CN112640133B - Solar cell manufacturing method, solar cell, and solar cell module - Google Patents
Solar cell manufacturing method, solar cell, and solar cell module Download PDFInfo
- Publication number
- CN112640133B CN112640133B CN201980057021.8A CN201980057021A CN112640133B CN 112640133 B CN112640133 B CN 112640133B CN 201980057021 A CN201980057021 A CN 201980057021A CN 112640133 B CN112640133 B CN 112640133B
- Authority
- CN
- China
- Prior art keywords
- electrode layer
- metal electrode
- type semiconductor
- conductive type
- solar cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 31
- 239000004065 semiconductor Substances 0.000 claims abstract description 200
- 229910052751 metal Inorganic materials 0.000 claims abstract description 190
- 239000002184 metal Substances 0.000 claims abstract description 190
- 229920005989 resin Polymers 0.000 claims abstract description 87
- 239000011347 resin Substances 0.000 claims abstract description 87
- 239000000758 substrate Substances 0.000 claims abstract description 66
- 239000000463 material Substances 0.000 claims abstract description 49
- 238000000034 method Methods 0.000 claims abstract description 38
- 238000007639 printing Methods 0.000 claims abstract description 22
- 239000007769 metal material Substances 0.000 claims abstract description 11
- 239000002904 solvent Substances 0.000 claims abstract description 6
- 238000000059 patterning Methods 0.000 claims abstract description 4
- 238000005530 etching Methods 0.000 claims description 19
- 229910052709 silver Inorganic materials 0.000 claims description 7
- 239000004332 silver Substances 0.000 claims description 7
- 238000007650 screen-printing Methods 0.000 claims description 5
- 238000001039 wet etching Methods 0.000 claims description 2
- 230000015572 biosynthetic process Effects 0.000 abstract description 7
- 230000002093 peripheral effect Effects 0.000 abstract description 7
- 238000002161 passivation Methods 0.000 description 31
- 238000005229 chemical vapour deposition Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 238000000206 photolithography Methods 0.000 description 8
- 239000002210 silicon-based material Substances 0.000 description 8
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 6
- 239000002019 doping agent Substances 0.000 description 6
- 229910021417 amorphous silicon Inorganic materials 0.000 description 5
- 229910021419 crystalline silicon Inorganic materials 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000003566 sealing material Substances 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical group [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 239000003929 acidic solution Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000007756 gravure coating Methods 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hcl hcl Chemical compound Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 230000001235 sensitizing effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/283—Deposition of conductive or insulating materials for electrodes conducting electric current
- H01L21/288—Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/20—Electrodes characterised by their shapes, relative sizes or dispositions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F10/00—Individual photovoltaic cells, e.g. solar cells
- H10F10/10—Individual photovoltaic cells, e.g. solar cells having potential barriers
- H10F10/16—Photovoltaic cells having only PN heterojunction potential barriers
- H10F10/164—Photovoltaic cells having only PN heterojunction potential barriers comprising heterojunctions with Group IV materials, e.g. ITO/Si or GaAs/SiGe photovoltaic cells
- H10F10/165—Photovoltaic cells having only PN heterojunction potential barriers comprising heterojunctions with Group IV materials, e.g. ITO/Si or GaAs/SiGe photovoltaic cells the heterojunctions being Group IV-IV heterojunctions, e.g. Si/Ge, SiGe/Si or Si/SiC photovoltaic cells
- H10F10/166—Photovoltaic cells having only PN heterojunction potential barriers comprising heterojunctions with Group IV materials, e.g. ITO/Si or GaAs/SiGe photovoltaic cells the heterojunctions being Group IV-IV heterojunctions, e.g. Si/Ge, SiGe/Si or Si/SiC photovoltaic cells the Group IV-IV heterojunctions being heterojunctions of crystalline and amorphous materials, e.g. silicon heterojunction [SHJ] photovoltaic cells
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/20—Electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
技术领域Technical field
本发明涉及背面电极型(背接触型)的太阳能电池的制造方法、背面电极型的太阳能电池以及具备该太阳能电池的太阳能电池模块。The present invention relates to a method for manufacturing a back electrode type (back contact type) solar cell, a back electrode type solar cell, and a solar cell module including the solar cell.
背景技术Background technique
作为使用了半导体基板的太阳能电池,具有在受光面侧及背面侧的两面形成有电极的两面电极型的太阳能电池和仅在背面侧形成有电极的背面电极型的太阳能电池。在两面电极型的太阳能电池中,在受光面侧形成有电极,因此太阳光被该电极遮蔽。另一方面,在背面电极型的太阳能电池中,在受光面侧没有形成电极,因此与两面电极型的太阳能电池相比,太阳光的受光率较高。在专利文献1中,公开了背面电极型的太阳能电池。Solar cells using a semiconductor substrate include double-sided electrode solar cells in which electrodes are formed on both the light-receiving surface side and the back side, and back electrode type solar cells in which electrodes are formed only on the back side. In a double-sided electrode type solar cell, an electrode is formed on the light-receiving surface side, so sunlight is blocked by the electrode. On the other hand, in a back electrode type solar cell, since no electrode is formed on the light-receiving surface side, the solar light reception rate is higher compared to a double-surface electrode type solar cell. Patent Document 1 discloses a back electrode type solar cell.
专利文献1所记载的太阳能电池具备:半导体基板、依次层叠于半导体基板的背面侧的第一导电型半导体层及第一电极层、以及依次层叠于半导体基板的背面侧的另一部分的第二导电型半导体层及第二电极层。为了防止短路,第一电极层与第二电极层相互分离。The solar cell described in Patent Document 1 includes a semiconductor substrate, a first conductive semiconductor layer and a first electrode layer sequentially stacked on the back side of the semiconductor substrate, and a second conductive layer sequentially stacked on another part of the back side of the semiconductor substrate. type semiconductor layer and the second electrode layer. To prevent short circuit, the first electrode layer and the second electrode layer are separated from each other.
专利文献1:日本特开2013-131586号公报Patent Document 1: Japanese Patent Application Publication No. 2013-131586
通常,第一电极层及第二电极层分别包含透明电极层与金属电极层。金属电极层例如能够通过使用了银膏的丝网印刷法相对容易地分离而形成。另一方面,透明电极层需要通过使用了掩模的例如光刻法分离而形成,其形成工序相对复杂。Usually, the first electrode layer and the second electrode layer include a transparent electrode layer and a metal electrode layer respectively. The metal electrode layer can be relatively easily separated and formed by, for example, a screen printing method using silver paste. On the other hand, the transparent electrode layer needs to be separated and formed by, for example, photolithography using a mask, and the formation process is relatively complicated.
发明内容Contents of the invention
本发明的目的在于,提供一种能够简化透明电极层的形成的太阳能电池的制造方法、太阳能电池以及太阳能电池模块。An object of the present invention is to provide a solar cell manufacturing method, a solar cell, and a solar cell module that can simplify the formation of a transparent electrode layer.
本发明所涉及的太阳能电池的制造方法是背面电极型的太阳能电池的制造方法,上述背面电极型的太阳能电池具备:具有两个主面的半导体基板、配置于半导体基板的一个主面侧的第一导电型半导体层及第二导电型半导体层、与第一导电型半导体层对应的第一透明电极层及第一金属电极层、以及与第二导电型半导体层对应的第二透明电极层及第二金属电极层,上述太阳能电池的制造方法依次包括:半导体层形成工序,在半导体基板的一个主面侧的一部分形成第一导电型半导体层,在半导体基板的一个主面侧的另一部分形成第二导电型半导体层;透明导电膜形成工序,在第一导电型半导体层及第二导电型半导体层上以横跨它们的方式形成透明导电膜;金属电极层形成工序,隔着透明导电膜在第一导电型半导体层上形成第一金属电极层,隔着透明导电膜在第二导电型半导体层上形成第二金属电极层;以及透明电极层形成工序,对透明导电膜进行图案成型,由此形成相互分离的第一透明电极层及第二透明电极层,在金属电极层形成工序中,印刷包含粒状的金属材料、树脂材料以及溶剂的印刷材料并使其固化,由此形成第一金属电极层及第二金属电极层,在第一金属电极层的周缘及第二金属电极层的周缘形成树脂材料偏向地存在而成的树脂膜,在透明电极层形成工序中,使用第一金属电极层及其周缘的树脂膜与第二金属电极层及其周缘的树脂膜作为掩模,来对透明导电膜进行图案成型。A method of manufacturing a solar cell according to the present invention is a method of manufacturing a back electrode type solar cell. The back electrode type solar cell includes a semiconductor substrate having two main surfaces, and a third electrode disposed on one main surface side of the semiconductor substrate. A conductive semiconductor layer and a second conductive semiconductor layer, a first transparent electrode layer and a first metal electrode layer corresponding to the first conductive semiconductor layer, and a second transparent electrode layer corresponding to the second conductive semiconductor layer, and For the second metal electrode layer, the manufacturing method of the above-mentioned solar cell sequentially includes: a semiconductor layer forming step of forming a first conductive type semiconductor layer on a part of one main surface side of the semiconductor substrate, and forming a first conductive type semiconductor layer on the other part of one main surface side of the semiconductor substrate. a second conductive type semiconductor layer; a transparent conductive film forming step of forming a transparent conductive film across the first conductive type semiconductor layer and a second conductive type semiconductor layer; and a metal electrode layer forming step of forming a transparent conductive film across the first conductive type semiconductor layer and the second conductive type semiconductor layer forming a first metal electrode layer on the first conductive type semiconductor layer, forming a second metal electrode layer on the second conductive type semiconductor layer via the transparent conductive film; and a transparent electrode layer forming step of patterning the transparent conductive film, In this way, the first transparent electrode layer and the second transparent electrode layer that are separated from each other are formed. In the metal electrode layer forming step, a printing material including a granular metal material, a resin material, and a solvent is printed and solidified, thereby forming the first transparent electrode layer. The metal electrode layer and the second metal electrode layer form a resin film in which the resin material is biasedly present on the periphery of the first metal electrode layer and the periphery of the second metal electrode layer. In the transparent electrode layer forming process, the first metal is used. The electrode layer and the resin film on its periphery and the second metal electrode layer and the resin film on its periphery are used as masks to pattern the transparent conductive film.
本发明所涉及的太阳能电池是背面电极型的太阳能电池,具备:具有两个主面的半导体基板、配置于半导体基板的一个主面侧的第一导电型半导体层及第二导电型半导体层、与第一导电型半导体层对应的第一透明电极层及第一金属电极层、以及与第二导电型半导体层对应的第二透明电极层及第二金属电极层,第一透明电极层及第一金属电极层呈带状,第一透明电极层的带宽比第一金属电极层的带宽窄,第二透明电极层及第二金属电极层呈带状,第二透明电极层的带宽比第二金属电极层的带宽窄,在第一金属电极层的周缘及第二金属电极层的周缘形成有第一金属电极层及第二金属电极层的印刷材料中的树脂材料偏向地存在而成的树脂膜。The solar cell according to the present invention is a back electrode type solar cell and includes a semiconductor substrate having two main surfaces, a first conductive type semiconductor layer and a second conductive type semiconductor layer arranged on one main surface side of the semiconductor substrate. The first transparent electrode layer and the first metal electrode layer corresponding to the first conductive type semiconductor layer, and the second transparent electrode layer and the second metal electrode layer corresponding to the second conductive type semiconductor layer, the first transparent electrode layer and the second metal electrode layer corresponding to the second conductive type semiconductor layer. A metal electrode layer is in the shape of a strip. The bandwidth of the first transparent electrode layer is narrower than the bandwidth of the first metal electrode layer. The second transparent electrode layer and the second metal electrode layer are in the shape of a strip. The bandwidth of the second transparent electrode layer is narrower than the bandwidth of the second transparent electrode layer. The metal electrode layer has a narrow bandwidth, and the resin material in the printing material in which the first metal electrode layer and the second metal electrode layer are formed on the periphery of the first metal electrode layer and the second metal electrode layer is distributed in a biased manner. membrane.
本发明所涉及的太阳能电池模块具备上述的太阳能电池。A solar cell module according to the present invention includes the above-mentioned solar cell.
根据本发明,能够简化太阳能电池的透明电极层的形成。According to the present invention, the formation of the transparent electrode layer of the solar cell can be simplified.
附图说明Description of the drawings
图1是表示本实施方式所涉及的太阳能电池模块的一个例子的侧视图。FIG. 1 is a side view showing an example of the solar cell module according to this embodiment.
图2是从背面侧观察本实施方式所涉及的太阳能电池的图。FIG. 2 is a view of the solar cell according to the present embodiment as viewed from the back side.
图3是图2的太阳能电池的III-III线剖视图。FIG. 3 is a cross-sectional view of the solar cell of FIG. 2 taken along line III-III.
图4A是表示本实施方式所涉及的太阳能电池的制造方法中的半导体层形成工序的图。FIG. 4A is a diagram showing a semiconductor layer forming step in the solar cell manufacturing method according to this embodiment.
图4B是表示本实施方式所涉及的太阳能电池的制造方法中的透明导电膜形成工序的图。FIG. 4B is a diagram showing a transparent conductive film forming step in the solar cell manufacturing method according to this embodiment.
图4C是表示本实施方式所涉及的太阳能电池的制造方法中的金属电极层形成工序的图。4C is a diagram showing a metal electrode layer forming step in the solar cell manufacturing method according to this embodiment.
图4D是表示本实施方式所涉及的太阳能电池的制造方法中的透明电极层形成工序的图。FIG. 4D is a diagram showing a transparent electrode layer forming step in the solar cell manufacturing method according to this embodiment.
图5A是使用SEM以100倍的倍率观测实施例的太阳能电池的背面侧的金属电极层及金属电极层间的结果。FIG. 5A is the result of observing the metal electrode layer and the space between the metal electrode layers on the back side of the solar cell of the Example using an SEM at a magnification of 100 times.
图5B是使用SEM以450倍的倍率观测图5A中的金属电极层间的部分A的结果。FIG. 5B is the result of observing the portion A between the metal electrode layers in FIG. 5A using an SEM at a magnification of 450 times.
图5C是使用SEM以5000倍的倍率观测图5B中的金属电极层间的部分B的结果。FIG. 5C is a result of observing the portion B between the metal electrode layers in FIG. 5B using an SEM at a magnification of 5000 times.
具体实施方式Detailed ways
以下,参照附图,对本发明的实施方式的一个例子进行说明。此外,在各附图中,对相同或相当的部分标注相同的附图标记。另外,为了方便,也存在省略阴影线、部件附图标记等的情况,在上述情况下,参照其他附图。Hereinafter, an example of an embodiment of the present invention will be described with reference to the drawings. In addition, in each drawing, the same or corresponding parts are given the same reference numerals. In addition, hatching, component reference signs, etc. may be omitted for convenience. In such cases, refer to other drawings.
(太阳能电池模块)(solar cell module)
图1是表示本实施方式所涉及的太阳能电池模块的一个例子的侧视图。太阳能电池模块100具备呈二维状排列的多个太阳能电池单元1。FIG. 1 is a side view showing an example of the solar cell module according to this embodiment. The solar cell module 100 includes a plurality of solar cell units 1 arranged two-dimensionally.
太阳能电池单元1通过布线部件2串联及/或并联地连接。具体而言,布线部件2与太阳能电池单元1的电极层中的母线部(后述)连接。布线部件2例如是接线片等公知的互连器。The solar battery cells 1 are connected in series and/or in parallel via the wiring member 2 . Specifically, the wiring member 2 is connected to a bus bar portion (described later) in the electrode layer of the solar cell 1 . The wiring member 2 is, for example, a known interconnector such as a lug.
太阳能电池单元1及布线部件2被受光面保护部件3与背面保护部件4夹持。在受光面保护部件3与背面保护部件4之间填充有液体状或固体状的密封材料5,由此,太阳能电池单元1及布线部件2被密封。受光面保护部件3例如是玻璃基板,背面保护部件4是玻璃基板或金属板。密封材料5例如是透明树脂。The solar cell unit 1 and the wiring member 2 are sandwiched between the light-receiving surface protection member 3 and the back surface protection member 4 . The liquid or solid sealing material 5 is filled between the light-receiving surface protection member 3 and the back surface protection member 4, whereby the solar cell unit 1 and the wiring member 2 are sealed. The light-receiving surface protection member 3 is, for example, a glass substrate, and the back surface protection member 4 is a glass substrate or a metal plate. The sealing material 5 is, for example, transparent resin.
以下,对太阳能电池单元(以下,称为太阳能电池)1详细地进行说明。Hereinafter, the solar cell unit (hereinafter, referred to as a solar cell) 1 will be described in detail.
(太阳能电池)(Solar battery)
图2是从背面侧观察本实施方式所涉及的太阳能电池的图。图2所示的太阳能电池1是背面电极型的太阳能电池。太阳能电池1具备具有两个主面的半导体基板11,在半导体基板11的主面具有第一导电型区域7与第二导电型区域8。FIG. 2 is a view of the solar cell according to the present embodiment as viewed from the back side. The solar cell 1 shown in FIG. 2 is a back electrode type solar cell. The solar cell 1 includes a semiconductor substrate 11 having two main surfaces, and the semiconductor substrate 11 has a first conductive type region 7 and a second conductive type region 8 on the main surface.
第一导电型区域7形成所谓的梳状的形状,具有相当于梳齿的多个指部7f与相当于梳齿的支承部的母线部7b。母线部7b沿着半导体基板11的一个边部在第一方向(X方向)上延伸,指部7f从母线部7b向与第一方向交叉的第二方向(Y方向)延伸。The first conductivity type region 7 has a so-called comb shape and has a plurality of finger portions 7f corresponding to comb teeth and a busbar portion 7b corresponding to a support portion of the comb teeth. The bus bar portion 7b extends in a first direction (X direction) along one edge of the semiconductor substrate 11, and the finger portion 7f extends from the bus bar portion 7b in a second direction (Y direction) intersecting the first direction.
同样地,第二导电型区域8形成所谓的梳状的形状,具有相当于梳齿的多个指部8f与相当于梳齿的支承部的母线部8b。母线部8b沿着半导体基板11的与一个边部对置的另一个边部在第一方向(X方向)上延伸,指部8f从母线部8b向第二方向(Y方向)延伸。Similarly, the second conductivity type region 8 has a so-called comb-like shape and has a plurality of finger portions 8f corresponding to comb teeth and a busbar portion 8b corresponding to a support portion of the comb teeth. The bus bar portion 8 b extends in the first direction (X direction) along the other edge portion of the semiconductor substrate 11 that is opposite to one edge portion, and the finger portion 8 f extends in the second direction (Y direction) from the bus bar portion 8 b.
指部7f与指部8f形成沿第二方向(Y方向)延伸的带状,且在第一方向(X方向)上交替设置。The finger portions 7f and 8f form a strip shape extending in the second direction (Y direction) and are alternately arranged in the first direction (X direction).
此外,第一导电型区域7及第二导电型区域8也可以形成为条纹状。In addition, the first conductivity type region 7 and the second conductivity type region 8 may be formed in a stripe shape.
图3是图2的太阳能电池的III-III线剖视图。如图3所示,太阳能电池1具备层叠于半导体基板11的主面中的作为受光的一侧的主面的受光面侧的钝化层13。另外,太阳能电池1具备依次层叠于半导体基板11的主面中的作为受光面的相反侧的主面(一个主面)的背面侧的一部分(主要是第一导电型区域7)的钝化层23、第一导电型半导体层25以及第一电极层27。另外,太阳能电池1具备依次层叠于半导体基板11的背面侧的另一部分(主要是第二导电型区域8)的钝化层33、第二导电型半导体层35以及第二电极层37。FIG. 3 is a cross-sectional view of the solar cell of FIG. 2 taken along line III-III. As shown in FIG. 3 , the solar cell 1 includes a passivation layer 13 laminated on the light-receiving surface side of the main surface that receives light among the main surfaces of the semiconductor substrate 11 . In addition, the solar cell 1 includes a passivation layer sequentially laminated on a part of the back side of the main surface (one main surface) opposite to the light-receiving surface of the semiconductor substrate 11 (mainly the first conductive type region 7 ). 23. The first conductive semiconductor layer 25 and the first electrode layer 27 . In addition, the solar cell 1 includes a passivation layer 33 , a second conductivity type semiconductor layer 35 , and a second electrode layer 37 that are sequentially stacked on the other part (mainly the second conductivity type region 8 ) on the back side of the semiconductor substrate 11 .
半导体基板11由单晶硅或多晶硅等结晶硅材料形成。半导体基板11例如是在结晶硅材料中掺杂了n型掺杂剂的n型半导体基板。此外,半导体基板11也可以是例如在结晶硅材料中掺杂了p型掺杂剂的p型半导体基板。作为n型掺杂剂,例如能够列举磷(P)。作为p型掺杂剂,例如能够列举硼(B)。The semiconductor substrate 11 is made of a crystalline silicon material such as single crystal silicon or polycrystalline silicon. The semiconductor substrate 11 is, for example, an n-type semiconductor substrate in which crystalline silicon material is doped with an n-type dopant. In addition, the semiconductor substrate 11 may be a p-type semiconductor substrate in which a p-type dopant is doped into a crystalline silicon material, for example. An example of the n-type dopant is phosphorus (P). Examples of the p-type dopant include boron (B).
半导体基板11作为吸收来自受光面侧的入射光而生成光生载流子(电子及空穴)的光电转换基板发挥功能。The semiconductor substrate 11 functions as a photoelectric conversion substrate that absorbs incident light from the light-receiving surface side and generates photogenerated carriers (electrons and holes).
作为半导体基板11的材料使用结晶硅,由此即使在暗电流相对较小,且入射光的强度较低的情况下,也能够获得较高的输出(不受照度影响而稳定的输出)。Crystalline silicon is used as the material of the semiconductor substrate 11, so that even when the dark current is relatively small and the intensity of incident light is low, a high output (stable output that is not affected by illumination) can be obtained.
半导体基板11也可以在背面侧具有被称为纹理构造的金字塔型的微小的凹凸构造。由此,未被半导体基板11吸收而通过的光的回收效率提高。The semiconductor substrate 11 may have a pyramid-shaped minute uneven structure called a texture structure on the back side. This improves the recovery efficiency of light that passes through the semiconductor substrate 11 without being absorbed.
另外,半导体基板11也可以在受光面侧具有被称为纹理构造的金字塔型的微小的凹凸构造。由此,入射光的反射在受光面减少,从而半导体基板11的光封闭效果提高。In addition, the semiconductor substrate 11 may have a pyramid-shaped minute uneven structure called a texture structure on the light-receiving surface side. This reduces reflection of incident light on the light-receiving surface, thereby improving the light confinement effect of the semiconductor substrate 11 .
钝化层13形成于半导体基板11的受光面侧。钝化层23形成于半导体基板11的背面侧的第一导电型区域7。钝化层33形成于半导体基板11的背面侧的第二导电型区域8。钝化层13、23、33例如由本征(i型)非晶硅材料形成。The passivation layer 13 is formed on the light-receiving surface side of the semiconductor substrate 11 . The passivation layer 23 is formed in the first conductive type region 7 on the back side of the semiconductor substrate 11 . The passivation layer 33 is formed in the second conductive type region 8 on the back side of the semiconductor substrate 11 . The passivation layers 13, 23, and 33 are formed of, for example, intrinsic (i-type) amorphous silicon material.
钝化层13、23、33抑制在半导体基板11生成的载流子的再耦合,从而提高载流子的回收效率。The passivation layers 13, 23, and 33 suppress recoupling of carriers generated in the semiconductor substrate 11, thereby improving carrier recovery efficiency.
在半导体基板11的受光面侧的钝化层13上也可以设置有例如由SiO、SiN或SiON等材料形成的防反射层。An anti-reflection layer made of a material such as SiO, SiN or SiON may also be provided on the passivation layer 13 on the light-receiving surface side of the semiconductor substrate 11 .
第一导电型半导体层25形成在钝化层23上,即形成于半导体基板11的背面侧的第一导电型区域7。第一导电型半导体层25例如由非晶硅材料形成。第一导电型半导体层25例如是在非晶硅材料中掺杂了p型掺杂剂(例如,上述的硼(B))的p型半导体层。The first conductivity type semiconductor layer 25 is formed on the passivation layer 23 , that is, in the first conductivity type region 7 on the back side of the semiconductor substrate 11 . The first conductive type semiconductor layer 25 is formed of, for example, an amorphous silicon material. The first conductive type semiconductor layer 25 is, for example, a p-type semiconductor layer in which an amorphous silicon material is doped with a p-type dopant (for example, the above-mentioned boron (B)).
第二导电型半导体层35形成在钝化层33上,即形成于半导体基板11的背面侧的第二导电型区域8。第二导电型半导体层35例如由非晶硅材料形成。第二导电型半导体层35例如是在非晶硅材料中掺杂了n型掺杂剂(例如,上述的磷(P))的n型半导体层。The second conductive type semiconductor layer 35 is formed on the passivation layer 33 , that is, in the second conductive type region 8 on the back side of the semiconductor substrate 11 . The second conductive semiconductor layer 35 is formed of, for example, an amorphous silicon material. The second conductive type semiconductor layer 35 is, for example, an n-type semiconductor layer in which an amorphous silicon material is doped with an n-type dopant (for example, the above-mentioned phosphorus (P)).
此外,也可以是第一导电型半导体层25为n型半导体层,第二导电型半导体层35为p型半导体层。In addition, the first conductive type semiconductor layer 25 may be an n-type semiconductor layer, and the second conductive type semiconductor layer 35 may be a p-type semiconductor layer.
第一导电型半导体层25及钝化层23与第二导电型半导体层35及钝化层33形成沿第二方向(Y方向)延伸的带状,且在第一方向(X方向)上交替排列。The first conductive type semiconductor layer 25 and the passivation layer 23 and the second conductive type semiconductor layer 35 and the passivation layer 33 form a strip extending along the second direction (Y direction), and alternate in the first direction (X direction). arrangement.
第二导电型半导体层35及钝化层33的一部分也可以重叠于邻接的第一导电型半导体层25及钝化层23的一部分之上(省略图示)。The second conductive type semiconductor layer 35 and a part of the passivation layer 33 may also overlap on a part of the adjacent first conductive type semiconductor layer 25 and the passivation layer 23 (illustration omitted).
第一电极层27与第一导电型半导体层25对应,具体而言形成在半导体基板11的背面侧的第一导电型区域7中的第一导电型半导体层25上。第二电极层37与第二导电型半导体层35对应,具体而言形成在半导体基板11的背面侧的第二导电型区域8中的第二导电型半导体层35上。The first electrode layer 27 corresponds to the first conductive type semiconductor layer 25 and is specifically formed on the first conductive type semiconductor layer 25 in the first conductive type region 7 on the back side of the semiconductor substrate 11 . The second electrode layer 37 corresponds to the second conductive type semiconductor layer 35 and is specifically formed on the second conductive type semiconductor layer 35 in the second conductive type region 8 on the back side of the semiconductor substrate 11 .
第一电极层27具有依次层叠于第一导电型半导体层25上的第一透明电极层28与第一金属电极层29。第二电极层37具有依次层叠于第二导电型半导体层35上的第二透明电极层38与第二金属电极层39。The first electrode layer 27 has a first transparent electrode layer 28 and a first metal electrode layer 29 that are sequentially stacked on the first conductive type semiconductor layer 25 . The second electrode layer 37 includes a second transparent electrode layer 38 and a second metal electrode layer 39 that are sequentially stacked on the second conductive type semiconductor layer 35 .
第一透明电极层28及第二透明电极层38由透明的导电性材料形成。作为透明导电性材料,能够列举ITO(Indium Tin Oxide:氧化铟及氧化锡的复合氧化物)等。The first transparent electrode layer 28 and the second transparent electrode layer 38 are formed of a transparent conductive material. Examples of the transparent conductive material include ITO (Indium Tin Oxide: a composite oxide of indium oxide and tin oxide).
第一金属电极层29及第二金属电极层39由含有银、铜、铝等粒状的金属材料、绝缘性的树脂材料以及溶剂的导电性糊剂材料形成。The first metal electrode layer 29 and the second metal electrode layer 39 are formed of a conductive paste material containing granular metal materials such as silver, copper, and aluminum, an insulating resin material, and a solvent.
第一电极层27及第二电极层37,即第一透明电极层28、第二透明电极层38、第一金属电极层29以及第二金属电极层39形成沿第二方向(Y方向)延伸的带状,且在第一方向(X方向)上交替排列。The first electrode layer 27 and the second electrode layer 37, that is, the first transparent electrode layer 28, the second transparent electrode layer 38, the first metal electrode layer 29 and the second metal electrode layer 39 are formed to extend in the second direction (Y direction). strips, and are alternately arranged in the first direction (X direction).
第一透明电极层28与第二透明电极层38相互分离,第一金属电极层29与第二金属电极层39也相互分离。The first transparent electrode layer 28 and the second transparent electrode layer 38 are separated from each other, and the first metal electrode layer 29 and the second metal electrode layer 39 are also separated from each other.
第一透明电极层28的第一方向(X方向)的带宽比第一金属电极层29的第一方向(X方向)的带宽窄,第二透明电极层38的第一方向(X方向)的带宽比第二金属电极层39的第一方向(X方向)的带宽窄。The bandwidth of the first transparent electrode layer 28 in the first direction (X direction) is narrower than the bandwidth of the first metal electrode layer 29 in the first direction (X direction). The bandwidth of the second transparent electrode layer 38 in the first direction (X direction) The bandwidth is narrower than the bandwidth of the second metal electrode layer 39 in the first direction (X direction).
在第一金属电极层29的周缘及第二金属电极层39的周缘形成有树脂膜40,该树脂膜40通过第一金属电极层29及第二金属电极层39的导电性糊剂材料中的绝缘性的树脂材料偏向地存在而成(详细后述)。A resin film 40 is formed on the periphery of the first metal electrode layer 29 and the second metal electrode layer 39 . The resin film 40 is formed by the conductive paste material of the first metal electrode layer 29 and the second metal electrode layer 39 . Insulating resin material exists in a biased manner (details will be described later).
第一金属电极层29与第二金属电极层39之间的第一导电型半导体层25的一部分及第二导电型半导体层35的一部分被树脂膜40覆盖。详细而言,第一金属电极层29与第二金属电极层39之间的第一导电型半导体层25的凹凸构造(纹理构造)的谷部及第二导电型半导体层35的凹凸构造的谷部被树脂膜40覆盖。A part of the first conductive type semiconductor layer 25 and a part of the second conductive type semiconductor layer 35 between the first metal electrode layer 29 and the second metal electrode layer 39 are covered with the resin film 40 . Specifically, the valleys of the uneven structure (textured structure) of the first conductive type semiconductor layer 25 and the valleys of the uneven structure of the second conductive type semiconductor layer 35 between the first metal electrode layer 29 and the second metal electrode layer 39 is covered with the resin film 40.
另一方面,第一金属电极层29与第二金属电极层39之间的第一导电型半导体层25的凹凸构造的顶部及第二导电型半导体层35的凹凸构造的顶部未被树脂膜40覆盖而露出。On the other hand, the top of the uneven structure of the first conductive type semiconductor layer 25 and the top of the uneven structure of the second conductive type semiconductor layer 35 between the first metal electrode layer 29 and the second metal electrode layer 39 are not covered by the resin film 40 Covered and exposed.
在第一导电型半导体层25与树脂膜40的层间以及第二导电型半导体层35与树脂膜40的层间呈岛状(不连续地)配置有与第一透明电极层28及第二透明电极层38相同材料的透明导电膜48。详细而言,在第一导电型半导体层25的凹凸构造的谷部与树脂膜40的层间以及第二导电型半导体层35的凹凸构造的谷部与树脂膜40的层间呈岛状配置有透明导电膜48。Between the first conductive semiconductor layer 25 and the resin film 40 and between the second conductive semiconductor layer 35 and the resin film 40, the first transparent electrode layer 28 and the second transparent electrode layer 28 are arranged in an island shape (discontinuously). The transparent conductive film 48 is made of the same material as the transparent electrode layer 38 . Specifically, they are arranged in an island shape between the valleys of the uneven structure of the first conductive type semiconductor layer 25 and the resin film 40 and between the valleys of the uneven structure of the second conductive type semiconductor layer 35 and the resin film 40 There is a transparent conductive film 48.
第一金属电极层29与第一导电型半导体层25的接触面积为第一透明电极层28与第一导电型半导体层25的接触面积的一半以下,第二金属电极层39与第二导电型半导体层35的接触面积为第二透明电极层38与第二导电型半导体层35的接触面积的一半以下。The contact area between the first metal electrode layer 29 and the first conductive type semiconductor layer 25 is less than half of the contact area between the first transparent electrode layer 28 and the first conductive type semiconductor layer 25. The contact area of the semiconductor layer 35 is less than half of the contact area between the second transparent electrode layer 38 and the second conductive type semiconductor layer 35 .
接下来,参照图4A~图4D,对本实施方式所涉及的太阳能电池的制造方法进行说明。图4A是表示本实施方式所涉及的太阳能电池的制造方法中的半导体层形成工序的图,图4B是表示本实施方式所涉及的太阳能电池的制造方法中的透明导电膜形成工序的图。图4C是表示本实施方式所涉及的太阳能电池的制造方法中的金属电极层形成工序的图,图4D是表示本实施方式所涉及的太阳能电池的制造方法中的透明电极层形成工序的图。在图4A~图4D中,示出了半导体基板11的背面侧,省略了半导体基板11的表面侧。Next, a method of manufacturing a solar cell according to this embodiment will be described with reference to FIGS. 4A to 4D . 4A is a diagram showing a semiconductor layer forming step in the solar cell manufacturing method according to this embodiment, and FIG. 4B is a diagram showing a transparent conductive film forming step in the solar cell manufacturing method according to this embodiment. 4C is a diagram showing a metal electrode layer forming step in the solar cell manufacturing method according to this embodiment, and FIG. 4D is a diagram showing a transparent electrode layer forming step in the solar cell manufacturing method according to this embodiment. In FIGS. 4A to 4D , the back side of the semiconductor substrate 11 is shown, and the front side of the semiconductor substrate 11 is omitted.
首先,如图4A所示,在至少在背面侧具有凹凸构造(纹理构造)的半导体基板11的背面侧的一部分,具体而言在第一导电型区域7形成钝化层23及第一导电型半导体层25(半导体层形成工序)。First, as shown in FIG. 4A , the passivation layer 23 and the first conductivity type are formed on a part of the back side of the semiconductor substrate 11 having an uneven structure (texture structure) at least on the back side, specifically in the first conductivity type region 7 . Semiconductor layer 25 (semiconductor layer forming step).
例如,也可以在使用CVD法或PVD法在半导体基板11的整个背面侧制成了钝化膜及第一导电型半导体膜后,使用利用了通过光刻技术生成的掩模或金属掩模的蚀刻法,对钝化层23及第一导电型半导体层25进行图案成型。此外,作为针对p型半导体膜的蚀刻溶液,例如能够列举含有臭氧的氢氟酸、硝酸与氢氟酸的混合液那样的酸性溶液,作为针对n型半导体膜的蚀刻溶液,例如能够列举氢氧化钾水溶液那样的碱性溶液。For example, a passivation film and a first conductive type semiconductor film may be formed on the entire back side of the semiconductor substrate 11 using a CVD method or a PVD method, and then a mask or a metal mask generated by photolithography may be used. The passivation layer 23 and the first conductive type semiconductor layer 25 are patterned by etching. Examples of the etching solution for the p-type semiconductor film include an acidic solution such as ozone-containing hydrofluoric acid or a mixture of nitric acid and hydrofluoric acid. Examples of the etching solution for the n-type semiconductor film include hydroxide. An alkaline solution such as potassium aqueous solution.
或者,也可以在使用CVD法或PVD法在半导体基板11的背面侧层叠钝化层及第一导电型半导体层时,使用掩模,同时进行钝化层23及p型半导体层25的成膜及图案成型。Alternatively, when the passivation layer and the first conductive type semiconductor layer are stacked on the back side of the semiconductor substrate 11 using the CVD method or the PVD method, the passivation layer 23 and the p-type semiconductor layer 25 may be formed simultaneously using a mask. and pattern forming.
接下来,在半导体基板11的背面侧的另一部分,具体而言在第二导电型区域8形成钝化层33及第二导电型半导体层35(半导体层形成工序)。Next, the passivation layer 33 and the second conductivity type semiconductor layer 35 are formed on the other part on the back side of the semiconductor substrate 11 , specifically in the second conductivity type region 8 (semiconductor layer forming step).
例如,与上述同样,也可以在使用CVD法或PVD法在半导体基板11的整个背面侧制成了钝化膜及第二导电型半导体膜后,使用利用了通过光刻技术生成的掩模或金属掩模的蚀刻法,对钝化层33及第二导电型半导体层35进行图案成型。For example, in the same manner as described above, the passivation film and the second conductive type semiconductor film may be formed on the entire back side of the semiconductor substrate 11 using the CVD method or the PVD method, and then using a mask generated by photolithography technology or the like. The passivation layer 33 and the second conductive type semiconductor layer 35 are patterned using a metal mask etching method.
或者,也可以在使用CVD法或PVD法在半导体基板11的背面侧层叠钝化层及第二导电型半导体层时,使用掩模,同时进行钝化层33及第二导电型半导体层35的成膜及图案成型。Alternatively, when the passivation layer and the second conductive type semiconductor layer are stacked on the back side of the semiconductor substrate 11 using the CVD method or the PVD method, the passivation layer 33 and the second conductive type semiconductor layer 35 may be layered simultaneously using a mask. Film forming and pattern forming.
此外,在该半导体层形成工序中,也可以在半导体基板11的受光面侧的整个面形成钝化层13(省略图示)。In addition, in this semiconductor layer forming step, the passivation layer 13 (not shown) may be formed on the entire surface on the light-receiving surface side of the semiconductor substrate 11 .
接下来,如图4B所示,在第一导电型半导体层25及第二导电型半导体层35上以横跨它们的方式形成透明导电膜28Z(透明导电膜形成工序)。作为透明导电膜28Z的形成方法,例如使用CVD法或PVD法等。Next, as shown in FIG. 4B , a transparent conductive film 28Z is formed on the first conductive type semiconductor layer 25 and the second conductive type semiconductor layer 35 so as to span them (transparent conductive film forming step). As a method of forming the transparent conductive film 28Z, for example, a CVD method, a PVD method, or the like is used.
接下来,如图4C所示,隔着透明导电膜28Z在第一导电型半导体层25上形成第一金属电极层29,隔着透明导电膜28Z在第二导电型半导体层35上形成第二金属电极层39(金属电极层形成工序)。Next, as shown in FIG. 4C , the first metal electrode layer 29 is formed on the first conductive type semiconductor layer 25 via the transparent conductive film 28Z, and the second metal electrode layer 29 is formed on the second conductive type semiconductor layer 35 via the transparent conductive film 28Z. Metal electrode layer 39 (metal electrode layer forming step).
第一金属电极层29及第二金属电极层39通过印刷印刷材料(例如,油墨)而形成。作为第一金属电极层29及第二金属电极层39的形成方法,能够列举丝网印刷法、喷墨法、凹版涂布法或分配法等。其中,优选丝网印刷法。The first metal electrode layer 29 and the second metal electrode layer 39 are formed by printing a printing material (for example, ink). Examples of methods for forming the first metal electrode layer 29 and the second metal electrode layer 39 include a screen printing method, an inkjet method, a gravure coating method, a dispensing method, and the like. Among them, the screen printing method is preferred.
印刷材料在绝缘性的树脂材料中包含粒状(例如,球状)的金属材料。为了对粘度或涂布性进行调整,印刷材料也可以包含溶剂等。The printing material contains a granular (for example, spherical) metal material in an insulating resin material. The printing material may contain a solvent or the like in order to adjust the viscosity or coating properties.
作为绝缘性的树脂材料,能够列举基质树脂等。详细而言,作为绝缘性树脂,优选为高分子化合物,特别优选为热固化型树脂或紫外线固化型树脂,环氧、聚氨酯、聚酯或硅酮系的树脂等为代表例。Examples of the insulating resin material include matrix resin and the like. Specifically, as the insulating resin, a polymer compound is preferred, and a thermosetting resin or an ultraviolet curing resin is particularly preferred. Typical examples include epoxy, polyurethane, polyester, and silicone-based resins.
作为金属材料,能够列举银、铜、铝等。其中,优选包含银粒子的银膏。Examples of metal materials include silver, copper, aluminum, and the like. Among these, a silver paste containing silver particles is preferred.
例如,印刷材料中含有的金属材料的比例作为相对于印刷材料整体的重量比为85%以上95%以下。For example, the proportion of the metal material contained in the printing material is 85% or more and 95% or less based on the weight ratio of the entire printing material.
接下来,在第一金属电极层29及第二金属电极层39的印刷后,通过加热处理或紫外线照射处理,使第一金属电极层29及第二金属电极层39中的绝缘性树脂固化。此时,绝缘性树脂材料渗出到第一金属电极层29及第二金属电极层39的周缘,而在第一金属电极层29的周缘及第二金属电极层39的周缘形成绝缘性的树脂材料偏向地存在而成的树脂膜40。Next, after the first metal electrode layer 29 and the second metal electrode layer 39 are printed, the insulating resin in the first metal electrode layer 29 and the second metal electrode layer 39 is cured by heat treatment or ultraviolet irradiation treatment. At this time, the insulating resin material exudes to the periphery of the first metal electrode layer 29 and the second metal electrode layer 39 , and forms an insulating resin on the periphery of the first metal electrode layer 29 and the second metal electrode layer 39 . The resin film 40 in which the material exists in a biased manner.
此时,第一金属电极层29与第二金属电极层39之间的透明导电膜28Z的凹凸构造(纹理构造)的谷部被树脂膜40覆盖。另一方面,第一金属电极层29与第二金属电极层39之间的透明导电膜28Z的凹凸构造的顶部未被树脂膜40覆盖而露出。At this time, the valley portions of the uneven structure (texture structure) of the transparent conductive film 28Z between the first metal electrode layer 29 and the second metal electrode layer 39 are covered with the resin film 40 . On the other hand, the top of the uneven structure of the transparent conductive film 28Z between the first metal electrode layer 29 and the second metal electrode layer 39 is not covered by the resin film 40 and is exposed.
此外,如上由导电性糊剂形成的第一金属电极层29及第二金属电极层39也可以具有氨酯键。例如与环氧树脂相比,聚氨酯树脂在交联时的收缩较小,在树脂中不易产生裂纹。若在树脂中不易产生裂纹,则能够防止蚀刻溶液渗入到金属电极层,从而能够防止因金属电极层下的透明导电膜被蚀刻而导致金属电极层剥离、长期可靠性变差。In addition, the first metal electrode layer 29 and the second metal electrode layer 39 formed of the conductive paste as described above may have urethane bonds. For example, compared with epoxy resin, polyurethane resin shrinks less during cross-linking and is less prone to cracks in the resin. If cracks are less likely to occur in the resin, the etching solution can be prevented from penetrating into the metal electrode layer, thereby preventing the transparent conductive film under the metal electrode layer from being etched, causing the metal electrode layer to peel off and deteriorate long-term reliability.
接下来,如图4D所示,使用将第一金属电极层29及其周缘的树脂膜40与第二金属电极层39及其周缘的树脂膜40用作掩模的蚀刻法,对透明导电膜28Z进行图案成型,由此形成相互分离的第一透明电极层28及第二透明电极层38(透明电极层形成工序)。作为蚀刻法,例如能够列举湿式蚀刻法,作为蚀刻溶液,能够列举盐酸(HCl)等酸性溶液。Next, as shown in FIG. 4D , the transparent conductive film is etched using an etching method using the first metal electrode layer 29 and its peripheral resin film 40 and the second metal electrode layer 39 and its peripheral resin film 40 as masks. 28Z performs patterning to form the first transparent electrode layer 28 and the second transparent electrode layer 38 that are separated from each other (transparent electrode layer forming step). Examples of the etching method include wet etching, and examples of the etching solution include acidic solutions such as hydrochloric acid (HCl).
此时,在第一金属电极层29与第二金属电极层39之间,透明导电膜28Z的蚀刻从凹凸构造(纹理构造)的顶部朝向谷部进行。At this time, etching of the transparent conductive film 28Z proceeds from the top of the uneven structure (texture structure) toward the valley portion between the first metal electrode layer 29 and the second metal electrode layer 39 .
这里,为了使第一透明电极层28与第二透明电极层38分离,只要它们之间的透明导电膜不连续即可,透明导电膜48也可以呈岛状残留于凹凸构造的谷部。若透明导电膜48呈岛状残留于凹凸构造的谷部,则凹凸构造的谷部中的树脂膜40残留在第一导电型半导体层25及第二导电型半导体层35上。Here, in order to separate the first transparent electrode layer 28 and the second transparent electrode layer 38, the transparent conductive film between them only needs to be discontinuous, and the transparent conductive film 48 may remain in the valleys of the uneven structure in an island shape. If the transparent conductive film 48 remains in the valley portion of the uneven structure in an island shape, the resin film 40 in the valley portion of the uneven structure remains on the first conductive type semiconductor layer 25 and the second conductive type semiconductor layer 35 .
通过以上的工序,完成本实施方式的背面电极型的太阳能电池1。Through the above steps, the back electrode type solar cell 1 of this embodiment is completed.
这里,在现有的太阳能电池的制造方法中,在透明导电膜形成工序后且金属电极层形成工序前,包含透明电极层形成工序。Here, the conventional solar cell manufacturing method includes a transparent electrode layer forming step after the transparent conductive film forming step and before the metal electrode layer forming step.
在透明电极层形成工序中,例如使用光刻法对透明导电膜进行图案成型,由此形成相互分离的第一透明电极层及第二透明电极层。在光刻法中,In the transparent electrode layer forming process, the transparent conductive film is patterned using, for example, photolithography, thereby forming a first transparent electrode layer and a second transparent electrode layer that are separated from each other. In photolithography,
·在透明导电膜上涂敷抗蚀剂,·Coat resist on the transparent conductive film,
·通过使抗蚀剂感光,而在抗蚀剂形成开口,・By sensitizing the resist to light, openings are formed in the resist,
·通过将抗蚀剂作为掩模对在开口中露出的透明导电膜进行蚀刻,而形成相互分离的第一透明电极层及第二透明电极层,·Etching the transparent conductive film exposed in the opening using the resist as a mask to form a first transparent electrode layer and a second transparent electrode layer that are separated from each other,
·除去抗蚀剂。·Remove the resist.
与此相对,根据本实施方式的太阳能电池的制造方法,在透明导电膜形成工序后,依次包括金属电极层形成工序以及透明电极层形成工序,在透明电极层形成工序中,使用通过金属电极层形成工序形成的第一金属电极层29及第二金属电极层39作为掩模,对透明导电膜28Z进行图案成型,由此形成相互分离的第一透明电极层28及第二透明电极层38。由此,根据本实施方式的太阳能电池的制造方法,不需要如以往那样使用利用了掩模的光刻法等,就能够实现透明电极层的形成的简化及缩短化。其结果,能够实现太阳能电池及太阳能电池模块的低成本化。In contrast, according to the solar cell manufacturing method of this embodiment, after the transparent conductive film forming step, the metal electrode layer forming step and the transparent electrode layer forming step are sequentially included. In the transparent electrode layer forming step, a metal electrode layer is formed by using The first metal electrode layer 29 and the second metal electrode layer 39 formed in the forming step are used as masks to pattern the transparent conductive film 28Z, thereby forming the first transparent electrode layer 28 and the second transparent electrode layer 38 that are separated from each other. Therefore, according to the solar cell manufacturing method of this embodiment, it is possible to simplify and shorten the formation of the transparent electrode layer without using photolithography using a mask as in the past. As a result, the cost of solar cells and solar cell modules can be reduced.
这里,若使用第一金属电极层29及第二金属电极层39作为掩模而对透明导电膜28Z进行图案成型,则在透明导电膜28Z的蚀刻时,第一金属电极层29及第二金属电极层39下的透明导电膜28Z也被蚀刻,从而存在第一透明电极层28及第一金属电极层29与第二透明电极层38及第二金属电极层39剥离的可能性。Here, if the first metal electrode layer 29 and the second metal electrode layer 39 are used as masks to pattern the transparent conductive film 28Z, during etching of the transparent conductive film 28Z, the first metal electrode layer 29 and the second metal electrode layer 29 are etched. The transparent conductive film 28Z under the electrode layer 39 is also etched, so there is a possibility that the first transparent electrode layer 28 and the first metal electrode layer 29 are peeled off from the second transparent electrode layer 38 and the second metal electrode layer 39 .
关于该点,根据本实施方式的太阳能电池的制造方法,在金属电极层形成工序中,通过印刷包含粒状的金属材料、树脂材料以及溶剂的印刷材料并使其固化,而在第一金属电极层29的周缘及第二金属电极层39的周缘形成树脂材料偏向地存在而成的树脂膜40,在透明电极层形成工序中,使用第一金属电极层29及其周缘的树脂膜40与第二金属电极层39及其周缘的树脂膜40作为掩模,对透明导电膜28Z进行图案成型。由此,能够抑制第一金属电极层29及第二金属电极层39下的透明导电膜28Z的蚀刻,从而能够抑制第一透明电极层28及第一金属电极层29的剥离与第二透明电极层38及第二金属电极层39的剥离。In this regard, according to the solar cell manufacturing method of this embodiment, in the metal electrode layer forming step, a printing material containing a granular metal material, a resin material, and a solvent is printed and solidified, so that the first metal electrode layer is formed on the first metal electrode layer. A resin film 40 in which resin material exists in a biased manner is formed on the periphery of 29 and the periphery of the second metal electrode layer 39. In the transparent electrode layer forming process, the first metal electrode layer 29 and the resin film 40 on its periphery and the second metal electrode layer 39 are used. The metal electrode layer 39 and the resin film 40 on its periphery serve as a mask to pattern the transparent conductive film 28Z. This can suppress the etching of the transparent conductive film 28Z under the first metal electrode layer 29 and the second metal electrode layer 39, thereby suppressing the separation of the first transparent electrode layer 28 and the first metal electrode layer 29 from the second transparent electrode. The layer 38 and the second metal electrode layer 39 are peeled off.
在通过这样的制造方法制造出的太阳能电池1中,第一透明电极层28的带宽比第一金属电极层29的带宽窄,第二透明电极层38的带宽比第二金属电极层39的带宽窄,在第一金属电极层29的周缘及第二金属电极层39的周缘形成有第一金属电极层29及第二金属电极层39的印刷材料中的树脂材料偏向地存在而成的树脂膜。In the solar cell 1 manufactured by such a manufacturing method, the bandwidth of the first transparent electrode layer 28 is narrower than the bandwidth of the first metal electrode layer 29 , and the bandwidth of the second transparent electrode layer 38 is smaller than the bandwidth of the second metal electrode layer 39 . Narrow, a resin film in which the resin material in the printing material in which the first metal electrode layer 29 and the second metal electrode layer 39 are formed on the periphery of the first metal electrode layer 29 and the second metal electrode layer 39 is biased. .
此外,在通过现有的太阳能电池的制造方法制造出的太阳能电池中,通常,透明电极层的带宽比金属电极层的带宽宽。In addition, in solar cells manufactured by conventional solar cell manufacturing methods, the bandwidth of the transparent electrode layer is generally wider than the bandwidth of the metal electrode layer.
另外,在通过本实施方式的制造方法制造出的太阳能电池1中,第一金属电极层29与第二金属电极层39之间的第一导电型半导体层25的一部分及第二导电型半导体层35的一部分被树脂膜40覆盖。详细而言,第一金属电极层29与第二金属电极层39之间的第一导电型半导体层25的凹凸构造(纹理构造)的谷部及第二导电型半导体层35的凹凸构造的谷部被树脂膜40覆盖。In addition, in the solar cell 1 manufactured by the manufacturing method of this embodiment, a part of the first conductive type semiconductor layer 25 and the second conductive type semiconductor layer between the first metal electrode layer 29 and the second metal electrode layer 39 A part of 35 is covered with the resin film 40. Specifically, the valleys of the uneven structure (textured structure) of the first conductive type semiconductor layer 25 and the valleys of the uneven structure of the second conductive type semiconductor layer 35 between the first metal electrode layer 29 and the second metal electrode layer 39 is covered with the resin film 40.
另外,在第一导电型半导体层25与树脂膜40的层间以及第二导电型半导体层35与树脂膜40的层间呈岛状(不连续地)配置有与第一透明电极层28及第二透明电极层38相同材料的透明导电膜48。详细而言,在第一导电型半导体层25的凹凸构造的谷部与树脂膜40的层间以及第二导电型半导体层35的凹凸构造的谷部与树脂膜40的层间呈岛状配置有透明导电膜48。In addition, between the first conductive type semiconductor layer 25 and the resin film 40 and between the second conductive type semiconductor layer 35 and the resin film 40, the first transparent electrode layer 28 and the first transparent electrode layer 28 are arranged in an island shape (discontinuously). The second transparent electrode layer 38 is made of the same material as the transparent conductive film 48 . Specifically, they are arranged in an island shape between the valleys of the uneven structure of the first conductive type semiconductor layer 25 and the resin film 40 and between the valleys of the uneven structure of the second conductive type semiconductor layer 35 and the resin film 40 There is a transparent conductive film 48.
由此,第一导电型半导体层25及第二导电型半导体层35露出的面积变小。因此,能够抑制太阳能电池及太阳能电池模块的劣化,从而太阳能电池及太阳能电池模块的可靠性(例如,长期耐久性)提高。As a result, the exposed areas of the first conductive type semiconductor layer 25 and the second conductive type semiconductor layer 35 become smaller. Therefore, deterioration of the solar cell and the solar cell module can be suppressed, thereby improving the reliability (for example, long-term durability) of the solar cell and the solar cell module.
以上,对本发明的实施方式进行了说明,但本发明并不限定于上述实施方式,能够进行各种变更及变形。例如,在上述实施方式中,如图3所示,例示了异质结型的太阳能电池1,但本发明不限于异质结型的太阳能电池,也能够应用于同质结型的太阳能电池等各种太阳能电池。The embodiments of the present invention have been described above. However, the present invention is not limited to the above-described embodiments, and various changes and modifications are possible. For example, in the above-described embodiment, a heterojunction type solar cell 1 is illustrated as shown in FIG. 3 . However, the present invention is not limited to heterojunction type solar cells and can also be applied to homojunction type solar cells. Various solar cells.
另外,在上述实施方式中,例示了具有结晶硅基板的太阳能电池,但并不限定于此。例如,太阳能电池也可以具有砷化镓(GaAs)基板。In addition, in the above-mentioned embodiment, the solar cell having the crystalline silicon substrate was exemplified, but the solar cell is not limited to this. For example, a solar cell may also have a gallium arsenide (GaAs) substrate.
实施例Example
以下,基于实施例对本发明具体地进行说明,但本发明并不限定于以下的实施例。Hereinafter, the present invention will be specifically described based on Examples, but the present invention is not limited to the following Examples.
如下所述,根据图4A~图4D所示的工序,制作了图2及图3所示的太阳能电池1。As described below, the solar cell 1 shown in FIGS. 2 and 3 is produced according to the steps shown in FIGS. 4A to 4D .
首先,通过对单晶硅基板的背面侧进行各向异性蚀刻,获得在背面侧形成有金字塔型的纹理构造的半导体基板11。First, the back side of the single crystal silicon substrate is anisotropically etched to obtain the semiconductor substrate 11 having a pyramid-shaped texture structure formed on the back side.
接下来,在使用CVD法在半导体基板11的整个背面侧制成了钝化膜及第一导电型半导体膜后,使用利用了通过光刻技术生成的光致抗蚀剂(掩模)的蚀刻法,在半导体基板11的背面侧的一部分形成钝化层23及第一导电型半导体层25(半导体层形成工序)。Next, after forming a passivation film and a first conductive type semiconductor film on the entire back side of the semiconductor substrate 11 using the CVD method, etching using a photoresist (mask) generated by the photolithography technology is used. method, the passivation layer 23 and the first conductive type semiconductor layer 25 are formed on a part of the back side of the semiconductor substrate 11 (semiconductor layer forming step).
接下来,在使用CVD法在半导体基板11的整个背面侧制成了钝化膜及第二导电型半导体膜后,使用利用了通过光刻技术生成的光致抗蚀剂(掩模)的蚀刻法,在半导体基板11的背面侧的另一部分形成钝化层33及第二导电型半导体层35(半导体层形成工序)。Next, after forming a passivation film and a second conductive type semiconductor film on the entire back side of the semiconductor substrate 11 using the CVD method, etching using a photoresist (mask) generated by the photolithography technology is used. method, the passivation layer 33 and the second conductive type semiconductor layer 35 are formed on the other part on the back side of the semiconductor substrate 11 (semiconductor layer forming step).
接下来,使用CVD法,在第一导电型半导体层25及第二导电型半导体层35上以横跨它们的方式形成透明导电膜28Z(透明导电膜形成工序)。Next, using the CVD method, the transparent conductive film 28Z is formed on the first conductive type semiconductor layer 25 and the second conductive type semiconductor layer 35 so as to span them (transparent conductive film forming step).
接下来,使用利用了银膏的丝网印刷法,隔着透明导电膜28Z在第一导电型半导体层25上形成第一金属电极层29,隔着透明导电膜28Z在第二导电型半导体层35上形成第二金属电极层39(金属电极层形成工序)。Next, using the screen printing method using silver paste, the first metal electrode layer 29 is formed on the first conductive type semiconductor layer 25 through the transparent conductive film 28Z, and the second conductive type semiconductor layer is formed through the transparent conductive film 28Z. A second metal electrode layer 39 is formed on 35 (metal electrode layer forming step).
然后,将第一金属电极层29及第二金属电极层39在180℃的烘箱中加热处理1个小时。由此,印刷材料中的绝缘性的树脂材料渗出到第一金属电极层29的周缘及第二金属电极层39的周缘,从而在第一金属电极层29的周缘及第二金属电极层39的周缘形成树脂膜40。Then, the first metal electrode layer 29 and the second metal electrode layer 39 were heat-treated in an oven at 180° C. for 1 hour. As a result, the insulating resin material in the printing material bleeds out to the periphery of the first metal electrode layer 29 and the second metal electrode layer 39 , so that the insulating resin material in the first metal electrode layer 29 and the second metal electrode layer 39 The resin film 40 is formed on the periphery of the resin film 40 .
接下来,使用将第一金属电极层29及其周缘的树脂膜40与第二金属电极层39及其周缘的树脂膜40用作掩模的蚀刻法,对透明导电膜28Z进行图案成型,由此形成相互分离的第一透明电极层28及第二透明电极层38(透明电极层形成工序)。作为蚀刻溶液,使用盐酸(HCl)。Next, the transparent conductive film 28Z is patterned using an etching method using the first metal electrode layer 29 and its peripheral resin film 40 and the second metal electrode layer 39 and its peripheral resin film 40 as masks. This forms the first transparent electrode layer 28 and the second transparent electrode layer 38 that are separated from each other (transparent electrode layer forming step). As the etching solution, hydrochloric acid (HCl) is used.
在如以上那样制作实施例的太阳能电池的过程中,使用SEM(场致发射型扫描式电子显微镜S4800,日立高新技术公司制)观测透明导电膜形成工序及金属电极层形成工序后且透明电极层形成工序前的太阳能电池的背面侧。其结果如图5A~图5C所示。In the process of manufacturing the solar cell of the Example as described above, the transparent conductive film formation process and the metal electrode layer formation process were observed using SEM (field emission scanning electron microscope S4800, manufactured by Hitachi High-Technology Corporation) and the transparent electrode layer was observed The back side of the solar cell before the forming process. The results are shown in Figures 5A to 5C.
图5A是使用SEM以100倍的倍率观测实施例的太阳能电池的背面侧的金属电极层及金属电极层间的结果,图5B是使用SEM以450倍的倍率观测图5A中的金属电极层间的部分A的结果。图5C是使用SEM以5000倍的倍率观测图5B中的金属电极层间的部分B的结果。Figure 5A is the result of observing the metal electrode layer and the space between the metal electrode layers on the back side of the solar cell of the Example using an SEM at a magnification of 100 times. Figure 5B is an observation of the space between the metal electrode layers in Figure 5A using a SEM at a magnification of 450 times. Results of Part A. FIG. 5C is a result of observing the portion B between the metal electrode layers in FIG. 5B using an SEM at a magnification of 5000 times.
根据图5A~图5C,能够确认在第一金属电极层29的周缘及第二金属电极层39的周缘形成有绝缘性的树脂材料偏向地存在而成的树脂膜40(黑色部分)。According to FIGS. 5A to 5C , it can be confirmed that a resin film 40 (black portion) in which an insulating resin material exists in a biased manner is formed on the periphery of the first metal electrode layer 29 and the periphery of the second metal electrode layer 39 .
另外,能够确认第一金属电极层29与第二金属电极层39之间的透明导电膜28Z的凹凸构造(纹理构造)的谷部被树脂膜40(黑色部分)覆盖。另一方面,能够确认第一金属电极层29与第二金属电极层39之间的透明导电膜28Z的凹凸构造的顶部未被树脂膜40覆盖而露出。由此,预料到在之后的透明电极层形成工序的蚀刻中,透明导电膜28Z的蚀刻从凹凸构造的顶部朝向底部进行。In addition, it can be confirmed that the valley portions of the uneven structure (texture structure) of the transparent conductive film 28Z between the first metal electrode layer 29 and the second metal electrode layer 39 are covered with the resin film 40 (black portion). On the other hand, it can be confirmed that the top of the uneven structure of the transparent conductive film 28Z between the first metal electrode layer 29 and the second metal electrode layer 39 is not covered by the resin film 40 and is exposed. Therefore, it is expected that in the subsequent etching of the transparent electrode layer forming step, the etching of the transparent conductive film 28Z proceeds from the top toward the bottom of the uneven structure.
接下来,在透明电极层形成工序后,使用SEM观测制作出的实施例的太阳能电池的背面侧,确认了第一透明电极层28及第一金属电极层29与第二透明电极层38及第二金属电极层39没被剥离。另外,确认了树脂膜40没被剥离而残留于第一金属电极层29与第二金属电极层39之间的凹凸构造的谷部。Next, after the transparent electrode layer forming process, the back side of the solar cell of the example produced was observed using SEM, and it was confirmed that the first transparent electrode layer 28 and the first metal electrode layer 29 and the second transparent electrode layer 38 and the second transparent electrode layer 38 were confirmed. The two metal electrode layers 39 are not peeled off. In addition, it was confirmed that the resin film 40 was not peeled off and remained in the valley portion of the uneven structure between the first metal electrode layer 29 and the second metal electrode layer 39 .
另外,进行电极间的短路检查,确认了电极层间没有短路。In addition, short circuit inspection between electrodes was performed, and it was confirmed that there was no short circuit between electrode layers.
由于树脂膜40没被剥离,电极层间没有短路,因此预料到透明导电膜48呈岛状残留于第一导电型半导体层25的凹凸构造的谷部与树脂膜40的层间以及第二导电型半导体层35的凹凸构造的谷部与树脂膜40的层间,而保持树脂膜40。Since the resin film 40 has not been peeled off and there is no short circuit between the electrode layers, it is expected that the transparent conductive film 48 remains in an island shape between the valleys of the uneven structure of the first conductive type semiconductor layer 25 and the resin film 40 and between the second conductive layers. The resin film 40 is held between the valleys of the concave-convex structure of the semiconductor layer 35 and the resin film 40 .
附图标记说明Explanation of reference signs
1…太阳能电池;2…布线部件;3…受光面保护部件;4…背面保护部件;5…密封材料;7…第一导电型区域;8…第二导电型区域;7b、8b…母线部;7f、8f…指部;11…半导体基板;13、23、33…钝化层;25…第一导电型半导体层;27…第一电极层;28…第一透明电极层;28Z…透明导电膜;29…第一金属电极层;35…第二导电型半导体层;37…第二电极层;38…第二透明电极层;39…第二金属电极层;40…树脂膜;48…透明导电膜;100…太阳能电池模块。1...Solar cell; 2...Wiring components; 3...Light-receiving surface protection component; 4...Back surface protection component; 5...Sealing material; 7...First conductivity type area; 8...Second conductivity type area; 7b, 8b...Busbar section ; 7f, 8f...finger; 11...semiconductor substrate; 13, 23, 33...passivation layer; 25...first conductive type semiconductor layer; 27...first electrode layer; 28...first transparent electrode layer; 28Z...transparent Conductive film; 29... first metal electrode layer; 35... second conductive semiconductor layer; 37... second electrode layer; 38... second transparent electrode layer; 39... second metal electrode layer; 40... resin film; 48... Transparent conductive film; 100...solar cell module.
Claims (13)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-205004 | 2018-10-31 | ||
JP2018205004 | 2018-10-31 | ||
PCT/JP2019/040249 WO2020090423A1 (en) | 2018-10-31 | 2019-10-11 | Solar cell manufacturing method, solar cell, and solar cell module |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112640133A CN112640133A (en) | 2021-04-09 |
CN112640133B true CN112640133B (en) | 2024-03-12 |
Family
ID=70462277
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201980057021.8A Active CN112640133B (en) | 2018-10-31 | 2019-10-11 | Solar cell manufacturing method, solar cell, and solar cell module |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP7356445B2 (en) |
CN (1) | CN112640133B (en) |
TW (1) | TWI816920B (en) |
WO (1) | WO2020090423A1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114450808B (en) * | 2019-09-26 | 2024-03-15 | 株式会社钟化 | Manufacturing method of solar cell and solar cell |
JPWO2021201030A1 (en) * | 2020-03-30 | 2021-10-07 | ||
CN116741849A (en) * | 2022-06-08 | 2023-09-12 | 浙江晶科能源有限公司 | A kind of solar cell and photovoltaic component |
CN116741850A (en) | 2022-06-08 | 2023-09-12 | 浙江晶科能源有限公司 | A kind of solar cell and photovoltaic component |
WO2024157591A1 (en) * | 2023-01-26 | 2024-08-02 | 株式会社カネカ | Method for manufacturing divided solar cell, and divided solar cell |
WO2024181058A1 (en) * | 2023-02-27 | 2024-09-06 | 株式会社カネカ | Solar cell manufacturing method and solar cell |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013239476A (en) * | 2012-05-11 | 2013-11-28 | Mitsubishi Electric Corp | Photovoltaic device and method of manufacturing the same, and photovoltaic module |
CN104854708A (en) * | 2013-05-17 | 2015-08-19 | 株式会社钟化 | Solar cell, production method therefor, and solar cell module |
CN107112378A (en) * | 2015-01-07 | 2017-08-29 | 株式会社钟化 | Solar cell and its manufacture method and solar module |
CN107408588A (en) * | 2015-03-30 | 2017-11-28 | 松下知识产权经营株式会社 | Solar cell and method for manufacturing solar cell |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101539047B1 (en) * | 2008-12-24 | 2015-07-23 | 인텔렉츄얼 키스톤 테크놀로지 엘엘씨 | Photovoltaic device and method of manufacturing the same |
JP5891375B2 (en) * | 2011-07-29 | 2016-03-23 | パナソニックIpマネジメント株式会社 | Photovoltaic module |
JP5820265B2 (en) | 2011-12-21 | 2015-11-24 | シャープ株式会社 | Back electrode type solar cell and manufacturing method thereof |
-
2019
- 2019-10-11 CN CN201980057021.8A patent/CN112640133B/en active Active
- 2019-10-11 JP JP2020553739A patent/JP7356445B2/en active Active
- 2019-10-11 WO PCT/JP2019/040249 patent/WO2020090423A1/en active Application Filing
- 2019-10-24 TW TW108138405A patent/TWI816920B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013239476A (en) * | 2012-05-11 | 2013-11-28 | Mitsubishi Electric Corp | Photovoltaic device and method of manufacturing the same, and photovoltaic module |
CN104854708A (en) * | 2013-05-17 | 2015-08-19 | 株式会社钟化 | Solar cell, production method therefor, and solar cell module |
CN107112378A (en) * | 2015-01-07 | 2017-08-29 | 株式会社钟化 | Solar cell and its manufacture method and solar module |
CN107408588A (en) * | 2015-03-30 | 2017-11-28 | 松下知识产权经营株式会社 | Solar cell and method for manufacturing solar cell |
Also Published As
Publication number | Publication date |
---|---|
WO2020090423A1 (en) | 2020-05-07 |
TW202027290A (en) | 2020-07-16 |
TWI816920B (en) | 2023-10-01 |
CN112640133A (en) | 2021-04-09 |
JPWO2020090423A1 (en) | 2021-09-16 |
JP7356445B2 (en) | 2023-10-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112640133B (en) | Solar cell manufacturing method, solar cell, and solar cell module | |
CN106575679B (en) | Solar cell and its manufacturing method | |
KR101498619B1 (en) | Method for forming electrode of solar cell and solar cell using same | |
JP6055787B2 (en) | Solar cell and manufacturing method thereof | |
JP5640948B2 (en) | Solar cell | |
CN104157742A (en) | Solar cell and manufacturing method thereof | |
JP7576461B2 (en) | Method for manufacturing solar cell and solar cell | |
JP2019169599A (en) | Method for manufacturing solar cell and solar cell | |
US12107176B2 (en) | Solar cell and method for manufacturing solar cell | |
JP7436299B2 (en) | How to manufacture solar cells | |
JP7502873B2 (en) | Solar cell and method for manufacturing solar cell | |
CN114450808B (en) | Manufacturing method of solar cell and solar cell | |
TW201442260A (en) | Solar cell and manufacturing method thereof | |
JP7539407B2 (en) | How solar cells are manufactured | |
CN115461877A (en) | Manufacturing method of solar cell and solar cell | |
KR101055980B1 (en) | Thin film type solar cell and manufacturing method thereof | |
JP2023121604A (en) | Method for manufacturing solar cell, and solar cell | |
WO2024181058A1 (en) | Solar cell manufacturing method and solar cell | |
US20240021742A1 (en) | Solar cell and method for manufacturing solar cell | |
CN114830357B (en) | Solar cell manufacturing method | |
JP7495341B2 (en) | How solar cells are manufactured | |
JP2023111632A (en) | Method for manufacturing solar cell and solar cell | |
JP2024139850A (en) | Method for manufacturing solar cell, and solar cell | |
TW201633553A (en) | Solar cell, solar cell module and manufacturing method thereof | |
JP2023104310A (en) | Solar cell manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |