CN112640283B - Inverter control method, power supply system for AC load, refrigeration circuit - Google Patents
Inverter control method, power supply system for AC load, refrigeration circuit Download PDFInfo
- Publication number
- CN112640283B CN112640283B CN201980055943.5A CN201980055943A CN112640283B CN 112640283 B CN112640283 B CN 112640283B CN 201980055943 A CN201980055943 A CN 201980055943A CN 112640283 B CN112640283 B CN 112640283B
- Authority
- CN
- China
- Prior art keywords
- value
- current
- voltage
- vac
- inverter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
- H02M7/42—Conversion of DC power input into AC power output without possibility of reversal
- H02M7/44—Conversion of DC power input into AC power output without possibility of reversal by static converters
- H02M7/48—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P27/00—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
- H02P27/04—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
- H02P27/06—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using DC to AC converters or inverters
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inverter Devices (AREA)
- Control Of Ac Motors In General (AREA)
Abstract
抑制换流器的发热。逆变器施加从直流电压转换后的交流电压而向交流负载供给电力。在由换流器转换为该直流电压的交流电压的电压值(Vac)小于第一值(Vt1)时,能够降低该电力(步骤S84、S85)。
The heat generation of the inverter is suppressed. The inverter applies the AC voltage converted from the DC voltage to supply electric power to the AC load. When the voltage value (Vac) of the AC voltage converted into the DC voltage by the inverter is smaller than the first value (Vt1), the power can be reduced (steps S84 and S85).
Description
技术领域technical field
本发明涉及转换电力的技术。The present invention relates to techniques for converting electric power.
背景技术Background technique
在下述的专利文献1中公开了如下内容:当输入到逆变器的电压极端降低时,停止逆变器的运转,从而阻止逆变器的误动作、部件破坏。The following
现有技术文献prior art literature
专利文献Patent Literature
专利文献1:日本特开昭63-290193号公报Patent Document 1: Japanese Patent Laid-Open No. 63-290193
发明内容SUMMARY OF THE INVENTION
发明要解决的课题The problem to be solved by the invention
本发明抑制换流器的发热,该换流器输出向逆变器输入的电压。The present invention suppresses the heat generation of the inverter which outputs the voltage input to the inverter.
用于解决问题的手段means to solve the problem
本发明的针对交流负载的电力供给系统具有:逆变器(4),其施加从直流电压(Vdc)转换得到的第一交流电压(V1)而向交流负载(5)供给电力(Po);换流器(2),其将第二交流电压(V2)转换为所述直流电压(Vdc);以及控制电路(6)。The power supply system for an AC load of the present invention includes an inverter (4) that applies a first AC voltage (V1) converted from a DC voltage (Vdc) to supply power (Po) to the AC load (5); an inverter (2) which converts the second alternating current voltage (V2) into said direct current voltage (Vdc); and a control circuit (6).
在该第一方式中,当所述第二交流电压的电压值(Vac)小于规定的第一值(Vt1)时,所述控制电路能够使所述逆变器降低所述电力(S85)。In the first aspect, when the voltage value (Vac) of the second AC voltage is smaller than a predetermined first value (Vt1), the control circuit can cause the inverter to reduce the electric power (S85).
并且,如果所述电压值(Vac)为所述第一值(Vt1)以上,则基于用于降低所述电力的第一条件(S83,S84)使所述电力降低(S85)。如果所述电压值小于所述第一值,则基于比所述第一条件缓和的用于降低所述电力的第二条件(S82,S84)使所述电力降低(S85)。Then, if the voltage value (Vac) is equal to or greater than the first value (Vt1), the power is reduced (S85) based on the first conditions for reducing the power (S83, S84). If the voltage value is smaller than the first value, the power is reduced ( S85 ) based on a second condition ( S82 , S84 ) for reducing the power that is milder than the first condition.
本发明的向交流负载的电力供给系统的第二方式,在该第一方式中,如果所述电压值(Vac)小于所述第一值(Vt1)并且输入到所述逆变器(4)或向所述交流负载(5)输出的电流(Iw)为第一上限值(I3)以上,则进行针对所述电流的下垂控制(S85)。相对于所述电压值的上升,所述第一上限值为单调非减小。In the second aspect of the power supply system to an AC load of the present invention, in the first aspect, if the voltage value (Vac) is smaller than the first value (Vt1) and input to the inverter (4) Or, when the current (Iw) output to the AC load (5) is equal to or greater than the first upper limit value (I3), droop control for the current is performed (S85). The first upper limit value is monotonically non-decreasing with respect to an increase in the voltage value.
本发明的针对交流负载的电力供给系统的第三方式,在该第一方式或第二方式中,如果所述电压值(Vac)小于所述第一值(Vt1)并且向所述换流器(2)输入的输入电流的电流值(Ii)为第二上限值以上,则进行针对所述输入电流的下垂控制(S85)。相对于所述电压值(Vac)的上升,所述第二上限值为单调非减小。According to the third aspect of the power supply system for an AC load of the present invention, in the first aspect or the second aspect, if the voltage value (Vac) is smaller than the first value (Vt1 ) and the inverter is sent to the inverter (2) When the current value (Ii) of the inputted input current is equal to or greater than the second upper limit value, the droop control for the input current is performed ( S85 ). The second upper limit value is monotonically non-decreasing with respect to an increase in the voltage value (Vac).
本发明的针对交流负载的电力供给系统的第四方式,在该第一方式或第二方式或第三方式中,如果所述电压值(Vac)小于比所述第一值(Vt1)低的规定的第二值(Vt2),则停止向所述交流负载(5)供给所述电力(Po)(S73、S74)。In the fourth aspect of the power supply system for an AC load according to the present invention, in the first aspect, the second aspect, or the third aspect, if the voltage value (Vac) is lower than the first value (Vt1) When the predetermined second value (Vt2) is reached, the supply of the electric power (Po) to the AC load (5) is stopped (S73, S74).
本发明的针对交流负载的电力供给系统的第五方式,在该第二方式或第三方式中,所述交流负载(5)是电机。所述下垂控制(S85)包含降低所述电机的转速的控制。In the fifth aspect of the power supply system for an AC load of the present invention, in the second aspect or the third aspect, the AC load (5) is a motor. The droop control ( S85 ) includes control to reduce the rotational speed of the motor.
本公开的向交流负载的电力供给系统的第六方式,在该第五方式中,所述电机(5)是驱动制冷回路(9)中采用的压缩机(91)的电机、驱动空调机中采用的风扇、驱动空气净化器中采用的风扇的电机中的任意种电机。In a sixth aspect of the power supply system to an AC load of the present disclosure, in the fifth aspect, the motor (5) is a motor that drives a compressor (91) used in a refrigeration circuit (9), and drives an air conditioner. Any of the fans used and the motors that drive the fans used in the air purifier.
本发明的针对交流负载的电力供给系统的第七方式,在该第五方式中,所述电机(5)是驱动制冷回路(9)所具有的压缩机(91)的电机。所述制冷回路还具有膨胀阀(93)。所述下垂控制(S85)包含使所述膨胀阀的开度增加的控制。In a seventh aspect of the power supply system for an AC load of the present invention, in the fifth aspect, the motor (5) is a motor that drives a compressor (91) included in the refrigeration circuit (9). The refrigeration circuit also has an expansion valve (93). The droop control ( S85 ) includes control to increase the opening degree of the expansion valve.
本发明的针对交流负载的电力供给系统的第八方式,在该第一方式至第七方式中的任一方式中,当所述电压值(Vac)小于所述第一值(Vt1)时,使向由所述直流电压驱动的直流负载(93)供给的电力降低。In an eighth aspect of the power supply system for an AC load of the present invention, in any one of the first to seventh aspects, when the voltage value (Vac) is smaller than the first value (Vt1), The power supplied to the DC load (93) driven by the DC voltage is reduced.
本发明的制冷回路(9)具有由电机(5)驱动的压缩机(91)和膨胀阀(93)。所述电机(5)是被本发明的针对交流负载的电力供给系统的第七方式供给电力的所述交流负载(5)。The refrigeration circuit (9) of the present invention has a compressor (91) and an expansion valve (93) driven by a motor (5). The motor (5) is the AC load (5) supplied with electric power by the seventh aspect of the power supply system for an AC load of the present invention.
本发明的逆变器的控制方法,对将所输入的直流电压(Vdc)转换为第一交流电压(V1)而向交流负载(5)供给电力的逆变器(4)进行控制。所述直流电压(Vdc)是通过换流器(2)从第二交流电压(V2)转换得到的。The inverter control method of the present invention controls an inverter (4) that converts an input DC voltage (Vdc) into a first AC voltage (V1) and supplies power to an AC load (5). The DC voltage (Vdc) is converted from the second AC voltage (V2) by the inverter (2).
并且,在所述第二交流电压的电压值(Vac)小于规定的第一值(Vt1)时,能够降低所述电力(S85)而进行该电力的供给(S8)。Then, when the voltage value (Vac) of the second AC voltage is smaller than a predetermined first value (Vt1), the electric power can be reduced (S85) and the electric power can be supplied (S8).
如果所述电压值(Vac)为所述第一值(Vt1)以上,则基于用于降低所述电力的第一条件(S83,S84)使所述电力降低(S85)。如果所述电压值小于所述第一值,则基于比所述第一条件缓和的用于降低所述电力的第二条件(S82,S84)使所述电力降低(S85)。If the voltage value (Vac) is equal to or greater than the first value (Vt1 ), the power is reduced based on the first conditions ( S83 , S84 ) for reducing the power ( S85 ). If the voltage value is smaller than the first value, the power is reduced ( S85 ) based on a second condition ( S82 , S84 ) for reducing the power that is milder than the first condition.
附图说明Description of drawings
图1是表示交流负载驱动系统的结构的框图。FIG. 1 is a block diagram showing the configuration of an AC load drive system.
图2是表示控制电路的电力降低动作以及与其相关联的动作的流程图。FIG. 2 is a flowchart showing a power reduction operation of a control circuit and an operation related thereto.
图3是表示作为电流下垂值的函数的相对于电压值的相关性的线图。FIG. 3 is a graph showing the dependence on the voltage value as a function of the current droop value.
图4是表示制冷回路的结构的框图。Fig. 4 is a block diagram showing the configuration of a refrigeration circuit.
具体实施方式Detailed ways
图1是表示交流负载驱动系统100的结构的框图,在此,交流负载驱动系统100驱动交流负载5。作为交流负载5,能够采用单相交流负载、多相交流负载中的任一种。例如,交流负载5是交流电机。例如,该交流电机驱动用于制冷回路中的压缩机。或者,例如该交流电机驱动向用于制冷回路中的热交换器送风的风扇。或者,例如该交流电机驱动用于空气净化器的风扇。FIG. 1 is a block diagram showing the configuration of an AC
交流负载驱动系统100具有逆变器4。逆变器4将输入到其自身的直流电压Vdc转换为交流电压V1,并将交流电压V1施加给交流负载5。逆变器4向交流负载5供给使交流负载5动作的电力(以下称为“动作电力”)Po。交流电压V1的相数与交流负载5的相数对应。The AC
交流负载驱动系统100具有换流器2。换流器2转换交流电压V2而输出直流电压Vdc。交流电压V2例如从作为交流电源的商用电源1输出。从商用电源1向换流器2输入电流值Ii的输入电流。从商用电源1向交流负载驱动系统100供给电力Ps。The AC
换流器2例如采用二极管桥式整流电路、升压换流器、降压换流器、升降压换流器。The
在图1中示出了交流负载驱动系统100在商用电源1与和换流器2的输入侧之间还具有滤波器7的情况。在该情况下,交流电压V2经由滤波器7从商用电源1施加给换流器2。例如,滤波器7是扼流输入型的低通滤波器。电流值Ii可以采用从商用电源1流向滤波器7的电流的值。可以将滤波器7所具有的电容器的两端电压理解为交流电压V2。FIG. 1 shows a case where the AC
在图1中示出了交流负载驱动系统100还具有电容器3的情况。电容器3支持直流电压Vdc。换流器2对电容器3进行充电。电容器3放电,单独或与换流器2一起供给向逆变器4输入的电力(以下称为“输入电力”)Pi。如果忽略逆变器4中的损耗,则输入电力Pi等于动作电力Po。In FIG. 1 , the case where the AC
交流负载驱动系统100具有控制电路6。控制电路6控制逆变器4的动作。例如逆变器4通过进行开关动作而将直流电压Vdc转变为交流电压V1。逆变器4例如包含进行上述开关动作的开关元件。The AC
控制电路6生成控制该开关动作的控制信号G而向逆变器4输出。交流电压V1依赖于逆变器4的开关动作而变动。交流电压V1的变动使动作电力Po变动。动作电力Po的变动使交流负载5的动作变动。The
因此,控制电路6通过逆变器4的控制而使动作电力Po变动,从而以各种动作驱动交流负载5。以交流负载5为三相电机的情况为例进行说明。Therefore, the
向控制电路6输入指令数据J、交流电压V2的电压值Vac、流过逆变器4的电流Iw的值(以下也称为“电流值Iw”)。指令数据J例如是关于电机5的转速或转矩的指令值。直流电压Vdc的值也可以被输入到控制电路6。Command data J, the voltage value Vac of the AC voltage V2, and the value of the current Iw flowing through the inverter 4 (hereinafter also referred to as "current value Iw") are input to the
电压值Vac是使用公知的电压传感器以公知的方法得到的,电流值Iw是使用公知的电流传感器以公知的方法得到的。电流值Iw能够通过测量输入到逆变器4的电流来获得。The voltage value Vac is obtained by a known method using a known voltage sensor, and the current value Iw is obtained by a known method using a known current sensor. The current value Iw can be obtained by measuring the current input to the
指令数据J例如在电机5驱动压缩机的情况下根据使用该压缩机的制冷回路的冷却性能来设定。该设定例如是作为空调机基于温度设定来驱动压缩机的控制而公知的技术。例如,为了提高冷却性能,能够采用增大压缩机的转速,例如增大指令数据J所示的转速的指令值。The command data J is set according to the cooling performance of the refrigeration circuit using the compressor when the
控制电路6使用指令数据J、电压值Vac、电流值Iw来确定动作电力Po。例如,在指令数据J是关于转速或转矩的指令值时,该指令值的增大导致动作电力Po的增大。The
控制电路6以从逆变器4向交流负载5供给动作电力Po的方式生成控制信号G。The
在逆变器4供给某一值的动作电力Po时,若电压值Vac降低,则电流值Ii上升。这是因为,若将换流器2的电力变换效率考虑为恒定,则输入电力Pi与电压值Vac和电流值Ii的积成比例,若忽略逆变器4中的损耗,则输入电力Pi与动作电力Po相等。电流值Ii上升导致构成换流器2的二极管或开关元件的发热。二极管或开关元件的发热导致效率降低、元件的性能降低。因此,希望抑制换流器2的发热。When the
在本实施方式中,作为抑制该发热的技术,提出了在电压值Vac降低时使逆变器4进行降低动作电力Po的动作的逆变器的控制方法。具体而言,例如,控制电路6以使逆变器4进行上述动作的方式使控制信号G变动。这是为了通过动作电力Po的降低而实现输入电力Pi降低、进而实现电力Ps降低,从而缓和或降低电流值Ii的上升。In the present embodiment, as a technique for suppressing this heat generation, an inverter control method is proposed that causes the
由此,换流器2的发热被抑制。在具有滤波器7时,滤波器7所具有的线圈中的发热也被抑制。换言之,交流负载驱动系统100中的至少包含换流器2的商用电源1侧的发热被抑制。Thereby, the heat generation of the
在换流器2如二极管桥式整流电路那样通过电压值Vac的增减而使直流电压Vdc的电压值也增减的情况下,由于电压值Vac的降低而使直流电压Vdc的电压值降低。因此,与动作电力Po的降低无关,逆变器4的开关损耗都降低,逆变器4的发热被抑制。由于在使动作电力Po降低时电流值Iw也减少,因此逆变器4的发热进一步被抑制。例如,根据换流器2的功能,即使直流电压Vdc的电压值不因电压值Vac的增减而增减的情况下,在使动作电力Po降低时也能够抑制逆变器4的发热。When the
不需要相对于电压值Vac的降低而总是使动作电力Po降低。因为开关元件等的发热能够被容许到规定的上限。例如,在采用晶体管作为开关元件的情况下,这种容许的上限依赖于所谓的容许集电极损耗。It is not necessary to always lower the operating power Po with respect to the lowering of the voltage value Vac. This is because heat generation of switching elements and the like can be tolerated up to a prescribed upper limit. For example, in the case where a transistor is used as the switching element, the upper limit of this tolerance depends on the so-called allowable collector loss.
因此,作为在本实施方式中提出的技术,列举如下技术:如果电压值Vac小于规定的阈值(以下,为了方便说明而设为“第一值Vt1”),则与电压值Vac为规定的阈值以上时相比,容易降低从逆变器4向交流负载5供给的动作电力Po。Therefore, as a technique proposed in this embodiment, there is a technique in which, if the voltage value Vac is smaller than a predetermined threshold value (hereinafter, referred to as "first value Vt1" for convenience of description), the voltage value Vac becomes a predetermined threshold value Compared with the above case, the operating power Po supplied from the
这是作为控制电路6的动作来看,在电压值Vac小于第一值Vt1时和为第一值Vt1以上时进行使动作电力Po降低的动作(以下也称为“电力降低动作”)的条件不同,执行使逆变器4供给动作电力Po的控制方法。例如,控制电路6生成使逆变器4进行降低动作电力Po的动作的控制信号G而向逆变器4输出。In view of the operation of the
图2是表示控制电路6的电力降低动作以及与其相伴的动作的流程图。在步骤S71中设定动作电力Po。该设定是基于指令数据J、电压值Vac、电流值Iw的动作电力Po的确定,是通过公知的技术进行的处理。在步骤S71中,不仅直接确定动作电力Po,也可以通过确定交流负载5的动作状态(例如电机负载的转速或转矩)来间接地确定动作电力Po。FIG. 2 is a flowchart showing the power reduction operation of the
在步骤S71之后,在步骤S72中,进行维持动作电力Po而使逆变器4动作的控制。该控制是维持在步骤S71中设定的动作电力Po而使逆变器4动作的控制,是通过公知的技术进行的处理。After step S71, in step S72, control is performed to operate the
在步骤S72之后,在步骤S73中,当电压值Vac异常下降时,进行用于中止交流负载5的驱动的比较。After step S72, in step S73, when the voltage value Vac drops abnormally, a comparison for stopping the driving of the
在步骤S73中,例如将电压值Vac与规定的第二值Vt2进行比较。第二值Vt2比第一值Vt1小。如果电压值Vac小于第二值Vt2(即Vac≥Vt2为否定时),则处理进入步骤S74。In step S73, for example, the voltage value Vac is compared with a predetermined second value Vt2. The second value Vt2 is smaller than the first value Vt1. If the voltage value Vac is smaller than the second value Vt2 (ie, when Vac≧Vt2 is negative), the process proceeds to step S74.
在步骤S74中,停止从逆变器4向交流负载5供给动作电力Po。例如,在换流器2采用二极管桥式整流电路的情况下,电压值Vac的降低会导致直流电压Vdc的降低。步骤S73可以包含这种情况下的对直流电压Vdc的低电压保护的处理。In step S74, the supply of the operating power Po from the
在此,动作电力Po供给的停止作为与虽然降低但还进行动作电力Po的供给的电力降低动作不同的处理来处理。Here, the stop of the supply of the operating power Po is handled as a different process from the power reduction operation in which the supply of the operating power Po is also performed.
如果在步骤S73中电压值Vac为第二值Vt2以上(即Vac≥Vt2为肯定时),则处理进入步骤S8。在步骤S8中,控制电路6进行电力降低动作。但是,在步骤S8中,如后所述,也不一定进行动作电力Po的降低。具体而言,步骤S8包含步骤S81~S85的多个步骤,在步骤S84中处理进行分支,有时从步骤S8的中途退出。If the voltage value Vac is equal to or greater than the second value Vt2 in step S73 (that is, when Vac≧Vt2 is affirmative), the process proceeds to step S8. In step S8, the
在步骤S8的处理的最初,在步骤S81中进行第一值Vt1与电压值Vac的比较。作为该比较的结果,如果电压值Vac小于第一值Vt1(即,Vac<Vt1是肯定时),则处理进入步骤S82。如果电压值Vac为第一值Vt1以上(即,Vac<Vt1是否定时),则处理进入步骤S83。At the beginning of the process of step S8, a comparison between the first value Vt1 and the voltage value Vac is performed in step S81. As a result of this comparison, if the voltage value Vac is smaller than the first value Vt1 (ie, when Vac<Vt1 is affirmative), the process proceeds to step S82. If the voltage value Vac is equal to or greater than the first value Vt1 (that is, when Vac<Vt1 is negative), the process proceeds to step S83.
为了便于说明,在说明步骤S82、S83之前,对步骤S84、S85进行说明。在步骤S85中,对电流Iw进行所谓的下垂控制,在步骤S85之前,在步骤S84中判断是否需要进行下垂控制。For convenience of description, steps S84 and S85 will be described before steps S82 and S83 are described. In step S85, so-called droop control is performed on the current Iw, and before step S85, it is determined in step S84 whether or not droop control is necessary.
作为下垂控制的例子,能够举出交流负载5为电机而使其转速降低的控制。电机的转速的降低通过电流Iw的降低来实现,有助于动作电力Po的直接降低。As an example of the droop control, a control in which the rotation speed of the
是否进行下垂控制是由从逆变器4向交流负载5输出的电流与电流下垂值I3的比较来确定的。该电流是流过逆变器4的电流,因此能够作为电流值Iw进行测量。Whether or not to perform droop control is determined by comparing the current output from the
在步骤S84中,当Iw≥I3为肯定时,处理进入步骤S85,进行下垂控制。由此,电流值Iw降低。即,通过步骤S84、S85,电流下垂值I3作为电流值Iw的上限值发挥作用。In step S84, when Iw≥I3 is affirmative, the process proceeds to step S85, and droop control is performed. Thereby, the current value Iw decreases. That is, through steps S84 and S85, the current droop value I3 functions as the upper limit value of the current value Iw.
当在步骤S84中Iw≥I3为否定时(即Iw<I3时),处理从步骤S8退出而返回步骤S72。When Iw≥I3 is negative in step S84 (that is, when Iw<I3), the process exits from step S8 and returns to step S72.
步骤S82、S83都是确定电流下垂值I3的处理。在步骤S82中,电流下垂值I3由电压值Vac的函数f(Vac)设定。在此,函数f(Vac)相对于电压值Vac的上升而单调非减小。在步骤S83中,电流下垂值I3被设定为规定值I31。例如,规定值I31采用与电压值Vac不相关的值。Steps S82 and S83 are both processes of determining the current droop value I3. In step S82, the current droop value I3 is set by the function f(Vac) of the voltage value Vac. Here, the function f(Vac) does not decrease monotonically with respect to the rise of the voltage value Vac. In step S83, the current droop value I3 is set to a predetermined value I31. For example, the predetermined value I31 is a value not related to the voltage value Vac.
在执行了步骤S82、S83之后,执行步骤S84。该情况下的步骤S84中的处理是进行电流值Iw与规定值I31的比较。即,步骤S82、S83、S84、S85是以使电流值Iw不超过规定值I31的方式进行下垂控制的步骤的集合。After steps S82 and S83 are performed, step S84 is performed. The process in step S84 in this case is to compare the current value Iw with the predetermined value I31. That is, steps S82, S83, S84, and S85 are a set of steps for performing droop control so that the current value Iw does not exceed the predetermined value I31.
图3是示出成为电流下垂值I3的函数f(Vac)的相对于电压值Vac的相关性的线图。具体为:FIG. 3 is a graph showing the correlation with the voltage value Vac as a function f(Vac) of the current droop value I3. Specifically:
当Vac≥Vt1时,f(Vac)=I31;When Vac≥Vt1, f(Vac)=I31;
当Vac≤Vt2时,f(Vac)=I32;When Vac≤Vt2, f(Vac)=I32;
当Vt2≤Vac≤Vt1时,When Vt2≤Vac≤Vt1,
f(Vac)=I32+(Vac-Vt2)(I31-I32)/(Vt1-Vt2)。f(Vac)=I32+(Vac-Vt2)(I31-I32)/(Vt1-Vt2).
规定值I32小于规定值I31且与电压值Vac不相关。The predetermined value I32 is smaller than the predetermined value I31 and is not related to the voltage value Vac.
当然,上述函数f(Vac)是例示,在Vt2≤Vac≤Vt1时,函数f(Vac)可以相对于电压值Vac为非线性。例如,相对于电压值Vac的变化,函数f(Vac)可以连续地变化,也可以呈阶梯状地变化。Of course, the above-mentioned function f(Vac) is an example, and when Vt2≤Vac≤Vt1, the function f(Vac) may be nonlinear with respect to the voltage value Vac. For example, the function f(Vac) may change continuously or stepwise with respect to the change in the voltage value Vac.
在执行步骤S81时,由于步骤S73中的判断是肯定的,因此Vt2≤Vac成立。因此,在步骤S82中,电流下垂值I3被设定为相对于电压值Vac的下降而单调下降的值。When step S81 is executed, since the determination in step S73 is affirmative, Vt2≤Vac is established. Therefore, in step S82, the current droop value I3 is set to a value that decreases monotonically with respect to the decrease in the voltage value Vac.
通过采用这样设定的电流下垂值I3,并通过执行步骤S84、S85,在关于电流Iw的下垂控制中,电压值Vac越低则以越低的电流下垂值I3为上限,抑制电流Iw。因此,随着电压值Vac的降低,动作电力Po降低进而电力Ps降低。因此,即使电压值Vac降低,电流值Ii的增大也被抑制,换流器2的发热被抑制。基于这样的步骤S82、S84、S85的动作电力Po的降低是上述的电力降低动作的例示。By using the current droop value I3 set in this way, and by executing steps S84 and S85, in the droop control for the current Iw, the lower the current droop value I3 as the lower voltage value Vac is as the upper limit, the current Iw is suppressed. Therefore, as the voltage value Vac decreases, the operating power Po decreases and the electric power Ps decreases. Therefore, even if the voltage value Vac decreases, the increase in the current value Ii is suppressed, and the heat generation of the
根据步骤S82、S83、S84的说明,可以如下所示:According to the description of steps S82, S83 and S84, it can be as follows:
若电压值Vac为第一值Vt1以上,则在I3=I31这样的第一条件下降低供给动作电力Po;If the voltage value Vac is equal to or greater than the first value Vt1, the supply operating power Po is reduced under the first condition of I3=I31;
若电压值Vac小于第一值Vt1,则在I3=f(Vac)这样的第二条件下降低供给动作电力Po。If the voltage value Vac is smaller than the first value Vt1, the supply operating power Po is reduced under the second condition of I3=f(Vac).
如果Vac<Vt1,则f(Vac)<I31,因此,电压值Vac小于第一值Vt1的情况与电压值Vac为第一值Vt1以上的情况相比,容易使动作电力Po降低。换言之,用于降低动作电力Po的第二条件比第一条件缓和。If Vac<Vt1, f(Vac)<I31, therefore, when the voltage value Vac is less than the first value Vt1, it is easier to reduce the operating power Po than when the voltage value Vac is greater than or equal to the first value Vt1. In other words, the second condition for reducing the operating power Po is gentler than the first condition.
虽然第二条件比第一条件缓和,但即使Vac<Vt1,也未必能够使动作电力Po降低。这是因为,在步骤S84的判断为否定结果的情况下,不进入步骤S85,不进行下垂控制。因此,当Vac<Vt1时,控制电路6能够使针对逆变器4的电力降低。Although the second condition is milder than the first condition, even if Vac<Vt1, it is not always possible to reduce the operating power Po. This is because, when the determination in step S84 is negative, the process does not proceed to step S85 and the droop control is not performed. Therefore, when Vac<Vt1 , the
在步骤S73中的判断为否定的情况下,执行步骤S74,鉴于使动作电力Po的供给停止,在Vac<Vt2时,也可以不设定函数f(Vac)的值。If the determination in step S73 is negative, step S74 is executed, and the value of the function f(Vac) may not be set when Vac<Vt2 in order to stop the supply of the operating power Po.
可以导入比确定函数f(Vac)的第二值Vt2小的第二值Vt2',在步骤S73中将与电压值Vac比较的第二值Vt2置换为第二值Vt2'。在这种情况下,在Vac<Vt2'时停止动作电力Po的供给,在Vt2'≤Vac≤Vt2时电流下垂值I3取规定值I32并将其作为上限,进行关于电流Iw的下垂控制。A second value Vt2' smaller than the second value Vt2 of the determination function f(Vac) may be introduced, and the second value Vt2 compared with the voltage value Vac may be replaced with the second value Vt2' in step S73. In this case, the supply of the operating power Po is stopped when Vac<Vt2', and the current droop value I3 takes the predetermined value I32 as the upper limit when Vt2'≤Vac≤Vt2, and performs droop control on the current Iw.
也可以导入比确定函数f(Vac)的第一值Vt1大的第一值Vt1',在步骤S81中将与电压值Vac比较的第一值Vt1置换为第一值Vt1'。在这种情况下,在Vt1≤Vac≤Vt1'时,电流下垂值I3取规定值I31并将其作为上限,进行关于电流Iw的下垂控制。即,函数f(Vac)相对于电压值Vac的下降而单调减少,但也可以存在与电压值Vac不相关的区域(相对于电压值Vac的上升而单调非减小)。The first value Vt1' larger than the first value Vt1 of the determination function f(Vac) may be introduced, and the first value Vt1 compared with the voltage value Vac may be replaced with the first value Vt1' in step S81. In this case, when Vt1≤Vac≤Vt1', the current droop value I3 takes the predetermined value I31 as the upper limit, and the droop control with respect to the current Iw is performed. That is, the function f(Vac) decreases monotonically as the voltage value Vac decreases, but there may be a region uncorrelated with the voltage value Vac (it does not decrease monotonically as the voltage value Vac increases).
作为下垂控制而例示的电机的转速的降低直接使电流Iw降低。通过产生导致电机的转速或转矩的降低的现象,经由电机的转速或转矩的降低间接地使动作电力Po降低,这也被认为包含在下垂控制中。下面,对这样的控制进行说明。The reduction in the rotation speed of the motor exemplified as the droop control directly reduces the current Iw. A phenomenon that causes a reduction in the rotational speed or torque of the motor occurs, and the operating power Po is indirectly reduced via the reduction in the rotational speed or torque of the motor, which is also considered to be included in the droop control. Hereinafter, such control will be described.
图4是示出制冷回路9的结构的框图。制冷回路9具有压缩机91、热交换器92、94、膨胀阀93。未图示的制冷剂通过压缩机91压缩,通过热交换器92蒸发,通过膨胀阀93膨胀,通过热交换器94冷凝。图中的白色箭头表示制冷剂循环的方向。FIG. 4 is a block diagram showing the configuration of the refrigeration circuit 9 . The refrigeration circuit 9 includes a
交流负载5是驱动制冷回路9所具有的压缩机91的电机。膨胀阀93是电磁阀,通过由控制电路6生成的控制信号L调整其开度。例如,该电磁阀的开度由通过控制信号L驱动的步进电机确定。例如,能够从换流器2的输出获得该步进电机的动作电力。The
在步骤S85(参照图2)中,根据控制信号L使膨胀阀93的开度增加。由此,压缩机91的机械负载降低,因此驱动压缩机91的电机5所需的转矩降低,电流Iw降低。因此,能够认为在下垂控制中包含使膨胀阀93的开度增加的处理。In step S85 (see FIG. 2 ), the opening degree of the
如上所述,生成控制信号L和/或控制信号G的控制电路6可以构成为包含微型计算机和存储装置。微型计算机执行程序中记载的各处理的步骤(换言之,程序)。例如图2的各步骤由该微型计算机执行。As described above, the
上述存储装置例如可以由ROM(Read Only Memory:只读存储器)、RAM(RandomAccess Memory:随机存取存储器)、可改写的非易失性存储器(EPROM(ErasableProgrammable ROM:可擦除可编程ROM)等)等各种存储装置中的一个或多个构成。该存储装置存储各种信息和数据等,并且,存储微型计算机执行的程序,另外,提供用于执行程序的作业区域。微型计算机能够被理解为作为与程序中记载的各处理步骤对应的各种单元发挥功能,或者,也能够被理解为实现与各处理步骤对应的各种功能。另外,控制电路6不限于此,也可以用硬件实现由控制电路6执行的各种步骤或实现的各种单元或各种功能的一部分或全部。The above-mentioned storage device can be, for example, a ROM (Read Only Memory: read-only memory), a RAM (Random Access Memory: random access memory), a rewritable non-volatile memory (EPROM (Erasable Programmable ROM: Erasable Programmable ROM), etc. ) and one or more of various storage devices. The storage device stores various information, data, and the like, stores programs executed by the microcomputer, and provides a work area for executing the programs. The microcomputer can be understood as functioning as various means corresponding to each processing step described in the program, or as realizing various functions corresponding to each processing step. In addition, the
如上所述,在本实施方式中,提出了对将输入的直流电压Vdc转换为交流电压V1而施加给交流负载5的逆变器4进行控制的技术。直流电压Vdc由换流器2从交流电压V2转换而得到。As described above, the present embodiment proposes a technique for controlling the
在交流负载驱动系统100中,当电压值Vac小于第一值Vt1时,控制电路6能够使逆变器4降低动作电力Po。由此,动作电力Po降低,进而电力Ps降低,抑制换流器2的发热。这种技术也可以看作是一种逆变器4的控制方法,当电压值Vac小于第一值Vt1时,该逆变器4能够减低供给动作电力Po。In the AC
若电压值Vac为第一值Vt1以上,则基于第一条件(步骤S83、S84)降低从逆变器4向交流负载5供给的动作电力Po(步骤S85),来供给动作电力Po。若电压值Vac小于第一值Vt1,则基于第二条件(步骤S82、S84)降低动作电力Po(步骤S85),来供给动作电力Po。第二条件比第一条件缓和。When the voltage value Vac is equal to or greater than the first value Vt1, the operating power Po supplied from the
例如,如果电压值Vac小于第一值Vt1,输入到逆变器4的输入电流(电流值Ii)或者输出到交流负载5的电流Iw为作为其上限值的电流下垂值I3以上,则进行针对该电流的下垂控制(步骤S85)。相对于电压值Vac的上升,电流下垂值I3单调非减小。由此,使从逆变器4向交流负载5供给的动作电力Po降低。For example, if the voltage value Vac is smaller than the first value Vt1 and the input current (current value Ii) input to the
也可以对换流器2所输入的电流进行下垂控制。例如,如果电压值Vac小于第一值Vt1,电流值Ii为上限值以上,则进行针对该电流的下垂控制。例如,该上限值能够设定为相对于电压值Vac的上升而单调非减小。具体而言,例如能够采用在步骤S84(参照图2)中将电流值Iw替换为电流值Ii的流程图。该上限值能够与上述的电流下垂值I3独立地设定。It is also possible to perform droop control on the current input to the
如果电压值Vac小于比第一值Vt1低的第二值Vt2,则可以停止向交流负载5供给动作电力Po。If the voltage value Vac is smaller than the second value Vt2 lower than the first value Vt1 , the supply of the operating power Po to the
例如,交流负载5可以是电机,在下垂控制中包含降低电机5的转速的控制。这导致动作电力Po的直接降低。For example, the
作为电机5的例子,能够举出驱动制冷回路9所具有的压缩机91的电机。例如,电机5驱动在具有膨胀阀93的制冷回路9中设置的压缩机91。制冷回路9具有由交流负载驱动系统100供给动作电力Po的电机5驱动的压缩机91和膨胀阀93。下垂控制也可以包含使膨胀阀93的开度增加的控制。这导致动作电力Po的间接降低。As an example of the
电机5也能够用作驱动用于空调机中的风扇和用于空气净化器中的风扇的电机。The
在设置由直流电压Vdc驱动的直流负载的情况下,可以进行降低向该直流负载供给的电力的控制。在这种情况下,输入电力Pi是动作电力Po和由该直流负载消耗的电力之和,该直流电力的降低有助于电力Ps的降低。该控制能够与逆变器4的控制独立地进行。In the case where a DC load driven by the DC voltage Vdc is provided, control to reduce the power supplied to the DC load can be performed. In this case, the input power Pi is the sum of the operating power Po and the power consumed by the DC load, and the reduction of the DC power contributes to the reduction of the power Ps. This control can be performed independently of the control of the
例如,在制冷回路9中,在膨胀阀93是其动作电力作为直流电力从电容器3供给的直流负载的情况下,也可以在电压值Vac小于第一值Vt1时停止膨胀阀93的动作。For example, in the refrigeration circuit 9, when the
具有换流器2、逆变器4和进行电力降低操作的控制电路6的交流负载驱动系统100可以说是向交流负载5供电的电力供给系统。The AC
以上,对实施方式进行了说明,但能够理解为在不脱离权利要求书的主旨和范围的情况下能够进行方式和详细内容的多种变更。上述各种实施方式和变形例可以相互组合。As mentioned above, although embodiment was described, it can be understood that various changes in the form and details can be made without departing from the spirit and scope of the claims. The various embodiments and modifications described above can be combined with each other.
Claims (9)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018172046A JP6729650B2 (en) | 2018-09-14 | 2018-09-14 | Inverter control method, AC load power supply system, refrigeration circuit |
JP2018-172046 | 2018-09-14 | ||
PCT/JP2019/030849 WO2020054262A1 (en) | 2018-09-14 | 2019-08-06 | Inverter control method, system for supplying power to ac load, and refrigeration circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112640283A CN112640283A (en) | 2021-04-09 |
CN112640283B true CN112640283B (en) | 2022-06-10 |
Family
ID=69777262
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201980055943.5A Active CN112640283B (en) | 2018-09-14 | 2019-08-06 | Inverter control method, power supply system for AC load, refrigeration circuit |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6729650B2 (en) |
CN (1) | CN112640283B (en) |
MY (1) | MY187349A (en) |
WO (1) | WO2020054262A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11696766B2 (en) | 2009-09-11 | 2023-07-11 | Tbi Innovations, Llc | Methods and devices to reduce damaging effects of concussive or blast forces on a subject |
US8900169B2 (en) | 2013-03-15 | 2014-12-02 | Tbi Innovations, Llc | Methods and devices to reduce the likelihood of injury from concussive or blast forces |
MX2018006086A (en) | 2015-11-16 | 2018-08-24 | Q30 Sports Science Llc | Traumatic brain injury protection devices. |
CN108697429A (en) | 2016-03-02 | 2018-10-23 | Q30运动科学公司 | Reduce the method and apparatus of concussion or explosive force to the damage effect of subject |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05211796A (en) * | 1992-01-30 | 1993-08-20 | Daikin Ind Ltd | Brushless DC motor driving method and apparatus thereof |
JP2005328583A (en) * | 2004-05-12 | 2005-11-24 | Fuji Electric Fa Components & Systems Co Ltd | Electric motor control device and electric pump device |
JP2007288971A (en) * | 2006-04-19 | 2007-11-01 | Daikin Ind Ltd | Power converter, control method therefor, and air conditioner |
JP2009247064A (en) * | 2008-03-28 | 2009-10-22 | Daikin Ind Ltd | Power conversion device |
JP2010011533A (en) * | 2008-06-24 | 2010-01-14 | Fujitsu General Ltd | Power unit and equipment having the same |
JP2010118232A (en) * | 2008-11-12 | 2010-05-27 | Mitsubishi Electric Corp | Discharge lamp lighting device, and lighting fixture equipped with this discharge lamp lighting device |
CN104011993A (en) * | 2011-12-21 | 2014-08-27 | 夏普株式会社 | synchronous motor drive apparatus |
CN105409107A (en) * | 2013-09-02 | 2016-03-16 | 三菱电机株式会社 | Power conversion device |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4069328B2 (en) * | 2005-06-15 | 2008-04-02 | 株式会社日立製作所 | Refrigeration cycle equipment |
JP5673298B2 (en) * | 2011-03-31 | 2015-02-18 | ダイキン工業株式会社 | Motor drive device |
JP6001587B2 (en) * | 2014-03-28 | 2016-10-05 | 株式会社デンソー | Power converter |
JP6597508B2 (en) * | 2016-07-28 | 2019-10-30 | 株式会社デンソー | Power converter |
-
2018
- 2018-09-14 JP JP2018172046A patent/JP6729650B2/en active Active
-
2019
- 2019-08-06 CN CN201980055943.5A patent/CN112640283B/en active Active
- 2019-08-06 MY MYPI2021000887A patent/MY187349A/en unknown
- 2019-08-06 WO PCT/JP2019/030849 patent/WO2020054262A1/en active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05211796A (en) * | 1992-01-30 | 1993-08-20 | Daikin Ind Ltd | Brushless DC motor driving method and apparatus thereof |
JP2005328583A (en) * | 2004-05-12 | 2005-11-24 | Fuji Electric Fa Components & Systems Co Ltd | Electric motor control device and electric pump device |
JP2007288971A (en) * | 2006-04-19 | 2007-11-01 | Daikin Ind Ltd | Power converter, control method therefor, and air conditioner |
JP2009247064A (en) * | 2008-03-28 | 2009-10-22 | Daikin Ind Ltd | Power conversion device |
JP2010011533A (en) * | 2008-06-24 | 2010-01-14 | Fujitsu General Ltd | Power unit and equipment having the same |
JP2010118232A (en) * | 2008-11-12 | 2010-05-27 | Mitsubishi Electric Corp | Discharge lamp lighting device, and lighting fixture equipped with this discharge lamp lighting device |
CN104011993A (en) * | 2011-12-21 | 2014-08-27 | 夏普株式会社 | synchronous motor drive apparatus |
CN105409107A (en) * | 2013-09-02 | 2016-03-16 | 三菱电机株式会社 | Power conversion device |
Also Published As
Publication number | Publication date |
---|---|
CN112640283A (en) | 2021-04-09 |
BR112021003200A2 (en) | 2021-05-11 |
WO2020054262A1 (en) | 2020-03-19 |
MY187349A (en) | 2021-09-22 |
JP2020048242A (en) | 2020-03-26 |
JP6729650B2 (en) | 2020-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112640283B (en) | Inverter control method, power supply system for AC load, refrigeration circuit | |
CN105432009B (en) | Motor drive control apparatus, compressor, pressure fan and conditioner | |
CN1119578C (en) | Air conditioning system and power converter apparatus for the same | |
WO2015140867A1 (en) | Motor drive control device, compressor, fan, and air-conditioning machine | |
CN103326665B (en) | Motor drive and possess air conditioner and the motor driving method of this motor drive | |
US9998007B2 (en) | Boost converter with flying capacitor and refrigeration circuit | |
US9941834B2 (en) | Power conversion apparatus and air-conditioning apparatus including the power conversion apparatus | |
JP5748694B2 (en) | Motor drive control device and refrigeration air conditioner | |
JP5984470B2 (en) | Power converter, compressor, blower, air conditioner, and refrigerator | |
JP2016171680A (en) | Power conversion device, air conditioner having the same, and power conversion method | |
JP5339985B2 (en) | Inverter controller for DC motor drive | |
WO2017199299A1 (en) | Dc power source, refrigeration cycle device and air-conditioner | |
CN116783810A (en) | Power conversion device, motor drive device, and refrigeration cycle application device | |
KR100947609B1 (en) | Electric motor controller and method of controlling the air conditioner | |
CN111630765B (en) | Control method of inverter, alternating-current load driving system and refrigeration circuit | |
JP2012165582A (en) | Motor controller | |
JP3468232B2 (en) | PWM / PAM control type motor drive device and air conditioner using the same | |
CN111181425A (en) | Buck-boost driving circuit, air conditioner, method and computer-readable storage medium | |
AU2020475165B2 (en) | Power conversion apparatus, motor drive apparatus, and refrigeration cycle apparatus | |
US20250007388A1 (en) | Power converter, motor driver, and refrigeration cycle applied equipment | |
WO2023238229A1 (en) | Power conversion device, motor drive device, and refrigeration cycle application apparatus | |
JP2018042294A (en) | Electric power conversion system and air conditioner with the same | |
JP2005245167A (en) | Dc power supply unit | |
CN118339757A (en) | Power conversion device, motor drive device, and refrigeration cycle application device | |
BR112021003200B1 (en) | INVERTER CONTROL METHOD, SYSTEM FOR SUPPLYING POWER TO AC LOAD AND REFRIGERATION CIRCUIT |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |