., Han, J.S., Man, H., Kim, C.H., Rumbaugh, G., Yu, S., Ding, L., He, C, Petralia, R.S., Wenthold, R.J. , Gallagher, M. & Huganir, R.L. Phosphorylation of the AMPA receptor GluR1 subunit is required for synaptic plasticity and retention of spatial memory. Cell 112, 631-643 (2003).
13.Bence,K.K.,Delibegovic,M.,Xue,B.,Gorgun,C.Z.,Hotamisligil,G.S.,Neel,B.G.&Kahn,B.B.Neuronal PTP1B regulates body weight,adiposity and leptinaction.Nat.Med.12,917-24(2006).13. Bence, K. K., Delibegovic, M., Xue, B., Gorgun, C. Z., Hotamisligil, G. S., Neel, B. G. & Kahn, B. B. Neuronal PTP1B regulates body weight, adiposity and leptinaction. Nat. Med. 12, 917-24 (2006) .
14.Wu,P.,Nielsen,T.E.&Clausen,M.H.FDA-approved small-molecule kinaseinhibitors.Trends Pharmacol.Sci.36,422-439(2015).14. Wu, P., Nielsen, T. E. & Clausen, M. H. FDA-approved small-molecule kinase inhibitors. Trends Pharmacol. Sci. 36, 422-439 (2015).
15.Repina,N.A.,Rosenbloom,A.,Mukherjee,A.,Schaffer,D.V.&Kane,R.S.AtLight Speed:Advances in Optogenetic Systems for Regulating Cell Signaling andBehavior.Annu.Rev.Chem.Biomol.Eng.8,13-39(2017).15. Repina, N. A., Rosenbloom, A., Mukherjee, A., Schaffer, D. V. & Kane, R. S. At Light Speed: Advances in Optogenetic Systems for Regulating Cell Signaling and Behavior. Annu. Rev. Chem. Biomol. Eng. 8, 13-39 (2017).
16.Gautier,A.,Gauron,C,Volovitch,M.,Bensimon,D.,Jullien,L.&Vriz,S.Howto control proteins with light in living systems.Nat.Chem.Biol.10,533-41(2014).16.Gautier,A.,Gauron,C,Volovitch,M.,Bensimon,D.,Jullien,L.&Vriz,S.Howto control proteins with light in living systems.Nat.Chem.Biol.10,533-41(2014) .
17.Krauss,U.,Lee,J.,Benkovic,S.J.&Jaeger,K.E.LOVely enzymes-Towardsengineering light-controllable biocatalysts.Microb.Biotechnol.3,15-23(2010).17. Krauss, U., Lee, J., Benkovic, S. J. & Jaeger, K. E. LOVely enzymes-Towards engineering light-controllable biocatalysts. Microb. Biotechnol. 3, 15-23 (2010).
18.Dagliyan,O.,Tarnawski,M.,Chu,P.-H.,Shirvanyants,D.,Schlichting,I.,Dokholyan,N.V.&Hahn,K.M.Engineering extrinsic disorder to control proteinactivity in living cells.Science.354,1441-1444(2016).18.Dagliyan,O.,Tarnawski,M.,Chu,P.-H.,Shirvanyants,D.,Schlichting,I.,Dokholyan,N.V.&Hahn,K.M.Engineering extrinsic disorder to control proteinactivity in living cells.Science.354, 1441-1444(2016).
19.Zhou,X.X.,Fan,L.Z.,Li,P.,Shen,K.&Lin,M.Z.Optical control of cellsignaling by single-chain photoswitchable kinases.Science.355,836-842(2017).19. Zhou,
20.Lukyanov,K.a,Chudakov,D.M.,Lukyanov,S.&Verkhusha,V.V.Photoactivatable fluorescent proteins.Nat.Rev.Mol.Cell Biol.6,885-890(2005).20. Lukyanov, K.a, Chudakov, D.M., Lukyanov, S. & Verkhusha, V.V. Photoactivatable fluorescent proteins. Nat. Rev. Mol. Cell Biol. 6, 885-890 (2005).
21.Rodriguez,E.A.,Campbell,R.E.,Lin,J.Y.,Lin,M.Z.,Miyawaki,A.,Palmer,A.E.,Shu,X.,Zhang,J.&Tsien,R.Y.The Growing and Glowing Toolbox of Fluorescentand Photoactive Proteins.Trends Biochem.Sci.42,111-129(2017).21.Rodriguez,E.A.,Campbell,R.E.,Lin,J.Y.,Lin,M.Z.,Miyawaki,A.,Palmer,A.E.,Shu,X.,Zhang,J.&Tsien,R.Y.The Growing and Glowing Toolbox of Fluorescentand Photoactive Proteins.Trends Biochem.Sci.42,111-129(2017).
22.Lessard,L.,Stuible,M.&Tremblay,M.L.The two faces of PTP1B incancer.Biochim.Biophys.Acta-Proteins Proteomics 1804,613-619(2010).22. Lessard, L., Stuible, M. & Tremblay, M.L. The two faces of PTP1B incancer. Biochim. Biophys. Acta-Proteins Proteomics 1804, 613-619 (2010).
23.Barr,A.J.,Ugochukwu,E.,Lee,W.H.,King,O.N.F.,Filippakopoulos,P.,Alfano,I.,Savitsky,P.,Burgess-Brown,N.A.,Mtiller,S.&Knapp,S.Large-ScaleStructural Analysis of the Classical Human Protein Tyrosine Phosphatome.Cell136,352-363(2009).23. Barr, A.J., Ugochukwu, E., Lee, W.H., King, O.N.F., Filippakopoulos, P., Alfano, I., Savitsky, P., Burgess-Brown, N.A., Mtiller, S. & Knapp, S. Large- ScaleStructural Analysis of the Classical Human Protein Tyrosine Phosphatome. Cell136,352-363(2009).
24.Hubbard,S.R.&Till,J.H.Protein tyrosine kinase structure andfunction.Annu.Rev.Biochem.69,373-398(2000).24. Hubbard, S. R. & Till, J. H. Protein tyrosine kinase structure and function. Annu. Rev. Biochem. 69, 373-398 (2000).
25.Zayner,J.P.,Antoniou,C.&Sosnick,T.R.The amino-terminal helixmodulates light-activated conformational changes in AsLOV2.J.Mol.Biol.419,61-74(2012).25. Zayner, J.P., Antoniou, C. & Sosnick, T.R. The amino-terminal helixmodulates light-activated conformational changes in AsLOV2. J. Mol. Biol. 419, 61-74 (2012).
26.Peter,E.,Dick,B.&Baeurle,S.A.Mechanism of signal transduction ofthe LOV2-Ja photosensor from Avena sativa.Nat.Commun.1,122(2010).26. Peter, E., Dick, B. & Baeurle, S.A. Mechanism of signal transduction of the LOV2-Ja photosensor from Avena sativa. Nat. Commun. 1, 122 (2010).
27.Kaberniuk,A.A.,Shemetov,A.A.&Verkhusha,V.V.A bacterialphytochrome-based optogenetic system controllable with near-infraredlight.Nat.Methods 13,1-15(2016).27.Kaberniuk,A.A.,Shemetov,A.A.&Verkhusha,V.V.A bacterialphytochrome-based optogenetic system controllable with near-
28.Auldridge,M.E.&Forest,K.T.Bacterial phytochromes:more than meetsthe light.Crit.Rev.Biochem.Mol.Biol.46,67-88(2011).28. Auldridge, M.E. & Forest, K.T. Bacterial phytochromes: more than meets the light. Crit. Rev. Biochem. Mol. Biol. 46, 67-88 (2011).
29.Anderie,I.,Schulz,I.&Schmid,A.Characterization of the C-terminalER membrane anchor of PTP1B.Exp.Cell Res.313,3189-3197(2007).29. Anderie, I., Schulz, I. & Schmid, A. Characterization of the C-terminalER membrane anchor of PTP1B. Exp. Cell Res. 313, 3189-3197 (2007).
30.Tonks,N.K.&Muthuswamy,S.K.A Brake Becomes an Accelerator:PTP1B-ANew Therapeutic Target for Breast Cancer.Cancer Cell 11,214-216(2007).30. Tonks, N.K. & Muthuswamy, S.K.A Brake Becomes an Accelerator: PTP1B-A New Therapeutic Target for Breast Cancer.
31.Krishnan,N.&Tonks,N.K.Anxious moments for the protein tyrosinephosphatase PTP1B.Trends Neurosci.38,462-465(2015).31. Krishnan, N. & Tonks, N. K. Anxious moments for the protein tyrosinephosphatase PTP1B. Trends Neurosci. 38, 462-465 (2015).
32.T raves,P.G.,Pardo,V.,Pimentel-Santillana,M.,Gonzalez-Rodrfguez,A.,Mojena,M.,Rico,D.,Montenegro,Y.,Cales,C,Martfn-Sanz,P.,Valverde,a M.&Bosca,L.Pivotal role of protein tyrosine phosphatase 1B(PTP1B)in themacrophage response to proinflammatory and anti-inflammatory challenge.CellDeath Dis.5,e1125(2014).32.T raves,P.G.,Pardo,V.,Pimentel-Santillana,M.,Gonzalez-Rodrfguez,A.,Mojena,M.,Rico,D.,Montenegro,Y.,Cales,C,Martfn-Sanz,P ., Valverde, a M. & Bosca, L. Pivotal role of protein tyrosine phosphatase 1B (PTP1B) in themacrophage response to proinflammatory and anti-inflammatory challenge. CellDeath Dis. 5, e1125 (2014).
33.Matulka,K.,Lin,H.H.,Hrfbkova,H.,Uwanogho,D.,Dvorak,P.&Sun,Y.M.PTP1B is an effector of activin signaling and regulates neuralspecification of embryonic stem cells.Cell Stem Cell 13,706-719(2013).33.Matulka,K.,Lin,H.H.,Hrfbkova,H.,Uwanogho,D.,Dvorak,P.&Sun,Y.M.PTP1B is an effector of activin signaling and regulates neuralspecification of embryonic stem cells.Cell Stem Cell 13,706-719( 2013).
34.Cortesio,C.L.,Chan,K.T.,Perrin,B.J.,Burton,N.O.,Zhang,S.,Zhang,Z.Y.&Huttenlocher,A.Calpain 2 and PTP1B function in a novel pathway with Srcto regulate invadopodia dynamics and breast cancer cell invasion.J.CellBiol.180,957-971(2008).34.Cortesio, C.L., Chan, K.T., Perrin, B.J., Burton, N.O., Zhang, S., Zhang, Z.Y. & Huttenlocher,
35.Wiesmann,C,Barr,K.J.,Kung,J.,Zhu,J.,Erlanson,D.A.,Shen,W.,Fahr,B.J.,Zhong,M.,Taylor,L.,Randal,M.,McDowell,R.S.&Hansen,S.K.Allostericinhibition of protein tyrosine phosphatase 1B.Nat.Struct.Mol.Biol.11,730-737(2004).35.Wiesmann,C,Barr,K.J.,Kung,J.,Zhu,J.,Erlanson,D.A.,Shen,W.,Fahr,B.J.,Zhong,M.,Taylor,L.,Randal,M.,McDowell, R. S. & Hansen, S. K. Allostericinhibition of protein tyrosine phosphatase 1B. Nat. Struct. Mol. Biol. 11, 730-737 (2004).
36.Alonso,A.,Sasin,J.,Bottini,N.,Friedberg,I.,Friedberg,I.,Osterman,A.,Godzik,A.,Hunter,T.,Dixon,J.&Mustelin,T.Protein tyrosine phosphatases inthe human genome.Ce//117,699-711(2004).36.Alonso,A.,Sasin,J.,Bottini,N.,Friedberg,I.,Friedberg,I.,Osterman,A.,Godzik,A.,Hunter,T.,Dixon,J.&Mustelin,T. Protein tyrosine phosphatases in the human genome. Ce//117,699-711(2004).
37.Haj,F.G.,Verveer,P.J.,Squire,A.,Neel,B.G.&Bastiaens,P.I.H.Imagingsites of receptor dephosphorylation by PTP1B on the surface of theendoplasmic reticulum.Science 295,1708-1711(2002).37. Haj, F.G., Verveer, P.J., Squire, A., Neel, B.G. & Bastiaens, P.I.H. Imaging sites of receptor dephosphorylation by PTP1B on the surface of theendoplasmic reticulum. Science 295, 1708-1711 (2002).
38.Romsicki,Y.,Reece,M.,Gauthier,J.Y.,Asante-Appiah,E.&Kennedy,B.P.Protein Tyrosine Phosphatase-1B Dephosphorylation of the Insulin ReceptorOccurs in a Perinuclear Endosome Compartment in Human Embryonic Kidney 293Cells.J.Biol.Chem.279,12868-12875(2004).38.Romsicki,Y.,Reece,M.,Gauthier,J.Y.,Asante-Appiah,E.&Kennedy,B.P. Chem.279,12868-12875(2004).
39.Haj,F.G.,Sabet,O.,Kinkhabwala,A.,Wimmer-Kleikamp,S.,Roukos,V.,Han,H.M.,Grabenbauer,M.,Bierbaum,M.,Antony,C,Neel,B.G.&Bastiaens,P.I.Regulationof signaling at regions of cell-cell contact byendoplasmic reticulum-boundprotein-tyrosine phosphatase 1B.PLoS One 7,(2012).39. Haj, F.G., Sabet, O., Kinkhabwala, A., Wimmer-Kleikamp, S., Roukos, V., Han, H.M., Grabenbauer, M., Bierbaum, M., Antony, C, Neel, B.G. & Bastiaens ,P.I.Regulation of signaling at regions of cell-cell contact byendoplasmic reticulum-boundprotein-tyrosine phosphatase 1B.PLoS One 7,(2012).
40.Soysal,S.,Obermann,E.C,Gao,F.,Oertli,D.,Gillanders,W.E.,Viehl,C.T.&Muenst,S.PTP1B expression is an independent positive prognostic factorin human breast cancer.Breast Cancer Res.Treat.137,637-644(2013).40. Soysal, S., Obermann, E. C, Gao, F., Oertli, D., Gillanders, W. E., Viehl, C. T. & Muenst, S. PTP1B expression is an independent positive prognostic factor in human breast cancer. Breast Cancer Res. Treat. 137,637-644(2013).
41.Zhang,S.&Zhang,Z.Y.PTP1B as a drug target:recent developments inPTP1B inhibitor discovery.Drug Discov.Today 12,373-381(2007).41. Zhang, S. & Zhang, Z. Y. PTP1B as a drug target: recent developments in PTP1B inhibitor discovery. Drug Discov.
42.Wu,C,Zhang,L,Bourne,P.A.,Reeder,J.E.,Di Sant&apos;Agnese,P.A.,Yao,J.L,Na,Y.&Huang,J.Protein tyrosine phosphatase PTP1B is involved inneuroendocrine differentiation of prostate cancer.Prostate 66,1124-1135(2006).42.Wu,C,Zhang,L,Bourne,P.A.,Reeder,J.E.,Di Sant'Agnese,P.A.,Yao,J.L,Na,Y.&Huang,J.Protein tyrosine phosphatase PTP1B is involved in neuroendocrine differentiation of prostate cancer.Prostate 66,1124-1135(2006).
43.Lessard,L,DP,L,Deblois,G.,Begin,L,Hardy,S.,Mes-Masson,A.,Saad,F.,Trotman,L,Giguere,V.&Tremblay,M.PTP1B is an androgen receptor-regulatedphosphatase that promotes the progression of prostate cancer.Cancer Res.72,1529-1537(2012).43.Lessard,L,DP,L,Deblois,G.,Begin,L,Hardy,S.,Mes-Masson,A.,Saad,F.,Trotman,L,Giguere,V.&Tremblay,M.PTP1B is an androgen receptor-regulatedphosphatase that promotes the progression of prostate cancer. Cancer Res. 72, 1529-1537(2012).
44.Dube,N.,Bourdeau,A.,Heinonen,K.M.,Cheng,A.,Loy,A.L.&Tremblay,M.L.Genetic ablation of protein tyrosine phosphatase 1B accelerateslymphomagenesis of p53-null mice through the regulation of B-celldevelopment.Cancer Res.65,10088-10095(2005).44.Dube,N.,Bourdeau,A.,Heinonen,K.M.,Cheng,A.,Loy,A.L.&Tremblay,M.L.Genetic ablation of protein tyrosine phosphatase 1B accelerateslymphomagenesis of p53-null mice through the regulation of B-cell development.Cancer Res .65,10088-10095(2005).
45.Weaver,A.M.Invadopodia:Specialized cell structures for cancerinvasion.Clin.Exp.Metastasis 23,97-105(2006).45. Weaver, A.M. Invadopodia: Specialized cell structures for cancerinvasion. Clin. Exp. Metastasis 23, 97-105 (2006).
46.Cui,Q.,Ma,Y.,Jaramillo,M.,Bari,H.,Awan,A.,Yang,S.,Zhang,S.,Liu,L.,Lu,M.,O'Connor-McCourt,M.,Purisima,E.O.&Wang,E.A map of human cancersignaling.Mol.Syst.Biol.3,152(2007).46.Cui,Q.,Ma,Y.,Jaramillo,M.,Bari,H.,Awan,A.,Yang,S.,Zhang,S.,Liu,L.,Lu,M.,O'Connor -McCourt, M., Purisima, E. O. & Wang, E. A map of human cancer signaling. Mol. Syst. Biol. 3, 152 (2007).
47.Repina,N.A.,Rosenbloom,A.,Mukherjee,A.,Schaffer,D.V.&Kane,R.S.AtLight Speed:Advances in Optogenetic Systems for Regulating Cell Signaling andBehavior.Annu.Rev.Chem.Biomol.Eng.8,13-39(2017).47. Repina, N.A., Rosenbloom, A., Mukherjee, A., Schaffer, D.V. & Kane, R.S. At Light Speed: Advances in Optogenetic Systems for Regulating Cell Signaling and Behavior. Annu. Rev. Chem. Biomol. Eng. 8, 13-39 (2017).
48.Lee,J.,Natarajan,M.,Nashine,V.C,Socolich,M.,Vo,T.,Russ,W.P.,Benkovic,S.J.&Ranganathan,R.Surface sites for engineering allosteric controlin proteins.Science 322,438-442(2008).48.Lee,J.,Natarajan,M.,Nashine,V.C,Socolich,M.,Vo,T.,Russ,W.P.,Benkovic,S.J.&Ranganathan,R.Surface sites for engineering allosteric controlin proteins.Science 322,438-442( 2008).
49.Qin,Z.,Zhou,X.,Pandey,N.R.,Vecchiarelli,H.A.,Stewart,C.A.,Zhang,X.,Lagace,D.C,Brunei,J.M.,Beique,J.C,Stewart,A.F.R.,Hill,M.N.&Chen,H.H.Chronic Stress Induces Anxiety via an Amygdalar Intracellular Cascadethat Impairs Endocannabinoid Signaling.Neuron 85,1319-1331(2015).49. Qin, Z., Zhou, X., Pandey, N. R., Vecchiarelli, H. A., Stewart, C. A., Zhang, H.H.Chronic Stress Induces Anxiety via an Amygdalar Intracellular Cascadethat Impairs Endocannabinoid Signaling. Neuron 85,1319-1331(2015).
50.Fan,G.,Lin,G.,Lucito,R.&Tonks,N.K.Protein-tyrosine phosphatase 1Bantagonized signaling by insulin-like growth factor-1 receptor and kinaseBRK/PTK6 in ovarian cancer cells.J.Biol.Chem.288,24923-34(2013).50.Fan,G.,Lin,G.,Lucito,R.&Tonks,N.K.Protein-tyrosine phosphatase 1Bantagonized signaling by insulin-like growth factor-1 receptor and kinaseBRK/PTK6 in ovarian cancer cells.J.Biol.Chem.288 ,24923-34(2013).
51.Eden,E.R.,White,I.J.,Tsapara,A.&Futter,C.E.Membrane contactsbetween endosomes and ERprovide sites for PTP1B-epidermal growth factorreceptor interaction.Nat.Cell Biol.12,267-72(2010).51. Eden, E. R., White, I. J., Tsapara, A. & Futter, C. E. Membrane contacts between endosomes and ER provide sites for PTP1B-epidermal growth factor receptor interaction. Nat. Cell Biol. 12, 267-72 (2010).
52.Arregui,C.O.,Gonzalez,A.,Burdisso,J.E.&Gonzalez Wusener,A.E.Protein tyrosine phosphatase PTP1B in cell adhesion and migration.CellAdh.Migr.7,418-423(2013).52. Arregui, C.O., Gonzalez, A., Burdisso, J.E. & Gonzalez Wusener, A.E. Protein tyrosine phosphatase PTP1B in cell adhesion and migration. CellAdh.Migr.7, 418-423 (2013).
53.Badran,A.H.,Guzov,V.M.,Huai,Q.,Kemp,M.M.,Vishwanath,P.,Kain,W.,Nance,A.M.,Evdokimov,A.,Moshiri,F.,Turner,K.H.,Wang,P.,Malvar,T.&Liu,D.R.Continuous evolution of Bacillus thuringiensis toxins overcomes insectresistance.Nature 533,58-63(2016).53.Badran,A.H.,Guzov,V.M.,Huai,Q.,Kemp,M.M.,Vishwanath,P.,Kain,W.,Nance,A.M.,Evdokimov,A.,Moshiri,F.,Turner,K.H.,Wang,P .,Malvar,T.&Liu,D.R.Continuous evolution of Bacillus thuringiensis toxins overcomes insectresistance.Nature 533,58-63(2016).
54.Sato,M.&Umezawa,Y.in Cell Biol.Four-Volume Set 2,325-328(2006).54. Sato, M. & Umezawa, Y. in Cell Biol. Four-
55.Ouyang,M.,Sun,J.,Chien,S.&Wang,Y.Determination of hierarchicalrelationship of Src and Rac at subcellular locations with FRETbiosensors.Proc Natl Acad Sci USA 105,14353-14358(2008).55. Ouyang, M., Sun, J., Chien, S. & Wang, Y. Determination of hierarchicalrelationship of Src and Rac at subcellular locations with FRET biosensors. Proc Natl Acad Sci USA 105, 14353-14358 (2008).
56.Ting,a Y.,Kain,K.H.,Klemke,R.L.&Tsien,R.Y.Genetically encodedfluorescent reporters of protein tyrosine kinase activities in living cells.Proc.Natl.Acad.Sci.U.S.A.98,15003-15008(2001).56.Ting,a Y.,Kain,K.H.,Klemke,R.L.&Tsien,R.Y.Genetically encoded fluorescent reporters of protein tyrosine kinase activities in living cells.Proc.Natl.Acad.Sci.U.S.A.98,15003-15008(2001).
57.Wiesmann,C,Barr,K.J.,Kung,J.,Zhu,J.,Erlanson,D.A.,Shen,W.,Fahr,B.J.,Zhong,M.,Taylor,L,Randal,M.,McDowell,R.S.&Hansen,S.K.Allostericinhibition of protein tyrosine phosphatase 1B.Nat.Struct.Mol.Biol.11,730-737(2004).57.Wiesmann,C,Barr,K.J.,Kung,J.,Zhu,J.,Erlanson,D.A.,Shen,W.,Fahr,B.J.,Zhong,M.,Taylor,L,Randal,M.,McDowell,R.S. & Hansen, S.K. Allostericinhibition of protein tyrosine phosphatase 1B. Nat. Struct. Mol. Biol. 11, 730-737 (2004).
58.Halavaty,A.S.&Moffat,K.N-and C-terminal flanking regions modulatelight-induced signal transduction in the LOV2 domain of the blue light sensorphototropin 1 from Avena sativa.Biochemistry 46,14001-14009(2007).58. Halavaty, A. S. & Moffat, K. N- and C-terminal flanking regions modulate light-induced signal transduction in the LOV2 domain of the blue
59.Yao,X.,Rosen,M.K.&Gardner,K.H.Estimation of the available freeenergy in a LOV2-Ja photoswitch.Nat.Chem.Biol.4,491-497(2008).59. Yao,
60.Choy,M.S.,Li,Y.,Machado,L.E.S.F.,Kunze,M.B.A.,Connors,C.R.,Wei,X.,Lindorff-Larson,K.,Page,R.&Peti,W.Conformational Rigidity and ProteinDynamics at Distinct Timescales Regulate PTP1B Activity andAllostery.Mol.Cell 65,644-658(2017).60. Choy, M.S., Li, Y., Machado, L.E.S.F., Kunze, M.B.A., Connors, C.R., Wei, X., Lindorff-Larson, K., Page, R. & Peti, W. Conformational Rigidity and ProteinDynamics at Distinct Timescales Regulate PTP1B Activity andAllostery.Mol.Cell 65,644-658(2017).
61.Hubbard,S.R.&Till,J.H.Protein tyrosine kinase structure andfunction.Annu.Rev.Biochem.69,373-398(2000).61. Hubbard, S. R. & Till, J. H. Protein tyrosine kinase structure and function. Annu. Rev. Biochem. 69, 373-398 (2000).
62.Zhang,Y.,Kurup,P.,Xu,J.,Carty,N.,Fernandez,S.M.,Nygaard,H.B.,Pittenger,C,Greengard,P.,Strittmatter,S.M.,Nairn,A.C.&Lombroso,P.J.Geneticreduction of striatal-enriched tyrosine phosphatase(STEP)reverses cognitiveand cellular deficits in an Alzheimer's disease mousemodel.Proc.Natl.Acad.Sci.107,19014-19019(2010).62. Zhang, Y., Kurup, P., Xu, J., Carty, N., Fernandez, S. M., Nygaard, H. B., Pittenger, C, Greengard, P., Strittmatter, S. M., Nairn, A. C. & Lombroso, P. J. Genetic reduction of striatal-enriched tyrosine phosphatase(STEP)reverses cognitiveand cellular deficits in an Alzheimer's disease mousemodel.Proc.Natl.Acad.Sci.107,19014-19019(2010).
63.He,R.,Yu,Z.,Zhang,R.&Zhang,Z.Protein tyrosine phosphatases aspotential therapeutic targets.Acta Pharmacol.Sin.35,1227-1246(2014).63.He, R., Yu, Z., Zhang, R. & Zhang, Z. Protein tyrosine phosphatases aspotential therapeutic targets. Acta Pharmacol. Sin. 35, 1227-1246 (2014).
64.Ito,K.,Park,S.H.,Nayak,A.,Byerly,J.H.&Irie,H.Y.PTK6inhibitionsuppresses metastases of triple-negative breast cancer via SNAIL-dependent E-cadherin regulation.Cancer Res.76,4406-4417(2016).64.Ito,K.,Park,S.H.,Nayak,A.,Byerly,J.H.&Irie,H.Y.PTK6inhibitionsuppresses metastases of triple-negative breast cancer via SNAIL-dependent E-cadherin regulation.Cancer Res.76,4406-4417(2016) .
65.Zegzouti,H.,Zdanovskaia,M.,Hsiao,K.&Goueli,S.A.ADP-Glo:ABioluminescent and Homogeneous ADP Monitoring Assay for Kinases.Assay DrugDev.Technol.7,560-572(2009).65. Zegzouti, H., Zdanovskaia, M., Hsiao, K. & Goueli, S.A. ADP-Glo: ABioluminescent and Homogeneous ADP Monitoring Assay for Kinases. Assay DrugDev. Technol. 7, 560-572 (2009).
66.Strickland,D.,Yao,X.,Gawlak,G.,Rosen,M.K.,Gardner,K.H.&Sosnick,T.R.Rationally improving LOV domain-based photoswitches.Nat.Methods 7,623-6(2010).66. Strickland, D., Yao,
67.Cosentino,C,Alberio,L.,Gazzarrini,S.,Aquila,M.,Romano,E.,Cermenati,S.,Zuccolini,P.,Petersen,J.,Beltrame,M.,Van Etten,J.L.,Christie,J.M.,Thiel,G.&Moroni,A.Engineering of a light-gated potassiumchannel.Science.348,707-710(2015).67.Cosentino,C,Alberio,L.,Gazzarrini,S.,Aquila,M.,Romano,E.,Cermenati,S.,Zuccolini,P.,Petersen,J.,Beltrame,M.,Van Etten,J.L. ,Christie,J.M.,Thiel,G.&Moroni,A.Engineering of a light-gated potassium channel.Science.348,707-710(2015).
68.Krishnan,N.,Koveal,D.,Miller,D.H.,Xue,B.,Akshinthala,S.D.,Kragelj,J.,Jensen,M.R.,Gauss,C.-M.,Page,R.,Blackledge,M.,Muthuswamy,S.K.,Peti,W.&Tonks,N.K.Targeting the disordered C terminus of PTP1B with an allostericinhibitor.Nat.Chem.Biol.10,558-566(2014).68.Krishnan,N.,Koveal,D.,Miller,D.H.,Xue,B.,Akshinthala,S.D.,Kragelj,J.,Jensen,M.R.,Gauss,C.-M.,Page,R.,Blackledge,M ., Muthuswamy, S. K., Peti, W. & Tonks, N. K. Targeting the disordered C terminus of PTP1B with an allostericinhibitor. Nat. Chem. Biol. 10, 558-566 (2014).
69.Piserchio,A.,Cowburn,D.&Ghose,R.Expression and purification ofSrc-family kinases for solution NMRstudies.Methods Mol.Biol.831,111-131(2012).69. Piserchio, A., Cowburn, D. & Ghose, R. Expression and purification of Src-family kinases for solution NMRstudies. Methods Mol. Biol. 831, 111-131 (2012).
70.Van Stokkum,I.H.M.,Gauden,M.,Crosson,S.,Van Grondelle,R.,Moffat,K.&Kennis,J.T.M.The primary photophysics of the Avena sativa phototropin1LOV2 domain observed with time-resolved emission spectroscopy.Photochem.Photobiol.87,534-541(2011).70.Van Stokkum,I.H.M.,Gauden,M.,Crosson,S.,Van Grondelle,R.,Moffat,K.&Kennis,J.T.M.The primary photophysics of the Avena sativa phototropin1LOV2 domain observed with time-resolved emission spectroscopy.Photochem.Photobiol .87,534-541(2011).
71.Rowland,A.A.,Chitwood,P.J.,Phillips,M.J.&Voeltz,G.K.ER contactsites define the position and timing of endosome fission.Ce//159,1027-1041(2014).71. Rowland, A. A., Chitwood, P. J., Phillips, M. J. & Voeltz, G. K. ER contacts define the position and timing of endosome fission. Ce//159, 1027-1041 (2014).
72.Fehr,M.,Lalonde,S.,Lager,I.,Wolff,M.W.&Frommer,W.B.In vivo imagingof the dynamics of glucose uptake in the cytosol of COS-7cells by fluorescentnanosensors.J.Biol.Chem.278,19127-19133(2003).72. Fehr, M., Lalonde, S., Lager, I., Wolff, M. W. & Frommer, W. B. In vivo imaging of the dynamics of glucose uptake in the cytosol of COS-7cells by fluorescent nanosensors. J. Biol. Chem. 278, 19127 -19133(2003).
73.Feigner,P.L.,Gadek,T.R.,Holm,M.,Roman,R.,Chan,H.W.,Wenz,M.,Northrop,J.P.,Ringold,G.M.&Danielsen,M.Lipofection:a highly efficient,lipid-mediated DNA-transfection procedure.Proc.Natl.Acad.Sci.U.S.A.84,7413-7(1987).73.Feigner,P.L.,Gadek,T.R.,Holm,M.,Roman,R.,Chan,H.W.,Wenz,M.,Northrop,J.P.,Ringold,G.M.&Danielsen,M.Lipofection: a highly efficient,lipid-mediated DNA -transfection procedure.Proc.Natl.Acad.Sci.U.S.A.84,7413-7(1987).
74.Gil-Parrado,S.,Fernandez-Montalvan,A.,Assfalg-Machleidt,I.,Popp,O.,Bestvater,F.,Holloschi,A.,Knoch,T.A.,Auerswald,E.A.,Welsh,K.,Reed,J.C,Fritz,H.,Fuentes-Prior,P.,Spiess,E.,Salvesen,G.S.&Machleidt,W.lonomycin-activated calpain triggers apoptosis.A probable role for Bcl-2familymembers.J.Biol.Chem.277,27217-27226(2002).74.Gil-Parrado,S.,Fernandez-Montalvan,A.,Assfalg-Machleidt,I.,Popp,O.,Bestvater,F.,Holloschi,A.,Knoch,T.A.,Auerswald,E.A.,Welsh,K. ,Reed,J.C,Fritz,H.,Fuentes-Prior,P.,Spiess,E.,Salvesen,G.S.&Machleidt,W.lonomycin-activated calpain triggers apoptosis.A probable role for Bcl-2 family members.J.Biol.Chem. 277,27217-27226(2002).
75.Faeder,J.R.,Blinov,M.L.&Hlavacek,W.S.Rule-based modeling ofbiochemical systems with BioNetGen.Methods Mol.Biol.500,113-167(2009).75. Faeder, J.R., Blinov, M.L. & Hlavacek, W.S. Rule-based modeling of biochemical systems with BioNetGen. Methods Mol. Biol. 500, 113-167 (2009).
76.Tiganis,T.,Bennett,A.M.,Ravichandran,K.S.&Tonks,N.K.Epidermalgrowth factor receptor and the adaptor protein p52Shc are specific底物s of T-cell protein tyrosine phosphatase.Mol.Cell.Biol.18,1622-34(1998).76. Tiganis, T., Bennett, A.M., Ravichandran, K.S. & Tonks, N.K. Epidermalgrowth factor receptor and the adapter protein p52Shc are specific substrates of T-cell protein tyrosine phosphatase. Mol. Cell. Biol. 18, 1622-34 ( 1998).
III.构建和检测生物活性剂的基因编码系统:微生物抑制剂筛选系统。III. Construction and detection of genetically encoded systems for bioactive agents: microbial inhibitor screening system.
如本文描述的开发了几种类型的操纵子,每种操纵子用于特定目的,其包括但不限于测试小分子其抑制、活化或以其他方式调节选择的PTP和/或PTK的能力;用于测试细胞内提供的小分子对选择的PTP和/或PTK的抑制、活化或调节作用的操纵子;和进化一种或多种感兴趣的蛋白质或小分子。更特别地,考虑了使用本领域熟知的转染和育种技术用于插入的基因操纵子,以提供微生物细胞,其中感兴趣的酶(例如,蛋白酪氨酸磷酸酶1B,一种用于治疗糖尿病、肥胖和癌症的药物靶标)的活性与(i)细胞发光、(ii)细胞荧光或(iii)细胞生长相关。在一些实施方式中,修饰这种操纵子用于检测和/或进化生物活性代谢产物。当被修饰和/或诱导以构建各种代谢产物时,细胞将用于检测抑制/活化感兴趣的蛋白质(例如,PTP1B)的代谢产物。As described herein, several types of operons have been developed, each operon being used for a specific purpose, including but not limited to testing small molecules for their ability to inhibit, activate or otherwise regulate selected PTPs and/or PTKs; operons for testing the inhibitory, activating or modulatory effects of small molecules provided within cells on selected PTPs and/or PTKs; and evolving one or more proteins or small molecules of interest. More particularly, it is contemplated that gene operons for insertion using transfection and breeding techniques well known in the art are provided to provide microbial cells in which the activity of an enzyme of interest (e.g., protein tyrosine phosphatase 1B, a drug target for treating diabetes, obesity and cancer) is associated with (i) cell luminescence, (ii) cell fluorescence or (iii) cell growth. In some embodiments, such operons are modified for detecting and/or evolving biologically active metabolites. When modified and/or induced to construct various metabolites, cells will be used to detect metabolites that inhibit/activate proteins of interest (e.g., PTP1B).
这些操纵子允许含操纵子的微生物细胞用于进行以下任务:检测生物活性分子和非天然生物活性代谢产物。当在生物活性分子作为(i)细胞可渗透的和(ii)能够抑制感兴趣的蛋白质(例如,PTP1B)的小分子存在的情况下生长时,细胞将能够检测那个分子。即,它将在发光、荧光或生长中展现出浓度依赖性应答。许多非天然生物活性代谢产物具有有用的药物特性。示例包括紫杉醇和青蒿素,分别用于治疗癌症和疟疾的植物来源的类萜。当负责制造这种天然代谢产物的代谢途径安装入还含有我们的操纵子的微生物细胞中时,那些细胞将能够检测感兴趣的基于代谢产物的生物活性(例如,抑制PTP1B的能力)。These operons allow microbial cells containing the operons to be used to perform the following tasks: Detection of bioactive molecules and non-natural bioactive metabolites. When grown in the presence of a bioactive molecule that is (i) cell permeable and (ii) a small molecule capable of inhibiting a protein of interest (e.g., PTP1B), the cell will be able to detect that molecule. That is, it will exhibit a concentration-dependent response in luminescence, fluorescence, or growth. Many non-natural bioactive metabolites have useful pharmaceutical properties. Examples include paclitaxel and artemisinin, plant-derived terpenoids used to treat cancer and malaria, respectively. When the metabolic pathways responsible for making such natural metabolites are installed into microbial cells that also contain our operons, those cells will be able to detect metabolite-based bioactivities of interest (e.g., the ability to inhibit PTP1B).
当安装入微生物细胞中时,基因操纵子将感兴趣的酶(例如,蛋白酪氨酸磷酸酶1B,治疗糖尿病、肥胖和癌症的药物靶标)的活性与(i)细胞发光、(ii)细胞荧光或(iii)细胞生长相关。When installed into microbial cells, the gene operon links the activity of an enzyme of interest (e.g., protein tyrosine phosphatase 1B, a drug target for the treatment of diabetes, obesity, and cancer) to (i) cell luminescence, (ii) cell fluorescence, or (iii) cell growth.
检测和/或进化生物活性代谢产物。当被修饰和/或诱导以构建各种代谢产物时,细胞将能够检测抑制/活化感兴趣的蛋白质(例如,PTP1B)的代谢产物。Detection and/or evolution of biologically active metabolites. When modified and/or induced to build various metabolites, cells will be able to detect metabolites that inhibit/activate a protein of interest (eg, PTP1B).
这些操纵子允许含操纵子的微生物细胞用于进行以下任务:检测生物活性分子和非天然生物活性代谢产物。当在生物活性分子作为(i)细胞可渗透的和(ii)能够抑制感兴趣的蛋白质(例如,PTP1B)的小分子存在的情况下生长时,细胞将能够检测那个分子。即,它将在发光、荧光或生长中展现出浓度依赖性应答。许多非天然生物活性代谢产物具有有用的药物特性。示例包括紫杉醇和青蒿素,分别用于治疗癌症和疟疾的植物来源的类萜。当负责制造这种天然代谢产物的代谢途径安装入还含油我们的操纵子的微生物细胞中时,那些细胞将能够检测基于代谢产物的生物活性(例如,抑制PTP1B的能力)。These operons allow microbial cells containing the operons to be used to perform the following tasks: Detection of bioactive molecules and non-natural bioactive metabolites. When grown in the presence of a bioactive molecule that is (i) cell permeable and (ii) a small molecule capable of inhibiting a protein of interest (e.g., PTP1B), the cell will be able to detect that molecule. That is, it will exhibit a concentration-dependent response in luminescence, fluorescence, or growth. Many non-natural bioactive metabolites have useful pharmaceutical properties. Examples include paclitaxel and artemisinin, plant-derived terpenoids used to treat cancer and malaria, respectively. When the metabolic pathways responsible for making such natural metabolites are installed into microbial cells that also contain our operons, those cells will be able to detect metabolite-based bioactivity (e.g., the ability to inhibit PTP1B).
在一些实施方式中,可从Moses等,“Bioengineering of plant(tri)terpenoids:from metabolic engineering of plants to synthetic biology in vivo and invitro.”New Phytologist,第200卷,第1期,改进进化分子的方法,其中该参考文献描述了青蒿酸的合成,青蒿酸是作为在大肠杆菌中表达的二萜的抗疟疾药物青蒿素的前体。此外,连同对增强大肠杆菌中类萜的产生的讨论一起,描述了类萜生物合成酶例如工程酶的酶工程化或定向进化,以接受非天然底物且以与天然酶相当的效率催化区域和立体特异性反应。在一些实施方式中,可从Badran等,“Continuous evolution of Bacillusthuringiensis toxins overcomes insect resistance.”Nature,第533卷:58,2016改进进化分子的方法,其中该参考文献描述了噬菌体辅助的连续进化选择,其快速进化高亲和力的蛋白质-蛋白质相互作用,并且应用该系统以进化结合来自未被野生型Cry1Ac天然结合的昆虫害虫粉纹夜蛾(TnCAD)的钙粘着蛋白样受体的Bt毒素Cry1Ac的变体。In some embodiments, methods for improving evolutionary molecules can be derived from Moses et al., "Bioengineering of plant (tri) terpenoids: from metabolic engineering of plants to synthetic biology in vivo and invitro." New Phytologist, Vol. 200, No. 1, wherein the reference describes the synthesis of artemisinic acid, a precursor to the antimalarial drug artemisinin as a diterpene expressed in E. coli. In addition, enzyme engineering or directed evolution of terpenoid biosynthetic enzymes, such as engineered enzymes, is described, along with a discussion of enhancing the production of terpenoids in E. coli to accept non-natural substrates and catalyze regio- and stereo-specific reactions with efficiencies comparable to those of natural enzymes. In some embodiments, the method of evolving molecules can be improved from Badran et al., "Continuous evolution of Bacillus thuringiensis toxins overcomes insect resistance." Nature, Vol. 533: 58, 2016, wherein the reference describes phage-assisted continuous evolutionary selection, which rapidly evolves high-affinity protein-protein interactions, and applies the system to evolve variants of the Bt toxin Cry1Ac that bind to the cadherin-like receptor from the insect pest Trichoplusia ni (TnCAD) that is not naturally bound by wild-type Cry1Ac.
A.蛋白质进化系统和进化生物活性代谢产物。A. Protein evolution systems and evolved bioactive metabolites.
在一些实施方式中,进化分子的方法可用于构建可容易地在微生物宿主中合成的药物先导物。它通过使用一套精密的生物物理工具和分析方法来缩小先导物发现的分子搜索空间,并且通过明确地考虑了治疗分子的生物合成的可及性,从而解决了长期的挑战—低成本药物的开发。方法与当代使用微生物系统来合成临床上批准的药物及其前体的努力不同,其独特之处在于它专注于使用生物学来系统地构建新的分子。这将加快药物开发的速度且降低成本。In some embodiments, the evolutionary molecular approach can be used to construct drug leads that can be readily synthesized in microbial hosts. It addresses the long-standing challenge of low-cost drug development by narrowing the molecular search space for lead discovery using a set of sophisticated biophysical tools and analytical methods, and by explicitly considering the accessibility of biosynthesis of therapeutic molecules. The approach is different from contemporary efforts to use microbial systems to synthesize clinically approved drugs and their precursors, and is unique in that it focuses on using biology to systematically build new molecules. This will accelerate the speed and reduce costs of drug development.
药物的开发需要优化许多其药理特性—亲和力、吸收、分布、代谢、排泄、毒理学、药代动力学和药效学1。这些特性中的第一个特性—蛋白质-配体结合亲和力—通常确定其他特性是否值得测量或增强,因此代表药物先导物的特性2。尽管计算化学和结构生物学的进步,紧密结合至蛋白质的配体—配体,以下统称为抑制剂—的合理设计仍然异常困难3;结果,药物的开发通常始于大型分子库的筛选4。一旦发现抑制剂,其必须以足以用于随后分析、优化、配制和临床评估的量合成。The development of a drug requires optimization of many of its pharmacological properties—affinity, absorption, distribution, metabolism, excretion, toxicology, pharmacokinetics, and pharmacodynamics. 1 The first of these properties—protein-ligand binding affinity—usually determines whether the other properties are worth measuring or enhancing and therefore represents the property of a drug lead. 2 Despite advances in computational chemistry and structural biology, the rational design of ligands that bind tightly to proteins—ligands, hereafter collectively referred to as inhibitors—remains exceptionally difficult . 3 As a result, drug development often begins with the screening of large molecular libraries. 4 Once an inhibitor is discovered, it must be synthesized in quantities sufficient for subsequent analysis, optimization, formulation, and clinical evaluation.
与开发蛋白质抑制剂相关的困难对天然产物尤其成问题。占临床批准药物的50%以上的这些分子往往具有良好的药理特性(例如,膜透过性)5。不幸地,它们的低天然效价—阻碍了从自然资源中提取可检测量—和它们的化学复杂性—使化学合成复杂—使得制备足够的量,用于筛后分析是费时且昂贵的6。The difficulties associated with developing protein inhibitors are particularly problematic for natural products. These molecules, which account for more than 50% of clinically approved drugs, often possess favorable pharmacological properties (e.g., membrane permeability) 5 . Unfortunately, their low natural potency—which prevents the extraction of detectable amounts from natural sources—and their chemical complexity—which complicates chemical synthesis—make the preparation of sufficient quantities for post-screening analysis time-consuming and expensive 6 .
在一些实施方式中,考虑了酶用于构建可在大肠杆菌中合成的类萜抑制剂;这种方法利用天然产物的化学多样性(和通常良好的药理特性),而没有天然稀缺性的限制。在一些实施方式中,包括蛋白质-类萜相互作用中亲和力和活性的分子-水平起源和热力学基础的详细生物物理研究,用于快速构建高亲和力抑制剂。在一些实施方式中,考虑了蛋白酪氨酸磷酸酶1B(PTP1B)(一种用于治疗糖尿病、肥胖和癌症的靶标)的选择性抑制剂的开发,部分用于使用酶来进化易于合成的药物先导物。In some embodiments, enzymes are contemplated for use in the construction of terpenoid inhibitors that can be synthesized in E. coli; this approach exploits the chemical diversity (and often favorable pharmacological properties) of natural products without the limitations of natural scarcity. In some embodiments, detailed biophysical studies of the molecular-level origins and thermodynamic basis of affinity and activity in protein-terpenoid interactions are included for the rapid construction of high affinity inhibitors. In some embodiments, the development of selective inhibitors of protein tyrosine phosphatase 1B (PTP1B), a target for the treatment of diabetes, obesity, and cancer, is contemplated, in part for the use of enzymes to evolve drug leads that are amenable to synthesis.
对蛋白酪氨酸磷酸酶1B(PTP1B)的变构结合口袋具有不同亲和力的结构变化的类萜。Structurally varied terpenoids with different affinities for the allosteric binding pocket of protein tyrosine phosphatase 1B (PTP1B).
假设。结果指示松香酸,松香二烯的单-羧化的变体,是PTP1B的变构抑制剂。立体化学、形状、大小和/或化学官能度(包括羧化位置)不同的松香二烯的衍生物或结构类似物可能对PTP1B的变构结合口袋具有不同亲和力。Hypothesis. The results indicate that abietic acid, a mono-carboxylated variant of abietadiene, is an allosteric inhibitor of PTP1B. Derivatives or structural analogs of abietadiene that differ in stereochemistry, shape, size, and/or chemical functionality (including the position of carboxylation) may have different affinities for the allosteric binding pocket of PTP1B.
在一些实施方式中,(i)考虑了松香二烯合酶、细胞色素P450和卤化酶的突变体用于制造松香二烯的结构变体,(ii)GC/MS以鉴定那些变体,(iii)制备型HPLC和快速色谱以分离它们,和(iii)等温滴定量热法以确定其结合的自由能、焓和熵。在一些实施方式中,考虑了一组结构变化的抑制剂,其具有(i)相差100倍的亲和力和/或(ii)提示了可选的结合几何的结合的焓和熵。In some embodiments, (i) mutants of abietadiene synthase, cytochrome P450, and halogenase are considered for making structural variants of abietadiene, (ii) GC/MS to identify those variants, (iii) preparative HPLC and flash chromatography to separate them, and (iii) isothermal titration calorimetry to determine their free energy, enthalpy, and entropy of binding. In some embodiments, a panel of structurally varied inhibitors are considered that have (i) affinities that differ by 100-fold and/or (ii) enthalpy and entropy of binding that suggest alternative binding geometries.
为了检查酶-类萜相互作用中亲和力和活性的分子基础和热力学起源。To examine the molecular basis and thermodynamic origins of affinity and activity in enzyme-terpenoid interactions.
假设。结合、功能化和/或合成类萜的酶具有大的非极性结合口袋。我们假设(i)酶对类萜的亲和力和(i)类萜上酶的活性二者由其结合口袋的一般形状和水合结构决定,而不是由特定蛋白-类萜接触的位置决定。Hypothesis. Enzymes that bind, functionalize and/or synthesize terpenoids possess large non-polar binding pockets. We hypothesize that both (i) the affinity of the enzyme for terpenoids and (ii) the activity of the enzyme on terpenoids are determined by the general shape and hydration structure of their binding pockets rather than by the location of specific protein-terpenoid contacts.
在一些实施方式中,考虑了一套精密的生物物理工具(等温滴定热量法、X-射线晶体学、分子动力学(MD)模拟和NMR光谱学)用于(i)确定蛋白质-配体接触、水的重排和构象限制如何有助于类萜抑制剂之间的亲和力的差异,和(ii)开发一组经验关系,其预测萜合酶和萜-功能化酶的突变如何影响其产物的一般属性(例如,形状)。In some embodiments, a sophisticated set of biophysical tools (isothermal titration calorimetry, X-ray crystallography, molecular dynamics (MD) simulations, and NMR spectroscopy) are contemplated for (i) determining how protein-ligand contacts, water rearrangements, and conformational constraints contribute to differences in affinity between terpenoid inhibitors, and (ii) developing a set of empirical relationships that predict how mutations in terpene synthases and terpene-functionalizing enzymes affect general properties (e.g., shape) of their products.
为了进化PTP1B的高亲和力类萜抑制剂。To evolve high-affinity terpenoid inhibitors of PTP1B.
假设。来自次级代谢(例如,萜合酶/细胞色素P450和卤化酶)的突变体是高度混杂的;其活性位点中或附近的单个突变可极大地改变其产物特性。根据其合成和/或功能化二萜的能力选择的少量(即,2-4种)这种酶的诱变,将能够开发具有亚微摩尔亲和力的PTP1B抑制剂。Hypothesis. Mutants from secondary metabolism (e.g., terpene synthases/cytochrome P450s and halogenases) are highly promiscuous; a single mutation in or near their active sites can drastically alter their product properties. Mutagenesis of a small number (i.e., 2-4) of such enzymes, selected for their ability to synthesize and/or functionalize diterpenes, would enable the development of PTP1B inhibitors with submicromolar affinity.
在一些实施方式中,通过将(i)用于检测抑制剂的高通量方法与(ii)位点-饱和度和随机诱变配对考虑了PTP1B的高亲和力抑制剂。对于(i),我们将开发四种可选的荧光或生长偶联测定,以筛选突变途径(和其各自产物)的文库。对于(ii),我们使用生物结构分析和序列比对,以鉴定可能的残基,从而产生具有有利产物特性的酶。In some embodiments, high affinity inhibitors of PTP1B are contemplated by pairing (i) high throughput methods for detecting inhibitors with (ii) site-saturation and random mutagenesis. For (i), we will develop four alternative fluorescence or growth-coupled assays to screen libraries of mutant pathways (and their respective products). For (ii), we use biological structural analysis and sequence alignment to identify potential residues that will generate enzymes with favorable product properties.
为了鉴定使任意蛋白质靶标的类萜抑制剂能够进化的结构-活性关系。To identify structure-activity relationships that enable the evolution of terpenoid inhibitors of arbitrary protein targets.
假设。与类似类别的分子相互作用的蛋白质(通过结合或催化)具有结构上相似的结合口袋。评估这些结构相似性—和其对酶活性的影响—的方法可使得鉴定能够合成任何指定的蛋白质抑制剂的酶。Hypothesis. Proteins that interact with similar classes of molecules (either by binding or catalysis) have structurally similar binding pockets. Methods to assess these structural similarities—and their effects on enzyme activity—may allow the identification of enzymes that are capable of synthesizing inhibitors of any given protein.
在一些实施方式中,考虑了使用蛋白质的晶体结构作为起始点来鉴定能够合成该蛋白质的抑制剂的酶的生物物理框架。我们将检查(和形式化)(i)用于合成PTP1B的变构抑制剂的酶的活性位点和(ii)PTP1B的变构结合口袋之间的结构关系,并且我们将通过使用它们以鉴定—和然后测试—能够合成PTP1B和(单独的)十一碳二烯基二磷酸合酶(用于治疗抗生素抗性的细菌感染的靶标)的抑制剂的新酶验证这些关系。In some embodiments, a biophysical framework is contemplated for using the crystal structure of a protein as a starting point to identify enzymes capable of synthesizing inhibitors of that protein. We will examine (and formalize) the structural relationships between (i) the active sites of enzymes for synthesizing allosteric inhibitors of PTP1B and (ii) the allosteric binding pocket of PTP1B, and we will validate these relationships by using them to identify—and then test—new enzymes capable of synthesizing inhibitors of PTP1B and (alone) undecadienyl diphosphate synthase, a target for treating antibiotic-resistant bacterial infections.
糖尿病、肥胖和癌症。Diabetes, obesity and cancer.
蛋白酪氨酸磷酸酶1B(PTP1B)有助于2型糖尿病中的胰岛素抗性7,肥胖中的瘦蛋白抗性8以及乳腺癌、结直肠癌和肺癌中的肿瘤生长9,11。迄今为止,PTP1B的选择性紧密-结合抑制剂的开发(即,治疗糖尿病、肥胖和癌症)已经由其活性位点的结构阻碍,其中极性残基限制紧密结合至带电的膜不可渗透分子,并且其中类似于其他蛋白酪氨酸磷酸酶(PTP)的活性位点的结构导致脱靶相互作用12,14。在该提议中,我们将构建与其C末端变构位点(在磷酸酶中不保守的大部分非极性区域)结合的PTP1B选择性抑制剂。先前对大分子文库的筛选已经鉴定了几个结合至该位点的配体,但还未生产临床上批准的药物16,13。鉴定新的分子替代物—该建议解决的难题—仍然是开发选择性PTP1 B抑制疗法的努力目标。Protein tyrosine phosphatase 1B (PTP1B) contributes to insulin resistance in
药物的开发。酶抑制剂—或先导物—的开发代表了药物开发的昂贵部分;为了每个成功的药物,先导物鉴定和优化花费平均3年和$250M来完成(将药物推向市场的总时间和花费的-20-30%)17。通过缩小先导物发现中的分子搜索空间,通过能够快速构建结构上变化的先导物(通常称为“备用物(backup)”18)以及通过促进分子合成的规模化,该提议中开发的技术可加速药物开发的速度并降低药物开发成本。Drug Development. The development of enzyme inhibitors—or leads—represents an expensive part of drug development; lead identification and optimization takes an average of 3 years and $250M to complete for each successful drug (-20-30% of the total time and cost to bring a drug to market) 17 . The technology developed in this proposal could accelerate the pace and reduce the cost of drug development by narrowing the molecular search space in lead discovery, by enabling the rapid construction of structurally variant leads (often referred to as "backups") 18 , and by facilitating the scale-up of molecular synthesis.
分子识别。疏水作用—水溶液中非极性物质的自由能量上有利的缔合—平均占蛋白质-配体缔合的自由能的-75%19。不幸地,配体和蛋白质之间的疏水相互作用—在刚性(rigidity)、形貌、化学官能度和水合结构中极大不同—仍然难以预测20。该研究使用详细的生物物理分析和显式水计算来检查类萜和蛋白质结合口袋之间疏水相互作用的热力学基础。它将开发模型系统—和相应的概念框架—用于研究在结构上变化的蛋白质-配体复合物情况下的疏水作用,在生物合成途径的设计中考虑该作用,并且在新的药物先导物的构建中使其得到利用。Molecular recognition. Hydrophobic interactions—energetically favorable associations of nonpolar species in aqueous solutions—account for, on average, 75% of the free energy of protein-ligand association 19 . Unfortunately, hydrophobic interactions between ligands and proteins—which vary greatly in rigidity, morphology, chemical functionality, and hydration structure—remain difficult to predict 20 . This study uses detailed biophysical analysis and explicit water calculations to examine the thermodynamic basis of hydrophobic interactions between terpenoids and protein binding pockets. It will develop model systems—and corresponding conceptual frameworks—for studying hydrophobic interactions in the context of structurally varying protein-ligand complexes, accounting for them in the design of biosynthetic pathways, and exploiting them in the construction of new drug leads.
新的天然产物的生物合成。Biosynthesis of new natural products.
合成生物学为发现和产生天然产物提供了有希望的途径。当将一种生物体的代谢机制安装到基因控制的产生宿主(例如,酿酒酵母或大肠杆菌)中时,其能够以高效价(相对于天然宿主)合成复杂的化合物。这种方法已经能够从不可培养或低产的生物体中有效生产药学上相关的代谢产物21,22,但是,不幸地,在途径发现和优化上需要大量的时间和资源投资;结果,其用途通常限于新发现的基因簇的低通量表征或限于已知的药学上相关的分子(例如紫杉醇、青蒿素或阿片样物质)的生产22"24。Synthetic biology offers a promising avenue for the discovery and production of natural products. When the metabolic machinery of an organism is installed into a genetically controlled production host (e.g., Saccharomyces cerevisiae or Escherichia coli), it is able to synthesize complex compounds at high titers (relative to the natural host). This approach has enabled the efficient production of pharmaceutically relevant metabolites from unculturable or low-yielding organisms 21, 22 but, unfortunately, requires significant investments in time and resources for pathway discovery and optimization; as a result, its use is often limited to low-throughput characterization of newly discovered gene clusters or to the production of known pharmaceutically relevant molecules (e.g., paclitaxel, artemisinin, or opioids) 22 - 24 .
在一些实施方式中,考虑了使用合成生物学构建新的分子功能的策略。其从病理学上相关的蛋白质靶标开始,并且工程化途径酶以产生选择性抑制该靶标的分子。这种方法将生产可在微生物宿主中产生的分子,而无需大量途径优化(其依赖于默认下可表达的酶);因此,其将使合成生物学的用途扩展到先导物和备用物的产生中。其不能替代合成复杂天然产物的常规方法,而是构建增强开发药物制剂的效率的新的化合物的互补策略。In some embodiments, strategies for constructing new molecular functions using synthetic biology are contemplated. It starts with a pathologically relevant protein target and engineers pathway enzymes to produce molecules that selectively inhibit the target. This approach will produce molecules that can be produced in microbial hosts without the need for a large amount of pathway optimization (which relies on enzymes that can be expressed by default); therefore, it will expand the use of synthetic biology to the generation of leads and backups. It cannot replace conventional methods for synthesizing complex natural products, but rather is a complementary strategy for constructing new compounds that enhance the efficiency of developing pharmaceutical preparations.
在突变的代谢途径(例如,基于植物的类萜产生途径的版本,其中萜合酶已经突变)存在的情况下,我们的操纵子将能够筛选大量代谢产物其抑制我们感兴趣的蛋白质的能力。这样的平台可以用于进化具有特定生物学活性的代谢产物。In the presence of a mutated metabolic pathway (e.g., a plant-based version of the terpenoid production pathway in which the terpene synthase has been mutated), our operon will enable the screening of a large number of metabolites for their ability to inhibit our protein of interest. Such a platform could be used to evolve metabolites with specific biological activities.
检测和/或进化高选择性分子。我们已经开发了我们的操纵子版本的想法,以检测相对于高度相似的蛋白质抑制一种蛋白质的分子。目前,对分子选择性的筛选仍然非常困难。Detection and/or evolution of highly selective molecules. We have developed our operon version idea to detect molecules that inhibit one protein relative to highly similar proteins. Currently, screening for molecular selectivity remains very difficult.
相对于用于检测小分子抑制剂的一些其他系统的,本文描述的方法和系统的优势包括但不限于能够检测调节或改变酶的催化活性的分子。而且,本文描述的系统的一些实施方式允许检测通过结合在其表面上的任何地方而改变酶活性的测试分子。作为一个示例,考虑了通过结合至其C-末端变构位点而使PTP1B失活的抑制剂的检测。该结合事件——其扭曲了WPD环的催化必须运动——并不一定阻止酶-底物缔合。相反,通过引用以其整体并入本文的美国专利号US6428951能够通过竞争底物结合位点(即,活性位点)来检测防止酶-底物结合的分子。作为另一示例,作为一个实施方式考虑了检测活化感兴趣的酶的分子。相反,通过通过引用以其整体并入本文的美国专利号US6428951具有仅检测防止酶与其底物结合或以其他方式改变酶对其底物的亲和力的分子的方法。作为另一示例,作为实施方式考虑了检测不需要酶和底物以任何特定亲和力、取向或半衰期相互作用的分子。相反,通过引用以其整体并入本文的美国专利号US6428951需要酶和底物用能够组装断裂报道分子(split reporter)的亲和力和取向彼此结合。结果,可需要对酶进行修饰。相反,发明人使用PTP1B的“底物捕获”突变体来改善其对底物结构域的亲和力。Relative to some other systems for detecting small molecule inhibitors, the advantages of the methods and systems described herein include but are not limited to molecules that can detect the catalytic activity of regulating or changing the enzyme. Moreover, some embodiments of the system described herein allow detection of test molecules that change the enzyme activity by binding to anywhere on its surface. As an example, the detection of inhibitors that inactivate PTP1B by binding to its C-terminal allosteric site is considered. This binding event-it distorts the catalytic movement of the WPD ring-does not necessarily prevent enzyme-substrate association. On the contrary, U.S. Patent No. US6428951, which is incorporated herein by reference in its entirety, can detect molecules that prevent enzyme-substrate binding by competing substrate binding sites (i.e., active sites). As another example, as an embodiment, it is considered to detect molecules that activate the enzyme of interest. On the contrary, by quoting the U.S. Patent No. US6428951, which is incorporated herein by reference in its entirety, there is a method for detecting only molecules that prevent enzymes from binding to their substrates or otherwise change the affinity of enzymes to their substrates. As another example, it is considered as an embodiment to detect molecules that do not require enzymes and substrates to interact with any specific affinity, orientation or half-life. In contrast, U.S. Pat. No. 6,428,951, which is incorporated herein by reference in its entirety, requires that the enzyme and substrate bind to each other with an affinity and orientation that enables assembly of a split reporter. As a result, the enzyme may need to be modified. Instead, the inventors used a "substrate trapping" mutant of PTP1B to improve its affinity for the substrate domain.
作为另一示例,一些实施方式能够检测野生型酶的抑制剂。相反,通过引用以其整体并入本文的Tu S.的专利号US6428951需要酶被融合至断裂报道分子的一半。As another example, some embodiments are able to detect inhibitors of wild-type enzymes. In contrast, Patent No. US6428951 to Tu S., which is incorporated herein by reference in its entirety, requires the enzyme to be fused to one half of a split reporter molecule.
此外,以下两个出版物是用于检测只是破坏酶与底物结合的分子的方法的示例。除其他外,该特性与通过引用以其整体并入本文的美国专利号US6428951,"Proteinfragment complementation assays for the detection of biological or druginteractions."公布日期:2008年1月31日,相反,该专利描述了基于高通量细菌的蛋白质-片段互补测定(PCA),其中当源自酶二氢叶酸还原酶(DHFR)的两个蛋白质片段作为融合分子在大肠杆菌中共表达时,观察到在抑制剂不存在的情况下的相互作用,然后浓度依赖性菌落生长。该参考文献指出,PCA可以适用于检测蛋白质小分子的相互作用,并且提供示例,其包括互补片段融合和诱饵融合片段。事实上,提供了蛋白酪氨酸磷酸酶PTP1B用于检测酶底物相互作用的示例和用于使用氨基糖苷类激酶(AK)检测蛋白质底物相互作用的存活测定的示例,用于基于显性选择大肠杆菌的PCA的抗生素抗性标记物的示例。此外,PCA被描述为应用于鉴定酶的小分子抑制剂;来自潜在治疗价值的化合物文库的天然产物或小分子;可用作文库筛选的存活测定;用于检测内源性DHFR抑制剂,例如雷帕霉素;和用于蛋白质-药物相互作用。在例如,源自mel操纵子的具有调解区序列(interceding regionsequence)的单独的诱导型或组成型启动子的控制下,PCA互补片段和融合的cDNA文库/靶基因的表达可在单个质粒上组装成单个操纵子,或具有多顺反子表达。PCA可以适用于检测蛋白质与小分子的相互作用。在该概念中,两个蛋白质融合至PCA互补片段,但是两个蛋白质彼此不相互作用。相互作用必须由第三实体触发,该实体可以是将同时结合至两种蛋白质或通过引起一个或两个配偶体的构象变化诱导两种蛋白质相互作用的任何分子。而且,PCA策略在细菌中示例性应用于蛋白质工程/进化以生成具有新颖的结合特性的肽或蛋白质,所述结合特性使用噬菌体展示技术可具有治疗价值。进化的一个示例产生了新颖的拉链序列。描述了产生内源毒素的进化的其他示例。In addition, the following two publications are examples of methods for detecting molecules that only destroy enzymes and substrates. Among other things, this feature is similar to the U.S. Patent No. US6428951, "Proteinfragment complementation assays for the detection of biological or drug interactions," which is incorporated herein by reference in its entirety. Publication date: January 31, 2008, on the contrary, the patent describes a protein-fragment complementation assay (PCA) based on high-throughput bacteria, wherein when two protein fragments derived from the enzyme dihydrofolate reductase (DHFR) are co-expressed as fusion molecules in Escherichia coli, interactions in the absence of inhibitors are observed, followed by concentration-dependent colony growth. The reference points out that PCA can be applicable to detecting the interactions of protein micromolecules, and provides examples, including complementary fragment fusions and bait fusion fragments. In fact, protein tyrosine phosphatase PTP1B is provided for detecting examples of enzyme-substrate interactions and for detecting examples of survival assays of protein-substrate interactions using aminoglycoside kinases (AK), examples of antibiotic resistance markers for PCA based on dominant selection of Escherichia coli. In addition, PCA is described as being applied to the identification of small molecule inhibitors of enzymes; natural products or small molecules from a library of compounds of potential therapeutic value; survival assays that can be used for library screening; for detecting endogenous DHFR inhibitors, such as rapamycin; and for protein-drug interactions. Under the control of a separate inducible or constitutive promoter with an interceding regions sequence, for example, derived from the mel operon, the expression of the PCA complementary fragment and the fused cDNA library/target gene can be assembled into a single operon on a single plasmid, or with polycistronic expression. PCA can be applied to the detection of protein-small molecule interactions. In this concept, two proteins are fused to the PCA complementary fragment, but the two proteins do not interact with each other. The interaction must be triggered by a third entity, which can be any molecule that will bind to both proteins at the same time or induce the interaction of two proteins by causing conformational changes in one or both partners. Moreover, the PCA strategy is exemplarily applied to protein engineering/evolution in bacteria to generate peptides or proteins with novel binding properties, which may have therapeutic value using phage display technology. An example of evolution produces a novel zipper sequence. Other examples of evolution producing endogenous toxins are described.
通过引用以其整体并入本文的WO2004048549,Dep-1 Receptor ProteinTyrosine Phosphatase Interacting Proteins And Related Methods.公布于2004年6月10日,描述了改变PTP和是PTP的底物的酪氨酸磷酸化的蛋白质之间的相互作用的抑制剂的筛选测定,例如通过DEP-1底物的密度增强磷酸酶-1(DEP-1)的去磷酸化。在适当的启动子,例如大肠杆菌阿拉伯糖操纵子(PBAD或PARA)的控制下,DEP-1多肽可在细菌细胞(包括大肠杆菌)中表达。该参考文献类似地限制于通过引用以其整体并入本文的美国专利号US6428951的重点中;其能够检测破坏底物与酶的结合的分子,而不是检测调节(即,增强或减弱)酶活性的分子。WO2004048549, Dep-1 Receptor Protein Tyrosine Phosphatase Interacting Proteins And Related Methods, published on June 10, 2004, and incorporated herein by reference in its entirety, describes a screening assay for inhibitors that alter the interaction between a PTP and a tyrosine-phosphorylated protein that is a substrate of the PTP, such as dephosphorylation of phosphatase-1 (DEP-1) by density enhancement of a DEP-1 substrate. DEP-1 polypeptides can be expressed in bacterial cells (including E. coli) under the control of an appropriate promoter, such as the E. coli arabinose operon (P BAD or P ARA ). This reference is similarly limited to the focus of U.S. Pat. No. US6428951, incorporated herein by reference in its entirety; it is capable of detecting molecules that disrupt the binding of a substrate to an enzyme, rather than molecules that modulate (i.e., enhance or attenuate) the activity of an enzyme.
相对于用于检测小分子抑制剂的一些其他系统,本文描述的方法和系统的优势包括但不限于使改变酶催化活性的代谢产物能够进化。通过引用以其整体并入本文的Badran等,"Continuous evolution of Bacillus thuringiensis toxins overcomes insectresistance".Nature,Vol 533:58,2016中描述的技术;和通常连续进化的平台已经用于进化对其他蛋白质/肽底物具有不同亲和力的蛋白质。然而,其还没有用于进化产生改变酶活性或蛋白质-蛋白质相互作用强度的小分子(即,代谢产物)的酶。Relative to some other systems for detecting small molecule inhibitors, the advantages of the methods and systems described herein include, but are not limited to, enabling metabolites that change the catalytic activity of the enzyme to evolve. Badran et al., "Continuous evolution of Bacillus thuringiensis toxins overcomes insect resistance". Nature, Vol 533: 58, 2016, incorporated herein by reference in its entirety, described in the technology; and the platform of continuous evolution in general has been used to evolve proteins with different affinities for other protein/peptide substrates. However, it has not been used to evolve enzymes that produce small molecules (i.e., metabolites) that change enzyme activity or protein-protein interaction strength.
相对于用于检测小分子抑制剂的一些其他系统,本文描述的方法和系统的另一优势包括发现具有靶向生物活性但未知结构的代谢产物(例如,抑制蛋白酪氨酸磷酸酶1B的能力)。有许多与在大肠杆菌或酿酒酵母中产生类萜有关的发明(例如,Moses等,"Bioengineering of plant(tri)terpenoids:from metabolic engineering of plantsto synthetic biology in vivo and in vitro."New Phytologist,第200卷,第1期),其中该参考文献描述了青蒿酸的合成,青蒿酸是作为在大肠杆菌中表达的二萜的抗疟疾药物青蒿素的前体。此外,连同增强大肠杆菌中类萜的产生的讨论,描述了酶工程化或定向进化类萜生物合成酶,例如工程酶以接受非天然底物并且以与天然酶相当的效率的催化区域和立体特异性反应;在许多情况下,负责制造这些类萜的代谢途径被突变以改善生产水平。然而,生物传感器(即报告各种代谢产物浓度的构建体)的使用已集中在特定中间体(例如,法尼基焦磷酸,类萜的前体)的检测上,而不是用于组合(i)代谢途径的诱变和(ii)用于发现新的生物活性分子(可具有未知结构)的特定生物活性(例如,抑制PTP1B的能力)的生物传感器。Another advantage of the methods and systems described herein, relative to some other systems for detecting small molecule inhibitors, includes the discovery of metabolites with targeted biological activity but unknown structure (e.g., the ability to inhibit protein tyrosine phosphatase 1B). There are many inventions related to the production of terpenoids in E. coli or S. cerevisiae (e.g., Moses et al., "Bioengineering of plant (tri) terpenoids: from metabolic engineering of plants to synthetic biology in vivo and in vitro." New Phytologist, Vol. 200, No. 1), wherein the reference describes the synthesis of artemisinic acid, a precursor to the antimalarial drug artemisinin as a diterpene expressed in E. coli. In addition, along with discussions of enhancing the production of terpenoids in E. coli, enzyme engineering or directed evolution of terpenoid biosynthetic enzymes is described, such as engineering enzymes to accept non-natural substrates and react with catalytic regions and stereospecificities with efficiencies comparable to those of natural enzymes; in many cases, the metabolic pathways responsible for making these terpenoids are mutated to improve production levels. However, the use of biosensors (i.e., constructs that report on the concentration of various metabolites) has focused on the detection of specific intermediates (e.g., farnesyl pyrophosphate, a precursor to terpenoids) rather than biosensors for combining (i) mutagenesis of metabolic pathways and (ii) specific biological activities (e.g., the ability to inhibit PTP1B) for the discovery of new bioactive molecules (which may have unknown structures).
高通量代谢工程化。High-throughput metabolic engineering.
用高通量筛选最有效地优化微生物途径。不幸地,目前,这种筛选非常少,并且可用的那些筛选依赖于信号(例如,吸光度或荧光、与产物-特异性转录因子的缔合或基本代谢产物允许的生长),其难以扩展至广泛类的分子(例如,没有明显的光学或代谢特性的那些)27。提出的工作开发了用于具有靶向活性—抑制PTP1B的能力—而不是靶向结构的类萜的高通量筛选。这些专注活性的筛选可广泛地用于构建(即进化)新的生物活性小分子。Microbial pathways are most effectively optimized using high-throughput screening. Unfortunately, currently, such screens are rare, and those that are available rely on signals (e.g., absorbance or fluorescence, association with product-specific transcription factors, or growth-permitting essential metabolites) that are difficult to extend to broad classes of molecules (e.g., those without obvious optical or metabolic properties) 27 . The presented work developed a high-throughput screen for terpenoids with a targeted activity—the ability to inhibit PTP1B—rather than a targeted structure. These activity-focused screens can be broadly used to construct (i.e., evolve) new bioactive small molecules.
鉴定新的抑制剂:起始点。我们最近发现,树脂酸的主要成分的松香酸是PTP1B的变构抑制剂(图22)。我们将使用该分子的直接前体松香二烯作为抑制剂设计的起始点。松香二烯具有几个使其与我们的方法特别相容的属性:(i)可在大肠杆菌中以允许纯化、NMR分析和量热研究的效价(200mg/L)合成28,(ii)其相关萜合酶-松香二烯合酶-的突变体生产了一系列立体化学、形状和大小不同(并且仍然能够分析和纯化)的碳氢化合物支架29-31,(iii)其—和相似的分子—可通过细胞色素P450和卤化酶官能化32-34。Identification of novel inhibitors: a starting point. We recently discovered that abietic acid, the major component of resin acids, is an allosteric inhibitor of PTP1B (Fig. 22). We will use the immediate precursor of this molecule, abietadiene, as a starting point for inhibitor design. Abietadiene has several properties that make it particularly compatible with our approach: (i) it can be synthesized in E. coli at a titer (200 mg/L) that allows purification, NMR analysis, and calorimetric studies28 , (ii) mutants of its related terpene synthase, abietadiene synthase, produce a range of hydrocarbon scaffolds that differ in stereochemistry, shape, and size (and still allow for analysis and purification) 29-31 , and (iii) it—and similar molecules—can be functionalized by cytochrome P450 and halogenases32-34 .
代谢工程化。我们已经工程化大肠杆菌的菌株来以足以允许分析方法(即,GC/MS、ITC和NMR)的效价(>150mg/L)产生松香二烯。我们的生物合成途径具有两个必备的操纵子:将(RJ-甲羟戊酸盐转变至法尼基焦磷酸盐(FPP)的MBIS和将法尼基焦磷酸盐转变至松香二烯的TS。当甲羟戊酸盐不包括在媒介中时,一个任选的操纵子—MevT,其将乙酰辅酶A转变至(RJ-甲羟戊酸盐—是必要的35。质粒pMevT和pMBIS由Keasling Laboratory开发36。含有来自北美冷杉的松香二烯合酶(ABS)的质粒pTS如在Morrone28中开发为具有来自Ajikumar的香叶基香叶基二磷酸合酶的基因37。Metabolic Engineering. We have engineered strains of E. coli to produce abietadiene in titers (>150 mg/L) sufficient to allow analytical methods (i.e., GC/MS, ITC, and NMR). Our biosynthetic pathway has two required operons: MBIS, which converts (RJ-mevalonate to farnesyl pyrophosphate (FPP), and TS, which converts farnesyl pyrophosphate to abietadiene. When mevalonate is not included in the vector, an optional operon, MevT, which converts acetyl-CoA to (RJ-mevalonate), is necessary. 35 Plasmids pMevT and pMBIS were developed by the Keasling Laboratory. 36 Plasmid pTS, which contains abietadiene synthase (ABS) from Abies sempervirens, was developed as in Morrone 28 with genes for geranylgeranyl diphosphate synthase from Ajikumar. 37
改善的抑制剂。我们通过比较四种结构相关(和商业上可得)的分子:松香酸、新松香酸、左旋海松酸和二氢松香酸,评估了松香二烯衍生物的较小结构扰动以生产改善的抑制剂的能力(图16)。令人吃惊地,二氢松香酸的抑制力是松香酸的十倍(K,~25uM与250uM)。我们在该小的筛选中发现改善的抑制剂的能力表明,在该研究中探索的结构变化的种类—和生成的分子文库的大小—很可能会产生改善的抑制剂。Improved Inhibitors. We evaluated the ability of minor structural perturbations of abietadiene derivatives to produce improved inhibitors by comparing four structurally related (and commercially available) molecules: abietic acid, neoabietic acid, levopimaric acid, and dihydroabietic acid ( FIG. 16 ). Surprisingly, dihydroabietic acid was ten times more potent than abietic acid (K, ˜25 uM vs. 250 uM). Our ability to find improved inhibitors in this small screen suggests that the types of structural changes explored in this study—and the size of the molecular library generated—are likely to yield improved inhibitors.
松香二烯的功能化。我们通过将五个容易获得的突变体(G3、KSA-4、9-1OA、139-3和J,其对紫穗槐二烯38和类固醇39的活性进行工程化)安装到我们的异源途径,评估细胞色素P450bm3突变体对松香二烯样分子的功能化的能力。三种突变体产生羟基化的和/或羧化的产物,产生多至0.3mg/L的松香酸(图17)。最初为其他靶标工程化的突变体的松香二烯-功能化活性表明,我们将能够开发对松香二烯-样分子具有更高活性的P450bm3的突变体。Functionalization of abietadiene. We evaluated the ability of cytochrome P450 b m3 mutants to functionalize abietadiene-like molecules by installing five readily available mutants (G3, KSA-4, 9-10A, 139-3, and J , which were engineered for activity against amorphadiene 38 and steroid 39 ) into our heterologous pathway. Three mutants produced hydroxylated and/or carboxylated products, yielding up to 0.3 mg/L of abietic acid ( FIG. 17 ). The abietadiene-functionalization activity of mutants initially engineered for other targets suggests that we will be able to develop mutants of P450 b m3 with greater activity against abietadiene-like molecules.
生物结构分析。我们已经在我们的实验室中结晶了PTP1B,与Lawrence BerkeleyNational Lab(LBNL)的Peter Zwart合作收集了X射线衍射数据,并且解决了其晶体结构(图17A插图)。我们还以松香酸共结晶了PTP1B。我们将在7月下旬(第一可用的光束时间)分析这些晶体。Biological structure analysis. We have crystallized PTP1B in our laboratory, collected X-ray diffraction data in collaboration with Peter Zwart at Lawrence Berkeley National Lab (LBNL), and solved its crystal structure (Figure 17A inset). We have also co-crystallized PTP1B with abietic acid. We will analyze these crystals in late July (first available beam time).
最近,与Harvard Medical School的Haribabu Arthanari合作,我们表达了N15标记的PTP1B,并且将其用于收集了二维1H-15N HSQC光谱(图17A主图)。光谱包括(分别)结合至松香酸和已知的抑制剂的PTP1B;目前,我们正在处理数据。初步结果(X射线和NMR)表明结合至不同抑制剂的PTP1B的生物结构研究将很简单。Recently, in collaboration with Haribabu Arthanari of Harvard Medical School, we expressed N15- labeled PTP1B and used it to collect two- dimensional1H - 15N HSQC spectra (Figure 17A main figure). The spectra include PTP1B bound to abietic acid and known inhibitors (separately); we are currently processing the data. Preliminary results (X-ray and NMR) suggest that biostructural studies of PTP1B bound to different inhibitors will be straightforward.
高通量筛选。结合至抑制剂(竞争和变构的)时,PTP1B展示出猝灭其色氨酸荧光的构象变化(我们的四个高通量筛选之一的基础)。图17B指示,这种猝灭可用于来自产生松香二烯的大肠杆菌的菌株的抑制提取物(即,己烷覆盖物)和来自对照菌株的非抑制提取物(即,具有催化非活化ABS的那种)之间的区分。图17C指示这种变化也可用于检测50uM(15mg/L)的松香酸。我们检测(i)培养提取物中的松香二烯和(ii)低浓度的松香酸(即,比我们的松香二烯的效价低十倍)的能力表明我们将能够检测PTP1B的改善的抑制剂,即使他们伴随着效价的降低。High Throughput Screening. Upon binding to inhibitors (competitive and allosteric), PTP1B exhibits a conformational change that quenches its tryptophan fluorescence (the basis of one of our four high throughput screens). FIG. 17B indicates that this quenching can be used to distinguish between inhibitory extracts (i.e., hexane overlays) from a strain of E. coli that produces abietadiene and non-inhibited extracts (i.e., those with catalytically inactive ABS) from a control strain. FIG. 17C indicates that this change can also be used to detect abietadiene at 50 uM (15 mg/L). Our ability to detect (i) abietadiene in culture extracts and (ii) low concentrations of abietadiene (i.e., ten times less potent than our abietadiene) suggests that we will be able to detect improved inhibitors of PTP1B, even if they are accompanied by a reduction in potency.
提供对变构结合口袋具有不同亲和力的结构上变化的类萜。本部分描述了开发一组具有由结构的系统差异引起的亲和力的增量差异的抑制剂。目标(成功度量):最少-15的结构变化的抑制剂具有(i)对PTP1B的亲和力相差100倍和/或(ii)显示可替选的结合几何的结合的焓和熵。Structurally varied terpenoids with different affinities for the allosteric binding pocket are provided. This section describes the development of a panel of inhibitors with incremental differences in affinity resulting from systematic differences in structure. Goal (success metric): Inhibitors with a minimum of -15 structural variations have (i) 100-fold differences in affinity for PTP1B and/or (ii) enthalpy and entropy of binding that display alternative binding geometries.
研究计划。在以下部分中,我们使用酶来构建PTP1B的选择性类萜抑制剂。该酶是我们工作的最初重点,因为它是糖尿病、肥胖和癌症的治疗靶标,并且可易于表达、结晶和测定15。因此,其用作药学上相关的模型系统,用其开发用于酶促构建药物先导物的通用方式。Research plan. In the following sections, we use the enzyme to construct selective terpenoid inhibitors of PTP1B. This enzyme was the initial focus of our work because it is a therapeutic target for diabetes, obesity, and cancer, and can be easily expressed, crystallized, and assayed15 . Therefore, it serves as a pharmaceutically relevant model system with which to develop a general approach for enzymatic construction of drug leads.
结构改变的假设。在本部分中,我们使用混杂酶来构建在立体化学、形状、大小和化学官能度不同的类萜。我们相信,这些修饰将通过改变以下来影响配体对PTP1B的亲和力:(i)它们参与变构结合口袋中具有非极性残基(例如,F280、L192和F196)的范德华相互作用的能力,(ii)它们参与具有近端极性残基(例如,N193、E200和E276)的直接或水介导的氢键的能力,(iii)它们参与具有任一组残基的卤素键的能力,(iv)它们对分子构象限制的影响;和(v)它们在结合期间重组水的能力。该假设(其部分由图16支持)推动了本文描述的合成策略。Hypothesis of structural changes. In this section, we used promiscuous enzymes to construct terpenoids that differ in stereochemistry, shape, size, and chemical functionality. We believed that these modifications would affect the affinity of the ligands for PTP1B by altering: (i) their ability to participate in van der Waals interactions with nonpolar residues in the allosteric binding pocket (e.g., F280, L192, and F196), (ii) their ability to participate in direct or water-mediated hydrogen bonds with proximal polar residues (e.g., N193, E200, and E276), (iii) their ability to participate in halogen bonds with either set of residues, (iv) their effect on conformational constraints of the molecule; and (v) their ability to reorganize water during binding. This hypothesis, which is partially supported by Figure 16, drove the synthetic strategy described herein.
立体化学、形状和大小。我们将通过使用ABS的突变体以生成立体化学和形状不同的二萜开始(图18A)。ABS使用两个活性位点以将II型(质子化-依赖性)和I型(电离-依赖性)环化的香叶基香叶基焦磷酸盐(GGPP,C2o)顺序催化为松香二烯29。先前的研究指示,其活性位点的氨基酸取代可改变其产物的立体化学或形状29,31。我们将使用影响去质子化、分子内蛋白质转移或碳阳离子稳定性的位置的突变(新鉴定的和先前鉴定的)(图8B)。将这些突变体安装到大肠杆菌后,我们将使用GC/MS来搜索新的产物(比如MetFrag40或ACD/MSFragmenter41的片段化工具将有助于鉴定新的化合物)。Stereochemistry, shape, and size. We will begin by using mutants of ABS to generate diterpenes that differ in stereochemistry and shape ( FIG. 18A ). ABS uses two active sites to sequentially catalyze type II (protonation-dependent) and type I (ionization-dependent) cyclizations of geranylgeranyl pyrophosphate (GGPP, C 2 o) to abietadiene 29 . Previous studies have indicated that amino acid substitutions in its active site can alter the stereochemistry or shape of its products 29 , 31 . We will use mutations (newly identified and previously identified) at positions that affect deprotonation, intramolecular protein transfer, or carbocation stability ( FIG. 8B ). After installing these mutants in E. coli , we will use GC/MS to search for new products (fragmentation tools such as MetFrag 40 or ACD/MSFragmenter 41 will help identify new compounds).
我们将通过使用增加/减少ABS活性位点体积的突变生成大小不同的类萜。先前改变萜合酶的底物特异性的尝试42,43表明,这种突变能够增强对法尼基焦磷酸盐(FPP,CI5)和法尼基香叶基焦磷酸盐(FGPP,C2s)的活性。为了合成FGPP,我们将并入先前在大肠杆菌中表达的FGPP合酶44。We will generate terpenoids of varying sizes by using mutations that increase/decrease the volume of the ABS active site. Previous attempts to alter the substrate specificity of terpene synthases42,43 have shown that such mutations can enhance activity towards farnesyl pyrophosphate (FPP, CI 5 ) and farnesylgeranyl pyrophosphate (FGPP, C 2 s). To synthesize FGPP, we will incorporate FGPP synthase previously expressed in E. coli44 .
我们将通过使用快速色谱和HPLC中分离出效价特别高的新的类萜的一个子集(在几个研究中已确定可行性的任务28,31,45),并且我们将使用ITC来测量结合至PTP1B的自由能(AG°结合)、焓(AH°结合)和熵(-TAS°结合)。配体之间的AG°结合差异将揭示结构变化如何影响结合强度。AH°结合和-TAS°结合的差异将揭示它们对结合几何的影响46,47。We will isolate a subset of novel terpenoids with particularly high potency by using flash chromatography and HPLC (a task that has been established as feasible in several studies28,31,45 ), and we will use ITC to measure the free energy (AG° binding ), enthalpy (AH° binding ), and entropy (-TAS° binding ) of binding to PTP1B. Differences in AG° binding between ligands will reveal how structural changes affect binding strength. Differences in AH° and -TAS° binding will reveal their effects on binding geometry46,47 .
羟基化和卤化。对于6.1.2中选择的三种配体,我们将使用来自巨大芽孢杆菌的细胞色素P450 BM3(P450bm3)和/或来自北美云杉的CYP720B4(P45072o)的突变体来构建在不用位置具有羟基或羧基基团的五种变体(图19A和19B)。P450bm3可羟基化各种不同的底物,其包括类萜48。P45072o可羧基化超过20种二萜,其包括松香二烯49。两种酶都可在大肠杆菌中表达,4A。Hydroxylation and halogenation. For the three ligands selected in 6.1.2, we will use mutants of cytochrome P450 BM3 from Bacillus megaterium (P450 b m3) and/or CYP720B4 from Sitka spruce (P450 72 o) to construct five variants with hydroxyl or carboxyl groups at different positions (Figures 19A and 19B). P450 b m3 can hydroxylate a variety of different substrates, including terpenoids 48. P450 72 o can carboxylate more than 20 diterpenes, including abietadiene 49. Both enzymes can be expressed in E. coli , 4A .
我们将处理几组突变:对于P450bm3,我们将使用(i)允许倍半萜和二萜的立体选择性羟基化的三种(V78A、F87A和A328L)50,(ii)能够使生物碱和类固醇羟基化的五种(L75A、M177A、L181A和L437A)51,和(iii)允许杂芳族化合物羧化的两种(F87V和A82F)(图18D)52。对于P45072o,我们将检查可能改变氧化位置的-10相似突变。我们将再次筛选大肠杆菌中的每个突变体,分离出感兴趣的产物,并且使用ITC对它们分析。We will work with several sets of mutations: for
对于两种高亲和力的氧化的配体的每一种,我们将在不同位置以溴化物或碘化物构建六种变体(图18C)。这两种卤素可参与与蛋白质中的氧、氮或硫接纳体的卤素键合53,并且可在它们的表面上结合小的非极性倾斜面(declivities)54。与两种相互作用相关的能量贡献往往从Br增加至I54,55,因此适合于系统分析(即,物理有机方法)。为了生成卤化的配体,我们将使用来自毒三素链霉素的色氨酸6-卤化酶(SttH)和来自ACARYOCHLORISMARINA的钒卤素过氧化物酶(VHPO)的突变体。这些酶可将卤素(氯化物、溴化物或碘化物)引入生物碱或类萜的sp2-杂化碳中(环化之前或之后)56,57。对于每种酶,我们将检查几种已知改变区域选择性的突变(例如,对于SttH的L460F、P461E和P452T56)和5-10种可能改变结合的图19示例:(图19A)羧化的、(B)羟基化的、配体(图19E)的方向的突变。我们将再次筛选(图19C)和卤代二萜。(图19D-E)在大肠杆菌中每种突变体的残基,并且使用ITC靶向(图19D)P450bm3和(图19E)SttH中的诱变。For each of the two high-affinity oxidized ligands, we will construct six variants with bromide or iodide at different positions ( FIG. 18C ). These two halogens can participate in halogen bonding with oxygen, nitrogen, or sulfur acceptors in proteins 53 and can bind small nonpolar declivities on their surfaces 54 . The energy contributions associated with both interactions tend to increase from Br to I 54,55 and are therefore amenable to systematic analysis (i.e., physical organic methods). To generate halogenated ligands, we will use mutants of the tryptophan 6-halogenase (SttH) from Streptomyces toxigenin and the vanadium haloperoxidase (VHPO) from A CARYOCHLORISMARINA . These enzymes can introduce halogens (chloride, bromide, or iodide) into sp 2 -hybridized carbons of alkaloids or terpenoids (before or after cyclization) 56,57 . For each enzyme, we will examine several mutations known to alter regioselectivity (e.g., L460F, P461E, and P452T for SttH 56 ) and 5-10 mutations that may alter binding Figure 19 Examples: (Figure 19A) carboxylation, (B) hydroxylation, (Figure 19E) orientation of the ligand. We will again screen (Figure 19C) and halogenated diterpenes. (Figures 19D-E) residues of each mutant in E. coli and use ITC to target mutagenesis in (Figure 19D)
IV.进化PTP1B的高亲和力类萜抑制剂。IV. Evolution of high-affinity terpenoid inhibitors of PTP1B.
本部分开发了四个用于快速评估PTP1B抑制剂强度的高通量筛选,并且其连同位点-饱和度和随机诱变使用那些方法来进化新的抑制剂。目标:一组具有特别高亲和力(KD^1uM)和/或不可预测的结构(即,与合理设计不一致的结构)的进化的抑制剂。This section develops four high-throughput screens for rapidly evaluating the potency of PTP1B inhibitors, and uses those methods along with site-saturation and random mutagenesis to evolve new inhibitors. Goal: A set of evolved inhibitors with exceptionally high affinity ( KD ^1 uM) and/or unpredictable structures (i.e., structures inconsistent with rational design).
生物选择。选择方法(即,生长偶联筛选),其中大肠杆菌的存活与抑制剂效力相联系将能够快速筛选非常大的分子文库(1010)66。在本部分中,我们开发这种方法。Bioselection. A selection method (ie, growth-coupled screening) in which the survival of E. coli is linked to inhibitor potency would enable rapid screening of very large libraries of molecules (10 10 ) 66 . In this section, we develop this approach.
PTP1B催化几种细胞表面受体的去磷酸化—和失活。我们将使用这些受体的含酪氨酸的区域来构建操纵子,其将PTP1B的抑制与细胞生长相关。该操纵子将需要六个组分(图21A):(i)拴在DNA结合蛋白的底物结构域(受体的含酪氨酸的区域),(ii)拴在RNA聚合酶的共亚单元的底物识别结构域(在其磷酸化后结合含酪氨酸的区域的蛋白质),(iii)酪氨酸激酶,(iv)PTP1B,(v)抗生素抗性基因,和(vi)该基因的操纵基因。使用该系统,PTP1B抑制剂将使底物和底物识别结构域能够结合,将RNA聚合酶募集至DNA上,并且转录抗生素抗性的基因。先前的小组已经使用相似的操纵子来进化蛋白质-蛋白质结合伙伴。这里,我们采取了下述另外步骤:(i)使用由酶(PTP1B和激酶)介导的蛋白质-蛋白质相互作用,和(ii)在那些酶之一的潜在抑制剂存在的情况下筛选该相互作用。PTP1B catalyzes the dephosphorylation—and inactivation—of several cell surface receptors. We will use the tyrosine-containing regions of these receptors to construct an operon that links inhibition of PTP1B to cell growth. The operon will require six components ( FIG. 21A ): (i) a substrate domain (the tyrosine-containing region of the receptor) tethered to a DNA binding protein, (ii) a substrate recognition domain (a protein that binds the tyrosine-containing region after it is phosphorylated) tethered to a co-subunit of RNA polymerase, (iii) a tyrosine kinase, (iv) PTP1B, (v) an antibiotic resistance gene, and (vi) an operator for that gene. Using this system, a PTP1B inhibitor will enable the substrate and substrate recognition domain to bind, recruit RNA polymerase to the DNA, and transcribe the gene for antibiotic resistance. Previous groups have used similar operons to evolve protein-protein binding partners. Here, we took the additional steps of (i) using protein-protein interactions mediated by enzymes (PTP1B and kinases) and (ii) screening this interaction in the presence of a potential inhibitor of one of those enzymes.
我们将从基于发光的系统开始开发我们的操纵子,并且作为最后的步骤我们将添加抗生素抗性基因。在我们使用Liu等67优化的系统进行的初步工作中,我们获得了表达两个结合伙伴的菌株和表达一个结合伙伴的菌株之间基于Lux的发光的十倍差异(图21E;阿拉伯糖诱导第二个伙伴表达)。现在,我们计划引入—和测试—不同的底物结构域、识别结构域和激酶(eGFR和Src)。We will develop our operon starting with a luminescence-based system, and as a final step we will add antibiotic resistance genes. In our preliminary work using the system optimized by Liu et al. 67 , we obtained a ten-fold difference in Lux-based luminescence between strains expressing two binding partners and those expressing one binding partner (Figure 21E; arabinose induces expression of the second partner). We now plan to introduce—and test—different substrate domains, recognition domains, and kinases (eGFR and Src).
用于PTP1B活性的FRET传感器。PTP1B的抑制与细胞荧光相关的高通量筛选将能够经荧光-活化细胞分选(FACS)进行快速筛选。该技术倾向与选择相比产生更多的假阳性,并且将文库限制于107-108的大小,但是它需要的异源基因更少27,66。FRET sensor for PTP1B activity. High-throughput screening of PTP1B inhibition coupled to cellular fluorescence would enable rapid screening via fluorescence-activated cell sorting (FACS). This technique tends to produce more false positives than selection and limits libraries to 10 7 -10 8 in size, but it requires fewer heterologous genes27,66 .
对于该策略,我们将使用通常用于监测哺乳动物细胞中激酶和磷酸酶活性的FRET(福斯特共振能量转移)传感器68,69。这些传感器由激酶底物结构域、短的柔性连接体和磷酸化识别结构域——都夹在两个荧光蛋白之间——组成。底物结构域的磷酸化导致其结合至识别结构域,从而在两个荧光蛋白质之间诱导FRET。在PTP1B相容的传感器中,PTP1B抑制剂将增加FRET(图21B)。我们已经开始通过尝试底物结构域、识别结构域和激酶的不同组合来开发这种传感器。(注意:FACS能够进行基于FRET的筛选70,71)。For this strategy, we will use FRET (Förster resonance energy transfer) sensors that are commonly used to monitor kinase and phosphatase activity in mammalian cells68,69 . These sensors consist of a kinase substrate domain, a short flexible linker, and a phosphorylation recognition domain—all sandwiched between two fluorescent proteins. Phosphorylation of the substrate domain leads to its binding to the recognition domain, thereby inducing FRET between the two fluorescent proteins. In a PTP1B-compatible sensor, a PTP1B inhibitor will increase FRET ( FIG21B ). We have begun to develop such a sensor by trying different combinations of substrate domain, recognition domain, and kinase. (Note: FACS is capable of FRET-based screening70,71 ).
用于PTP1B构象的改变的FRET传感器。其中由结合-诱导的PTP1B构象改变导致的细胞荧光改变的基于FACS的筛选将比策略2和3(其可用于任何激酶或磷酸酶)通用性更低,但是仅需要一个异源基因。FRET sensor for changes in PTP1B conformation. FACS-based screening where changes in cellular fluorescence result from binding-induced conformational changes in PTP1B would be less general than
对于该策略,我们将使用由Tonks Group进行的FRET实验13。这些研究人员试图显示trodusquemine与PTP1B的结合导致蛋白质变得更致密。为此,他们将FRET对的构件附着至PTP1B的每个末端(图21C)。在蛋白-配体缔合后,FRET信号的增加指示其末端彼此接近。我们假设该构建体可用作鉴定结合至PTP1B的变构位点的其他分子的传感器。我们将开始用各种已知的抑制剂测试其(Tonks group未采取的步骤)。For this strategy, we will use a FRET experiment performed by the Tonks Group13 . These researchers sought to show that binding of trodusquemine to PTP1B causes the protein to become more compact. To do this, they attached a member of a FRET pair to each end of PTP1B (Figure 21C). Upon protein-ligand association, an increase in the FRET signal indicates that their ends are close to each other. We hypothesize that this construct can be used as a sensor to identify other molecules that bind to the allosteric site of PTP1B. We will begin by testing it with various known inhibitors (a step not taken by the Tonks group).
PTP1B的色氨酸荧光的结合-诱导的改变。其中将PTP1B的抑制与色氨酸荧光的改变相关的筛选(图21D)将在微量滴定板中能够快速筛选中等大小的文库(103-104)27。在5.6中描述了我们使用色氨酸荧光的结合-诱导的改变。在未来的工作中,我们计划将该方式扩展至其他蛋白酪氨酸磷酸酶,其中许多是变构的且具有许多色氨酸(例如,SHP-2,努南综合征的靶标72)。Binding-induced changes in tryptophan fluorescence of PTP1B. Screening in which inhibition of PTP1B is correlated with changes in tryptophan fluorescence ( FIG. 21D ) will enable rapid screening of medium-sized libraries (10 3 -10 4 ) in microtiter plates 27 . Our use of binding-induced changes in tryptophan fluorescence is described in 5.6 . In future work, we plan to extend this approach to other protein tyrosine phosphatases, many of which are allosteric and have many tryptophans (e.g., SHP-2, the target of Noonan syndrome 72 ).
诱变。为了使用我们的高通量筛选来进化PTP1B抑制剂,我们将通过使用下述构建突变的类萜途径的文库:(i)位点-饱和诱变(SSM;我们将靶向位点的二元组合)和(ii)易错PCR(ep-PCR)。Mutagenesis. To evolve PTP1B inhibitors using our high-throughput screen, we will construct a library of mutant terpenoid pathways by using: (i) site-saturation mutagenesis (SSM; we will target binary combinations of sites) and (ii) error-prone PCR (ep-PCR).
对于SSM,我们将通过开发类似于方程式1的函数来鉴定可能容纳有用突变的“可塑(plastic)”残基。该函数基于残基容纳影响活性位点的体积和水合结构的突变的能力对残基评分;S是残基允许突变的倾向性的度量,cr2是其他酶活性位点中类似位置的残基的体积差异,For SSM, we will identify "plastic" residues that are likely to accommodate useful mutations by developing a function similar to
s=4+RTW(EQ1} s= 4 + RTW (EQ1}
A^w是那些残基的亲水性差异,和Nv和NHW是标准化因子。在我们的ABS初步分析中,我们成功地使用方程式1(和来自紫杉烯、y-蛇麻烯、5-selenine和epi-isozizaene合酶的结构/序列信息)来鉴定已知的产生新的产物的突变(例如,ABS的H348)的残基31。我们注意:先前鉴定可塑残基的尝试已经扫描了结合底物附近的每个位点73;我们的方式以其包括来自以下生物物理考虑因素将是独特的:(i)我们对最佳配体属性的研究(6.2.1)和(ii)我们对带来它们的突变类型的研究(6.2.2)。A^ w is the difference in hydrophilicity of those residues, and Nv and Nhw are normalization factors. In our preliminary analysis of ABS, we successfully used Equation 1 (and structural/sequence information from taxene, γ-humulene, 5-selenine, and epi-isozizaene synthases) to identify residues 31 known to have mutations that produced new products (e.g., H348 of ABS). We note that previous attempts to identify plastic residues have scanned every site in the vicinity of substrate binding 73 ; our approach will be unique in that it includes biophysical considerations from: (i) our study of the properties of the optimal ligands (6.2.1) and (ii) our study of the types of mutations that brought them about (6.2.2).
对于文库构建,我们将探索突变我们的途径(i)逐个酶(例如,ABS,然后P450bm3,并且然后VttH)或(ii)随机的。第二种方法可让我们获得难以用先导物设计的常规方法找到的结构。For library construction, we will explore mutating our pathways (i) enzyme by enzyme (e.g., ABS, then P450 b m3, and then VttH) or (ii) randomly. The second approach allows us to obtain structures that are difficult to find using conventional methods of lead design.
为了鉴定使任意蛋白质靶标的类萜抑制剂能够进化的结构-活性关系。本部分开发了用于使用蛋白质的晶体结构来鉴定能够制造该蛋白质的抑制剂的酶的生物物理框架。目标:使用该框架来鉴定—然后测试—能够合成PTP1B和(单独)十一碳二烯基二磷酸合酶(UPPS)(一种抗生素抗性细菌感染的靶标)新抑制剂的酶。To identify structure-activity relationships that enable the evolution of terpenoid inhibitors of arbitrary protein targets. This section develops a biophysical framework for using the crystal structure of a protein to identify enzymes capable of making inhibitors of that protein. Objective: Use this framework to identify—and then test—enzymes capable of synthesizing new inhibitors of PTP1B and (alone) undecadienyl diphosphate synthase (UPPS), a target of antibiotic-resistant bacterial infections.
结合口袋之间的关系。我们将通过确定结合口袋的特定特性(例如,体积、极性和形状)的相似性如何使酶合成、功能化和/或结合相似分子开始。该努力将涉及比较PTP1B的变构结合口袋与抑制剂合成中涉及的酶的结合口袋(即,活性位点)。对于这些比较,我们将构建两个基质:基质A,其中每个元素(ay)表示结合口袋i和j((0<aij<1,其中1是高度相似))之间特定特性的相似性,和基质B,其中每个元素(by)描述了结合口袋i和j结合相似分子的能力(0<by<1,其中1表示相同的结合特异性)。这两个基质(AB)的产物形成的基质的等级将显示确定代谢途径中酶的功能相容性所必需的独立变量(即,活性位点属性)的数量;特征值将显示所研究的属性的相对重要性(由基质A描述)。Relationships between binding pockets. We will begin by determining how similarities in specific properties of binding pockets (e.g., volume, polarity, and shape) allow enzymes to synthesize, functionalize, and/or bind similar molecules. This effort will involve comparing the allosteric binding pocket of PTP1B to binding pockets (i.e., active sites) of enzymes involved in inhibitor synthesis. For these comparisons, we will construct two matrices: matrix A, in which each element (ay) represents the similarity of a specific property between binding pockets i and j ((0<aij<1, where 1 is high similarity)), and matrix B, in which each element (by) describes the ability of binding pockets i and j to bind similar molecules (0<by<1, where 1 indicates identical binding specificity). The rank of the matrix formed by the product of these two matrices (AB) will show the number of independent variables (i.e., active site properties) necessary to determine the functional compatibility of enzymes in a metabolic pathway; the eigenvalues will show the relative importance of the properties studied (described by matrix A).
我们将用基于PyMol和MD的蛋白质晶体结构分析来构建基质A。我们将通过检查功能化类萜及其前体结合至类萜合成中涉及的每种酶来构建基质B。这些配体/蛋白质组合中的一些的结合亲和力将用ITC测量;大部分将用对接计算(OEDocking78)评估。We will construct matrix A using PyMol- and MD-based protein crystal structure analysis. We will construct matrix B by examining the binding of functionalized terpenoids and their precursors to each of the enzymes involved in terpenoid synthesis. The binding affinity of some of these ligand/protein combinations will be measured using ITC; most will be evaluated using docking calculations (OEDocking 78 ).
本部分的结果将是类似于方程式2的方程,其中J是活性位点合成结合特定结合口袋的类萜的能力的度量The result of this section will be an equation similar to
J=wvV+wpP+WiL+wwW(方程式2);V、P、L和W表示该活性位点的特定特性(体积、极性、最长直径和最短直径);w代表加权因子。变量的最终数量—和其各自的权重—将通过上述分析确定。在参数化方程式时,我们计划检查结合口袋(例如形状)的特性的不同度量和探索/开发不同的基质处理方法。J = w v V + w p P + WiL + w w W (Equation 2); V, P, L, and W represent specific properties of the active site (volume, polarity, longest diameter, and shortest diameter); w represents a weighting factor. The final number of variables - and their respective weights - will be determined by the above analysis. In parameterizing the equation, we plan to examine different measures of the properties of the binding pocket (e.g., shape) and explore/develop different substrate treatment methods.
校验和扩展。Checksum extension.
用于抑制剂合成的有希望的活性位点基序的鉴定将需要搜索可用的蛋白质结构数据。我们将通过使用PROBIS(probis.nih.gov79)(使用指定结合位点在蛋白质数据库中的其他蛋白质上找到相似的结合位点的基于比对的平台)进行这种搜索。即使当包围那些口袋的蛋白质折叠不同,PROBIS仍可鉴定形状相似的结合口袋(即,其检测到相似型的氨基酸)。Identification of promising active site motifs for inhibitor synthesis will require searching available protein structural data. We will perform this search using PROBIS (probis.nih.gov 79 ), an alignment-based platform that uses a given binding site to find similar binding sites on other proteins in the Protein Data Bank. PROBIS can identify binding pockets of similar shape (i.e., it detects similar types of amino acids) even when the protein folds surrounding those pockets are different.
首先,我们将使用基于PROBIS的搜索来鉴定具有与下述具有一定水平的结构相似性的活性位点的酶(我们将探索不同的阈值):(i)PTP1B的变构结合位点或(ii)能够合成PTP1B抑制剂的酶的活性位点。使用方程式2,我们将选择具有最有利的活性位点的酶,并且用我们的抑制剂开发平台将其测试)。First, we will use PROBIS-based searches to identify enzymes with active sites that have a certain level of structural similarity to either (i) the allosteric binding site of PTP1B or (ii) the active site of an enzyme that can synthesize PTP1B inhibitors (we will explore different thresholds. Using
我们将通过尝试构建UPPS(已知结合类萜和多环分子的蛋白质)的抑制剂,来评估我们方法的通用性80。基于结构的搜索将使用两个起始点:(i)UPPS和(ii)ABS的突变体,P450bm3或我们生物物理分析显示可生产UPPS抑制剂的类似酶。我们将再次选择酶的一个子集来使用我们的平台测试。We will assess the generality of our approach by attempting to construct inhibitors of UPPS, a protein known to bind terpenoids and polycyclic molecules.80 The structure-based search will use two starting points: (i) UPPS and (ii) mutants of ABS, P450 b m3 or similar enzymes that our biophysical analysis has shown to produce UPPS inhibitors. We will again select a subset of enzymes to test using our platform.
用于III-IV节的参考文献:References used for Sections III-IV:
1.Koh,H.-L,Yau,W.-P.,Ong,P.-S.&Hegde,A.Current trends in modernpharmaceutical analysis for drug discovery.Drug Discov.Today 8,889-897(2003).1. Koh, H.-L, Yau, W.-P., Ong, P.-S. & Hegde, A. Current trends in modern pharmaceutical analysis for drug discovery. Drug Discov.
2.Whitesides,G.M.&Krishnamurthy,V.M.Designing ligands to bindproteins.Q.Rev.Biophys.38,385-395(2005).2. Whitesides, G. M. & Krishnamurthy, V. M. Designing ligands to bind proteins. Q. Rev. Biophys. 38, 385-395 (2005).
3.Olsson,T.S.G.,Williams,M.a.,Pitt,W.R.&Ladbury,J.E.TheThermodynamics of Protein-Ligand Interaction and Solvation:Insights forLigand Design.J.Mol.Biol.384,1002-1017(2008).3. Olsson, T.S.G., Williams, M.a., Pitt, W.R. & Ladbury, J.E. The Thermodynamics of Protein-Ligand Interaction and Solvation: Insights for Ligand Design. J. Mol. Biol. 384, 1002-1017 (2008).
4.Welsch,M.E.,Snyder,S.A.&Stockwell,B.R.Privileged scaffolds forlibrary design and drug discovery.Curr.Opin.Chem.Biol.14,347-361(2010).4. Welsch, M.E., Snyder, S.A. & Stockwell, B.R. Privileged scaffolds for library design and drug discovery. Curr. Opin. Chem. Biol. 14, 347-361 (2010).
5.Gershenzon,J.&Dudareva,N.The function of terpene natural productsin the natural world.Nat.Chem.Biol.3,408-414(2007).5. Gershenzon, J. & Dudareva, N. The function of terpene natural products in the natural world. Nat. Chem. Biol. 3, 408-414 (2007).
6.Chang,M.C.Y.&Keasling,J.D.Production of isoprenoid pharmaceuticalsby engineered microbes.Nat.Chem.Biol.2,674-681(2006).6. Chang, M.C.Y. & Keasling, J.D. Production of isoprenoid pharmaceuticals by engineered microbes. Nat. Chem. Biol. 2, 674-681 (2006).
7.Johnson,T.O.,Ermolieff,J.&Jirousek,M.R.Protein tyrosine phosphatase1B inhibitors for diabetes.Nat.Rev.Drug Discov.1,696-709(2002).7. Johnson, T. O., Ermolieff, J. & Jirousek, M. R. Protein tyrosine phosphatase1B inhibitors for diabetes. Nat. Rev. Drug Discov. 1, 696-709 (2002).
8.Koren,S.&Fantus,I.G.Inhibition of the protein tyrosine phosphatasePTP1B:potential therapy for obesity,insulin resistance and type-2diabetesmellitus.Best Pract.Res.Clin.Endocrinol.Metab.21,621-640(2007).8. Koren, S. & Fantus, I.G. Inhibition of the protein tyrosine phosphatasePTP1B: potential therapy for obesity, insulin resistance and type-2diabetesmellitus. Best Pract. Res. Clin. Endocrinol. Metab. 21, 621-640 (2007).
9.Soysal,S.,Obermann,E.C,Gao,F.,Oertli,D.,Gillanders,W.E.,Viehl,C.T.&Muenst,S.PTP1B expression is an independent positive prognostic factor inhuman breast cancer.Breast Cancer Res.Treat.137,637-644(2013).9. Soysal, S., Obermann, E. C, Gao, F., Oertli, D., Gillanders, W. E., Viehl, C. T. & Muenst, S. PTP1B expression is an independent positive prognostic factor in human breast cancer. Breast Cancer Res. Treat. 137,637-644(2013).
10.Tonks,N.K.&Muthuswamy,S.K.A Brake Becomes an Accelerator:PTP1B-ANew Therapeutic Target for Breast Cancer.Cancer Cell 11,214-216(2007).10. Tonks, N.K. & Muthuswamy, S.K.A Brake Becomes an Accelerator: PTP1B-A New Therapeutic Target for Breast Cancer.
11.Lessard,L,Stuible,M.&Tremblay,M.L.The two faces of PTP1B incancer.Biochim.Biophys.Acta-Proteins Proteomics 1804,613-619(2010).11. Lessard, L, Stuible, M. & Tremblay, M.L. The two faces of PTP1B incancer. Biochim. Biophys. Acta-Proteins Proteomics 1804, 613-619 (2010).
12.Zhang,S.&Zhang,Z.Y.PTP1B as a drug target:recent developments inPTP1B inhibitor discovery.Drug Discov.Today 12,373-381(2007).12. Zhang, S. & Zhang, Z. Y. PTP1B as a drug target: recent developments in PTP1B inhibitor discovery. Drug Discov.
13.Krishnan,N.,Koveal,D.,Miller,D.H.,Xue,B.,Akshinthala,S.D.,Kragelj,J.,Jensen,M.R.,Gauss,C.-M.,Page,R.,Blackledge,M.,Muthuswamy,S.K.,Peti,W.&Tonks,N.K.Targeting the disordered C terminus of PTP1B with an allostericinhibitor.Nat.Chem.Biol.10,558-566(2014).13.Krishnan,N.,Koveal,D.,Miller,D.H.,Xue,B.,Akshinthala,S.D.,Kragelj,J.,Jensen,M.R.,Gauss,C.-M.,Page,R.,Blackledge,M ., Muthuswamy, S. K., Peti, W. & Tonks, N. K. Targeting the disordered C terminus of PTP1B with an allostericinhibitor. Nat. Chem. Biol. 10, 558-566 (2014).
14.Sun,J.P.,Fedorov,A.A.,Lee,S.Y.,Guo,X.L,Shen,K.,Lawrence,D.S.,Almo,S.C.&Zhang,Z.Y.Crystal structure of PTP1B complexed with a potent andselective bidentate inhibitor.J.Biol.Chem.278,12406-12414(2003).14.Sun,J.P.,Fedorov,A.A.,Lee,S.Y.,Guo,X.L,Shen,K.,Lawrence,D.S.,Almo,S.C.&Zhang,Z.Y.Crystal structure of PTP1B complexed with a potent and selective bidentate inhibitor.J.Biol.Chem .278,12406-12414(2003).
15.Wiesmann,C,Barr,K.J.,Kung,J.,Zhu,J.,Erlanson,D.A.,Shen,W.,Fahr,B.J.,Zhong,M.,Taylor,L.,Randal,M.,McDowell,R.S.&Hansen,S.K.Allostericinhibition of protein tyrosine phosphatase 1B.Nat.Struct.Mol.Biol.11,730-737(2004).15.Wiesmann,C,Barr,K.J.,Kung,J.,Zhu,J.,Erlanson,D.A.,Shen,W.,Fahr,B.J.,Zhong,M.,Taylor,L.,Randal,M.,McDowell, R. S. & Hansen, S. K. Allostericinhibition of protein tyrosine phosphatase 1B. Nat. Struct. Mol. Biol. 11, 730-737 (2004).
16.Krishnan,N.&Tonks,N.K.Anxious moments for the protein tyrosinephosphatase PTP1B.Trends Neurosci.38,462-465(2015).16. Krishnan, N. & Tonks, N. K. Anxious moments for the protein tyrosinephosphatase PTP1B. Trends Neurosci. 38, 462-465 (2015).
17.Hughes,J.P.,Rees,S.S.,Kalindjian,S.B.&Philpott,K.L.Principles ofearly drug discovery.Br.J.Pharmacol.162,1239-1249(2011).17. Hughes, J.P., Rees, S.S., Kalindjian, S.B. & Philpott, K.L. Principles of early drug discovery. Br. J. Pharmacol. 162, 1239-1249 (2011).
18.Kennedy,T.Managing the drug discovery/development interface.DrugDiscov.Today 2,436-444(1997).18.Kennedy, T. Managing the drug discovery/development interface. Drug Discov.
19.Snyder,P.W.,Lockett,M.R.,Moustakas,D.T.&Whitesides,G.M.Is it theshape of the cavity,or the shape of the water in the cavity?Eur.Phys.J.Spec.Top.223,853-891(2014).19. Snyder, P.W., Lockett, M.R., Moustakas, D.T. & Whitesides, G.M. Is it the shape of the cavity, or the shape of the water in the cavity? Eur.Phys.J.Spec.Top.223,853-891(2014).
20.Klebe,G.Applying thermodynamic profiling in lead finding andoptimization.Nat.Rev.Drug Discov.14,95-110(2015).20. Klebe, G. Applying thermodynamic profiling in lead finding and optimization. Nat. Rev. Drug Discov. 14, 95-110 (2015).
21.Chang,M.C.Y.&Keasling,J.D.Production of isoprenoid pharmaceuticalsby engineered microbes.Nat.Chem.Biol.2,674-681(2006).21. Chang, M.C.Y. & Keasling, J.D. Production of isoprenoid pharmaceuticals by engineered microbes. Nat. Chem. Biol. 2, 674-681 (2006).
22.George,K.W.,Alonso-Gutierrez,J.,Keasling,J.D.&Lee,T.S.IsoprenoidDrugs,Biofuels,and Chemicals-Artemisinin,Farnesene,and Beyond.Adv Biochem EngBiotechnol 148,355-389(2014).22. George, K. W., Alonso-Gutierrez, J., Keasling, J. D. & Lee, T. S. IsoprenoidDrugs, Biofuels, and Chemicals - Artemisinin, Farnesene, and Beyond. Adv Biochem Eng Biotechnol 148, 355-389 (2014).
23.Cragg,G.M.&Newman,D.J.Natural products:A continuing source ofnovel drug leads.Biochim.Biophys.Acta-Gen.Subj.1830,3670-3695(2013).23. Cragg, G. M. & Newman, D. J. Natural products: A continuing source of novel drug leads. Biochim. Biophys. Acta-Gen. Subj. 1830, 3670-3695 (2013).
24.Galanie,S.,Thodey,K.,Trenchard,I.J.,Filsinger Interrante,M.&Smolke,C.D.Complete biosynthesis of opioids in yeast.Science(80-.).349,1095-1100(2015).24. Galanie, S., Thodey, K., Trenchard, I.J., Filsinger Interrante, M. & Smolke, C.D. Complete biosynthesis of opioids in yeast. Science (80-.). 349, 1095-1100 (2015).
25.Govindarajan,S.,Recabarren,R.&Goldstein,R.a.Estimating the totalnumber of protein folds.Proteins 35,408-414(1999).25. Govindarajan, S., Recabarren, R. & Goldstein, R.a. Estimating the total number of protein folds.
26.Atanasov,A.G.,Waltenberger,B.,Pferschy-Wenzig,E.M.,Linder,T.,Wawrosch,C,Uhrin,P.,Temml,V.,Wang,L.,Schwaiger,S.,Heiss,E.H.,Rollinger,J.M.,Schuster,D.,Breuss,J.M.,Bochkov,V.,Mihovilovic,M.D.,Kopp,B.,Bauer,R.,Dirsch,V.M.&Stuppner,H.Discovery and resupply of pharmacologically active plant-derived natural products:A review.Biotechnol.Adv.33,1582-1614(2015).26.Atanasov,A.G.,Waltenberger,B.,Pferschy-Wenzig,E.M.,Linder,T.,Wawrosch,C,Uhrin,P.,Temml,V.,Wang,L.,Schwaiger,S.,Heiss,E.H., Rollinger,J.M.,Schuster,D.,Breuss,J.M.,Bochkov,V.,Mihovilovic,M.D.,Kopp,B.,Bauer,R.,Dirsch,V.M.&Stuppner,H.Discovery and resupply of pharmacologically active plant-derived natural products :A review.Biotechnol.Adv.33,1582-1614(2015).
27.Lauchli,R.,Rabe,K.S.,Kalbarczyk,K.Z.,Tata,A.,Heel,T.,Kitto,R.Z.&Arnold,F.H.High-throughput screening for terpene-synthase-cyclizationactivity and directed evolution of a terpene synthase.Angew.Chemie-Int.Ed.52,5571-5574(2013).27.Lauchli,R.,Rabe,K.S.,Kalbarczyk,K.Z.,Tata,A.,Heel,T.,Kitto,R.Z.&Arnold,F.H.High-throughput screening for terpene-synthase-cyclizationactivity and directed evolution of a terpene synthase.Angew .Chemie-Int.Ed.52,5571-5574(2013).
28.Morrone,D.,Lowry,L.,Determan,M.K.,Hershey,D.M.,Xu,M.&Peters,R.J.Increasing diterpene yield with a modular metabolic engineering system inE.coli:Comparison of MEV and MEP isoprenoid precursor pathway engineering.Appl.Microbiol.Biotechnol.85,1893-1906(2010).28. Morrone, D., Lowry, L., Determan, M.K., Hershey, D.M., Xu, M. & Peters, R.J. Increasing diterpene yield with a modular metabolic engineering system in E. coli: Comparison of MEV and MEP isoprenoid precursor pathway engineering. Appl.Microbiol.Biotechnol.85,1893-1906(2010).
29.Peters,R.J.&Croteau,R.B.Abietadiene synthase catalysis:mutationalanalysis of a prenyl diphosphate ionization-initiated cyclization and rearrangement.Proc.Natl.Acad.Sci.U.S.A.99,580-584(2002).29. Peters, R.J. & Croteau, R.B. Abietadiene synthase catalysis: mutational analysis of a prenyl diphosphate ionization-initiated cyclization and rearrangement. Proc. Natl. Acad. Sci. U.S.A. 99, 580-584 (2002).
30.Wilderman,P.R.&Peters,R.J.A single residue switch convertsabietadiene synthase into a pimaradiene specific cyclase.J.Am.Chem.Soc.129,15736-15737(2007).30.Wilderman,P.R.&Peters,R.J.A single residue switch convertsabietadiene synthase into a pimaradiene specific cyclase.J.Am.Chem.Soc.129,15736-15737(2007).
31.Criswell,J.,Potter,K.,Shephard,F.,Beale,M.H.&Peters,R.J.A singleresidue change leads to a hydroxylated product from the class II diterpenecyclization catalyzed by abietadiene synthase.Org.Lett.14,5828-5831(2012).31.Criswell,J.,Potter,K.,Shephard,F.,Beale,M.H.&Peters,R.J.A singleresidue change leads to a hydroxylated product from the class II diterpenecyclization catalyzed by abietadiene synthase.Org.Lett.14,5828-5831( 2012).
32.Fasan,R.Tuning P450 enzymes as oxidation catalysts.ACS Catal.2,647-666(2012).32. Fasan, R. Tuning P450 enzymes as oxidation catalysts. ACS Catal. 2, 647-666 (2012).
33.Hamberger,B.B.,Ohnishi,T.,Hamberger,B.B.,Seguin,A.&Bohlmann,J.Evolution of diterpene metabolism:Sitka spruce CYP720B4catalyzes multipleoxidations in resin acid biosynthesis of conifer defense againstinsects.Plant Physiol.157,1677-95(2011).33.Hamberger,B.B.,Ohnishi,T.,Hamberger,B.B.,Seguin,A.&Bohlmann,J.Evolution of diterpene metabolism: Sitka spruce CYP720B4catalyzes multipleoxidations in resin acid biosynthesis of conifer defense againstinsects.Plant Physiol.157,1677-95( 2011).
34.Fujimori,D.G.&Walsh,C.T.What's new in enzymatic halogenations.Curr.Opin.Chem.Biol.11,553-560(2007).34.Fujimori,D.G.&Walsh,C.T.What's new in enzymatic halogenations.Curr.Opin.Chem.Biol.11,553-560(2007).
35.Martin,V.J.J.,Pitera,D.J.,Withers,S.T.,Newman,J.D.&Keasling,J.D.Engineering a mevalonate pathway in Escherichia coli for production ofterpenoids.Nat.Biotechnol.21,796-802(2003).35. Martin, V.J.J., Pitera, D.J., Withers, S.T., Newman, J.D. & Keasling, J.D. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat. Biotechnol. 21, 796-802 (2003).
36.Zhang,F.&Keasling,J.Biosensors and their applications in microbialmetabolic engineering.Trends Microbiol.19,323-329(2011).36. Zhang, F. & Keasling, J. Biosensors and their applications in microbialmetabolic engineering. Trends Microbiol. 19, 323-329 (2011).
37.Ajikumar,P.K.,Xiao,W.-H.,Tyo,K.E.J.,Wang,Y.,Simeon,F.,Leonard,E.,Mucha,O.,Phon,T.H.,Pfeifer,B.&Stephanopoulos,G.Isoprenoid pathwayoptimization forTaxol precursor overproduction in Escherichia coli.Science330,70-74(2010).37.Ajikumar,P.K.,Xiao,W.-H.,Tyo,K.E.J.,Wang,Y.,Simeon,F.,Leonard,E.,Mucha,O.,Phon,T.H.,Pfeifer,B.&Stephanopoulos,G. Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli.Science330,70-74(2010).
38.Dietrich,J.A.,Yoshikuni,Y.,Fisher,K.J.,Woolard,F.X.,Ockey,D.,McPhee,D.J.,Renninger,N.S.,Chang,M.C.Y.,Baker,D.&Keasling,J.D.A novel semi-biosynthetic route for artemisinin production using engineered substrate-promiscuous P450BM3.ACS Chem.Biol.4,261-267(2009).38. Dietrich, J.A., Yoshikuni, Y., Fisher, K.J., Woolard, F.X., Ockey, D., McPhee, D.J., Renninger, N.S., Chang, M.C.Y., Baker, D. & Keasling, J.D. production using engineered substrate-promiscuous P450BM3. ACS Chem. Biol. 4, 261-267 (2009).
39.Zhang,K.,El Damaty,S.&Fasan,R.P450 fingerprinting method for rapiddiscovery of terpene hydroxylating P450 catalysts with diversifiedregioselectivity.J.Am.Chem.Soc.133,3242-3245(2011).39. Zhang, K., El Damaty, S. & Fasan, R. P450 fingerprinting method for rapid discovery of terpene hydroxylating P450 catalysts with diversified regioselectivity. J. Am. Chem. Soc. 133, 3242-3245 (2011).
40.Ruttkies,C,Schymanski,E.L,Wolf,S.,Hollender,J.&Neumann,S.MetFragrelaunched:Incorporating strategies beyond in silicofragmentation.J.Cheminform.8,(2016).40. Ruttkies, C, Schymanski, E. L, Wolf, S., Hollender, J. & Neumann, S. Met Fragrelaunched: Incorporating strategies beyond in silicofragmentation. J. Cheminform. 8, (2016).
41.Pelander,A.,Tyrkko,E.&Ojanpera,I.In silico methods for predictingmetabolism and mass fragmentation applied to quetiapine in liquidchromatography/time-of-flight mass spectrometry urine drug screening.RapidCommun.Mass Spectrom.23,506-514 2009.41.Pelander,A.,Tyrkko,E.&Ojanpera,I.In silico methods for predictingmetabolism and mass fragmentation applied to quetiapine in liquidchromatography/time-of-flight mass spectrometry urine drug screening.RapidCommun.Mass Spectrom.23,506-514 2009.
42.Kampranis,S.C,loannidis,D.,Purvis,A.,Mahrez,W.,Ninga,E.,Katerelos,N.A.,Anssour,S.,Dunwell,J.M.,Degenhardt,J.,Makris,A.M.,Goodenough,P.W.&Johnson,C.B.Rational conversion of substrate and product specificity in aSalvia monoterpene synthase:structural insights into the evolution of terpenesynthase function.Plant Cell 19,1994-2005(2007).42. Kampranis, S.C, loannidis, D., Purvis, A., Mahrez, W., Ninga, E., Katerelos, N.A., Anssour, S., Dunwell, J.M., Degenhardt, J., Makris, A.M., Goodenough, P.W.&Johnson,C.B.Rational conversion of substrate and product specificity in aSalvia monoterpene synthase:structural insights into the evolution of terpenesynthase function.Plant Cell 19,1994-2005(2007).
43.Huang,Q.,Williams,H.J.,Roessner,C.A.&Scott,A.I.Sesquiterpenesproduced by truncated taxadiene synthase.Tetrahedron Lett.41,9701-9704(2000).43. Huang, Q., Williams, H.J., Roessner, C.A. & Scott, A.I. Sesquiterpenes produced by truncated taxadiene synthase. Tetrahedron Lett. 41, 9701-9704 (2000).
44.Tachibana,A.,Yano,Y.,Otani,S.,Nomura,N.,Sako,Y.&Taniguchi,M.Novelprenyltransferase gene encoding farnesylgeranyl diphosphate synthase from ahyperthermophilic archaeon,Aeropyrum pernix.Molecular evolution withalteration in product specificity.Eur.J.Biochem.267,321-328(2000).44. Tachibana, A., Yano, Y., Otani, S., Nomura, N., Sako, Y. & Taniguchi, M. Novelprenyltransferase gene encoding farnesylgeranyl diphosphate synthase from ahyperthermophilic archaeon, Aeropyrum pernix. Molecular evolution with alteration in product specificity. Eur.J.Biochem.267,321-328(2000).
45.Jia,M.,Potter,K.C.&Peters,R.J.Extreme promiscuity of a bacterialand a plant diterpene synthase enables combinatorialbiosynthesis.Metab.Eng.37,24-34(2016).45. Jia, M., Potter, K. C. & Peters, R. J. Extreme promiscuity of a bacterialand a plant diterpene synthase enables combinatorial biosynthesis. Metab. Eng. 37, 24-34 (2016).
46.Fox,J.M.,Kang,K.K.,Sastry,M.,Sherman,W.,Sankaran,B.,Zwart,P.H.&Whitesides,G.M.Water-Restructuring Mutations Can Reverse the ThermodynamicSignature of Ligand Binding to Human Carbonic Anhydrase.Angew.ChemieInt.Ed.56,3833-3837(2017).46.Fox,J.M.,Kang,K.K.,Sastry,M.,Sherman,W.,Sankaran,B.,Zwart,P.H.&Whitesides,G.M.Water-Restructuring Mutations Can Reverse the ThermodynamicSignature of Ligand Binding to Human Carbonic Anhydrase.Angew.ChemieInt .Ed.56,3833-3837(2017).
47.Krimmer,S.G.,Betz,M.,Heine,A.&Klebe,G.Methyl,ethyl,propyl,butyl:Futile but not for water,as the correlation of structure and thermodynamicsignature shows in a congeneric series of thermolysin inhibitors.ChemMedChem9,833-846(2014).47.Krimmer,S.G.,Betz,M.,Heine,A.&Klebe,G.Methyl,ethyl,propyl,butyl:Futile but not for water,as the correlation of structure and thermodynamicsignature shows in a congeneric series of thermolysin inhibitors.ChemMedChem9 ,833-846(2014).
48.Jung,S.T.,Lauchli,R.&Arnold,F.H.Cytochrome P450:Taming a wild typeenzyme.Curr.Opin.Biotechnol.22,809-817(2011).48. Jung, S. T., Lauchli, R. & Arnold, F. H. Cytochrome P450: Taming a wild typeenzyme. Curr. Opin. Biotechnol. 22, 809-817 (2011).
49.Hamberger,B.B.,Ohnishi,T.,Hamberger,B.B.,Seguin,A.&Bohlmann,J.Evolution of diterpene metabolism:Sitka spruce CYP720B4catalyzes multipleoxidations in resin acid biosynthesis of conifer defense againstinsects.Plant Physiol.157,1677-95(2011).49.Hamberger,B.B.,Ohnishi,T.,Hamberger,B.B.,Seguin,A.&Bohlmann,J.Evolution of diterpene metabolism: Sitka spruce CYP720B4catalyzes multiple oxidations in resin acid biosynthesis of conifer defense againstinsects.Plant Physiol.157,1677-95( 2011).
50.Seifert,A.,Vomund,S.,Grohmann,K.,Kriening,S.,Urlacher,V.B.,Laschat,S.&Pleiss,J.Rational design of a minimal and highly enriched CYP102A1mutant library with improved regio-,stereo-and chemoselectivity.ChemBioChem10,853-861(2009).50. Seifert, A., Vomund, S., Grohmann, K., Kriening, S., Urlacher, V. B., Laschat, S. & Pleiss, J. Rational design of a minimal and highly enriched CYP102A1mutant library with improved regio-,stereo -and chemoselectivity.ChemBioChem10,853-861(2009).
51.Lewis,J.C,Mantovani,S.M.,Fu,Y.,Snow,C.D.,Komor,R.S.,Wong,C.H.&Arnold,F.H.Combinatorial alanine substitution enables rapid optimization ofcytochrome P450BM3 for selective hydroxylation of large底物s.ChemBioChem 11,2502-250551. Lewis, J.C, Mantovani, S.M., Fu, Y., Snow, C.D., Komor, R.S., Wong, C.H. & Arnold, F.H. Combinatorial alanine substitution enables rapid optimization of cytochrome P450BM3 for selective hydroxylation of large substrates.
52.Butler,C.F.,Peet,C,Mason,A.E.,Voice,M.W.,Leys,D.&Munro,A.W.Keymutations alter the cytochrome P450 BM3 conformational landscape and removeinherent substrate bias.J.Biol.Chem.288,25387-25399(2013).52.Butler,C.F.,Peet,C,Mason,A.E.,Voice,M.W.,Leys,D.&Munro,A.W.Keymutations alter the cytochrome P450 BM3 conformational landscape and removeinherent substrate bias.J.Biol.Chem.288,25387-25399( 2013).
53.Auffinger,P.,Hays,F.a,Westhof,E.&Ho,P.S.Halogen bonds inbiological molecules.Proc.Natl.Acad.Sci.U.S.A.101,16789-16794(2004).53. Auffinger, P., Hays, F.a, Westhof, E. & Ho, P.S. Halogen bonds inbiological molecules. Proc. Natl. Acad. Sci. U.S.A. 101, 16789-16794 (2004).
54.Fox,J.,Kang,K.,Sherman,W.,Heroux,A.,Sastry,G.,Baghbanzadeh,M.,Lockett,M.&Whitesides,G.Interactions between Hofmeister anions and thebinding pocket of a protein.J.Am.Chem.Soc.137,3859-3866(2015).54. Fox, J., Kang, K., Sherman, W., Heroux, A., Sastry, G., Baghbanzadeh, M., Lockett, M. & Whitesides, G. Interactions between Hofmeister anions and the binding pocket of a protein .J.Am.Chem.Soc.137,3859-3866(2015).
55.Carter,M.,Voth,A.R.,Scholfield,M.R.,Rummel,B.,Sowers,L.C.&Ho,P.S.Enthalpy-entropy compensation in biomolecular halogen bonds measured inDNA junctions.Biochemistry 52,4891-4903(2013).55. Carter, M., Voth, A.R., Scholfield, M.R., Rummel, B., Sowers, L.C. & Ho, P.S. Enthalpy-entropy compensation in biomolecular halogen bonds measured in DNA junctions. Biochemistry 52, 4891-4903 (2013).
56.Shepherd,S.A.,Menon,B.R.K.,Fisk,H.,Struck,A.-W.,Levey,C,Leyes,D.&Micklefield,J.A Structure-Guided Switch in the Regioselectivity of aTryptophan Halogenase.ChemBioChem 17,821-824(2016).56.Shepherd, S.A., Menon, B.R.K., Fisk, H., Struck, A.-W., Levey, C, Leyes, D. & Micklefield, J.A Structure-Guided Switch in the Regioselectivity of a Tryptophan Halogenase. ChemBioChem 17,821-824( 2016).
57.Carter-Franklin,J.N.,Parrish,J.D.,Tschirret-Guth,R.A.,Little,R.D.&Butler,A.Vanadium haloperoxidase-catalyzed bromination and cyclization ofterpenes.J.Am.Chem.Soc.125,3688-3689(2003).57.Carter-Franklin,J.N.,Parrish,J.D.,Tschirret-Guth,R.A.,Little,R.D.&Butler,A.Vanadium haloperoxidase-catalyzed bromination and cyclization ofterpenes.J.Am.Chem.Soc.125,3688-3689(2003) .
58.Li,R.,Chou,W.K.W.,Himmelberger,J.A.,Litwin,K.M.,Harris,G.G.,Cane,D.E.&Christianson,D.W.Reprogramming the chemodiversity of terpenoidcyclization by remolding the active site contour of epi-isozizaenesynthase.Biochemistry 53,1155—1168(2014).58. Li, R., Chou, W. K. W., Himmelberger, J. A., Litwin, K. M., Harris, G. G., Cane, D. E. & Christianson, D. W. Reprogramming the chemodiversity of terpenoidcyclization by remolding the active site contour of epi-isozizaenesynthase. Biochemistry 53, 1155— 1168(2014).
59.Brown,S.&O'Connor,S.E.Halogenase Engineering for the Generation ofNew Natural Product Analogues.ChemBioChem 16,2129-2135(2015).59. Brown, S. & O'Connor, S.E. Halogenase Engineering for the Generation of New Natural Product Analogues.
60.Steele,C.L.,Crock,J.,Bohlmann,J.&Croteau,R.Sesquiterpene Synthasesfrom Grand Fir(Abies grandis).J.Biol.Chem.273,2078-2089(1998).60. Steele, C.L., Crock, J., Bohlmann, J. & Croteau, R. Sesquiterpene Synthases from Grand Fir (Abies grandis). J. Biol. Chem. 273, 2078-2089 (1998).
61.Lu,Y.&Mei,L.Co-expression of P450 BM3 and glucose dehydrogenase byrecombinant Escherichia coli and its application in an NADPH-dependent indigoproduction system.J.Ind.Microbiol.Biotechnol.34,247-253(2007).61. Lu, Y. & Mei, L. Co-expression of P450 BM3 and glucose dehydrogenase by recombinant Escherichia coli and its application in an NADPH-dependent indigoproduction system. J. Ind. Microbiol. Biotechnol. 34, 247-253 (2007).
62.Tzeng,S.-R.&Kalodimos,C.G.Protein activity regulation byconformational entropy.Nature 488,236-240(2012).62. Tzeng, S.-R. & Kalodimos, C.G. Protein activity regulation by conformational entropy.
63.Aramini,J.M.,Vorobiev,S.M.,Tuberty,L.M.,Janjua,H.,Campbell,E.T.,Seetharaman,J.,Su,M.,Huang,Y.J.,Acton,T.B.,Xiao,R.,Tong,L.&Montelione,G.T.TheRAS-Binding Domain of Human BRAF Protein Serine/Threonine Kinase ExhibitsAllosteric Conformational Changes upon Binding HRAS.Structure 23,1382-1393(2015).63.Aramini,J.M.,Vorobiev,S.M.,Tuberty,L.M.,Janjua,H.,Campbell,E.T.,Seetharaman,J.,Su,M.,Huang,Y.J.,Acton,T.B.,Xiao,R.,Tong,L. &Montelione,G.T.TheRAS-Binding Domain of Human BRAF Protein Serine/Threonine Kinase ExhibitsAllosteric Conformational Changes upon Binding HRAS.Structure 23,1382-1393(2015).
64.Christianson,D.W.Structural biology and chemistry of the terpenoidcyclases.Chem.Rev.106,3412-3442(2006).64. Christianson, D.W. Structural biology and chemistry of the terpenoidcyclases. Chem. Rev. 106, 3412-3442 (2006).
65.O'Maille,P.E.,Malone,A.,Delias,N.,Andes Hess,B.,Smentek,L.,Sheehan,I.,Greenhagen,B.T.,Chappell,J.,Manning,G.&Noel,J.P.Quantitativeexploration of the catalytic landscape separating divergent plantsesquiterpene synthases.Nat.Chem.Biol.4,617-623(2008).65.O'Maille, P.E., Malone, A., Delias, N., Andes Hess, B., Smentek, L., Sheehan, I., Greenhagen, B.T., Chappell, J., Manning, G. & Noel, J.P. Quantitative exploration of the catalytic landscape separating divergent plants sequiterpene synthases. Nat. Chem. Biol. 4, 617-623 (2008).
66.Packer,M.S.&Liu,D.R.Methods for the directed evolution ofproteins.Nat.Rev.Genet.16,379-394(2015).66. Packer, M. S. & Liu, D. R. Methods for the directed evolution of proteins. Nat. Rev. Genet. 16, 379-394 (2015).
67.Badran,A.H.,Guzov,V.M.,Huai,Q.,Kemp,M.M.,Vishwanath,P.,Kain,W.,Nance,A.M.,Evdokimov,A.,Moshiri,F.,Turner,K.H.,Wang,P.,Malvar,T.&Liu,D.R.Continuous evolution of Bacillus thuringiensis toxins overcomes insectresistance.Nature 533,58-63(2016).67.Badran,A.H.,Guzov,V.M.,Huai,Q.,Kemp,M.M.,Vishwanath,P.,Kain,W.,Nance,A.M.,Evdokimov,A.,Moshiri,F.,Turner,K.H.,Wang,P .,Malvar,T.&Liu,D.R.Continuous evolution of Bacillus thuringiensis toxins overcomes insectresistance.Nature 533,58-63(2016).
68.Ting,a Y.,Kain,K.H.,Klemke,R.L.&Tsien,R.Y.Genetically encodedfluorescent reporters of protein tyrosine kinase activities in living cells.Proc.Natl.Acad.Sci.U.S.A.98,15003-15008(2001).68.Ting,a Y.,Kain,K.H.,Klemke,R.L.&Tsien,R.Y.Genetically encodedfluorescent reporters of protein tyrosine kinase activities in living cells.Proc.Natl.Acad.Sci.U.S.A.98,15003-15008(2001).
69.Sato,M.&Umezawa,Y.in Cell Biol.Four-Volume Set 2,325-328(2006).69. Sato, M. & Umezawa, Y. in Cell Biol. Four-
70.Dye,B.T.Flow cytometric analysis of CFP-YFP FRET as a marker forin vivo protein-protein interaction.Clin.Appl.Immunol.Rev.5,307-324(2005).70.Dye, B.T. Flow cytometric analysis of CFP-YFP FRET as a marker for in vivo protein-protein interaction. Clin. Appl. Immunol. Rev. 5, 307-324 (2005).
71.Vereb,G.,Nagy,P.&Szollosi,J.Flow cytometric FRET analysis ofprotein interaction.Methods Mol.Biol.699,371-92(2011).71. Vereb, G., Nagy, P. & Szollosi, J. Flow cytometric FRET analysis of protein interaction. Methods Mol. Biol. 699, 371-92 (2011).
72.Chen,Y.-N.P.,LaMarche,M.J.,Chan,H.M.,Fekkes,P.,Garcia-Fortanet,J.,Acker,M.G.,Antonakos,B.,Chen,C.H.-T.,Chen,Z.,Cooke,V.G.,Dobson,J.R.,Deng,Z.,Fei,F.,Firestone,B.,Fodor,M.,Fridrich,C,Gao,H.,Grunenfelder,D.,Hao,H.-X.,Jacob,J.,Ho,S.,Hsiao,K.,Kang,Z.B.,Karki,R.,Kato,M.,Larrow,J.,La Bonte,L.R.,Lenoir,F.,Liu,G.,Liu,S.,Majumdar,D.,Meyer,M.J.,Palermo,M.,Perez,L.,Pu,M.,Price,E.,Quinn,C,Shakya,S.,Shultz,M.D.,Slisz,J.,Venkatesan,K.,Wang,P.,Warmuth,M.,Williams,S.,Yang,G.,Yuan,J.,Zhang,J.-H.,Zhu,P.,Ramsey,T.,Keen,N.J.,Sellers,W.R.,Stams,T.&Fortin,P.D.Allosteric inhibition of SHP2phosphatase inhibits cancers driven by receptor tyrosine kinases.Nature 535,148-52(2016).72.Chen,Y.-N.P.,LaMarche,M.J.,Chan,H.M.,Fekkes,P.,Garcia-Fortanet,J.,Acker,M.G.,Antonakos,B.,Chen,C.H.-T.,Chen,Z., Cooke,V.G.,Dobson,J.R.,Deng,Z.,Fei,F.,Firestone,B.,Fodor,M.,Fridrich,C,Gao,H.,Grunenfelder,D.,Hao,H.-X., Jacob,J.,Ho,S.,Hsiao,K.,Kang,Z.B.,Karki,R.,Kato,M.,Larrow,J.,La Bonte,L.R.,Lenoir,F.,Liu,G.,Liu,S.,Majumdar,D.,Meyer,M.J.,Palermo,M.,Perez,L.,Pu,M.,Price,E.,Quinn, C,Shakya,S.,Shultz,M.D.,Slisz,J.,Venkatesan,K.,Wang,P.,Warmuth,M.,Williams,S.,Yang,G.,Yuan,J.,Zhang,J. -H., Zhu, P., Ramsey, T., Keen, N.J., Sellers, W.R., Stams, T. & Fortin, P.D. Allosteric inhibition of SHP2phosphatase inhibits cancers driven by receptor tyrosine kinases. Nature 535,148-52(2016).
73.Yoshikuni,Y.,Ferrin,T.E.&Keasling,J.D.Designed divergent evolutionof enzyme function.Nature 440,1078-1082(2006).73. Yoshikuni, Y., Ferrin, T. E. & Keasling, J. D. Designed divergent evolution of enzyme function.
74.Gruet,A.,Longhi,S.&Bignon,C.One-step generation of error-prone PCRlibraries using technology.Microb.Cell Fact.11,14(2012).74.Gruet,A.,Longhi,S.&Bignon,C.One-step generation of error-prone PCRlibraries using technology.Microb.Cell Fact.11,14(2012).
75.Dietrich,J.A.,McKee,A.E.&Keasling,J.D.High-Throughput MetabolicEngineering:Advances in Small-Molecule Screening andSelection.Annu.Rev.Biochem.79,563-590(2010).75. Dietrich, J. A., McKee, A. E. & Keasling, J. D. High-Throughput Metabolic Engineering: Advances in Small-Molecule Screening and Selection. Annu. Rev. Biochem. 79, 563-590 (2010).
76.Esvelt,K.M.,Carlson,J.C.&Liu,D.R.A system for the continuousdirected evolution of biomolecules.Nature 472,499-503(2011).76. Esvelt, K. M., Carlson, J. C. & Liu, D. R. A system for the continuous directed evolution of biomolecules. Nature 472, 499-503 (2011).
77.Feiler,C,Fisher,A.C,Boock,J.T.,Marrichi,M.J.,Wright,L.,Schmidpeter,P.A.M.,Blankenfeldt,W.,Pavelka,M.&DeLisa,M.P.Directed Evolutionof Mycobacterium tuberculosis(3-Lactamase Reveals Gatekeeper Residue ThatRegulates Antibiotic Resistance and Catalytic Efficiency.PLoS One 8,(2013).77. Feiler, C, Fisher, A.C, Boock, J.T., Marrichi, M.J., Wright, L., Schmidpeter, P.A.M., Blankenfeldt, W., Pavelka, M. & DeLisa, M.P. Directed Evolution of Mycobacterium tuberculosis (3-Lactamase Reveals Gatekeeper Residue ThatRegulates Antibiotic Resistance and Catalytic Efficiency. PLoS One 8, (2013).
78.Murphy,R.B.,Repasky,M.P.,Greenwood,J.R.,Tubert-Brohman,I.,Jerome,S.,Annabhimoju,R.,Boyles,N.A.,Schmitz,C.D.,Abel,R.,Farid,R.&Friesner,R.A.WScore:A flexible and accurate treatment of explicit water molecules inligand-receptor docking.J.Med.Chem.acs.jmedchem.6b00131(2016).doi:10.1021/acs.jmedchem.6b0013178.Murphy,R.B.,Repasky,M.P.,Greenwood,J.R.,Tubert-Brohman,I.,Jerome,S.,Annabhimoju,R.,Boyles,N.A.,Schmitz,C.D.,Abel,R.,Farid,R.&Friesner, R.A.WScore:A flexible and accurate treatment of explicit water molecules inligand-receptor docking.J.Med.Chem.acs.jmedchem.6b00131(2016).doi:10.1021/acs.jmedchem.6b00131
79.Konc,J.,Miller,B.T.,Stular,T.,Lesnik,S.,Woodcock,H.L.,Brooks,B.R.&Janezic,D.ProBiS-CHARMMing:Web Interface for Prediction and Optimization ofLigands in Protein Binding Sites.J.Chem.Inf.Model.55,2308-2314(2015).79. Konc, J., Miller, B.T., Stular, T., Lesnik, S., Woodcock, H.L., Brooks, B.R. & Janezic, D. ProBiS-CHARMMing: Web Interface for Prediction and Optimization of Ligands in Protein Binding Sites.J. Chem.Inf.Model.55,2308-2314(2015).
80.Guo,R.-T.,Cao,R.,Liang,P.-H.,Ko,T.-P.,Chang,T.-H.,Hudock,M.P.,Jeng,W.-Y.,Chen,C.K.-M.,Zhang,Y.,Song,Y.,Kuo,C.-J.,Yin,F.,Oldfield,E.&Wang,A.H.-J.Bisphosphonates target multiple sites in both cis-and trans-prenyltransferases.Proc.Natl.Acad.Sci.U.S.A.104,10022-10027(2007).80.Guo, R.-T.,Cao,R.,Liang,P.-H.,Ko,T.-P.,Chang,T.-H.,Hudock,M.P.,Jeng,W.-Y. ,Chen,C.K.-M.,Zhang,Y.,Song,Y.,Kuo,C.-J.,Yin,F.,Oldfield,E.&Wang,A.H.-J.Bisphosphonates target multiple sites in both cis-and trans-prenyltransferases.Proc.Natl.Acad.Sci.U.S.A.104,10022-10027(2007).
81.Teng,K.H.&Liang,P.H.Structures,mechanisms and inhibitors ofundecaprenyl diphosphate synthase:A cis-prenyltransferase for bacterialpeptidoglycan biosynthesis.Bioorg.Chem.43,51-57(2012).81.Teng,K.H.&Liang,P.H.Structures,mechanisms and inhibitors of undecaprenyl diphosphate synthase:A cis-prenyltransferase for bacterialpeptidoglycan biosynthesis.Bioorg.Chem.43,51-57(2012).
82.Zhu,W.,Zhang,Y.,Sinko,W.,Hensler,M.E.,Olson,J.,Molohon,K.J.,Lindert,S.,Cao,R.,Li,K.,Wang,K.,Wang,Y.,Liu,Y.-L,Sankovsky,A.,de Oliveira,C.A.F.,Mitchell,D.a,Nizet,V.,McCammon,J.A.&Oldfield,E.Antibacterial drugleads targeting isoprenoid biosynthesis.Proc.Natl.Acad.Sci.U.S.A.110,123-8(2013).82.Zhu,W.,Zhang,Y.,Sinko,W.,Hensler,M.E.,Olson,J.,Molohon,K.J.,Lindert,S.,Cao,R.,Li,K.,Wang,K., Wang,Y.,Liu,Y.-L,Sankovsky,A.,de Oliveira,C.A.F.,Mitchell,D.a,Nizet,V.,McCammon,J.A.&Oldfield,E.Antibacterial drugleads targeting isoprenoid biosynthesis.Proc.Natl.Acad. Sci.U.S.A.110,123-8(2013).
83.Leonard,E.,Ajikumar,P.K.,Thayer,K.,Xiao,W.-H.,Mo,J.D.,Tidor,B.,Stephanopoulos,G.&Prather,K.L.J.Combining metabolic and protein engineeringof a terpenoid biosynthetic pathway for overproduction and selectivity control.Proc.Natl.Acad.Sci.U.S.A.107,13654-13659(2010).83. Leonard, E., Ajikumar, P.K., Thayer, K., Xiao, W.-H., Mo, J.D., Tidor, B., Stephanopoulos, G. & Prather, K.L.J. Combining metabolic and protein engineering of a terpenoid biosynthetic pathway for overproduction and selectivity control.Proc.Natl.Acad.Sci.U.S.A.107,13654-13659(2010).
84.Ro,D.-K.,Paradise,E.M.,Ouellet,M.,Fisher,K.J.,Newman,K.L.,Ndungu,J.M.,Ho,K.A.,Eachus,R.A.,Ham,T.S.,Kirby,J.,Chang,M.C.Y.,Withers,S.T.,Shiba,Y.,Sarpong,R.&Keasling,J.D.Production of the antimalarial drug precursorartemisinic acid in engineered yeast.Nature 440,940-943(2006).84.Ro,D.-K.,Paradise,E.M.,Ouellet,M.,Fisher,K.J.,Newman,K.L.,Ndungu,J.M.,Ho,K.A.,Eachus,R.A.,Ham,T.S.,Kirby,J.,Chang, M.C.Y., Withers, S.T., Shiba, Y., Sarpong, R. & Keasling, J.D. Production of the antimalarial drug precursor artemisinic acid in engineered yeast.
V.用于鉴定调节酶活性的小分子的细菌系统的具体实施方式。V. Specific embodiments of bacterial systems for identifying small molecules that modulate enzyme activity.
如本文描述,开发大肠杆菌的菌株,其包括以下两者:(i)将细胞存活与来自智人的病理学相关酶(即,药物靶标)的调节抑制相关的基因编码系统(即,“细菌双杂交”或B2H系统)和(ii)代谢产物生物合成的途径。与传统上构成单个操纵子相比,本文描述的基因编码系统含有更多的基因元件(例如,它具有大于一个启动子),但是有时被称为操纵子。As described herein, strains of E. coli were developed that include both: (i) a gene encoding system that links cell survival to regulated inhibition of a pathology-related enzyme (i.e., a drug target) from Homo sapiens (i.e., a "bacterial two-hybrid" or B2H system) and (ii) a pathway for metabolite biosynthesis. The gene encoding system described herein contains more genetic elements (e.g., it has more than one promoter) than traditionally constituted a single operon, but is sometimes referred to as an operon.
更特别地,如本文描述的,宿主生物体,例如大肠杆菌用多至四个质粒转化,所述质粒包括:第一质粒(质粒1),一种表达质粒,其包括将靶标酶的抑制与细胞存活联系在一起的基因编码系统,其中靶标酶可为了鉴定抑制特定靶标酶的分子的目的被选择;第二质粒(质粒2),一种表达质粒,其包括表达对合成代谢途径的产物必要的至少一些基因的操纵子,所述代谢途径例如用于提供类萜产物化合物的源自酿酒酵母的类萜生物合成的甲羟戊酸依赖性途径;第三质粒(质粒3),一种表达质粒,其包括至少一种另外基因,不存在于质粒(质粒2)中,例如萜合酶,比如ADS、GHS、ABS或TXS,用于提供期望的产物,例如类萜产物,使得当宿主细菌表达质粒1和2时,期望的产物不产生,直到宿主细菌表达质粒3用于完成期望的化合物的途径;和第四质粒(质粒4),起包括对大肠杆菌的菌株特异性的另外基因组分,例如,S1030的F-质粒(Addgene 105063)。More specifically, as described herein, a host organism, such as E. coli, is transformed with up to four plasmids, including: a first plasmid (plasmid 1), an expression plasmid, which includes a gene encoding system that links inhibition of a target enzyme to cell survival, wherein the target enzyme can be selected for the purpose of identifying molecules that inhibit a specific target enzyme; a second plasmid (plasmid 2), an expression plasmid, which includes an operon that expresses at least some of the genes necessary for the product of a synthetic metabolic pathway, such as a methylhydroxylase from terpenoid biosynthesis of Saccharomyces cerevisiae for providing a terpenoid product compound; valerate-dependent pathway; a third plasmid (plasmid 3), an expression plasmid comprising at least one additional gene not present in plasmid (plasmid 2), e.g., a terpene synthase, such as ADS, GHS, ABS or TXS, for providing a desired product, e.g., a terpenoid product, such that when the host bacteria express plasmids 1 and 2, the desired product is not produced until the host bacteria express plasmid 3 for completing the pathway to the desired compound; and a fourth plasmid (plasmid 4), comprising additional gene components specific to strains of E. coli, e.g., the F-plasmid of S1030 (Addgene 105063).
质粒1实施方式的示例显示在图33A、图33B、图33D、图33E、图34、图35、图40A、图40B、图40C、图40D等中。Examples of
在一些实施方式中,用作转化的宿主的大肠杆菌的菌株具有ΔrpoZ突变,其使质粒1编码的系统能够控制抗生素抗性的基因的表达。In some embodiments, the strain of E. coli used as a host for transformation has a ΔrpoZ mutation that enables the system encoded by
在一些实施方式中,质粒2和/或3构成类萜生物合成的途径。在一些实施方式中,质粒2和/或3构成生物碱生物合成的途径。在一些实施方式中,质粒2和/或3构成聚酮化合物生物合成的途径。In some embodiments,
在一些实施方式中,质粒3进一步包括与ABS或TXS组合的GGPPS基因。GGPPS基因的示例提供了萜合酶基因,即ABS或TXS的底物。在一些实施方式中,萜合酶基因是野生型基因。在一些优选的实施方式中,萜合酶基因包括用于产生类萜产物变体的突变,如本文描述和所示的。在一些实施方式中,质粒3进一步包括功能化酶例如细胞色素P450的类萜的基因。In some embodiments,
在一些优选的实施方式中,质粒1在组成型启动子的控制下。因此,在一些优选的实施方式中,为质粒1中操纵子的部分的至少一些基因组成地表达。在一些优选的实施方式中,当与可诱导的化合物接触时,即在诱导型启动子的控制下,比如当与X-gal接触时打开lacZ启动子,表达为质粒1中操纵子的部分的至少一些基因。In some preferred embodiments,
在一些优选的实施方式中,质粒2和3在诱导型启动子的控制下。因此,在一些优选的实施方式中,当与可诱导的化合物接触时表达质粒2中代谢途径操纵子含有的至少一些基因,并且在一些情况下整组基因。在一些优选的实施方式中,质粒3中表达的一些基因在可诱导的控制下。In some preferred embodiments,
在一些优选的实施方式中,质粒4在组成型启动子的控制下。因此,在一些实施方式中,质粒4中的至少一个基因在组成型启动子的控制下。在一些实施方式中,质粒4中的至少一个基因在诱导型启动子的控制下。In some preferred embodiments,
在一些优选的实施方式中,宿主细菌经历至少2轮转化,例如首先,将质粒1和2同时转化入已经携带质粒4的菌株(例如,已经包括该附属质粒(accessory plasmid)的S1030菌株),随后用质粒3转化。在一些优选的实施方式中,宿主细菌经历至少3轮转化,例如首先,转染质粒1,然后转染质粒2,随后转染质粒3。In some preferred embodiments, the host bacteria undergo at least 2 rounds of transformation, for example, first,
在一些优选的实施方式中,每个质粒具有抗生素抗性基因(或选择性基因的其他类型),用于鉴定对于该质粒成功地转化的细菌,即对于每个质粒抗生素抗性基因可以不同。因此,当表达抗生素抗性基因时,细菌具有抗性,因此能够以正常或接近正常的速度复制,而不是当与抗生素接触时从正常复制停止的细菌。In some preferred embodiments, each plasmid has an antibiotic resistance gene (or other type of selectable gene) for identifying bacteria that have been successfully transformed with that plasmid, i.e., the antibiotic resistance gene may be different for each plasmid. Thus, when the antibiotic resistance gene is expressed, the bacteria are resistant and are therefore able to replicate at a normal or near normal rate, rather than bacteria that stop replicating normally when exposed to the antibiotic.
因此,如本文描述的,通过首先用质粒1转染,然后在其中非转化体不生长的含抗生素的培养基上/之中选择转化体(生长菌落),然后用质粒2转染转化体并且选择双重转化体,例如含有抗生素的培养基,允许双重转化体的生长,然后用质粒3转染双重转化体并且选择三重转化体,例如允许三重转化体的生长的含有抗生素的培养基,将大肠杆菌的实验室菌株工程化为包括多至三种类型的表达质粒。在一个实施方式中,三重转化体在含有与三种抗生素组合的用于可诱导的质粒(2和3)的诱导物的培养基中生长,用于产生对质粒1的选择的酶具有至少一些抑制活性的产物,其通过由质粒2和3表达的酶组合提供的酶制造。Thus, as described herein, a laboratory strain of E. coli is engineered to include up to three types of expression plasmids by first transfecting with
此外,如本文描述的,通过首先同时以质粒1和2将宿主细胞转化为已经携带质粒4的菌株,然后在其中非转化体不生长的含抗生素的培养基上/之中选择三重转化体(生长菌落),然后用质粒3进一步转化成功的三重转化体并且选择四重转化体,例如允许四重体转化体生长的含有抗生素的培养基,将大肠杆菌的实验室染菌株工程化为包括多至四种类型的表达质粒。在一个实施方式中,四重转化体在含有下述的培养基中生长:(i)可诱导的质粒(2和3)的诱导物,(ii)代谢产物生物合成的代谢前体,例如甲羟戊酸盐和(iii)五种抗生素(即,每种质粒一种,并且在质粒1中基因编码系统的控制下一种),用于产生对质粒1选择的酶具有至少一些抑制活性的产物,其通过由质粒2和3表达的酶组合制造。In addition, as described herein, a laboratory strain of E. coli is engineered to include up to four types of expression plasmids by first simultaneously transforming the host cell with
在一些实施方式中,可通过交换萜合酶的不同基因来改变意图插入质粒2中或已经插入质粒2内的类萜操纵子途径;(即,在图36的每一行中,代谢途径在萜合酶的基因的特性上是不同的;当ADS或TXS存在时,GGPPS也存在)。In some embodiments, the terpenoid operon pathway intended for insertion into
例如,在图41A、图41B、图41C和图41D中,我们突变(而不是交换)代谢途径的单个基因:例如诱导编码紫穗槐二烯合酶的基因的至少一个突变。这样做之后,我们显示可突变代谢途径以生成途径文库,并且可筛选这些途径以鉴定比未突变的亲本途径生成更有效的PTP1B抑制剂的途径。For example, in Figures 41A, 41B, 41C, and 41D, we mutated (rather than swapped) individual genes of a metabolic pathway: for example, at least one mutation was induced in a gene encoding amorphadiene synthase. By doing so, we show that metabolic pathways can be mutated to generate pathway libraries, and these pathways can be screened to identify pathways that produce more potent PTP1B inhibitors than the unmutated parental pathway.
总而言之,我们提供了证明,(i)B2H系统(检测操纵子)和(ii)类萜生物合成的代谢途径可在宿主生物体中组合,以鉴定涉及小分子产生的基因并且进化与可能是抑制剂的小分子产生相关的基因,使PTP1B抑制剂能够微生物合成。In summary, we provide evidence that (i) the B2H system (detection operon) and (ii) metabolic pathways for terpenoid biosynthesis can be combined in a host organism to identify genes involved in small molecule production and to evolve genes associated with small molecule production that could be inhibitors, enabling microbial synthesis of PTP1B inhibitors.
在优选的实施方式中,小分子产物源自一种通用的代谢途径(来自酿酒酵母的类萜生物合成的甲羟戊酸依赖性途径)和一种宿主生物体(大肠杆菌)。考虑了如本文描述产生的这些小分子产物用作治疗2型糖尿病、肥胖和乳腺癌以及其他疾病。In a preferred embodiment, the small molecule products are derived from a common metabolic pathway (the mevalonate-dependent pathway of terpenoid biosynthesis from Saccharomyces cerevisiae) and a host organism (Escherichia coli). The small molecule products produced as described herein are contemplated for use as treatments for
不受理论的束缚,当用于检测特定测试酶的活性的基因编码系统位于宿主细菌内时,组成型启动子表达检测系统的A部分(例如检测操纵子)。只要由A部分表达的磷酸酶(或其他测试酶)是有活性的,表达的激酶,例如Src激酶将磷酸根(P)基团附着至包括附着至能够将RNA聚合酶募集至DNA的蛋白质(例如,RNA聚合酶的RPω亚单元)的底物识别结构域(S)的表达的第二融合蛋白,并且磷酸酶去除该磷酸根基团,使得磷酸化融合蛋白2的很少分子保持结合至融合蛋白1,因此,在融合蛋白2和1之间几乎没有复合物形成以启动感兴趣的基因(GOI)的转录。Without being bound by theory, when the gene encoding system for detecting the activity of a specific test enzyme is located in the host bacteria, the constitutive promoter expresses the A part of the detection system (e.g., the detection operon). As long as the phosphatase (or other test enzyme) expressed by the A part is active, the expressed kinase, such as Src kinase, attaches a phosphate (P) group to the expressed second fusion protein including a substrate recognition domain (S) attached to a protein capable of recruiting RNA polymerase to DNA (e.g., the RP ω subunit of RNA polymerase), and the phosphatase removes the phosphate group, so that few molecules of the phosphorylated
因此,部分B的转录关闭,并且GOI的表达低,例如,如当GOI是发光蛋白质时观察到的,只要不诱导placZ诱导型启动子。在操纵子的该实施方式中,诱导placZ诱导型启动子以便当不测试抑制剂分子时在抑制剂不存在的情况下,允许感兴趣的基因表达。Thus, transcription of part B is turned off and expression of the GOI is low, as observed, for example, when the GOI is a luminescent protein, as long as the placZ inducible promoter is not induced. In this embodiment of the operon, the placZ inducible promoter is induced so as to allow expression of the gene of interest in the absence of the inhibitor when the inhibitor molecule is not tested.
然而,在抑制磷酸酶的小分子存在的情况下,分子从由质粒2和3携带的代谢途径内源制造,或添加至生长培养基,然后底物结合区域内的过量的磷酸化的融合蛋白2附着至融合蛋白1的底物识别结构域,然后当二者都结合至操纵基因和RB结合位点时,然后表达GOI,指示存在磷酸酶抑制剂。However, in the presence of a small molecule that inhibits the phosphatase, either produced endogenously from the metabolic pathway carried by
为了实用目的,无论哪种融合蛋白拥有DNA结合蛋白质和哪种拥有能够将RNA聚合酶募集至DNA的蛋白质都无所谓,只要DNA结合蛋白质构成一种融合蛋白的部分并且募集RNA聚合酶的蛋白质构成另一种融合蛋白的部分。例如,参见图40,图10。For practical purposes, it does not matter which fusion protein has the DNA binding protein and which has the protein capable of recruiting RNA polymerase to DNA, as long as the DNA binding protein forms part of one fusion protein and the protein that recruits RNA polymerase forms part of the other fusion protein. See, for example, FIG. 40 , FIG. 10 .
大肠杆菌DH10B用于分子克隆和用于类萜产生的初步分析;大肠杆菌s10301用于发光研究和用于涉及类萜-介导的选择(例如,分子进化)的实验;以及大肠杆菌Bl21用于涉及异源表达和随后蛋白质纯化的实验。然而,其不旨在现在这些大肠杆菌菌株的宿主细菌菌株。的确,如本文描述的支持操纵子、DNA序列和质粒的表达的任何细菌菌株可用作宿主细菌菌株。E. coli DH10B was used for molecular cloning and for preliminary analysis of terpenoid production; E. coli s1030 1 was used for luminescence studies and for experiments involving terpenoid-mediated selection (e.g., molecular evolution); and E. coli Bl21 was used for experiments involving heterologous expression and subsequent protein purification. However, it is not intended that these E. coli strains be host bacterial strains. Indeed, any bacterial strain that supports expression of operons, DNA sequences, and plasmids as described herein can be used as a host bacterial strain.
在优选的实施方式中,小分子产物源自一种通用的代谢途径(来自酿酒酵母的类萜生物合成的甲羟戊酸依赖性途径)和一种宿主生物体(大肠杆菌)。考虑了如本文描述产生的这些小分子产物用作治疗2型糖尿病、肥胖和乳腺癌以及其他疾病。In a preferred embodiment, the small molecule products are derived from a common metabolic pathway (the mevalonate-dependent pathway of terpenoid biosynthesis from Saccharomyces cerevisiae) and a host organism (Escherichia coli). The small molecule products produced as described herein are contemplated for use as treatments for
A.用于鉴定PTP1B的微生物可合成的抑制剂的细菌双杂交(B2H)系统(操纵子)。A. Bacterial two-hybrid (B2H) system for identification of microbially synthesizable inhibitors of PTP1B (operon).
在一个实施方式中,将B2H系统应用至进化使(i)抑制PTP1B和(ii)可用标准分析方法鉴定(即,结构上表征)的分子能够微生物合成的基因。简言之,B2H系统将PTP1B的失活与抗生素抗性的基因表达联系在一起。相应地,当大肠杆菌的菌株(或其他宿主细菌)携带(i)B2H系统和(ii)类萜生物合成的代谢途径二者时,在当其产生抑制PTP1B的类萜时在抗生素存在的情况下,其将存活。In one embodiment, the B2H system is applied to genes that evolve to enable the microbial synthesis of (i) molecules that inhibit PTP1B and (ii) molecules that can be identified (i.e., structurally characterized) by standard analytical methods. In short, the B2H system links the inactivation of PTP1B to the expression of genes for antibiotic resistance. Accordingly, when a strain of E. coli (or other host bacteria) carries both (i) the B2H system and (ii) a metabolic pathway for terpenoid biosynthesis, it will survive in the presence of antibiotics when it produces terpenoids that inhibit PTP1B.
如本文描述的细菌双杂交(B2H)系统包括如本文描述的操纵子的一个实施方式。图33D中图表的左侧上显示的数据(即,p130cas[也称为Kras]和MidT底物)是与具有添加鉴于开发提供B2H系统的更多细节的图29A中展示的数据相同。The bacterial two-hybrid (B2H) system as described herein includes an embodiment of an operon as described herein. The data shown on the left side of the graph in Figure 33D (i.e., p130cas [also known as Kras] and MidT substrate) are the same as those shown in Figure 29A with additional details added in view of the development to provide the B2H system.
我们建议使用定向进化来进化新的抑制剂。即,我们将手动将突变引入代谢途径内的特定基因(或基因组)中,以生成可与B2H系统一起筛选的代谢途径文库。图41A描述了引入突变的一般方法;示例C提供了由图41A表示的非常具体的方式。为了筛选我们的文库,我们将其转化为含B2H的细胞,并且我们在含有各种浓度大观霉素的平板上培养它们。在具有高浓度大观霉素的平板上形成的菌落含有能够生成活化B2H系统(即,抑制PTP1B)的分子的途径。该途径将不会天然地自行进化。因此,我们可将其从第一宿主细胞中去除,并且将其转化为另一大肠杆菌菌株以制造高浓度的抑制剂。We propose to use directed evolution to evolve new inhibitors. That is, we will manually introduce mutations into specific genes (or genomes) within metabolic pathways to generate a metabolic pathway library that can be screened with the B2H system. Figure 41A describes a general method for introducing mutations; Example C provides a very specific way represented by Figure 41A. In order to screen our library, we transform it into cells containing B2H, and we culture them on plates containing various concentrations of spectinomycin. The colonies formed on the plates with high concentrations of spectinomycin contain pathways that can generate molecules that activate the B2H system (i.e., inhibit PTP1B). This pathway will not evolve naturally on its own. Therefore, we can remove it from the first host cell and transform it into another E. coli strain to make a high concentration of inhibitor.
本文描述的系统的实施方式能够快速鉴定可易于在微生物宿主中合成的药物先导物。它允许同时解决在药物开发期间遇到的两个问题,所述问题通常分别检查:1)先导物的鉴定和2)在1)中鉴定的先导物的随后合成。Embodiments of the systems described herein enable rapid identification of drug leads that can be readily synthesized in microbial hosts. It allows for simultaneous solution of two problems encountered during drug development, which are typically examined separately: 1) identification of leads and 2) subsequent synthesis of leads identified in 1).
本文描述的系统具有至少五个用途:The system described herein has at least five purposes:
1.能够鉴定生成药物靶标的抑制剂的蛋白质的基因。简言之,当类萜生物合成的途径生成靶标-抑制分子时,细胞在高抗生素浓度存活。通过交换萜合成和/或功能化酶的基因,我们可鉴定构建这种抑制剂的酶的基因。1. Genes that enable identification of proteins that generate inhibitors of drug targets. In short, when the pathway for terpenoid biosynthesis generates target-inhibiting molecules, cells survive high antibiotic concentrations. By swapping genes for terpenoid synthesis and/or functional enzymes, we can identify genes for enzymes that build such inhibitors.
2.能够构建新型的—和可能非天然的—抑制剂。通过使类萜生物合成的途径突变,我们可生成在高抗生素浓度赋予存活的途径。这些途径含有突变的(即,非天然)基因,因此可生成在自然界中未发现的抑制剂分子。2. Enables the construction of novel - and potentially non-natural - inhibitors. By mutating pathways for terpenoid biosynthesis, we can generate pathways that confer survival at high antibiotic concentrations. These pathways contain mutated (i.e., non-natural) genes and thus can generate inhibitor molecules not found in nature.
3.能够构建克服药物抗性的抑制剂。简言之,在构建生成靶标-抑制分子的菌株后,我们可进行两个步骤:(i)我们可使药物靶标突变,直到其对该抑制剂变得抵抗。(ii)我们可使代谢途径突变,直到其生成突变的药物靶标的抑制剂。这样,我们可以(i)预测药物-抗性突变且(ii)通过生成克服它们的新的抑制剂来解决那些突变。3. Ability to construct inhibitors that overcome drug resistance. In short, after constructing a strain that produces a target-inhibiting molecule, we can proceed with two steps: (i) We can mutate the drug target until it becomes resistant to the inhibitor. (ii) We can mutate the metabolic pathway until it generates an inhibitor of the mutated drug target. In this way, we can (i) predict drug-resistance mutations and (ii) address those mutations by generating new inhibitors that overcome them.
4.能够构建蛋白酪氨酸激酶的抑制剂。使用类似于3.ii中描述的选择策略,我们可使代谢途径突变,直到其生成Src激酶的抑制剂。4. Inhibitors of protein tyrosine kinases can be constructed. Using a selection strategy similar to that described in 3.ii, we can mutate a metabolic pathway until it generates an inhibitor of Src kinase.
B.将蛋白酪氨酸磷酸酶的抑制与细胞存活联系在一起的基因编码系统。B. A genetically encoded system that links inhibition of protein tyrosine phosphatases to cell survival.
在一个优选的实施方式中,如本文描述的,开发且使用基因编码系统来检测选择的酶,例如药物靶标酶的催化结构域的小分子抑制剂的存在,同时在选择性生长培养基存在的情况下允许宿主细胞的存活。换句话说,当基因编码系统是大肠杆菌中表达质粒的部分。In a preferred embodiment, as described herein, a gene encoding system is developed and used to detect the presence of a selected enzyme, such as a small molecule inhibitor of the catalytic domain of a drug target enzyme, while allowing the survival of the host cell in the presence of a selective growth medium. In other words, when the gene encoding system is part of an expression plasmid in E. coli.
在一个实施方式中,示例性药物靶标酶被选择,例如蛋白酪氨酸磷酸酶、蛋白酪氨酸磷酸酶1B(PTP1B)。In one embodiment, an exemplary drug target enzyme is selected, such as a protein tyrosine phosphatase, protein tyrosine phosphatase 1B (PTP1B).
在一个实施方式中,基因编码系统是表达质粒的部分。在一个实施方式中,感知操纵子(sensing operon)可操作地连接至大肠杆菌中表达的组成型启动子。In one embodiment, the gene encoding system is part of an expression plasmid. In one embodiment, the sensing operon is operably linked to a constitutive promoter expressed in E. coli.
图33A-E阐释了连接酶的活性与感兴趣的基因(GOI)的表达的基因编码系统的实施方式。图33B-E中的误差线表示标准偏差,n=3个生物重复。Figures 33A-E illustrate embodiments of a genetically encoded system for ligating enzyme activity to expression of a gene of interest (GOI). Error bars in Figures 33B-E represent standard deviation, n=3 biological replicates.
图33A阐释了检测磷酸化依赖性蛋白质-蛋白质相互作用的细菌双杂交系统的实施方式。组分包括(i)融合至RNA聚合酶的ω亚单元的底物结构域(黄色)、(ii)融合至434噬菌体cI阻遏物的SH2结构域(浅蓝色)、(iii)434cI的操纵子(深绿色)、(iv)RNA聚合酶的结合位点(紫色)、(v)Src激酶和(vi)PTP1B。底物结构域的Src-催化磷酸化使底物-SH2相互作用能够活化感兴趣的基因(GOI,黑色)的转录。底物结构域的PTP1B-催化去磷酸化防止该相互作用;PTP1B的抑制重新使其能够进行。图33B涉及来自图33A的双杂交系统的实施方式,其(i)缺乏PTP1B和(ii)含有luxAB作为GOI。我们使用可诱导的质粒来增加特定组分的表达;Src的过度表达增强发光。图33C涉及来自图33A的双杂交系统的实施方式,其(i)缺乏PTP1B和Src二者和(ii)包括“superbinder”SH2结构域(SH2*,即,具有增强其对磷酸肽的亲和力的突变的SH2结构域)、可变底物结构域和LuxAB作为GOI。我们使用可诱导的质粒来增加Src的表达;发光对p130cas和MidT最突出增加,表明Src作用于底物结构域两者。图33D涉及来自具有两种底物:p130cas或MidT之一的图33C的双杂交系统的实施方式。我们使用第二质粒来过度表达(i)Src和PTP1B或(ii)Src和PTP1B的失活变体(C215S)。含有PTP1B或PTP1B(C215S)的系统之间发光的差异对于MidT是最大的,表明PTP1B作用于该底物。右:双杂交系统的优化版本(bb030作为PTP1B的RBS)出现用于参考。图33E显示了使用包括SH2*、midT底物、优化的启动子和核糖体结合位点(PTP1B的bb034)和SpecR作为GOI的优化的B2H进行示例性生长偶联测定的结果。在图的顶部处阐释该系统。示例性生长结果表明PTP1B的失活使大肠杆菌的菌株能够携带该系统以在高浓度的大观霉素(>250μg/ml)存活。FIG33A illustrates an embodiment of a bacterial two-hybrid system for detecting phosphorylation-dependent protein-protein interactions. Components include (i) a substrate domain fused to the ω subunit of RNA polymerase (yellow), (ii) an SH2 domain fused to the 434 phage cI repressor (light blue), (iii) an operator of 434cI (dark green), (iv) a binding site for RNA polymerase (purple), (v) Src kinase, and (vi) PTP1B. Src-catalyzed phosphorylation of the substrate domain enables the substrate-SH2 interaction to activate transcription of the gene of interest (GOI, black). PTP1B-catalyzed dephosphorylation of the substrate domain prevents the interaction; inhibition of PTP1B re-enables it. FIG33B relates to an embodiment of the two-hybrid system from FIG33A that (i) lacks PTP1B and (ii) contains luxAB as GOI. We used inducible plasmids to increase expression of specific components; overexpression of Src enhanced luminescence. FIG. 33C relates to an embodiment of the two-hybrid system from FIG. 33A that (i) lacks both PTP1B and Src and (ii) includes a "superbinder" SH2 domain (SH2*, i.e., an SH2 domain with mutations that enhance its affinity for phosphopeptides), a variable substrate domain, and LuxAB as GOI. We used an inducible plasmid to increase the expression of Src; the luminescence increased most prominently for p130cas and MidT, indicating that Src acts on both substrate domains. FIG. 33D relates to an embodiment of the two-hybrid system from FIG. 33C with one of two substrates: p130cas or MidT. We used a second plasmid to overexpress (i) Src and PTP1B or (ii) Src and an inactive variant of PTP1B (C215S). The difference in luminescence between the systems containing PTP1B or PTP1B (C215S) was greatest for MidT, indicating that PTP1B acts on this substrate. Right: An optimized version of the two-hybrid system (bb030 as the RBS of PTP1B) is presented for reference. FIG. 33E shows the results of an exemplary growth-coupled assay using an optimized B2H comprising SH2*, midT substrate, an optimized promoter and ribosome binding site (bb034 of PTP1B) and SpecR as the GOI. The system is illustrated at the top of the figure. The exemplary growth results show that inactivation of PTP1B enables strains of E. coli to carry the system to survive high concentrations of spectinomycin (>250 μg/ml).
1.以LuxAB作为GOI顺序优化双杂交系统。1. Sequential optimization of the two-hybrid system using LuxAB as the GOI.
阶段1:我们检查了缺乏PTP1B的系统中Src的两个不同启动子。阶段2:我们检查了缺乏PTP1B的系统中Src的两个不同核糖体结合位点(RBS)。阶段3:我们检查了完整系统中PTP1B的两个不同RBS。注意:在阶段1和2中,操纵子含有野生型(WT)或不可磷酸化(突变体,Y/F)版本的底物结构域。在阶段3中,操纵子含有野生型(WT)或催化失活(突变体,C215S)版本的PTP1B。参见,图34。Phase 1: We examined two different promoters of Src in a system lacking PTP1B. Phase 2: We examined two different ribosome binding sites (RBS) of Src in a system lacking PTP1B. Phase 3: We examined two different RBS of PTP1B in an intact system. Note: In
图34阐释了用于优化图33中描绘的B2H系统描绘的示例性实验。FIG. 34 illustrates an exemplary experiment for optimizing the B2H system depicted in FIG. 33 .
2.比较RB位点。2. Compare RB loci.
我们在各种浓度的大观霉素(从左到右)上生长了携带含有PTP1B的不同RBS(bb034或bb030)的细菌双杂交版本的大肠杆菌的菌株,并且将它们在各种浓度的大观霉素上铺平板(从顶部至底部)。我们使用bb034用于图33E中显示的“优化”的双杂交系统的一个实施方式。参见,图35。We grew strains of E. coli carrying bacterial two-hybrid versions of different RBSs (bb034 or bb030) containing PTP1B on various concentrations of spectinomycin (from left to right) and plated them on various concentrations of spectinomycin (from top to bottom). We used bb034 for one embodiment of the "optimized" two-hybrid system shown in Figure 33E. See, Figure 35.
图35图3阐释用于优化用于生长偶联测定的图33中描绘的B2H系统的示例性实验。FIG35 FIG3 illustrates an exemplary experiment for optimizing the B2H system depicted in FIG33 for use in a growth-coupled assay.
Rice,P.,Longden,L.&Bleasby,A.EMBOSS:The European Molecular BiologyOpen Software Suite.Trends Genet.16,276–277(2000).Rice, P., Longden, L. & Bleasby, A. EMBOSS: The European Molecular Biology Open Software Suite. Trends Genet. 16, 276–277 (2000).
C.抑制PTP1B的类萜的生物合成使细胞能够存活。C. Inhibition of terpenoid biosynthesis by PTP1B enables cell survival.
当pTS含有ADS或GHS时,其不含有GGPPS;当pTS含有ABS或TXS,其也含有GGPPS;ABSD404A/D621A指ABS的催化失活变体;和B2H*含有PTP1B(C215S)。ADS和,很少地ABS能够在大观霉素存在的情况下存活,结果显示这些对萜合酶生成PTP1B抑制剂的能力。When pTS contained ADS or GHS, it did not contain GGPPS; when pTS contained ABS or TXS, it also contained GGPPS; ABS D404A/D621A refers to a catalytically inactive variant of ABS; and B2H* contained PTP1B (C215S). ADS and, rarely, ABS were able to survive the presence of spectinomycin, indicating the ability of these to generate PTP1B inhibitors for terpene synthases.
图36A-C图4|显示了用于提供在使细胞能够存活图36C的抑制PTP1B的类萜的生物合成图36B期间的示例性结果的操纵子(图36A)的阐释。Figure 36A-C Figure 4 | shows an illustration of an operon (Figure 36A) used to provide exemplary results during biosynthesis of terpenoids that inhibit PTP1B Figure 36B enabling cell survival Figure 36C.
图36A-C图4描绘了类萜的生物合成的示例性代谢途径。36A-C FIG. 4 depicts exemplary metabolic pathways for the biosynthesis of terpenoids.
图36A描绘了用于类萜生物合成的质粒负载途径:(i)pMBIS,其携带酿酒酵母的甲羟戊酸-依赖性类异戊二烯途径,将甲羟戊酸盐转变为异戊基焦磷酸(IPP)和法尼基焦磷酸(FPP)。(ii)pTS,其编码萜合酶(TS),和必要时香叶基香叶基二磷酸合酶(GPPS),将IPP和FPP转变为倍半萜烯和/或二萜。Figure 36A depicts plasmid loading pathways for terpenoid biosynthesis: (i) pMBIS, which carries the mevalonate-dependent isoprenoid pathway of Saccharomyces cerevisiae, converting mevalonate to isopentanyl pyrophosphate (IPP) and farnesyl pyrophosphate (FPP). (ii) pTS, which encodes a terpene synthase (TS) and, if necessary, a geranylgeranyl diphosphate synthase (GPPS), converting IPP and FPP to sesquiterpenes and/or diterpenes.
图36B描绘了示例性萜合酶:来自黄花蒿的紫穗槐二烯合酶(ADS)、来自北美冷杉的γ-蛇麻烯合酶(GHS)、来自北美冷杉的松香二烯合酶(ABS)和来自短叶红豆杉的紫杉烯合酶(TXS)。36B depicts exemplary terpene synthases: amorphadiene synthase (ADS) from Artemisia annua, gamma-humulene synthase (GHS) from Abies selengensis, abietadiene synthase (ABS) from Abies selengensis, and taxene synthase (TXS) from Taxus brevifolia.
图36C显示了含有(i)优化的细菌双杂交(B2H)系统的实施方式(即,来自图33E的B2H系统)和(ii)用于类萜生物合成的途径的实施方式(即,来自图35A的途径)二者的大肠杆菌菌株的示例性生长偶联测定的结果。Figure 36C shows the results of an exemplary growth-coupled assay of an E. coli strain containing both (i) an embodiment of an optimized bacterial two-hybrid (B2H) system (i.e., the B2H system from Figure 33E) and (ii) an embodiment of a pathway for terpenoid biosynthesis (i.e., the pathway from Figure 35A).
简言之,我们生长了携带(i)用于生成直链类异戊二烯前体的相同途径和(ii)编码萜合酶的不同质粒(pTS)的大肠杆菌的菌株。pTS质粒含有下述之一:(i)来自黄花蒿的紫穗槐二烯合酶(ADS)、(ii)来自北美冷杉的γ-蛇麻烯合酶(GHS)、(iii)与香叶基香叶基二磷酸合酶(GGPPS)可操作的组合的来自北美冷杉的松香二烯合酶(ABS)、(iv)与GGPPS可操作的组合的来自短叶红豆杉的紫杉烯合酶(TXS)、(v)ABS的失活变体(即,ABSxx,其对应于ABSD404A/D621A)或(vi)GHS的L450Y突变体。在这些菌株生长后,我们比较它们的产物抑制PTP1B的能力,这通过进行下述步骤:(i)我们使用己烷覆盖物以提取来自每种培养基的疏水产物(例如,萜样产物),然后我们在旋转蒸发器中干燥产物,我们在二甲基亚砜(DMSO)中溶解干燥的提取物,和我们测量在含提取物的DMSO存在和不存在的情况下对硝基苯基磷酸盐(pNPP)的PTP1B-催化水解。我们注意到:GHS的L450Y突变体被包括在我们的分析中,因为GHS的野生型形式在抗生素存在的情况下不允许B2H-介导生长,但是我们的初步数据指示GHS的L450Y突变体不允许这种生长。相应地,我们假设该突变体产生的分子是比野生型GHS生成的分子更强的PTP1B抑制剂。参见,图37A-C通过结构上不同的类萜证明差别抑制。Briefly, we grew strains of E. coli carrying (i) the same pathway for the production of linear isoprenoid precursors and (ii) a different plasmid (pTS) encoding a terpene synthase. The pTS plasmid contained one of the following: (i) amorphadiene synthase (ADS) from Artemisia annua, (ii) gamma-humulene synthase (GHS) from Abies abies, (iii) abietadiene synthase (ABS) from Abies abies in operable combination with geranylgeranyl diphosphate synthase (GGPPS), (iv) taxene synthase (TXS) from Taxus brevifolia in operable combination with GGPPS, (v) an inactivated variant of ABS (i.e., ABS xx , which corresponds to ABS D404A/D621A ), or (vi) an L450Y mutant of GHS. After growth of these strains, we compared the ability of their products to inhibit PTP1B by performing the following steps: (i) we used a hexane overlay to extract the hydrophobic products (e.g., terpene-like products) from each culture medium, then we dried the products in a rotary evaporator, we dissolved the dried extracts in dimethyl sulfoxide (DMSO), and we measured the PTP1B-catalyzed hydrolysis of p-nitrophenyl phosphate (pNPP) in the presence and absence of DMSO containing the extracts. We note that the L450Y mutant of GHS was included in our analysis because the wild-type form of GHS does not allow B2H-mediated growth in the presence of antibiotics, but our preliminary data indicate that the L450Y mutant of GHS does not allow such growth. Accordingly, we hypothesized that the molecule produced by this mutant is a more potent inhibitor of PTP1B than the molecule produced by wild-type GHS. See, Figures 37A-C for demonstration of differential inhibition by structurally distinct terpenoids.
在检查图37A-C中,我们观察到趋势:来自菌株的提取物含有赋予对高浓度抗生素抗性的萜合酶(见图36),其中ADS和GHSL450Y比来自不赋予抗性的菌株的提取物例如TXS和ABSxx更有抑制性。我们注意到:含有ADS和GHS的菌株也包括优化的细菌双杂交(B2H)系统,但是选择在用于通过这些图描述的实验的产物类萜的实验中未进行。In examining Figures 37A-C, we observed a trend that extracts from strains containing terpene synthases that confer resistance to high concentrations of antibiotics (see Figure 36), with ADS and GHS L450Y being more inhibitory than extracts from strains that do not confer resistance, such as TXS and ABS xx . We note that strains containing ADS and GHS also comprise an optimized bacterial two-hybrid (B2H) system, but selection was not performed in the experiments for the product terpenoids of the experiments described by these figures.
图37A-C提供了通过大肠杆菌的不同菌株产生的类萜的抑制作用的示例性分析。Figures 37A-C provide exemplary analysis of the inhibitory effects of terpenoids produced by different strains of E. coli.
图37A描绘了包含(i)无抑制剂和(ii)从含ADS的菌株的培养发酵液的提取化合物的DMSO的抑制作用的我们分析的结果。图37B描绘了含有(i)来自含GHS的菌株(gHUM)的培养发酵液的提取化合物或(ii)来自包括GHS的L450Y突变体的菌株的培养发酵液的提取化合物的DMSO的抑制作用的我们分析的结果。图37C描绘了含有(i)无抑制剂、(ii)来自含ABS的菌株的培养发酵液的提取化合物、(iii)来自含TXS的菌株的培养发酵液的提取化合物和(iv)来自含ABS的催化失活变体的培养菌株的培养发酵液的提取化合物的DMSO的抑制作用的我们分析的结果。Figure 37A depicts the results of our analysis of the inhibitory effects of DMSO containing (i) no inhibitor and (ii) extracted compounds from the culture fermentation broth of strains containing ADS. Figure 37B depicts the results of our analysis of the inhibitory effects of DMSO containing (i) extracted compounds from the culture fermentation broth of strains containing GHS (gHUM) or (ii) extracted compounds from the culture fermentation broth of strains including the L450Y mutant of GHS. Figure 37C depicts the results of our analysis of the inhibitory effects of DMSO containing (i) no inhibitor, (ii) extracted compounds from the culture fermentation broth of strains containing ABS, (iii) extracted compounds from the culture fermentation broth of strains containing TXS, and (iv) extracted compounds from the culture fermentation broth of strains containing catalytically inactive variants of ABS.
简言之,我们在不同浓度的大观霉素上生长含有(i)优化的细菌双杂交系统和(ii)具有突变体γ-蛇麻烯合酶(GHS;1突变体/细胞)的类萜途径的大肠杆菌的菌株。上面:具有在高抗生素浓度赋予存活的GHS突变体的菌株的产物特征。参见,图38。Briefly, we grew strains of E. coli containing (i) an optimized bacterial two-hybrid system and (ii) a terpenoid pathway with a mutant γ-humulene synthase (GHS; 1 mutant/cell) on different concentrations of spectinomycin. Top: Product profile of strains with GHS mutants that confer survival at high antibiotic concentrations. See, Figure 38.
图38显示能够在大观霉素存在的情况下生长的GHS突变体的产物特征的示例性分析。FIG. 38 shows an exemplary analysis of the product profile of GHS mutants capable of growing in the presence of spectinomycin.
简言之,我们构建了细菌双杂交系统的版本,其包括SH2*、midT底物、优化的启动子和核糖体结合位点、SpecR和可替选的PTP:PTPN6(例如,SHP-1)和PTP1B405(PTP1B的全长版本)的催化结构域。注意:这些系统和图33E中描绘的B2H系统是相同的,除了它们仅拥有以下PTP基因之一:PTP1B(如图33E中)、PTPN6(不同于图33E)或全长PTP1B。PTPN6和全长PTP1B二者的催化结构域的失活使携带相应操纵子的大肠杆菌的菌株能够在高浓度大观霉素(>400μg/ml)存活。为了将我们的操纵子扩展至其他PTP,我们计划修饰底物、SH2和/或激酶结构域。参见,图39。In brief, we constructed a version of the bacterial two-hybrid system, which includes SH2*, midT substrate, optimized promoter and ribosome binding site, SpecR and alternative PTP: PTPN6 (e.g., SHP-1) and PTP1B 405 (full-length version of PTP1B) catalytic domain. Note: These systems are identical to the B2H system depicted in Figure 33E, except that they only have one of the following PTP genes: PTP1B (as in Figure 33E), PTPN6 (different from Figure 33E) or full-length PTP1B. The inactivation of the catalytic domain of both PTPN6 and full-length PTP1B enables the strain of Escherichia coli carrying the corresponding operon to survive at high concentrations of spectinomycin (>400 μg/ml). In order to expand our operon to other PTPs, we plan to modify substrates, SH2 and/or kinase domains. See, Figure 39.
图39将其他PTP的抑制与细胞存活联系在一起的示例性B2H系统的分析。FIG. 39 Analysis of an exemplary B2H system linking inhibition of other PTPs to cell survival.
我们也生成了包括SH2*、midT底物、优化的启动子和核糖体结合位点、SpecR和可替选的PTP:PTPN6(例如,SHP-1)和PTP1B405(PTP1B的全长版本)的催化结构域的细菌双杂交系统版本。PTPN6和全长PTP1B的催化结构域的失活使携带相应操纵子的大肠杆菌的菌株能够在高浓度的大观霉素(>400μg/ml)存活。为了将我们的操纵子扩展至其他PTP,我们计划修饰底物、SH2和/或激酶结构域。We also generated a version of the bacterial two-hybrid system that included SH2*, midT substrate, optimized promoter and ribosome binding site, SpecR and the catalytic domains of alternative PTPs: PTPN6 (e.g., SHP-1) and PTP1B 405 (full-length version of PTP1B). Inactivation of the catalytic domains of PTPN6 and full-length PTP1B enabled strains of E. coli carrying the corresponding operons to survive high concentrations of spectinomycin (>400 μg/ml). To expand our operons to other PTPs, we plan to modify the substrate, SH2 and/or kinase domains.
图40A-E描绘了将酶活性与感兴趣的基因的表达联系的基因编码系统的示例性实施方式,并且那些实施方式应用于(i)抗性突变的预测、(ii)对抗抗性突变的抑制剂的构建和(ii)激酶抑制剂的进化。Figures 40A-E depict exemplary embodiments of genetically encoded systems that link enzyme activity to expression of a gene of interest, and those embodiments are applied to (i) prediction of resistance mutations, (ii) construction of inhibitors to counteract resistance mutations, and (ii) evolution of kinase inhibitors.
图40A描绘了检查潜在的抗性突变中的示例性第一步骤。通过进化代谢途径以产生抑制已知的药物靶标(例如,PTP1B)的分子;这些分子将允许在选择压力存在(例如,存在大观霉素,一种抗生素)的情况下赋予存活的感兴趣的基因(GOI)的表达。图40B描绘了检查潜在的抗性突变中的示例性第二步骤。在大肠杆菌的第二菌株中,我们将用赋予有条件的毒性(例如,SacB,其将蔗糖转变为果聚糖,一种有毒的产物)的第二感兴趣的基因(GOI2)替换最初感兴趣的基因;我们将进化药物靶标以变得对内源抑制剂是抗性的,而仍保留其活性。该突变体将防止有毒基因的表达。图40C描绘了对抗抗性突变中的示例性第三步骤。在大肠杆菌的第三菌株中,我们将进化产生抑制突变的药物靶标的分子的代谢途径。这样,我们预测—和通过我们的第二进化的途径,处理—可能导致对基于类萜的药物的抗性的突变。我们注意到,图40A-40C描述了使用我们的基因编码系统来进化抑制剂,但是步骤2和3可用于预测允许对内源供应的抑制剂抗性的突变,并且随后鉴定可对抗该抗性的新的内源供应的抑制剂。图40D描绘了检测Src激酶抑制剂的示例性基因编码系统。简言之,Src活性使有毒基因(GOI2)能够表达;接着,Src的抑制赋予存活。FIG. 40A depicts an exemplary first step in examining potential resistance mutations. By evolving metabolic pathways to produce molecules that inhibit known drug targets (e.g., PTP1B); these molecules will allow expression of a gene of interest (GOI) that confers survival in the presence of selective pressure (e.g., the presence of spectinomycin, an antibiotic). FIG. 40B depicts an exemplary second step in examining potential resistance mutations. In a second strain of E. coli, we will replace the initial gene of interest with a second gene of interest (GOI2) that confers conditional toxicity (e.g., SacB, which converts sucrose to fructan, a toxic product); we will evolve the drug target to become resistant to the endogenous inhibitor while still retaining its activity. This mutant will prevent expression of the toxic gene. FIG. 40C depicts an exemplary third step in countering resistance mutations. In a third strain of E. coli, we will evolve metabolic pathways that produce molecules that inhibit the mutated drug target. In this way, we predict—and, through our second evolutionary pathway, address—mutations that may lead to resistance to terpenoid-based drugs. We note that Figures 40A-40C describe the use of our genetic encoding system to evolve inhibitors, but steps 2 and 3 can be used to predict mutations that allow resistance to endogenously supplied inhibitors, and then identify new endogenously supplied inhibitors that can counteract that resistance. Figure 40D depicts an exemplary genetic encoding system for detecting Src kinase inhibitors. In short, Src activity enables expression of a toxic gene (GOI2); then, inhibition of Src confers survival.
B2H构架的构造的一个实施方式使当PTP1B是活性的时候,即,当Src激酶的活性成功地被取消时,能够存活。在PTP1B不存在的情况下,该构造可用于进化Src激酶抑制剂;这种抑制剂可通过防止底物结构域的磷酸化类似地用于PTP1B(如图40E中显示)。Src激酶是验证的药物靶标;酪氨酸激酶是超过40种FDA-批准的药物的靶标。One embodiment of the construction of the B2H framework enables survival when PTP1B is active, i.e., when the activity of Src kinase is successfully abolished. In the absence of PTP1B, this construction can be used to evolve Src kinase inhibitors; such inhibitors can be used similarly for PTP1B by preventing phosphorylation of the substrate domain (as shown in Figure 40E). Src kinases are validated drug targets; tyrosine kinases are targets of more than 40 FDA-approved drugs.
图40E表明了用于图40B中描述的B2H系统的最高原理(roof of principle)的一个实施方式。这里显示的系统包括两个GOI:SpecR和SacB。GOI的表达在大观霉素存在的情况下赋予存活;GOI的表达在蔗糖存在的情况下导致毒性。图像描绘了在各种浓度的蔗糖存在的情况下在大肠杆菌的菌株上进行的生长偶联测定的结果。携带活性形式的PTP1B的菌株(WT)比携带非活化形式的PTP1B的菌株(C215S)在高蔗糖浓度下生长地更好。Figure 40E illustrates one embodiment of the roof of principle for the B2H system described in Figure 40B. The system shown here includes two GOIs: SpecR and SacB. Expression of the GOIs confers survival in the presence of spectinomycin; expression of the GOIs results in toxicity in the presence of sucrose. The images depict the results of growth-coupled assays performed on strains of E. coli in the presence of various concentrations of sucrose. The strain carrying the active form of PTP1B (WT) grows better at high sucrose concentrations than the strain carrying the inactive form of PTP1B (C215S).
图41A描绘PTP1B抑制剂的进化的示例性策略。FIG. 41A depicts an exemplary strategy for the evolution of PTP1B inhibitors.
图41A描绘了用于鉴定萜合酶活性位点中的诱变的靶标的示例性结构分析。其显示了ABS(灰色,PDB入口3s9v)和TXS(蓝色,PDB入口3p5r)的I类活性位点与ABS(红色)上突出的靶向于位点-饱和诱变(SSM)的位点的位置的比对。TXS的底物类似物(黄色)出现用于参考。图41B描绘了用于将多样性引入代谢途径的文库的示例性策略:萜合酶上关键位点的SSM(如在a中)、整个萜合酶基因的易错PCR(ePCR)、萜功能化酶上位点的SSM(例如,P450)和整个萜功能化酶的ePCR的反复组合。图41C描绘了存在于具有各种含TS的菌株的提取物的DMSO样品中总类萜的示例性量化。简言之,我们在ADS上的六个位点(类似于图41A中显示的位点)进行位点-饱和诱变;我们将SSM文库铺在含有不同浓度大观霉素的琼脂平板上;我们挑选在含有高浓度(800μg/ml)大观霉素的板上生长的菌落并且使用每个菌落来接种单独的培养物;我们使用己烷覆盖物来提取分泌入每个培养物发酵液中的类萜;我们在旋转蒸发器中干燥己烷提取物并且在DMSO中再悬浮固体;并且我们使用GC-MS来量化存在于DMSO中的类萜的总量。FIG41A depicts an exemplary structural analysis for identifying targets for mutagenesis in the active site of a terpene synthase. It shows the alignment of the class I active sites of ABS (grey, PDB entry 3s9v) and TXS (blue, PDB entry 3p5r) with the positions of the sites highlighted on ABS (red) for targeting site-saturation mutagenesis (SSM). Substrate analogs of TXS (yellow) appear for reference. FIG41B depicts an exemplary strategy for introducing diversity into a library of metabolic pathways: an iterative combination of SSM of key sites on a terpene synthase (as in a), error-prone PCR (ePCR) of the entire terpene synthase gene, SSM of sites on a terpene functionalizing enzyme (e.g., P450), and ePCR of the entire terpene functionalizing enzyme. FIG41C depicts an exemplary quantification of total terpenoids present in DMSO samples of extracts with various TS-containing strains. Briefly, we performed site-saturation mutagenesis at six sites on ADS (similar to the sites shown in Figure 41A); we plated the SSM library on agar plates containing different concentrations of spectinomycin; we picked colonies that grew on plates containing high concentration (800 μg/ml) spectinomycin and used each colony to inoculate a separate culture; we used a hexane overlay to extract the terpenoids secreted into the fermentation broth of each culture; we dried the hexane extracts in a rotary evaporator and resuspended the solids in DMSO; and we used GC-MS to quantify the total amount of terpenoids present in DMSO.
“ADS WT”、“ADS F514E”、“ADS F370L”、“ADS G400A”、“ADS G439A”和“ADS G400L”描述了由携带紫穗槐二烯合酶(ADS)的突变体的大肠杆菌的菌株生成的分子的混合物。标签描述了突变体:“G439A”对应于松香二烯合酶的突变体,其中甘氨酸439已经突变为丙氨酸,等。在未来的工作中,我们计划(i)纯化来自这些混合物的不同类萜、(ii)评估它们在体外对PTP1B的抑制作用、(iii)分析它们在体外对其他PTP(尤其TC-PTP和PTPN11)的抑制作用和(iv)分析它们对哺乳动物细胞的影响。参见,图41D。"ADS WT", "ADS F514E", "ADS F370L", "ADS G400A", "ADS G439A" and "ADS G400L" describe a mixture of molecules produced by a strain of E. coli carrying a mutant of amorphadiene synthase (ADS). The labels describe the mutants: "G439A" corresponds to a mutant of amorphadiene synthase in which glycine 439 has been mutated to alanine, etc. In future work, we plan to (i) purify different terpenoids from these mixtures, (ii) evaluate their inhibitory effects on PTP1B in vitro, (iii) analyze their inhibitory effects on other PTPs (especially TC-PTP and PTPN11) in vitro and (iv) analyze their effects on mammalian cells. See, Figure 41D.
图41D描绘了各种提取物对PTP1B的抑制效果的示例性分析。简言之,该图显示在图41C中量化的类萜存在的情况下,对硝基苯基磷酸盐(pNPP)的PTP1B-催化水解的初始速率。ADS的两个突变体(G439A和G400L)特别地生成有效的PTP1B抑制剂。Figure 41D depicts an exemplary analysis of the inhibitory effects of various extracts on PTP1B. Briefly, the figure shows the initial rate of PTP1B-catalyzed hydrolysis of p-nitrophenyl phosphate (pNPP) in the presence of the terpenoids quantified in Figure 41C. Two mutants of ADS (G439A and G400L) specifically generated potent PTP1B inhibitors.
图42描绘了B2H活化和细胞存活之间的联系的示例性分析。大肠杆菌的示例性菌株含有(i)优化的细菌双杂交(B2H)系统(图33E)和(ii)图36A中描绘的类萜途径二者。注意:仅当ABS或TXS存在时,pTS包括GGPPS;“Y/F”操纵子对应于B2H系统,其中底物结构域不能被磷酸化。在高浓度的大观霉素下的存活需要B2H系统的活化(即,底物结构域的磷酸化,一种被PTP1B的抑制促进的过程)。FIG42 depicts an exemplary analysis of the link between B2H activation and cell survival. An exemplary strain of E. coli contains both (i) an optimized bacterial two-hybrid (B2H) system ( FIG33E ) and (ii) the terpenoid pathway depicted in FIG36A . Note: pTS includes GGPPS only when ABS or TXS are present; the "Y/F" operon corresponds to a B2H system in which the substrate domain cannot be phosphorylated. Survival at high concentrations of spectinomycin requires activation of the B2H system (i.e., phosphorylation of the substrate domain, a process promoted by inhibition of PTP1B).
图43提供了携带各种萜合酶的大肠杆菌的菌株的示例性产物特征。对于该图,大肠杆菌的菌株携带(i)优化的B2H系统(图33E)和(ii)类萜途径(图36A)。对应每个特征的途径仅在pTS质粒的组成上不同,pTS质粒含有TXS(来自短叶红豆杉的紫杉烯合酶和来自加拿大紫杉的香叶基香叶基二磷酸合酶);GHS(来自北美冷杉的γ-蛇麻烯合酶);ADS(来自黄花蒿的紫穗槐二烯合酶);ABS(来自北美冷杉的松香二烯合酶和来自加拿大紫杉的香叶基香叶基二磷酸合酶);G400A(来自黄花蒿的紫穗槐二烯合酶的G400A突变体)和G439L(来自黄花蒿的紫穗槐二烯合酶的G439L突变体)。注意,ADS的两个突变体产生的产物特征与野生型酶(ADS)的不同;我们的结果指示产物由这两个突变体生成的产物比由野生型酶生成的那些更是抑制性的(图41E)。FIG43 provides exemplary product profiles of strains of E. coli carrying various terpene synthases. For this figure, strains of E. coli carry (i) an optimized B2H system ( FIG33E ) and (ii) a terpenoid pathway ( FIG36A ). The pathways corresponding to each profile differ only in the composition of the pTS plasmids, which contain TXS (taxene synthase from Taxus brevifolia and geranylgeranyl diphosphate synthase from Taxus canadensis); GHS (γ-humulene synthase from Abies abies); ADS (amorphadiene synthase from Artemisia annua); ABS (abietenyl synthase from Abies abies and geranylgeranyl diphosphate synthase from Taxus canadensis); G400A (G400A mutant of amorphadiene synthase from Artemisia annua) and G439L (G439L mutant of amorphadiene synthase from Artemisia annua). Note that the two mutants of ADS produce products with characteristics different from those of the wild-type enzyme (ADS); our results indicate that the products generated by these two mutants are more inhibitory than those generated by the wild-type enzyme (Figure 41E).
D.鉴定用于位点饱和诱变(SSM)的位点。D. Identification of sites for site-saturation mutagenesis (SSM).
萜合酶和细胞色素P450的活性位点含有氨基酸的群集,其以两种方式指导催化:(i)它们控制反应底物可得的构象空间和(ii)它们改变底物周围水的组织8–10。我们鉴定可能调节萜合酶的I类活性位点中的这些属性的“可塑”残基,其通过进行以下步骤进行:(i)我们对齐ABS的晶体结构与TXS的晶体结构。(ii)我们选择TXS的I类活性位点的底物类似物(2-氟-香叶基香叶基二磷酸盐)的8埃(angstom)内的所有残基,和我们鉴定了ABS和TXS之间不同的位点的子集。(iii)我们对齐ABS的序列,The active sites of terpene synthases and cytochrome P450s contain clusters of amino acids that direct catalysis in two ways: (i) they control the conformational space available to the reacting substrates and (ii) they alter the organization of water around the substrates 8–10 . We identified “plastic” residues that might modulate these properties in the class I active sites of terpene synthases by performing the following steps: (i) we aligned the crystal structure of ABS with that of TXS. (ii) we selected all residues within 8 angstroms of a substrate analogue of the class I active site of TXS (2-fluoro-geranylgeranyl diphosphate), and we identified a subset of sites that differed between ABS and TXS. (iii) we aligned the sequences of ABS,
GHS,δ-selenine合酶(DSS)和epi-isozizaene合酶(EIS)。(iv)我们使用Eq.S1来基于其分析的五种酶的大小和亲水性的可变性对每个位点评分。在该方程式中,是体积的变化、是Hopp-Woods指数的变化以及nv和nHW是标准化因子(基于该研究中测量的最高变化)。(v)我们根据S排列每个位点并选择六个最高的评分位点。我们注意到:对于该分析,我们选择ABS和TXS,因为它们是结构上相似的具有晶体结构的酶(即,都具有α,β,和γ结构域);我们选择GHS、DSS和EIS,因为它们已经显示,展示突变-响应产物特征。GHS, δ-selenine synthase (DSS) and epi-isozizaene synthase (EIS). (iv) We used Eq. S1 to score each site based on the variability of size and hydrophilicity of the five enzymes analyzed. In this equation, is the change in volume, is the change in the Hopp-Woods index and nv and nHW are normalization factors (based on the highest change measured in this study). (v) We ranked each site according to S and selected the six highest scoring sites. We note that: for this analysis, we selected ABS and TXS because they are structurally similar enzymes with crystal structures (i.e., both have α, β, and γ domains); we selected GHS, DSS, and EIS because they have been shown to exhibit mutation-response product characteristics.
图44A-D提供了支持将B2H系统延伸至其他蛋白酪氨酸磷酸酶(PTP)的示例性基于结构和序列的证据。Figures 44A-D provide exemplary structure- and sequence-based evidence supporting the extension of the B2H system to other protein tyrosine phosphatases (PTPs).
图44A提供了示例性结构比对PTP1B和PTPN6,两种与B2H系统相容的PTP(参见用于相容性证据的更新A的图1e和7)。我们使用PyMol的对齐功能以将PTPN6的每种结构与PTP1B的催化结构域的(i)无配体(3A5J)或(ii)结合配体(2F71)的结构对齐。对齐功能进行序列比对,随后结构叠加,因此,有效地对齐两种蛋白质的催化结构域。图44B提供了PTP1B和PTPN6的示例性结构比较;PTP1B和PTPN6的对齐结构的均方跟偏差(RMSD)范围从0.75至图44C证明了PTP1B和PTPN6的催化结构域的示例性序列比对(EMBOSS Needle1)。图44D提供了PTP1B和TPPN6的催化结构域的示例性序列比较。序列共享34.1%序列同一性和53.5%序列相似性。概括来说,该图的结果指示我们的B2H系统可易于延伸至拥有催化结构域的PTP,该催化结构域(i)结构上类似于PTP1B的催化结构域(这里,我们定义结构相似性为这样的两个结构,当对齐时,具有≤RMSD的RMSD,框架类似于通过PyMol的对齐功能使用的一个),和/或(ii)序列类似于PTP1B的催化结构域(这里,我们定义序列相似性为≥34%序列同一性或≥53.5%序列相似性,如由EMBOSS Needle算法定义的)。为了鉴定能够调整P450BM3的活性的“可塑”残基,我们进行类似于以上描述的方式:(i)我们使用突变体数据库11(http://www.MuteinDB.org)来鉴定P450BM3的功能变体中25个最常突变的位点。(ii)我们使用Eq.S1基于其不同突变体中大小和疏水性的变化性对每个位点评分。(iii)我们根据S排名每个位点和选择7个最高的评分位点。位点S1024基于S评分高,但是由于其位于P450还原酶结构域上被省略。Figure 44A provides an exemplary structural alignment of PTP1B and PTPN6, two PTPs that are compatible with the B2H system (see Figures 1e and 7 of Update A for evidence of compatibility). We used the alignment function of PyMol to align each structure of PTPN6 with the structure of the catalytic domain of PTP1B either (i) without ligand (3A5J) or (ii) with ligand (2F71). The alignment function performs sequence alignment followed by structural superposition, thus effectively aligning the catalytic domains of the two proteins. Figure 44B provides an exemplary structural comparison of PTP1B and PTPN6; the mean square root deviation (RMSD) of the aligned structures of PTP1B and PTPN6 ranges from 0.75 to 1.15. Figure 44C demonstrates an exemplary sequence alignment of the catalytic domains of PTP1B and PTPN6 (EMBOSS Needle 1 ). Figure 44D provides an exemplary sequence comparison of the catalytic domains of PTP1B and TPPN6. The sequences share 34.1% sequence identity and 53.5% sequence similarity. In summary, the results of this figure indicate that our B2H system can be easily extended to PTPs that possess a catalytic domain that is structurally similar to the catalytic domain of PTP1B (here, we define structural similarity as two structures that, when aligned, have ≤ RMSD of RMSD, framework similar to the one used by the alignment function of PyMol), and/or (ii) sequence similarity to the catalytic domain of PTP1B (here, we define sequence similarity as ≥34% sequence identity or ≥53.5% sequence similarity as defined by the EMBOSS Needle algorithm). To identify "plastic" residues that can adjust the activity of P450 BM3 , we proceeded in a manner similar to that described above: (i) We used the Mutant Database11 (http://www.MuteinDB.org) to identify the 25 most frequently mutated sites in the functional variants of P450 BM3 . (ii) We scored each site based on its variability in size and hydrophobicity among different mutants using Eq. S1. (iii) We ranked each site based on S and selected the 7 highest scoring sites. Site S1024 scored high based on S, but was omitted due to its location on the P450 reductase domain.
E.示例性纯化的产物。E. Exemplary purified products.
参见关于快速色谱和HPLC的部分1–3。See Sections 1–3 on Flash Chromatography and HPLC.
F.示例性测试产物的浓度范围。F. Exemplary test product concentration ranges.
我们计划用1-400μM的抑制剂孵育哺乳动物细胞;我们将通过使用以下描述的测定评估那些抑制剂的生物化学影响。We plan to incubate mammalian cells with 1-400 μM of the inhibitors; we will assess the biochemical impact of those inhibitors by using the assay described below.
G.示例性基于细胞的测定。G. Exemplary cell-based assays.
我们将以至少两种方式表征新开发的抑制剂的生物活性:We will characterize the biological activity of newly developed inhibitors in at least two ways:
1.我们将测定抑制剂对胰岛素受体磷酸化的影响。简言之,我们在抑制剂存在和不存在的情况下将HepG2、Hela、Hek393t、MCF-7和/或Cho-hIR细胞暴露于胰岛素冲击(shock),并且我们将使用蛋白质印迹和/酶联免疫吸附测定(ELISA)来测量抑制剂对胰岛素受体磷酸化的影响。在一些实施方式中,我们可使用细胞-可渗透的PTP1B抑制剂来增强胰岛素受体磷酸化。1. We will determine the effect of inhibitors on insulin receptor phosphorylation. Briefly, we will expose HepG2, Hela, Hek393t, MCF-7 and/or Cho-hIR cells to insulin shock in the presence and absence of inhibitors, and we will use Western blot and/or enzyme-linked immunosorbent assay (ELISA) to measure the effect of inhibitors on insulin receptor phosphorylation. In some embodiments, we can use cell-permeable PTP1B inhibitors to enhance insulin receptor phosphorylation.
2.我们将检查本文描述的系统中鉴定的抑制剂对HER2(+)和TN乳腺癌的细胞模型的形态学和/或生长作用。2. We will examine the morphological and/or growth effects of inhibitors identified in the system described herein on cell models of HER2(+) and TN breast cancer.
简言之,我们将通过评估它们对抑制为HER2(+)的BT474和SKBR3细胞,而不是为HER2(-)的MCF-7和MDA-MB-231细胞的迁移的能力,来检查抑制剂对HER2(+)乳腺癌的相关性。接着,通过对TN细胞系(例如,ATCC TCP-1002)的组(panel)进行活力和增殖测定,我们将检查抑制剂与三阴性乳腺癌的相关性。所有细胞系可获得自ATCC(ATCC.org)并且先前已经用于表征HER2(+)和TN亚型的潜在疗法4,5。Briefly, we will examine the relevance of inhibitors to HER2(+) breast cancer by evaluating their ability to inhibit the migration of HER2(+) BT474 and SKBR3 cells, but not HER2(-) MCF-7 and MDA-MB-231 cells. Next, we will examine the relevance of inhibitors to triple-negative breast cancer by performing viability and proliferation assays on a panel of TN cell lines (e.g., ATCC TCP-1002). All cell lines are available from ATCC (ATCC.org) and have been previously used to characterize potential therapies for HER2(+) and TN subtypes 4,5 .
这不意味着限制类萜合成的途径。的确,考虑了生物碱生物合成途径用于鉴定,This is not meant to limit the pathway of terpenoid synthesis. Indeed, the alkaloid biosynthetic pathway is considered for identification,
生物碱生物合成的示例性途径由以下三个模块组成(Nakagawa,A等A bacterialplatform for fermentative production of plant alkaloids.Nat.Commun.(2011).doi:10.1038/ncomms1327,通过引用并入本文)(i)第一模块,能够过度表达使L-酪氨酸过量生产的我们的酶:TKT、PEPS、fbr-DAHPS和fbr-CM/PDH;(ii)第二模块,能够表达对构建多巴胺和3,4-DHPAA必要的三种酶:TYR、DODC和MAO;和(iii)第三模块,能够表达构建来自3,4-DHPAA和多巴胺的(S)网脉碱的四种酶:NCS、6OMT、CNMT和4’OMT。酶如下:TKT,转酮酶(tktA,GenBank登录号X68025);PEPS,磷酸烯醇丙酮酸(PEP)合酶(ppsA,GenBank登录号X59381);fbr-DAHPS,反馈-抑制抗性3-脱氧-D-阿拉伯-庚二酸-7-磷酸合酶(aroGfbr,GenBank登录号J01591);fbr-CM/PDH,反馈-抑制抗性分支酸变位酶/预苯酸脱氢酶(tyrAfbr,GenBank登录号M10431);TYR,链霉菌链球菌(streptomycescastaneoglobisporus)的酪氨酸酶(含有酪氨酸酶的ScTYR和其衔接蛋白质,ORF378,GenBank登录号AY254101和AY254102);DODC,恶臭假单胞菌的DOPA脱羧酶(GenBank登录号AE015451);MAO,藤黄微球菌的单胺氧化酶(GenBank登录号AB010716);NCS,日本黄连的去甲乌药碱合酶(GenBank登录号AB267399);6OMT,日本黄连的去甲乌药碱6-O-甲基转移酶(GenBank登录号D29811);CNMT,日本黄连的乌药碱-N-甲基转移酶(GenBank登录号AB061863);4′OMT,日本黄连的3′-羟基-N-甲基乌药碱4′-O-甲基转移酶(GenBank登录号D29812)。我们注意到;这三种模块可由两种质粒编码。An exemplary pathway for alkaloid biosynthesis consists of the following three modules (Nakagawa, A et al. A bacterial platform for fermentative production of plant alkaloids. Nat. Commun. (2011). doi: 10.1038/ncomms1327, incorporated herein by reference) (i) a first module capable of overexpressing our enzymes that overproduce L-tyrosine: TKT, PEPS, fbr-DAHPS and fbr-CM/PDH; (ii) a second module capable of expressing three enzymes necessary for the construction of dopamine and 3,4-DHPAA: TYR, DODC and MAO; and (iii) a third module capable of expressing four enzymes that construct (S) reticuline from 3,4-DHPAA and dopamine: NCS, 6OMT, CNMT and 4'OMT. The enzymes are as follows: TKT, transketolase (tktA, GenBank Accession No. X68025); PEPS, phosphoenolpyruvate (PEP) synthase (ppsA, GenBank Accession No. X59381); fbr-DAHPS, feedback-inhibition-resistant 3-deoxy-D-arabino-pimelate-7-phosphate synthase (aroGfbr, GenBank Accession No. J01591); fbr-CM/PDH, feedback-inhibition-resistant chorismate mutase/prephenate dehydrogenase (tyrAfbr, GenBank Accession No. M10431); TYR, tyrosinase from Streptomyces castaneoglobisporus (ScTYR containing tyrosinase and its adaptor protein, ORF378, G AY254101 and AY254102); DODC, DOPA decarboxylase from Pseudomonas putida (GenBank Accession No. AE015451); MAO, monoamine oxidase from Micrococcus luteus (GenBank Accession No. AB010716); NCS, norcoclaurine synthase from Coptis chinensis (GenBank Accession No. AB267399); 6OMT, norcoclaurine 6-O-methyltransferase from Coptis chinensis (GenBank Accession No. D29811); CNMT, coclaurine-N-methyltransferase from Coptis chinensis (GenBank Accession No. AB061863); 4′OMT, 3′-hydroxy-N-
用于V部分的参考文献,本文通过引用以它们的整体并入:References used in Section V are incorporated herein by reference in their entirety:
1.Jia,M.,Potter,K.C.&Peters,R.J.Extreme promiscuity of a bacterialand a plant diterpene synthase enables combinatorialbiosynthesis.Metab.Eng.37,24–34(2016).1. Jia, M., Potter, K. C. & Peters, R. J. Extreme promiscuity of a bacterialand a plant diterpene synthase enables combinatorial biosynthesis. Metab. Eng. 37, 24–34 (2016).
2.Criswell,J.,Potter,K.,Shephard,F.,Beale,M.H.&Peters,R.J.A singleresidue change leads to a hydroxylated product from the class II diterpenecyclization catalyzed by abietadiene synthase.Org.Lett.14,5828–5831(2012).2.Criswell,J.,Potter,K.,Shephard,F.,Beale,M.H.&Peters,R.J.A singleresidue change leads to a hydroxylated product from the class II diterpenecyclization catalyzed by abietadiene synthase.Org.Lett.14,5828–5831( 2012).
3.Morrone,D.et al.Increasing diterpene yield with a modular metabolicengineering system in E.coli:Comparison of MEV and MEP isoprenoid precursorpathway engineering.Appl.Microbiol.Biotechnol.85,1893–1906(2010).3. Morrone, D. et al. Increasing diterpene yield with a modular metabolic engineering system in E. coli: Comparison of MEV and MEP isoprenoid precursor pathway engineering. Appl. Microbiol. Biotechnol. 85, 1893–1906 (2010).
4.Dagliyan,O.et al.Engineering extrinsic disorder to control proteinactivity in living cells.Science(80-.).354,1441–1444(2016).4.Dagliyan,O.et al.Engineering extrinsic disorder to control proteinactivity in living cells.Science(80-.).354,1441–1444(2016).
5.Lehmann,B.D.et al.Identification of human triple-negative breastcancer subtypes and preclinical models for selection of targetedtherapies.J.Clin.Invest.(2011).doi:10.1172/JCI450145.Lehmann,B.D.et al.Identification of human triple-negative breastcancer subtypes and preclinical models for selection of targeted therapies.J.Clin.Invest.(2011).doi:10.1172/JCI45014
6.Dempke,W.C.M.,Uciechowski,P.,Fenchel,K.&Chevassut,T.Targeting SHP-1,2and SHIP Pathways:A novel strategy for cancer treatment?Oncology(Switzerland)(2018).doi:10.1159/0004901066. Dempke, W.C.M., Uciechowski, P., Fenchel, K. & Chevassut, T. Targeting SHP-1,2and SHIP Pathways: A novel strategy for cancer treatment? Oncology(Switzerland)(2018).doi:10.1159/000490106
7.Nakagawa,A.et al.A bacterial platform for fermentative productionof plant alkaloids.Nat.Commun.(2011).doi:10.1038/ncomms13277.Nakagawa,A.et al.A bacterial platform for fermentative production of plant alkaloids.Nat.Commun.(2011).doi:10.1038/ncomms1327
8.Christianson,D.W.Structural biology and chemistry of the terpenoidcyclases.Chem.Rev.106,3412–3442(2006).8. Christianson, D.W. Structural biology and chemistry of the terpenoidcyclases. Chem. Rev. 106, 3412–3442 (2006).
9.Fasan,R.Tuning P450 enzymes as oxidation catalysts.ACS Catalysis 2,647–666(2012).9. Fasan, R. Tuning P450 enzymes as oxidation catalysts.
10.Jung,S.T.,Lauchli,R.&Arnold,F.H.Cytochrome P450:Taming a wild typeenzyme.Current Opinion in Biotechnology 22,809–817(2011).10. Jung, S. T., Lauchli, R. & Arnold, F. H. Cytochrome P450: Taming a wild typeenzyme. Current Opinion in Biotechnology 22, 809–817 (2011).
11.Braun,A.et al.MuteinDB:The mutein database linking substrates,products and enzymatic reactions directly with genetic variants ofenzymes.Database(2012).doi:10.1093/database/bas028.11.Braun, A.et al.MuteinDB: The mutein database linking substrates, products and enzymatic reactions directly with genetic variants ofenzymes.Database(2012).doi:10.1093/database/bas028.
VI.进化光遗传致动器:光控开关构建体。VI. Evolving optogenetic actuators: light-controlled switch constructs.
A.用红光和红外光的光学控制。A. Optical control using red and infrared light.
当代使用光来控制酶活性的努力依赖于至少两种光遗传致动器:LOV2,其具有由蓝光(-450nm)去稳定的末端螺旋2,18,48,和Dronpa,其响应绿光(-500nm)从二聚体转变至单体19。不幸地,蓝光和绿光遭受限制它们在信号传导研究中使用的光毒性、渗透深度和光谱相似性的问题21。因此,在一个实施方式中,考虑了由红光或红外光刺激的光控开关酶,用于开发。这些波长比蓝色和绿光具有更低的光毒性和更大的渗透深度20,21,并且将允许与蓝光或绿光一起多色致动。Contemporary efforts to use light to control enzyme activity rely on at least two optogenetic actuators: LOV2, which has a terminal helix destabilized by blue light (-450 nm) 2,18,48 , and Dronpa, which switches from a dimer to a monomer in response to green light (-500 nm) 19 . Unfortunately, blue and green light suffer from issues of phototoxicity, penetration depth, and spectral similarity that limit their use in signaling studies21. Therefore, in one embodiment, photoswitchable enzymes stimulated by red or infrared light are considered for development. These wavelengths have lower phototoxicity and greater penetration depth than blue and green light20,21 , and would allow multicolor actuation with blue or green light.
B.进化光控开关构建体的操纵子。B. Operons for evolving photoswitch constructs.
在一个实施方式中,考虑了将PTP1B的活性与细胞生长联系在一起的操纵子。简言之,该操纵子基于以下对照策略(图10中的一些另外细节):激酶刺激两种蛋白质的结合,接着,促进必要基因的转录;PTP1B抑制这两种蛋白质的结合,因此,抑制转录。该操纵子允许拥有PTP1B的光控开关变体的细胞在一种光源存在的情况下比在另一种光源存在的情况下(例如,750nm与650nm)生长更快。生长速率的差异能够鉴定功能嵌合体。用基于Lux的发光(基于由Liu和同事开发的系统53)的操纵子的初始实验显示表达两个模型结合伙伴的菌株和表达一种的菌株之间发光的20倍差异(图3E)。我们将通过添加由PTP和PTK调节的蛋白质-蛋白质相互作用继续开发该操纵子(参见以下)。In one embodiment, an operon is contemplated that links the activity of PTP1B to cell growth. Briefly, the operon is based on the following control strategy (some additional details in FIG. 10 ): kinases stimulate the binding of two proteins, which in turn promotes transcription of essential genes; PTP1B inhibits the binding of the two proteins, thereby inhibiting transcription. The operon allows cells with a light-operated switch variant of PTP1B to grow faster in the presence of one light source than in the presence of another (e.g., 750 nm versus 650 nm). Differences in growth rates can identify functional chimeras. Initial experiments with an operon based on Lux luminescence (based on a system developed by Liu and colleagues 53 ) showed a 20-fold difference in luminescence between strains expressing two model binding partners and strains expressing one ( FIG. 3E ). We will continue to develop the operon by adding protein-protein interactions regulated by PTPs and PTKs (see below).
该操纵子允许拥有PTP1B的光控开关变体的细胞在一种光源存在的情况下比在另一种光源存在的情况下(例如,750nm与650nm)生长更快。生长速率的差异能够鉴定功能嵌合体。用基于Lux的发光的操纵子(基于由Liu和同事开发的系统53)的初始实验显示表达两个模型结合伙伴的菌株和表达一种的菌株之间发光的20倍差异(图3E)。我们将通过添加由PTP和PTK调节的蛋白质-蛋白质相互作用继续开发该操纵子。This operon allows cells with a photoswitchable variant of PTP1B to grow faster in the presence of one light source than in the presence of another (e.g., 750 nm versus 650 nm). The difference in growth rate enables identification of functional chimeras. Initial experiments with a Lux-based luminescence operon (based on a system developed by Liu and colleagues 53 ) showed a 20-fold difference in luminescence between strains expressing two model binding partners and those expressing one ( FIG3E ). We will continue to develop this operon by adding protein-protein interactions regulated by PTPs and PTKs.
FRET传感器。我们将使用Forster共振能量转移(FRET)来监视活细胞中PTP1B的活性。我们的初步传感器当用Src激酶处理时展示出FRET信号的20%减少(图3F)。先前的成像研究指示FRET的20%变化足以监视细胞内激酶活性54"56。为了增强成像研究中的空间分辨率,我们将尝试进一步优化我们的传感器(和使用其来测量体外PTP1B的活性)。FRET sensor. We will use Forster resonance energy transfer (FRET) to monitor the activity of PTP1B in living cells. Our preliminary sensor exhibited a 20% reduction in the FRET signal when treated with Src kinase (Figure 3F). Previous imaging studies indicate that a 20% change in FRET is sufficient to monitor intracellular kinase activity54 "56 . To enhance the spatial resolution in imaging studies, we will attempt to further optimize our sensor (and use it to measure the activity of PTP1B in vitro).
1.为了进化通过红光和红外光调节的磷酸酶和激酶。1. To evolve phosphatases and kinases regulated by red and infrared light.
该部分使用定向进化来构建用红光和红外光可“打开”和“关闭”的酶。当我们(i)构建将PTP1B的活性与抗生素抗性联系在一起的基因操纵子,(ii)使用该操纵子来构建PTP1 B-光敏素嵌合体,其响应红光和红外光展示出活性的三倍至十倍变化和(iii)构建相似的STEP和PTK6的光敏素嵌合体时,我们将知道我们是成功的。This section uses directed evolution to construct enzymes that can be turned "on" and "off" with red and infrared light. We will know we are successful when we (i) construct a genetic operon that links the activity of PTP1B to antibiotic resistance, (ii) use this operon to construct PTP1 B-phytochrome chimeras that exhibit three-fold to ten-fold changes in activity in response to red and infrared light, and (iii) construct similar phytochrome chimeras for STEP and PTK6.
假设。当暴露于红光和红外光时,光敏素蛋白展示出总体构象变化27,28,但迄今为止,已经避开合理的整合入光控开关酶。我们假设将PTP或PTK活性与细胞生长联系在一起的基因操纵子将能够通过红光或红外光刺激的PTP-或PTK-光敏素嵌合体进化。Hypothesis. Phytochrome proteins display global conformational changes when exposed to red and infrared light, 27,28 but have so far eluded rational integration into photoswitchable enzymes. We hypothesized that genetic operons linking PTP or PTK activity to cell growth would be amenable to evolution of PTP- or PTK-phytochrome chimeras stimulated by red or infrared light.
实验方式:我们将构建将PTP1B抑制与抗生素抗性联系在一起的操纵子,并且我们将使用操纵子以进化光控开关PTP1 B-光敏素嵌合体。该努力将涉及(i)构建连接体组成和/或连接体长度不同的PTP1B-光敏素嵌合体的文库,(ii)使用我们的操纵子来筛选功能突变体的文库,(iii)最可光控开关的突变体的动力学和生物结构特性,和(iv)将该方式扩展至STEP和PTK6。该努力具有两个主要目标:通过红光和/或红外光调节的PTP1B的变体,和使用定向进化将光学控制扩展至新的酶和不同光波长的一般方式。Experimental Approach: We will construct an operon that links PTP1B inhibition to antibiotic resistance, and we will use the operon to evolve photoswitchable PTP1 B-phytochrome chimeras. This effort will involve (i) construction of a library of PTP1B-phytochrome chimeras that differ in linker composition and/or linker length, (ii) use of our operon to screen the library for functional mutants, (iii) kinetic and biostructural characterization of the most photoswitchable mutants, and (iv) extension of the approach to STEP and PTK6. This effort has two main goals: variants of PTP1B that are regulated by red and/or infrared light, and a general approach to extend optical control to new enzymes and different light wavelengths using directed evolution.
2.用于进化PTP1 B-光敏素嵌合体的合成操纵子的开发。2. Development of a synthetic operon for the evolution of PTP1 B-phytochrome chimeras.
我们将通过将其C-末端a-螺旋附着至来自沼泽红假单胞菌的细菌光敏素蛋白1(BphP1)的N-末端a-螺旋,构建通过红光和红外光调节的PTP1B的变体(图9);该蛋白质当暴露于650nm和750nm光时经历可逆的构象改变。光敏素比如BphP1对光控制是有价值的,因为它们可在构象之间主动地切换(即,“打开”和“关闭”)。然而,它们结构与基于笼的致动(它们不经历大规模“解旋”)相容;因此,它们已将在先前开发光控开关酶的努力中被忽视了。We will construct variants of PTP1B regulated by red and infrared light by attaching its C-terminal α-helix to the N-terminal α-helix of bacterial phytochrome protein 1 (BphP1) from Rhodopseudomonas palustris (Figure 9); this protein undergoes reversible conformational changes when exposed to 650nm and 750nm light. Phytochromes such as BphP1 are valuable for light control because they can actively switch between conformations (i.e., "on" and "off"). However, their structures are compatible with cage-based actuation (they do not undergo large-scale "unwinding"); therefore, they have been overlooked in previous efforts to develop light-operated switchable enzymes.
我们将通过使用将PTP1B活性与抗生素抗性联系在一起的基因操纵子进化光控开关PTP1B-BphP1嵌合体。该操纵子将由下述六个组分组成(图10A-B):(i)拴在DNA结合蛋白质的PTP1B底物结构域、(ii)拴在RNA聚合酶的亚单元的底物识别结构域(即,底物同源性2结构域或SH2)、(iii)Src激酶(能够磷酸化各种不同的底物的激酶)、(iv)PTP1B(或PTP1B的潜在光控开关的变体)、(v)抗生素抗性的基因和(vi)那种基因的操纵基因。We will evolve a photoswitchable PTP1B-BphP1 chimera by using a genetic operon that links PTP1B activity to antibiotic resistance. This operon will consist of the following six components (Figure 10A-B): (i) a PTP1B substrate domain tethered to a DNA binding protein, (ii) a substrate recognition domain (i.e.,
具有该系统,PTP1B的光诱导失活将能够转录抗生素抗性的基因。先前的组已将使用相似的操纵子来进化蛋白质-蛋白质结合伙伴(我们的系统是基于由Liu等使用的操纵子来进化杀虫蛋白质53);这里,我们采取另外(新的)步骤:(i)使用由酶(磷酸酶和激酶)介导的蛋白质-蛋白质相互作用和(ii)在光存在和不存在的情况下筛选该相互作用。With this system, light-induced inactivation of PTP1B would enable transcription of genes for antibiotic resistance. Previous groups have used similar operons to evolve protein-protein binding partners (our system is based on an operon used by Liu et al. to evolve insecticidal proteins 53 ); here, we take additional (new) steps: (i) using protein-protein interactions mediated by enzymes (phosphatases and kinases) and (ii) screening this interaction in the presence and absence of light.
我们已经开始通过使用基于Lux的发光作为输出开发我们的操纵子。初步结果显示,模型蛋白质-蛋白质结合伙伴可引起发光的20倍变化(图3E)。我们计划用底物和SH2结构域交换出这些结合伙伴,并且与同时表达的PTP1B和Src激酶一起测试新的系统(其具有一些互补的活性,且可在大肠杆菌中表达68,69)。We have begun developing our operon by using Lux-based luminescence as output. Preliminary results show that model protein-protein binding partners can cause a 20-fold change in luminescence (Figure 3E). We plan to swap out these binding partners with substrates and SH2 domains and test the new system with co-expressed PTP1B and Src kinase (which have some complementary activities and can be expressed in E. coli68,69 ).
使用表达光敏磷酸酶的操作子的优势包括但不限于能够高通量筛选光控开关酶的突变体,并且提供了筛选它们所激发的酶文库的方法,参见,图5A用于示例。相反,已经显示诱变光控开关酶可调整(即,改善)其动态范围(即,暗黑-状态活性与光-状态活性的比例);而一些已公布的研究,如WO2011002977,Genetically Encoded PhotomanipulationOf Protein And Peptide Activity,2011年1月6日公布的,提出了,但没有证明蛋白光开关的诱变可使光控开关酶能够光谱调控。WO2011002977,提供了一列这样的位点,其可被突变以修饰LOV2的黄素-结合口袋,以接受在可选的波长吸收光的黄素。然而,它们的构建体被描述为燕麦(燕麦)向光素1(404-546)的LOV2结构域,其包括C-末端螺旋延伸Jα,其中Ja解旋而不是本文描述的Aα螺旋。尽管如此,还没有可用的方法来进行具有修饰的结合口袋的突变体的高通量筛选,本文描述的本发明为这样做提供了平台。此外,与WO2013016693,"Near-infrared light-activated proteins",公布日期2013年01月31日形成对照,本文描述的发明提供了一个这样的平台,其用于筛选潜在的改善/修饰的光控开关蛋白质的变体,比如植物光动蛋白1LOV2。The advantages of using an operator expressing a light-sensitive phosphatase include, but are not limited to, the ability to screen mutants of light-switchable enzymes in high throughput, and provide methods for screening enzyme libraries stimulated by them, see, Figure 5A for an example. In contrast, it has been shown that mutagenizing light-switchable enzymes can adjust (i.e., improve) their dynamic range (i.e., the ratio of dark-state activity to light-state activity); and some published studies, such as WO2011002977, Genetically Encoded Photomanipulation Of Protein And Peptide Activity, published on January 6, 2011, have proposed, but not demonstrated, that mutagenesis of protein photoswitches can enable light-switchable enzymes to be spectrally regulated. WO2011002977, provides a list of such sites that can be mutated to modify the flavin-binding pocket of LOV2 to accept flavins that absorb light at selectable wavelengths. However, their construct is described as the LOV2 domain of oat (Avena sativa) phototropin 1 (404-546), which includes a C-terminal helical extension Jα, in which Jα unwinds instead of the Aα helix described herein. Despite this, there are no available methods to perform high-throughput screening of mutants with modified binding pockets, and the invention described herein provides a platform for doing so. Furthermore, in contrast to WO2013016693, "Near-infrared light-activated proteins", published on January 31, 2013, the invention described herein provides such a platform for screening variants of potentially improved/modified light-operated switch proteins, such as
另外,筛选酶的文库的方法能够检测改变任何酶的活性的(i)分子或(ii)光控开关结构域,接着可调节与蛋白质-蛋白质相互作用相关的亲和力或结果:证实了蛋白酪氨酸磷酸酶(PTP)和蛋白酪氨酸激酶(PTK)。而且,考虑了蛋白酶作为蛋白质添加至该系统。In addition, the method of screening libraries of enzymes is able to detect (i) molecules or (ii) photoswitchable domains that alter the activity of any enzyme, which can then modulate the affinity or protein-protein interaction-related results: protein tyrosine phosphatases (PTPs) and protein tyrosine kinases (PTKs) were confirmed. Moreover, proteases were considered to be added to the system as proteins.
C.定向进化。C. directed evolution.
我们将通过将重叠延伸PCR(oePCR)与易错PCR(epPCR)配对构建PTP1B-BphP1嵌合体的文库。特别地,我们将使用oePCR来构建连接体长度不同的嵌合体(这里,我们定义连接体为包括PTP1B的C端a-螺旋和BphP1的N端a-螺旋的-20残基区域),并且我们将使用epPCR来改变连接体组成。取决于该初始文库的结果,我们可将易错PCR扩展至BphP1基因中,但我们不会将PTP1B突变超出其C端a-螺旋。We will construct a library of PTP1B-BphP1 chimeras by pairing overlap extension PCR (oePCR) with error-prone PCR (epPCR). In particular, we will use oePCR to construct chimeras with varying linker lengths (here, we define the linker as a region of -20 residues that includes the C-terminal a-helix of PTP1B and the N-terminal a-helix of BphP1), and we will use epPCR to vary linker composition. Depending on the results of this initial library, we may extend the error-prone PCR into the BphP1 gene, but we will not mutate PTP1B beyond its C-terminal a-helix.
在少量的抗生素(即阻碍大肠杆菌生长的量)存在的情况下,我们的基因操纵子将引起含有功能PTP1B-BphP1嵌合体的细胞在红光和红外光下展示不同生长速率。我们将利用这些差异来鉴定携带光控开关构建体的细胞。简言之,我们将(i)产生两个复制平板的细胞菌落,(ii)在红光下生产一个和在红外光下生产一个(图11A),和(iii)选择显示不同生长的菌落的(热门产物)的子集。我们将通过在红光和红外光下在小范围液体培养基(例如,具有~1ml/孔的96孔板;图11B)中使它们生长,和通过测序显示生长速率最大不同的菌落的PTP1 B-BphP1基因,来进一步表征我们的热门产物。In the presence of small amounts of antibiotics (i.e., amounts that hinder the growth of E. coli), our gene operon will cause cells containing functional PTP1B-BphP1 chimeras to exhibit different growth rates under red light and infrared light. We will exploit these differences to identify cells carrying the photoswitch construct. Briefly, we will (i) generate two replicate plated colonies of cells, (ii) produce one under red light and one under infrared light ( FIG. 11A ), and (iii) select a subset of colonies (hot products) that show differential growth. We will further characterize our hot products by growing them in small-scale liquid media (e.g., 96-well plates with ˜1 ml/well; FIG. 11B ) under red and infrared light, and by sequencing the PTP1 B-BphP1 gene of the colonies that show the greatest difference in growth rate.
我们将通过寻求以下两个策略构建STEP和PTK6的酶-光敏素嵌合体:(i)将用STEP或PTK6替换我们最终的PTP1B-BphP1嵌合体中的PTP1B;该策略将允许我们来评估我们最终设计的模块性,(ii)我们将使用我们的基于操纵子的方式以进化功能STEP-BphP1和PTK6-BphP1嵌合体;该策略将允许我们来评估我们的进化方式的通用性。We will construct enzyme-phytochrome chimeras of STEP and PTK6 by pursuing two strategies: (i) we will replace PTP1B in our final PTP1B-BphP1 chimeras with either STEP or PTK6; this strategy will allow us to assess the modularity of our final designs, and (ii) we will use our operon-based approach to evolve functional STEP-BphP1 and PTK6-BphP1 chimeras; this strategy will allow us to assess the generalizability of our evolutionary approach.
进化STEP-BphP1和PTK6-BphP1嵌合体的操纵子将非常类似于PTP IB-特异性操纵子。对于STEP,我们将使用STEP-特异性底物和SH2结构域(具有广泛的底物特异性的Src激酶可能在STEP底物的子集上具有互补的活性);对于PTK6,我们将使用识别过程,其通过磷酸化被抑制—而不是活化(这里,我们可使用PTP1BWt作为互补酶)。The operators of the evolved STEP-BphP1 and PTK6-BphP1 chimeras will be very similar to the PTP IB-specific operators. For STEP, we will use STEP-specific substrates and SH2 domains (Src kinases with broad substrate specificity may have complementary activities on a subset of STEP substrates); for PTK6, we will use a recognition process that is inhibited by phosphorylation—not activated (here, we can use PTP1B WT as the complementary enzyme).
D.扩展的方式。D. Ways of expansion.
我们将尝试通过寻求以下两种策略构建STEP和PTK6的酶-光敏素嵌合体:(i)我们将用STEP或PTK6替代我们最终的PTP1B-BphP1嵌合体中的PTP1B;该策略将允许我们来评估我们最终设计的模块性,(ii)我们将使用我们的基于操纵子的方式以进化功能STEP-BphP1和PTK6-BphP1嵌合体;该策略将允许我们来评估我们的进化方式的通用性。We will attempt to construct enzyme-phytochrome chimeras of STEP and PTK6 by pursuing two strategies: (i) we will replace PTP1B in our final PTP1B-BphP1 chimeras with STEP or PTK6; this strategy will allow us to assess the modularity of our final designs, and (ii) we will use our operon-based approach to evolve functional STEP-BphP1 and PTK6-BphP1 chimeras; this strategy will allow us to assess the generalizability of our evolutionary approach.
进化STEP-BphP1和PTK6-BphP1嵌合体的操纵子将非常类似于PTP IB-特异性操纵子。对于STEP,我们将使用STEP-特异性底物和SH2结构域(具有广泛的底物特异性的Src激酶可能在STEP底物的子集上具有互补的活性);对于PTK6,我们将使用识别过程,其通过磷酸化被抑制—而不是活化(这里,我们可使用PTP1BWT作为互补酶)。The operators of the evolved STEP-BphP1 and PTK6-BphP1 chimeras will be very similar to the PTP IB-specific operators. For STEP, we will use STEP-specific substrates and SH2 domains (Src kinases with broad substrate specificity may have complementary activities on a subset of STEP substrates); for PTK6, we will use a recognition process that is inhibited by phosphorylation—not activated (here, we can use PTP1BWT as a complementary enzyme).
F.示例性考虑了表征:酶-光敏素嵌合体的生物物理表征。F. Exemplary Considered Characterizations: Biophysical Characterization of Enzyme-Photochrome Chimeras.
我们将通过使用晶体学和动力学分析的子集检查最可光控开关的嵌合体中光控制的结构基础。X-射线晶体结构将显示BphP1如何影响PTP1B、STEP和PTK6的结构。动力学研究将显示BphP1如何影响底物特异性和结合亲和力(或更特别地,Km,其由结合亲和力影响)。We will examine the structural basis of light control in the most photoswitchable chimeras by using a subset of crystallographic and kinetic analyses. X-ray crystal structures will show how BphP1 affects the structures of PTP1B, STEP, and PTK6. Kinetic studies will show how BphP1 affects substrate specificity and binding affinity (or more specifically, Km, which is affected by binding affinity).
表1.示例性启动子Table 1. Exemplary promoters
表2.示例性核糖体结合位点Table 2. Exemplary ribosome binding sites
表3.示例性蛋白质序列(包括截短)Table 3. Exemplary protein sequences (including truncations)
表4.示例性终止子Table 4. Exemplary terminators
表5.示例性DNA序列(包括截短):Table 5. Exemplary DNA sequences (including truncations):
缩写词Abbreviations
PTP IB,蛋白酪氨酸磷酸酶IB;TC-PTP,T-细胞蛋白酪氨酸磷酸酶;SHP2,蛋白酪氨酸磷酸酶非受体11型;BBR,3-(3,5-二溴-4-羟基-苯甲酰基)-2-乙基-苯并呋喃-6-磺酸-(4-(噻唑-2-基氨磺酰基)-苯基)-酰胺;TCS401,2-[(羧基羰基)氨基]-4,5,6,7-四氢-噻吩并[2,3-c]吡啶-3-羧酸盐酸盐;AA,松香酸;SCA,统计耦合分析。PTP1B1-435,蛋白酪氨酸磷酸酶1B(全长);SacB,果聚糖蔗糖酶;GHS,γ-蛇麻烯合酶;ADS,紫穗槐二烯合酶;ABS(或AgAs),松香二烯合酶;TXS,紫杉烯合酶,PTPN5,蛋白酪氨酸磷酸酶非受体5型;PTPN6,蛋白酪氨酸磷酸酶非受体6型;PTPN11,蛋白酪氨酸磷酸酶非受体11型;PTPN12,蛋白酪氨酸磷酸酶非受体12型;PPTN22,蛋白酪氨酸磷酸酶非受体22型;RpoZ,RNA聚合酶的ω亚单元;cI(或cI434),来自λ噬菌体的cI阻遏物蛋白质;Kras(或p130cas),p130cas磷酸酪氨酸底物;MidT,来自仓鼠多瘤病毒的磷酸酪氨酸底物;EGFR底物,来自表皮生长因子受体的磷酸酪氨酸底物;Src,Src激酶;CDC37,Hsp90共伴侣Cdc37;MBP,麦芽糖-结合蛋白质;LuxAB,细菌荧光素酶模块A和B;SpecR,大观霉素抗性基因;GGPPS,香叶基香叶基二磷酸合酶;P450(或P450BM3)细胞色素P450;LOV2,来自向光素1的光-氧-电压结构域2;BphP1,细菌光敏素;Galk,半乳激酶。PTP IB, protein tyrosine phosphatase IB; TC-PTP, T-cell protein tyrosine phosphatase; SHP2, protein tyrosine phosphatase
实施例Example
提供以下实施例是为了阐释本发明的各种实施方式,但不应被视为限制本发明的范围。The following examples are provided to illustrate various embodiments of the present invention but should not be construed as limiting the scope of the present invention.
动力学模型的统计分析。我们评估了如先前描述的四种动力学模型的抑制(19)。简言之,我们使用F检验以比较双参数混合模型与几个单参数模型,并且我们使用Akaike信息标准(AIC或Ai)以比较单参数模型彼此。具有p<0.05的混合模型优于所有单参数模型,具有Aj>10的单参数模型劣于参考(即“最佳拟合”)模型。Statistical analysis of kinetic models. We evaluated the inhibition of four kinetic models as previously described (19). Briefly, we used the F test to compare the two-parameter hybrid model with several single-parameter models, and we used the Akaike information criterion (AIC or Ai) to compare the single-parameter models with each other. The hybrid model with p < 0.05 outperformed all single-parameter models, and the single-parameter model with Aj > 10 was inferior to the reference (i.e., "best fit") model.
IC50的示例性评估。我们通过使用动力学模型以评估将20mM的pNPP的PTP-催化水解的初始速率降低50%所需的抑制剂浓度来估计BBR的半数最大抑制浓度(IC50),并且我们使用MATLAB函数“nlparci”来确定那些估计值的置信区间(19)。Exemplary estimation of IC50. We estimated the half-maximal inhibitory concentration (IC50) of BBR by using a kinetic model to estimate the inhibitor concentration required to reduce the initial rate of PTP-catalyzed hydrolysis of 20 mM pNPP by 50%, and we used the MATLAB function "nlparci" to determine confidence intervals for those estimates (19).
以上说明书中提到的所有出版物和专利通过引用并入本文。在不背离本发明的范围和精神的情况下,本发明的所述方法和系统的各种修饰和变化对于本领域技术人员将是显而易见的。尽管已经结合具体的优选实施方式对本发明进行了描述,但应理解,如要求保护的本发明不应不适当地限制在这种具体的实施方式中。事实上,用于进行对于医学、分子生物学、细胞生物学、遗传学、统计学或相关领域的那些技术人员来说是显而易见的本发明的所描述的模式的各种修饰意欲在所附权利要求的范围内。All publications and patents mentioned in the above specification are incorporated herein by reference. Without departing from the scope and spirit of the present invention, various modifications and variations of the method and system of the present invention will be apparent to those skilled in the art. Although the present invention has been described in conjunction with specific preferred embodiments, it should be understood that the present invention as claimed should not be unduly limited to this specific embodiment. In fact, various modifications of the described modes of the present invention that are apparent to those skilled in the art for medicine, molecular biology, cell biology, genetics, statistics or related fields are intended to be within the scope of the appended claims.
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310617118.8A CN116875518A (en) | 2018-07-06 | 2019-07-08 | Genetically encoded systems for the construction and detection of bioactive agents |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201862694838P | 2018-07-06 | 2018-07-06 | |
US62/694,838 | 2018-07-06 | ||
PCT/US2019/040896 WO2020010364A1 (en) | 2018-07-06 | 2019-07-08 | Genetically encoded system for constructing and detecting biologically active agents |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310617118.8A Division CN116875518A (en) | 2018-07-06 | 2019-07-08 | Genetically encoded systems for the construction and detection of bioactive agents |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112654700A CN112654700A (en) | 2021-04-13 |
CN112654700B true CN112654700B (en) | 2023-06-16 |
Family
ID=69060332
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310617118.8A Pending CN116875518A (en) | 2018-07-06 | 2019-07-08 | Genetically encoded systems for the construction and detection of bioactive agents |
CN201980058408.5A Active CN112654700B (en) | 2018-07-06 | 2019-07-08 | Gene coding system for constructing and detecting bioactive agents |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310617118.8A Pending CN116875518A (en) | 2018-07-06 | 2019-07-08 | Genetically encoded systems for the construction and detection of bioactive agents |
Country Status (7)
Country | Link |
---|---|
US (3) | US11472847B2 (en) |
EP (2) | EP3818153B1 (en) |
CN (2) | CN116875518A (en) |
AU (2) | AU2019298409B2 (en) |
CA (1) | CA3105747A1 (en) |
GB (3) | GB2614681B (en) |
WO (1) | WO2020010364A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2614681B (en) * | 2018-07-06 | 2023-11-08 | The Regents Of The Univ Of Colorado A Body Corporate Existing Under The Laws Of The State Of Colorad | Genetically encoded system for constructing and detecting biologically active agents |
KR20220125293A (en) * | 2020-01-08 | 2022-09-14 | 더 리전츠 오브 더 유니버시티 오브 콜로라도, 어 바디 코퍼레이트 | Discovery and Evolution of Biologically Active Metabolites |
CN114107231B (en) * | 2021-12-13 | 2023-08-18 | 重庆大学 | Recombinant adeno-associated virus for whole-brain postsynaptic neuron cell body labeling and its application |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6303319B1 (en) * | 1996-02-23 | 2001-10-16 | Ariad Pharmaceuticals, Inc. | Cell based assay for identifying sh2-domain-specific signal transducer antagonist |
CN103160570A (en) * | 2011-12-09 | 2013-06-19 | 彩虹天健康科技研究(北京)有限责任公司 | Discovery for interaction mechanism of UNC-51 kinase and PP1 phosphatase |
WO2018096150A1 (en) * | 2016-11-28 | 2018-05-31 | Vib Vzw | Enhancing production of terpenoids using eukaryotic cells with increased intracellular membrane proliferation |
Family Cites Families (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030215798A1 (en) | 1997-06-16 | 2003-11-20 | Diversa Corporation | High throughput fluorescence-based screening for novel enzymes |
US5925523A (en) * | 1996-08-23 | 1999-07-20 | President & Fellows Of Harvard College | Intraction trap assay, reagents and uses thereof |
CA2196496A1 (en) | 1997-01-31 | 1998-07-31 | Stephen William Watson Michnick | Protein fragment complementation assay for the detection of protein-protein interactions |
FR2761697B1 (en) * | 1997-04-03 | 1999-05-28 | Inst Nat Sante Rech Med | METHODS OF DETECTING INTERACTIONS BETWEEN MULTIPLE PROTEINS |
JP2002536963A (en) | 1998-12-22 | 2002-11-05 | ミリアド・ジェネティックス・インコーポレイテッド | Protein-protein interaction in neurodegenerative diseases |
US20050227357A1 (en) * | 1999-05-06 | 2005-10-13 | Aventis Animal Nutrition S.A. | Recombinant Penicillium funiculosum for homologous and heterologous protein production |
US8071348B2 (en) * | 2002-01-14 | 2011-12-06 | Albert Einstein College Of Medicine Of Yeshiva University | Protein tyrosine phosphatase substrate-trapping double mutant and uses thereof |
WO2003068912A2 (en) | 2002-02-12 | 2003-08-21 | Cornell Research Foundation, Inc. | PSEUDOMONAS SYRINGAE HARPINS, HopPtoP AND HopPmaHPTO, AND THEIR USES |
US7083918B2 (en) | 2002-04-24 | 2006-08-01 | The Trustees Of Columbia University In The City Of New York | Bacterial small-molecule three-hybrid system |
AU2003280262A1 (en) | 2002-06-28 | 2004-01-19 | Xanthus Life Sciences, Inc. | Individualization of therapy with anticoagulants |
CA2503736A1 (en) | 2002-11-26 | 2004-06-10 | Cold Spring Harbor Laboratory | Dep-1 receptor protein tyrosine phosphatase interacting proteins and related methods |
AU2004277608A1 (en) | 2003-09-29 | 2005-04-14 | The Regents Of The University Of California | Methods for identifying a biosynthetic pathway gene product |
US20060292155A1 (en) | 2003-10-17 | 2006-12-28 | Stefan Golz | Diagnostics and therapeutics for diseases associated with mosaic serine protease (msp) |
HUE027370T2 (en) * | 2005-06-22 | 2016-10-28 | Plexxikon Inc | Pyrrolo [2,3-b]pyridine derivatives as protein kinase inhibitors |
US8586725B2 (en) | 2007-02-16 | 2013-11-19 | The Johns Hopkins University | MicroRNAome |
WO2008115420A2 (en) * | 2007-03-15 | 2008-09-25 | Cellumen, Inc. | Methods for detecting molecular interactions within cells using combination of inducible promoters and biosensors |
CA2709456A1 (en) * | 2007-12-31 | 2009-07-16 | The Regents Of The University Of California | Sers-based, single step, real-time detection of protein kinase and/or phosphatase activity |
EP2116263A1 (en) | 2008-05-05 | 2009-11-11 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. | Reversibly light-switchable drug-conjugates |
US8859232B2 (en) | 2009-07-01 | 2014-10-14 | The University Of North Carolina At Chapel Hill | Genetically encoded photomanipulation of protein and peptide activity |
WO2011133493A2 (en) | 2010-04-19 | 2011-10-27 | The University Of North Carolina At Chapel Hill | Allosteric regulation of kinase activity |
US9249410B2 (en) | 2010-12-15 | 2016-02-02 | The Johns Hopkins University | Two-hybrid based screen to identify disruptive residues at multiple protein interfaces |
WO2012111772A1 (en) | 2011-02-17 | 2012-08-23 | 国立大学法人東京医科歯科大学 | Polypeptide, isolated nucleic acid, recombinant vector, gene transfer kit, transformant, and method for regulating intracellular calcium signaling |
WO2012154858A1 (en) * | 2011-05-09 | 2012-11-15 | Whitehead Institute For Biomedical Research | Chaperone interaction assays and uses thereof |
EP2737062B1 (en) | 2011-07-27 | 2017-08-23 | University of Wyoming | Near-infrared light-activated proteins |
EP3929289A1 (en) * | 2012-07-30 | 2021-12-29 | Evolva, Inc. | Sclareol and labdenediol diphosphate synthase polypeptides, encoding nucleic acid molecules and uses thereof |
WO2015040197A1 (en) * | 2013-09-19 | 2015-03-26 | Laurent Daviet | Method for producing fragrant alcohols |
WO2015187792A1 (en) * | 2014-06-05 | 2015-12-10 | President And Fellows Of Harvard College | Protein analysis assay system |
CA2950992A1 (en) * | 2014-06-13 | 2015-12-17 | Deinove | Method of producing terpenes or terpenoids |
US11524983B2 (en) * | 2015-07-23 | 2022-12-13 | President And Fellows Of Harvard College | Evolution of Bt toxins |
WO2017020983A1 (en) | 2015-08-05 | 2017-02-09 | Merck Patent Gmbh | Artificial non-ribosomal peptide synthetases |
WO2017079703A1 (en) | 2015-11-05 | 2017-05-11 | Juno Therapeutics, Inc. | Vectors and genetically engineered immune cells expressing metabolic pathway modulators and uses in adoptive cell therapy |
WO2017087885A1 (en) * | 2015-11-19 | 2017-05-26 | Dana-Farber Cancer Institute, Inc. | Methods of identifying compounds that interfere with erg-driven misguidance of baf complexes in tmprss2-erg driven prostate cancers |
WO2017137443A1 (en) | 2016-02-08 | 2017-08-17 | Johann Wolfgang Goethe-Universität Frankfurt am Main | Artificial non-ribosomal peptide synthases and their use |
AU2018316166A1 (en) | 2017-08-07 | 2020-02-06 | The Regents Of The University Of California | Platform for generating safe cell therapeutics |
EP3511445A1 (en) | 2018-01-15 | 2019-07-17 | Johann Wolfgang Goethe-Universität Frankfurt | System for the assembly and modification of non-ribosomal peptide synthases |
US11034980B2 (en) | 2018-05-29 | 2021-06-15 | Massachusetts Institute Of Technology | Microbial engineering for the production of isoprenoids |
GB2614681B (en) | 2018-07-06 | 2023-11-08 | The Regents Of The Univ Of Colorado A Body Corporate Existing Under The Laws Of The State Of Colorad | Genetically encoded system for constructing and detecting biologically active agents |
KR20220125293A (en) | 2020-01-08 | 2022-09-14 | 더 리전츠 오브 더 유니버시티 오브 콜로라도, 어 바디 코퍼레이트 | Discovery and Evolution of Biologically Active Metabolites |
-
2019
- 2019-07-08 GB GB2305888.6A patent/GB2614681B/en active Active
- 2019-07-08 GB GB2101536.7A patent/GB2590302B/en active Active
- 2019-07-08 WO PCT/US2019/040896 patent/WO2020010364A1/en unknown
- 2019-07-08 AU AU2019298409A patent/AU2019298409B2/en active Active
- 2019-07-08 GB GB2301906.0A patent/GB2612522B/en active Active
- 2019-07-08 CN CN202310617118.8A patent/CN116875518A/en active Pending
- 2019-07-08 CN CN201980058408.5A patent/CN112654700B/en active Active
- 2019-07-08 EP EP19831095.5A patent/EP3818153B1/en active Active
- 2019-07-08 EP EP23182468.1A patent/EP4266058A3/en active Pending
- 2019-07-08 CA CA3105747A patent/CA3105747A1/en active Pending
-
2021
- 2021-01-05 US US17/141,321 patent/US11472847B2/en active Active
- 2021-12-08 AU AU2021282455A patent/AU2021282455B2/en active Active
-
2022
- 2022-08-02 US US17/816,937 patent/US11993635B2/en active Active
-
2024
- 2024-02-15 US US18/443,086 patent/US20240199704A1/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6303319B1 (en) * | 1996-02-23 | 2001-10-16 | Ariad Pharmaceuticals, Inc. | Cell based assay for identifying sh2-domain-specific signal transducer antagonist |
CN103160570A (en) * | 2011-12-09 | 2013-06-19 | 彩虹天健康科技研究(北京)有限责任公司 | Discovery for interaction mechanism of UNC-51 kinase and PP1 phosphatase |
WO2018096150A1 (en) * | 2016-11-28 | 2018-05-31 | Vib Vzw | Enhancing production of terpenoids using eukaryotic cells with increased intracellular membrane proliferation |
Also Published As
Publication number | Publication date |
---|---|
US20240199704A1 (en) | 2024-06-20 |
GB2612522A (en) | 2023-05-03 |
AU2019298409B2 (en) | 2021-09-16 |
GB2590302A (en) | 2021-06-23 |
EP4266058A3 (en) | 2024-02-21 |
CN112654700A (en) | 2021-04-13 |
WO2020010364A1 (en) | 2020-01-09 |
EP3818153A1 (en) | 2021-05-12 |
AU2021282455A1 (en) | 2022-01-06 |
US11472847B2 (en) | 2022-10-18 |
CN116875518A (en) | 2023-10-13 |
US20230151062A1 (en) | 2023-05-18 |
GB202301906D0 (en) | 2023-03-29 |
EP4266058A9 (en) | 2023-12-13 |
GB2614681B (en) | 2023-11-08 |
AU2019298409A1 (en) | 2021-03-04 |
AU2021282455B2 (en) | 2025-01-23 |
EP3818153B1 (en) | 2023-12-13 |
GB2590302B (en) | 2023-03-22 |
GB202101536D0 (en) | 2021-03-24 |
CA3105747A1 (en) | 2020-01-09 |
US20210206813A1 (en) | 2021-07-08 |
EP3818153A4 (en) | 2022-04-06 |
GB202305888D0 (en) | 2023-06-07 |
EP4266058A2 (en) | 2023-10-25 |
GB2612522B (en) | 2023-08-02 |
GB2614681A (en) | 2023-07-12 |
US11993635B2 (en) | 2024-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11993635B2 (en) | Genetically encoded system for constructing and detecting biologically active agents | |
Chen et al. | Developing small‐molecule inhibitors of HECT‐type ubiquitin ligases for therapeutic applications: Challenges and opportunities | |
Duvall et al. | Design of a histidine kinase FRET sensor to detect complex signal integration within living bacteria | |
Jia et al. | Chemical toolkit for PARK7: potent, selective, and high-throughput | |
Hobbs et al. | Saturation mutagenesis of a predicted ancestral Syk‐family kinase | |
Kaczmarczyk et al. | A genetically encoded biosensor to monitor dynamic changes of c-di-GMP with high temporal resolution | |
Chen et al. | Biosynthesis of Glidomides and Elucidation of Different Mechanisms for Formation of β‐OH Amino Acid Building Blocks | |
Chen et al. | Genetic code expansion and optoproteomics | |
Galicia et al. | Methods for the recombinant expression of active tyrosine kinase domains: Guidelines and pitfalls | |
Jankowski et al. | The formation of a fuzzy complex in the negative arm regulates the robustness of the circadian clock | |
Moynié et al. | A substrate mimic allows high-throughput assay of the FabA protein and consequently the identification of a novel inhibitor of Pseudomonas aeruginosa FabA | |
US20250034551A1 (en) | Methods and systems for high-throughput biochemical screens | |
Righetto et al. | The C-terminal domains SnRK2 Box and ABA Box have a role in sugarcane SnRK2s auto-activation and activity | |
Liu et al. | Expanding the chemical diversity of Grisechelins via heterologous expression | |
Dasgupta et al. | The role of the catalytic domain of E. coli GluRS in tRNAGln discrimination | |
Zhou | Profiling Substrate Proteins of Ring and RBR type E3 ligases by Orthogonal Ubiquitin Transfer and the Development of a Peptide Activator Targeting HECT-type E3 ligase | |
Zhang | Engineering and Application of Bacterial Two-Component Systems | |
Harford | Clock Control of Ribosome Composition and Activity: the Potential Role of the Ribosome-Associated Protein, Zuotin, in Neurospora Crassa | |
Wagner | Characterization of the Drosophila melanogaster Hedgehog C-Terminal Autoprocessing Domain: Activation, Inhibition, and Mutagenesis | |
Grote | Characterization of Potential Anti-infective Agents By Targeting Burkholderia pseudomallei and Escherichia coli IspF | |
Kesavan | Chemical Biology Strategies for the Control of Protein Function and the Interrogation of Cyclin/CDK Interactions | |
Perez | High-Throughput Identification of Oncogenic Tyrosine Kinase Substrate Preferences to Improve Methods of Detection | |
Sarkar | Genetically Encoded Tools for the Discovery and Biosynthesis of Bioactive Small Molecules in Escherichia Coli | |
Giroud et al. | Covalent Inhibitors of S100A4 Block the Formation of a Pro-Metastasis Non-Muscle Myosin 2A Complex | |
Breen | Substrate-Competitive Inhibitors of c-Src Kinase. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |