CN112626086B - Application of Medicago truncatula gene MtREVOLUTA in improving the salt tolerance of alfalfa, a forage relative of leguminous family - Google Patents
Application of Medicago truncatula gene MtREVOLUTA in improving the salt tolerance of alfalfa, a forage relative of leguminous family Download PDFInfo
- Publication number
- CN112626086B CN112626086B CN202110075452.6A CN202110075452A CN112626086B CN 112626086 B CN112626086 B CN 112626086B CN 202110075452 A CN202110075452 A CN 202110075452A CN 112626086 B CN112626086 B CN 112626086B
- Authority
- CN
- China
- Prior art keywords
- alfalfa
- mtrevoluta
- gene
- medicago truncatula
- salt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 241000219823 Medicago Species 0.000 title claims abstract description 82
- 235000017587 Medicago sativa ssp. sativa Nutrition 0.000 title claims abstract description 82
- 241000219828 Medicago truncatula Species 0.000 title claims abstract description 53
- 108090000623 proteins and genes Proteins 0.000 title claims abstract description 48
- 230000015784 hyperosmotic salinity response Effects 0.000 title abstract description 20
- 239000004459 forage Substances 0.000 title abstract description 16
- 230000004083 survival effect Effects 0.000 claims abstract description 7
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 26
- 239000011780 sodium chloride Substances 0.000 claims description 15
- 239000002773 nucleotide Substances 0.000 claims description 4
- 125000003729 nucleotide group Chemical group 0.000 claims description 4
- 241000196324 Embryophyta Species 0.000 abstract description 41
- 230000009261 transgenic effect Effects 0.000 abstract description 36
- 150000003839 salts Chemical class 0.000 abstract description 15
- 244000025254 Cannabis sativa Species 0.000 abstract description 9
- 239000013604 expression vector Substances 0.000 abstract description 7
- 238000002474 experimental method Methods 0.000 abstract description 5
- 241000894007 species Species 0.000 abstract description 4
- 108700005075 Regulator Genes Proteins 0.000 abstract description 2
- 230000036579 abiotic stress Effects 0.000 abstract description 2
- 241000220485 Fabaceae Species 0.000 abstract 1
- 240000004658 Medicago sativa Species 0.000 abstract 1
- 235000010624 Medicago sativa Nutrition 0.000 abstract 1
- 241000209504 Poaceae Species 0.000 abstract 1
- 230000014509 gene expression Effects 0.000 description 27
- 239000002609 medium Substances 0.000 description 13
- 238000006243 chemical reaction Methods 0.000 description 11
- 239000007788 liquid Substances 0.000 description 11
- 241000589158 Agrobacterium Species 0.000 description 10
- 238000000034 method Methods 0.000 description 10
- 238000005520 cutting process Methods 0.000 description 9
- 235000021374 legumes Nutrition 0.000 description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 8
- 230000001105 regulatory effect Effects 0.000 description 8
- 238000011160 research Methods 0.000 description 7
- 230000035882 stress Effects 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 230000012010 growth Effects 0.000 description 6
- 230000001954 sterilising effect Effects 0.000 description 6
- 238000004659 sterilization and disinfection Methods 0.000 description 6
- 238000012546 transfer Methods 0.000 description 6
- 230000009466 transformation Effects 0.000 description 6
- 230000001580 bacterial effect Effects 0.000 description 5
- 238000001514 detection method Methods 0.000 description 5
- 230000002068 genetic effect Effects 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000003242 anti bacterial agent Substances 0.000 description 4
- 229940088710 antibiotic agent Drugs 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000003753 real-time PCR Methods 0.000 description 4
- 230000006808 response to salt stress Effects 0.000 description 4
- 238000007619 statistical method Methods 0.000 description 4
- 239000006228 supernatant Substances 0.000 description 4
- 108020004414 DNA Proteins 0.000 description 3
- 239000005708 Sodium hypochlorite Substances 0.000 description 3
- 238000000692 Student's t-test Methods 0.000 description 3
- 239000002299 complementary DNA Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 239000000499 gel Substances 0.000 description 3
- 239000013612 plasmid Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 238000010839 reverse transcription Methods 0.000 description 3
- 238000003757 reverse transcription PCR Methods 0.000 description 3
- 238000012216 screening Methods 0.000 description 3
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 3
- 238000012353 t test Methods 0.000 description 3
- 239000013598 vector Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 2
- 241000620209 Escherichia coli DH5[alpha] Species 0.000 description 2
- 108700039887 Essential Genes Proteins 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 238000011529 RT qPCR Methods 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 241001233957 eudicotyledons Species 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 108020004635 Complementary DNA Proteins 0.000 description 1
- 238000007400 DNA extraction Methods 0.000 description 1
- 241000748095 Hymenopappus filifolius Species 0.000 description 1
- 206010020649 Hyperkeratosis Diseases 0.000 description 1
- 101150098499 III gene Proteins 0.000 description 1
- 108700005084 Multigene Family Proteins 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- 238000002123 RNA extraction Methods 0.000 description 1
- 108700019146 Transgenes Proteins 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- 238000000246 agarose gel electrophoresis Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 238000009395 breeding Methods 0.000 description 1
- 230000001488 breeding effect Effects 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 238000005352 clarification Methods 0.000 description 1
- 238000010835 comparative analysis Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000005059 dormancy Effects 0.000 description 1
- 239000012877 elongation medium Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000010195 expression analysis Methods 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000011890 leaf development Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 108091070501 miRNA Proteins 0.000 description 1
- 239000002679 microRNA Substances 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 230000002018 overexpression Effects 0.000 description 1
- 235000019629 palatability Nutrition 0.000 description 1
- 230000008640 plant stress response Effects 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000008844 regulatory mechanism Effects 0.000 description 1
- 230000003938 response to stress Effects 0.000 description 1
- 230000010153 self-pollination Effects 0.000 description 1
- 239000004460 silage Substances 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 238000012250 transgenic expression Methods 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
- 230000003827 upregulation Effects 0.000 description 1
- 108700026220 vif Genes Proteins 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/415—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
- C12N15/8273—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance
Landscapes
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- Biochemistry (AREA)
- Wood Science & Technology (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Botany (AREA)
- Physics & Mathematics (AREA)
- Cell Biology (AREA)
- Plant Pathology (AREA)
- Gastroenterology & Hepatology (AREA)
- Microbiology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Medicinal Chemistry (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
Abstract
Description
技术领域technical field
本发明涉及蒺藜苜蓿基因MtREVOLUTA的应用,尤其涉及一种蒺藜苜蓿基因MtREVOLUTA在提高豆科近缘饲草紫花苜蓿耐盐性中的应用,属于生物基因工程技术领域。The invention relates to the application of the Medicago truncatula gene MtREVOLUTA, in particular to the application of a Medicago truncatula gene MtREVOLUTA in improving the salt tolerance of alfalfa, a closely related forage grass of the leguminous family, and belongs to the technical field of biological genetic engineering.
背景技术Background technique
豆科属于双子叶植物,约650个属,18000个种,分布范围及其广泛。紫花苜蓿属于豆科植物,是世界上一种重要的多年生优质牧草,其蛋白含量高、适口性好,无论是作为牧草、青贮还是干草,都是最为经济的饲料来源,因此,紫花苜蓿被称为“牧草之王”。Legumes belong to dicotyledonous plants, with about 650 genera and 18,000 species, with a wide distribution range. Alfalfa is a leguminous plant and is an important perennial high-quality pasture in the world. It has high protein content and good palatability. Whether it is used as pasture, silage or hay, it is the most economical source of feed. Therefore, alfalfa is called "King of Pastures".
对紫花苜蓿的耐盐机制进行研究,可为苜蓿优质新品系的遗传改良和育种提供理论基础和技术支撑。但是紫花苜蓿属于异花授粉植物,是高度杂合的同源四倍体(2n=4x=32),这使得对其开展耐盐机制研究十分困难。近期有研究报道:不同浓度的盐处理条件下,紫花苜蓿可以适应中低浓度的盐胁迫,其中有些品种的耐盐性较强,具有在盐地推广的潜力。尽管苜蓿对盐胁迫具有一定的耐受性,但是土地盐化日益加剧,严重影响了紫花苜蓿的产量和品质。The study on the salt tolerance mechanism of alfalfa can provide theoretical basis and technical support for the genetic improvement and breeding of new high-quality alfalfa lines. However, alfalfa is a cross-pollinated plant and is a highly heterozygous autotetraploid (2n=4x=32), which makes it very difficult to study its salt tolerance mechanism. Recent studies have reported that under different concentrations of salt treatment, alfalfa can adapt to medium and low concentrations of salt stress, and some varieties have strong salt tolerance and have the potential to be promoted in salty land. Although alfalfa has a certain tolerance to salt stress, the increasing soil salinity seriously affects the yield and quality of alfalfa.
经过多国科学家十几年的研究,蒺藜苜蓿(Medicago truncatula)已成为豆科植物生物学和基因组学研究的模式植物。蒺藜苜蓿为二倍体(2n=16)植物,自花授粉、基因组小、生活周期短、遗传转化效率高,便于进行研究。因此,通过研究蒺藜苜蓿有助于揭示紫花苜蓿的耐盐机理,加快苜蓿耐受盐胁迫调控机制的研究进程。After more than ten years of research by scientists from many countries, Medicago truncatula has become a model plant for legume biology and genomics research. Medicago truncatula is a diploid (2n=16) plant with self-pollination, small genome, short life cycle and high genetic transformation efficiency, which is convenient for research. Therefore, the study of Medicago truncatula will help to reveal the salt tolerance mechanism of alfalfa, and accelerate the research process of the regulation mechanism of alfalfa tolerance to salt stress.
植物通常含有许多miRNA,其中miR166来源于具有独立基因loci的多基因家族。miR166高度保守地靶向HD-ZipⅢ家族基因,这些HD-ZipⅢ家族基因中包括基因REVOLUTA(REV)。申请人前期研究已证实:蒺藜苜蓿HD-ZIP III基因家族成员MtREVOLUTA基因参与了调控豆科植物的小叶片数目和叶茎比。敲除该基因,可以得到小叶片数目和叶茎比高于野生型植株的转基因豆科植物,实验显示敲除突变体株系植株的小叶片数目由三个变为四个或五个的比例显著提高,达到81.5%,同时叶茎比提高了约11%。并且以此成果申报了专利“REVOLUTA基因在调控豆科植物小叶片数目和叶茎比中的应用(专利号CN201710672282.3)”。申请人研究还证实:在过量表达MtREVOLUTA的转基因蒺藜苜蓿植株中,MtREVOLUTA的表达水平并无显著的变化,只能通过构建突变了MtmiR166靶向位点的MtREVOLUTA的转基因蒺藜苜蓿植株,来得到表达量显著提高的mMtREVOLUTA的转基因蒺藜苜蓿植株,该植株虽然单个复叶的叶片增多,但整株弱小。因此,在蒺藜苜蓿中转基因表达MtREVOLUTA的表达量会受到MtmiR166的严格调控,无法通过常规的转基因过表达改变没有突变的MtREVOLUTA的表达量。经检索,不同于以往发现的MtREVOLUTA只负责调控叶的发育而证实MtREVOLUTA是一个蒺藜苜蓿应答盐胁迫调控基因,且蒺藜苜蓿基因MtREVOLUTA能够在其近缘物种豆科饲用牧草紫花苜蓿中呈现不同的表达水平而大量表达的文献或专利还未见报道。Plants usually contain many miRNAs, of which miR166 is derived from a multigene family with independent genes loci. miR166 is highly conserved targeting HD-Zip III family genes, including the gene REVOLUTA (REV). The applicant's previous studies have confirmed that the MtREVOLUTA gene, a member of the Medicago truncatula HD-ZIP III gene family, is involved in regulating the number of leaflets and the ratio of leaf to stem in legumes. Knockout of this gene can obtain transgenic legumes with higher leaflet number and leaf-to-stem ratio than wild-type plants. Experiments show that the number of leaflets in the knockout mutant lines changes from three to four or five ratios. Significantly increased, reaching 81.5%, while the leaf-to-stem ratio increased by about 11%. And this achievement applied for the patent "application of REVOLUTA gene in regulating the number of small leaves and leaf-to-stem ratio of legumes (patent number CN201710672282.3)". The applicant's research also confirmed that in the transgenic Medicago truncatula plants overexpressing MtREVOLUTA, the expression level of MtREVOLUTA did not change significantly, and the expression level could only be obtained by constructing transgenic Medicago truncatula plants with MtREVOLUTA mutated at the target site of MtmiR166. In the transgenic Medicago truncatula plants with significantly increased mMtREVOLUTA, although the leaves of a single compound leaf increased, the whole plant was weak. Therefore, the expression level of transgenic MtREVOLUTA in Medicago truncatula is tightly regulated by MtmiR166, and the expression level of MtREVOLUTA without mutation cannot be changed by conventional transgene overexpression. After searching, it was found that MtREVOLUTA was different from the previous discovery that MtREVOLUTA was only responsible for regulating the development of leaves. It was confirmed that MtREVOLUTA is a Medicago truncatula regulated gene in response to salt stress, and the Medicago truncatula gene MtREVOLUTA could show different differences in its related species, alfalfa forage legumes. The literature or patent about the expression level and the large amount of expression has not yet been reported.
发明内容SUMMARY OF THE INVENTION
针对现有技术的不足,本发明要解决的问题是提供一种蒺藜苜蓿基因MtREVOLUTA在提高豆科近缘饲草紫花苜蓿耐盐性中的应用。Aiming at the deficiencies of the prior art, the problem to be solved by the present invention is to provide the application of a Medicago truncatula gene MtREVOLUTA in improving the salt tolerance of alfalfa, a closely related forage of the leguminous family.
本发明所述蒺藜苜蓿基因MtREVOLUTA在提高豆科近缘饲草紫花苜蓿耐盐性中的应用。The application of the Medicago truncatula gene MtREVOLUTA of the present invention in improving the salt tolerance of alfalfa, a closely related forage grass of the leguminous family.
其中:所述蒺藜苜蓿基因MtREVOLUTA是一个蒺藜苜蓿应答盐胁迫调控基因,且所述蒺藜苜蓿基因MtREVOLUTA在其近缘物种豆科饲用牧草紫花苜蓿中大量表达能够提高紫花苜蓿的耐盐性。Wherein: the Medicago truncatula gene MtREVOLUTA is a Medicago truncatula regulated gene in response to salt stress, and the abundant expression of the Medicago truncatula gene MtREVOLUTA in its close relative legume forage alfalfa can improve the salt tolerance of alfalfa.
其中:所述紫花苜蓿是中苜1号、中苜3号、公农、农菁或紫花苜蓿SY4D,进一步优选是紫花苜蓿SY4D。Wherein: the alfalfa is Zhongmu No. 1, Zhongmu No. 3, Gongnong, Nongjing or alfalfa SY4D, more preferably alfalfa SY4D.
申请人将蒺藜苜蓿进行盐的非生物胁迫处理,证实基因MtREVOLUTA随着处理时间的增加,与对照相比表达量显著提高,显示基因MtREVOLUTA参与植物的盐胁迫应答,见图1所示。The applicant subjected Medicago truncatula to abiotic stress treatment of salt, and it was confirmed that the expression of the gene MtREVOLUTA was significantly increased with the increase of treatment time compared with the control, indicating that the gene MtREVOLUTA participated in the salt stress response of plants, as shown in Figure 1.
本发明还提供了一种含蒺藜苜蓿基因MtREVOLUTA的双子叶植物表达载体pEARLEYGATE100在提高豆科近缘饲草紫花苜蓿耐盐性中的应用。The invention also provides the application of a dicotyledonous plant expression vector pEARLEYGATE100 containing the alfalfa gene MtREVOLUTA in improving the salt tolerance of alfalfa, a closely related forage grass of the leguminous family.
本发明所述蒺藜苜蓿基因MtREVOLUTA在培育耐盐紫花苜蓿中的应用,其特征在于:培育耐盐紫花苜蓿的方法是利用蒺藜苜蓿基因MtREVOLUTA构建双子叶植物表达载体pEARLEYGATE100/MtREVOLUTA并转化紫花苜蓿,获得含有蒺藜苜蓿基因MtREVOLUTA的转基因紫花苜蓿。The application of the Medicago truncatula gene MtREVOLUTA in cultivating salt-tolerant alfalfa is characterized in that: the method for cultivating the salt-tolerant alfalfa is to construct a dicot expression vector pEARLEYGATE100/MtREVOLUTA by using the Medicago truncatula gene MtREVOLUTA and transform the alfalfa to obtain Transgenic alfalfa containing the Medicago truncatula gene MtREVOLUTA.
通过将蒺藜苜蓿基因MtREVOLUTA在紫花苜蓿中表达的实验证实,利用蒺藜苜蓿基因MtREVOLUTA构建双子叶植物表达载体pEARLEYGATE100/MtREVOLUTA并转化紫花苜蓿,发现MtREVOLUTA在紫花苜蓿中表达发生显著的变化,可以大量表达,见图2所示。Through the experiment of expressing the Medicago truncatula gene MtREVOLUTA in alfalfa, it was confirmed that the dicot expression vector pEARLEYGATE100/MtREVOLUTA was constructed by using the Medicago truncatula gene MtREVOLUTA and transformed into alfalfa. See Figure 2.
将鉴定得到的含有蒺藜苜蓿基因MtREVOLUTA的转基因紫花苜蓿与野生型对照紫花苜蓿SY4D,在高盐的条件下胁迫处理5周,鉴定基因MtREVOLUTA在紫花苜蓿抗逆中的作用,发现野生型紫花苜蓿随着处理时间的延长叶片枯黄萎蔫直至死亡,而转基因紫花苜蓿依然存活,见图3所示。The identified transgenic alfalfa containing the Medicago truncatula gene MtREVOLUTA and the wild-type control alfalfa SY4D were treated under high-salt conditions for 5 weeks to identify the role of the gene MtREVOLUTA in alfalfa stress resistance. With the prolongation of the treatment time, the leaves withered and withered until death, while the transgenic alfalfa still survived, as shown in Figure 3.
将处理后的MtREVOLUTA转基因紫花苜蓿和野生型对照紫花苜蓿SY4D的存活率进行统计,发现MtREVOLUTA转基因紫花苜蓿相比野生型对照紫花苜蓿SY4D显著提高,见图4所示。The survival rate of the treated MtREVOLUTA transgenic alfalfa and wild-type control alfalfa SY4D was counted, and it was found that MtREVOLUTA transgenic alfalfa was significantly improved compared with the wild-type control alfalfa SY4D, as shown in Figure 4.
本发明中,申请人首次公开并证实蒺藜苜蓿基因MtREVOLUTA是一个蒺藜苜蓿应答盐胁迫调控基因,不同于以往发现的MtREVOLUTA只负责调控叶的发育,并且也确认通过蒺藜苜蓿基因MtREVOLUTA的转基因紫花苜蓿能够改变MtREVOLUTA基因的表达水平进而提高豆科近缘饲草紫花苜蓿耐盐性,具备了突出的实质性特点和显著进步。进一步的,本发明公开的蒺藜苜蓿基因MtREVOLUTA可广泛用于培育抗逆豆科近缘农作物新品种,并可为深入阐明植物抗逆机制提供理论依据。In the present invention, the applicant discloses and confirms for the first time that the Medicago truncatula gene MtREVOLUTA is a Medicago truncatula responsive salt stress regulatory gene, which is different from the previously discovered MtREVOLUTA that is only responsible for regulating leaf development, and also confirms that the transgenic alfalfa through the Medicago truncatula gene MtREVOLUTA can Altering the expression level of the MtREVOLUTA gene to improve the salinity tolerance of alfalfa, a forage relative of the legume family, has outstanding substantive characteristics and significant progress. Further, the Medicago truncatula gene MtREVOLUTA disclosed in the present invention can be widely used for cultivating new varieties of crops that are closely related to the leguminous family with resistance to stress, and can provide a theoretical basis for in-depth clarification of the mechanism of plant stress resistance.
本发明公开的蒺藜苜蓿基因MtREVOLUTA在提高豆科近缘饲草紫花苜蓿耐盐性中的应用及提高豆科近缘饲草紫花苜蓿耐盐性的方法所体现出的有益效果是:利用现有的植物基因工程技术,本发明首次将盐胁迫应答基因蒺藜苜蓿基因MtREVOLUTA在紫花苜蓿中转基因表达,经过比较分析证明,蒺藜苜蓿基因MtREVOLUTA能够在其近缘物种豆科饲用牧草紫花苜蓿中大量表达且MtREVOLUTA的转基因紫花苜蓿的耐盐能力明显增强。生物学重复统计分析表明,转基因植株在高盐处理后存活率高于野生型紫花苜蓿SY4D。预示本发明所述蒺藜苜蓿基因MtREVOLUTA在提高豆科近缘饲草紫花苜蓿耐盐性中的应用具有重要意义和经济价值。The application of the Medicago truncatula gene MtREVOLUTA disclosed in the present invention in improving the salt tolerance of the leguminous relative forage grass alfalfa and the method for improving the salt tolerance of the leguminous relative forage grass alfalfa have the following beneficial effects: using existing The present invention transgenic expression of the Medicago truncatula gene MtREVOLUTA in alfalfa is the first time that the salt stress response gene MtREVOLUTA is transgenic in alfalfa. Through comparative analysis, it is proved that the Medicago truncatula gene MtREVOLUTA can be expressed in a large amount in its related species, the legume forage grass, alfalfa. And the salt tolerance of transgenic alfalfa of MtREVOLUTA was obviously enhanced. Biological replicate statistical analysis showed that the survival rate of transgenic plants was higher than that of wild-type alfalfa SY4D after high salt treatment. It is predicted that the application of the Medicago truncatula gene MtREVOLUTA in the present invention in improving the salt tolerance of alfalfa, a closely related forage of the leguminous family, has important significance and economic value.
附图说明Description of drawings
图1:qRT-PCR检测MtREVOLUTA在蒺藜苜蓿转基因中对盐胁迫的应答表达量上调。Figure 1: Up-regulation of MtREVOLUTA in Medicago truncatula transgenics in response to salt stress detected by qRT-PCR.
图中0h的柱状图表示的是100mMNaCl处理前的一个月大小的野生型蒺藜苜蓿R108的叶片中MtREVOLUTA的表达量。图中12h的柱状图表示的是100mMNaCl处理后12h的一个月大小的野生型蒺藜苜蓿R108的叶片中MtREVOLUTA的表达量。图中24h的柱状图表示的是100mMNaCl处理后24h的一个月大小的野生型蒺藜苜蓿R108的叶片中MtREVOLUTA的表达量。三个生物学重复;*表示P<0.05,每批植物各25棵苗。The bar graph at 0 h in the figure represents the expression level of MtREVOLUTA in leaves of wild-type Medicago truncatula R108 one month old before 100 mM NaCl treatment. The bar graph at 12h in the figure represents the expression level of MtREVOLUTA in leaves of one-month-old wild-type Medicago truncatula R108 at 12h after 100 mM NaCl treatment. The bar graph at 24 h in the figure represents the expression level of MtREVOLUTA in the leaves of one-month-old wild-type Medicago truncatula R108 at 24 h after 100 mM NaCl treatment. Three biological replicates; * indicates P<0.05, 25 seedlings per batch of plants.
图2:RT-PCR检测不同株系的35S:MtREV紫花苜蓿转基因植株叶片中的MtREVOLUTA表达量具有明显的差异,表达量高的命名为35S:MtREV#1,表达量低的命名为35S:MtREV#2。Figure 2: RT-PCR detection of MtREVOLUTA expression in leaves of 35S:MtREV alfalfa transgenic plants of different lines has obvious differences, the high expression is named 35S:MtREV#1, and the low expression is named 35S:MtREV #2.
其中上排胶图指示的是野生型紫花苜蓿SY4D和不同株系的35S:MtREV紫花苜蓿转基因植株叶片中的MtREVOLUTA的表达量。下排胶图指示的是野生型紫花苜蓿SY4D和不同株系的35S:MtREV紫花苜蓿转基因植株叶片中的看家基因MsActin的表达量。The upper row of gels indicated the expression levels of MtREVOLUTA in leaves of wild-type alfalfa SY4D and 35S:MtREV alfalfa transgenic plants of different lines. The bottom row of gums indicated the expression levels of housekeeping gene MsActin in leaves of wild-type alfalfa SY4D and 35S:MtREV alfalfa transgenic plants of different lines.
图3:盐处理一个月大小35S:MtREV#1紫花转基因扦插植株相比对照野生型紫花苜蓿SY4D扦插植株耐盐性提高。Figure 3: Salt-treated one-month-old 35S:MtREV#1 transgenic cuttings of alfalfa improved salt tolerance compared to control wild-type alfalfa SY4D cuttings.
图中所示A、B、C、D、I、J、K、L、Q、R、S、T显示的分别是不加盐水的对照组的野生型紫花苜蓿SY4D和35S:MtREV#1紫花苜蓿转基因植株在处理前和处理开始后的1、2、3、4、5周的生长情况。图中所示E、F、G、H、M、N、O、P、U、V、W、X显示的分别是施加1.5%NaCl盐水的处理组的野生型紫花苜蓿SY4D和35S:MtREV#1紫花苜蓿转基因植株在处理前和处理开始后的1、2、3、4、5周的生长情况。A, B, C, D, I, J, K, L, Q, R, S, T shown in the figure show wild-type alfalfa SY4D and 35S:
图4:t-test统计分析显示35S:MtREV紫花苜蓿转基因植株35S:MtREV#1相对野生型SY4D盐处理后存活率显著提高。Figure 4: t-test statistical analysis shows that the survival rate of 35S:MtREV alfalfa
三个生物学重复;*表示P<0.05,每批植物各25棵苗。Three biological replicates; * indicates P<0.05, 25 seedlings per batch of plants.
具体实施方式Detailed ways
下面结合具体附图和实施例对本发明内容进行详细说明。如下所述例子仅是本发明的较佳实施方式而已,应该说明的是,下述说明仅仅是为了解释本发明,并非对本发明作任何形式上的限制,凡是依据本发明的技术实质对实施方式所做的任何简单修改,等同变化与修饰,均属于本发明技术方案的范围内。The content of the present invention will be described in detail below with reference to the specific drawings and embodiments. The following examples are only preferred embodiments of the present invention. It should be noted that the following descriptions are only for explaining the present invention, and do not limit the present invention in any form. Any simple modifications, equivalent changes and modifications made all fall within the scope of the technical solutions of the present invention.
下述实施例中,涉及的蒺藜苜蓿R108购自Noble Research Institute Mutantcollections;紫花苜蓿SY4D购自Noble Research Institute Mutant collections。大肠杆菌DH5α,农杆菌EHA105购自Shanghai Weidi Biotechnology;载体pENTR-TOPO,表达载体pEARLYGATE100购自Invitrogen。蒺藜苜蓿基因MtREVOLUTA的核苷酸序列已在专利CN201710672282.3中公开,其核苷酸序列如SEQ ID No.1所示。In the following examples, the involved alfalfa R108 was purchased from Noble Research Institute Mutant collections; alfalfa SY4D was purchased from Noble Research Institute Mutant collections. Escherichia coli DH5α and Agrobacterium EHA105 were purchased from Shanghai Weidi Biotechnology; vector pENTR-TOPO and expression vector pEARLYGATE100 were purchased from Invitrogen. The nucleotide sequence of the Medicago truncatula gene MtREVOLUTA has been disclosed in patent CN201710672282.3, and its nucleotide sequence is shown in SEQ ID No.1.
其它所使用的材料、试剂等,如无特殊说明,均从公开商业途径得到。Other materials, reagents, etc. used, unless otherwise specified, are obtained from open commercial sources.
实施例1:MtREVOLUTA的表达分析Example 1: Expression analysis of MtREVOLUTA
(1)材料的培养(1) Cultivation of materials
用砂纸适度打磨蒺藜苜蓿R108种子的坚硬外皮,打破种子的休眠,在湿润的滤纸上于4℃培养一周左右,随后将萌发的种子移至育苗盘,放于培养箱里生长。培养箱环境条件为:长日照(16h/8h),温度23℃,65%湿度,光照强度150mmol m-2s-1。在育苗盘中生长两周左右(长出第一片复叶展开叶),移入大盆,放于温室生长。温室正常生长条件为:长日照(16h/8h),温度22℃~25℃,60%-70%湿度,光照强度150mmol m-2s-1。培养至一个月大小时开始进行100mM NaCl的盐处理。处理不同时间后,Trizol法提取幼苗叶RNA。The hard outer skin of Medicago truncatula R108 seeds was moderately sanded with sandpaper to break the dormancy of the seeds. The seeds were cultured on moist filter paper at 4°C for about a week, and then the germinated seeds were transferred to a seedling tray and grown in an incubator. The environmental conditions of the incubator were as follows: long sunshine (16h/8h), temperature of 23°C, humidity of 65%, and light intensity of 150mmol m -2 s -1 . It was grown in the seedling tray for about two weeks (the first compound leaf developed), transferred into a large pot, and placed in the greenhouse for growth. The normal growth conditions in the greenhouse are: long sunshine (16h/8h), temperature 22℃~25℃, 60%-70% humidity, light intensity 150mmol m -2 s -1 . Salt treatment with 100 mM NaCl was initiated when cultured to one month old. After treatment for different time, the leaf RNA of seedlings was extracted by Trizol method.
(2)RNA的提取(2) RNA extraction
准备工作:无RNase枪尖,无RNase EP管(2.0mL,加钢珠;1.5mL),液氮,75%乙醇;桌面及离心机等需用到的仪器用70%酒精消毒;Preparations: RNase-free gun tip, RNase-free EP tube (2.0mL, with steel balls; 1.5mL), liquid nitrogen, 75% ethanol; 70% alcohol for sterilizing the tabletop and centrifuge instruments;
DEPC水配制:配1000mL的DEPC处理水,加1mL DEPC,用超纯水定容到1000mL,磁力搅拌器搅拌过夜。然后高压蒸汽灭菌123℃,40min(DEPC有毒,但灭菌后分解成二氧化碳和酒精),尽量避免污染,4℃冷藏或室温备用。DEPC water preparation: prepare 1000 mL of DEPC treated water, add 1 mL of DEPC, make up to 1000 mL with ultrapure water, and stir with a magnetic stirrer overnight. Then high pressure steam sterilization at 123 ℃, 40min (DEPC is toxic, but decomposes into carbon dioxide and alcohol after sterilization), try to avoid pollution, refrigerate at 4 ℃ or room temperature for use.
通过TrizoLRT提取叶片总RNA,主要步骤如下:The total RNA of leaves was extracted by TrizoLRT. The main steps are as follows:
1)取样品(≤100mg)放入2mL加钢珠的EP管,立即放入液氮,用研磨仪打碎,研磨仪参数:25-30HZ 60秒;1) Take the sample (≤100mg) and put it into a 2mL EP tube with steel balls, put it into liquid nitrogen immediately, and crush it with a grinder. The grinder parameters: 25-30HZ for 60 seconds;
2)加1mL TrizoLRT,恒温混匀仪涡旋震荡,2000rpm,3min;2) Add 1 mL of TrizoLRT, vortex the constant temperature mixer, 2000rpm, 3min;
3)加400μL DEPC水,恒温混匀仪涡旋震荡,2000rpm,3min;静置5min,室温12000rpm离心,15min;3) Add 400 μL of DEPC water, vortex with a constant temperature mixer, 2000 rpm, 3 min; let stand for 5 min, centrifuge at 12000 rpm at room temperature, 15 min;
4)取上清移入1.5mL EP管(一式两份,600uL/管),加等体积异丙醇,轻轻混匀,室温静置15min,室温12000rpm离心10min,弃上清;4) Transfer the supernatant into a 1.5mL EP tube (in duplicate, 600uL/tube), add an equal volume of isopropanol, mix gently, stand at room temperature for 15 minutes, centrifuge at 12000 rpm for 10 minutes at room temperature, and discard the supernatant;
5)加800μL 75%乙醇洗涤沉淀,将沉淀轻轻弹起,4000rpm 3min室温离心;再次用75%乙醇重复洗涤沉淀,倒掉上清,瞬时离心,酒精尽量用枪尖吸尽,然后放超净工作台1~2min,直至边缘半透明取出。5) Add 800 μL of 75% ethanol to wash the precipitate, gently bounce the precipitate, and centrifuge at 4000 rpm for 3 min at room temperature; repeat the washing with 75% ethanol, discard the supernatant, and centrifuge briefly. Clean the workbench for 1 to 2 minutes, until the edge is translucent and taken out.
6)加入50μL DEPC水,轻弹,60℃金属浴10min;6) Add 50 μL of DEPC water, flick, 60 ℃ metal bath for 10 minutes;
7)室温放置2min,放冰上测浓度。7) Place at room temperature for 2 min, and measure the concentration on ice.
(3)逆转录获得cDNA(3) Reverse transcription to obtain cDNA
反转录试剂盒:5×All-In-One RT MasterMix(with AccuRT Genomic DNARemoval Kit)Reverse transcription kit: 5×All-In-One RT MasterMix (with AccuRT Genomic DNARemoval Kit)
1)将提取好的RNA和反转录试剂盒中的冷冻试剂放在冰上,待溶解后瞬时离心,将样品收集于管底,以下所有步骤均在冰上操作;1) Put the extracted RNA and the freezing reagents in the reverse transcription kit on ice, centrifuge briefly after dissolving, and collect the samples at the bottom of the tube. All the following steps are performed on ice;
2)将无RNase的200μLPCR小管放在96孔冰板上,一般做三个生物学重复,一个反应总体积20μL;2) Put the RNase-free 200μL PCR tube on a 96-well ice plate, generally do three biological replicates, and the total volume of one reaction is 20μL;
3)先将管子中加入反应体系1:3) Add
4)将上述反应体系1放入PCR仪中,42℃孵育2min,待反应结束后将管子置于冰上冷却;4) Put the
5)再将管子中加入反应体系2:5) Add
使模板与引物混合物变性,停止反应;Denature the template and primer mixture to stop the reaction;
6)最后将管子中加入反应体系3:6) Finally, add
7)将上述总体系小心混匀,瞬时离心于管底,放入PCR仪中,反应程序如下所示:7) Carefully mix the above total system, centrifuge at the bottom of the tube briefly, and put it into the PCR machine. The reaction procedure is as follows:
反应结束后将产物放在-20℃冰箱保存。After the reaction, the product was stored in a -20°C refrigerator.
(4)实时荧光定量PCR(4) Real-time fluorescence quantitative PCR
BIO-RAD实时荧光定量PCR仪;SYBR green Mix;BIO-RAD real-time PCR instrument; SYBR green Mix;
引物序列如下:The primer sequences are as follows:
MtREV-qF:GGAAAATGAGAGGCTGCAGAAG;MtREV-qR:TGCTGGCGCATAAATCCAT;MtUBQ-qF:CTGACAGCCCACTGAATTGTGA;MtUBQ-qR:TTTTGGCATTGCTGCAAGC。MtREV-qF: GGAAAATGAGAGGCTGCAGAAG; MtREV-qR: TGCTGGCGCATAAATCCAT; MtUBQ-qF: CTGACAGCCCACTGAATTGTGA; MtUBQ-qR: TTTTGGCATTGCTGCAAGC.
cDNA稀释到15ng/μL,作为模板;正向引物与反向引物提前混合,2.5μMcDNA was diluted to 15ng/μL as template; forward primer and reverse primer were mixed in advance, 2.5μM
ReaL-time PCR体系(10μL):ReaL-time PCR system (10μL):
SYBR 5μLSYBR 5μL
primers 2μLprimers 2μL
cDNA模板 3μLcDNA template 3μL
Real-time PCR程序:Real-time PCR procedure:
相对表达量的计算按照2-△△CT方法进行。使用t-test统计分析;三个生物学重复;*表示P<0.05,结果见图1。The relative expression level was calculated according to the 2 -ΔΔCT method. Statistical analysis using t-test; three biological replicates; * indicates P<0.05, the results are shown in Figure 1.
图1显示:qRT-PCR检测MtREVOLUTA在蒺藜苜蓿转基因中对盐胁迫的应答表达量上调。图中0h的柱状图表示的是100mMNaCl处理前的一个月大小的野生型蒺藜苜蓿R108的叶片中MtREVOLUTA的表达量。图中12h的柱状图表示的是100mMNaCl处理后12h的一个月大小的野生型蒺藜苜蓿R108的叶片中MtREVOLUTA的表达量。图中24h的柱状图表示的是100mMNaCl处理后24h的一个月大小的野生型蒺藜苜蓿R108的叶片中MtREVOLUTA的表达量。三个生物学重复;*表示P<0.05,每批植物各25棵苗。Figure 1 shows: qRT-PCR detection of MtREVOLUTA up-regulated expression in Medicago truncatula transgenic in response to salt stress. The bar graph at 0 h in the figure represents the expression level of MtREVOLUTA in leaves of wild-type Medicago truncatula R108 one month old before 100 mM NaCl treatment. The bar graph at 12h in the figure represents the expression level of MtREVOLUTA in leaves of one-month-old wild-type Medicago truncatula R108 at 12h after 100 mM NaCl treatment. The bar graph at 24 h in the figure represents the expression level of MtREVOLUTA in the leaves of one-month-old wild-type Medicago truncatula R108 at 24 h after 100 mM NaCl treatment. Three biological replicates; * indicates P<0.05, 25 seedlings per batch of plants.
实施例2:双子叶植物表达载体的构建Example 2: Construction of Dicotyledonous Plant Expression Vector
扩增MtREVOLUTA特异引物序列如下:Amplify MtREVOLUTA-specific primer sequences as follows:
MtREV-F:CACCATGGCTATGGCTGTTGCAC;MtREV-F: CACCATGGCTATGGCTGTTGCAC;
MtREV-qR:GGGGGTTTAAATCCAGCAATAGGTC。MtREV-qR:GGGGGTTTAAATCCAGCAATAGGTC.
1)PCR体系:1) PCR system:
2)PCR程序:2) PCR program:
95℃5min;25~30cycles 95℃30s,60℃30s,72℃30s;72℃5min。95℃5min; 25~30cycles 95
3)回收连接转化3) Recycling connection conversion
PCR产物进行琼脂糖凝胶电泳后,切割目的片段大小位置处的胶块至1.5mL EP管内。参照普通琼脂糖凝胶DNA回收试剂盒(TIANGEN,DP209)说明操作进行PCR产物回收。After the PCR product was subjected to agarose gel electrophoresis, the gel block at the size of the target fragment was cut into a 1.5mL EP tube. The PCR product was recovered according to the instructions of the ordinary agarose gel DNA recovery kit (TIANGEN, DP209).
将回收产物连接到pEntry-T载体上(Thermo Fisher Scientific,货号12536017),通过转化的方法该质粒在大肠杆菌DH5α中得到大量克隆。进行LR反应把基因MtREVOLUTA连接到表达载体pEARLYGATE100中后提取质粒,将质粒转入农杆菌菌株EHA105中。The recovered product was ligated into the pEntry-T vector (Thermo Fisher Scientific, product number 12536017), and the plasmid was cloned in E. coli DH5α by the method of transformation. LR reaction was performed to connect the gene MtREVOLUTA to the expression vector pEARLYGATE100, and then the plasmid was extracted, and the plasmid was transformed into Agrobacterium strain EHA105.
实施例3:紫花苜蓿转化及转基因植株筛选Example 3: Transformation of alfalfa and screening of transgenic plants
按以下配方配制紫花苜蓿遗传转化所需培养基。The medium required for genetic transformation of alfalfa was prepared according to the following formula.
1)提前配培养基灭菌,二级水、培养皿、滤纸、三角瓶、50mL离心管灭菌。1) Prepare medium for sterilization in advance, and sterilize secondary water, petri dish, filter paper, triangular flask, and 50mL centrifuge tube.
2)农杆菌制备。遗传转化实验前两天,挑取实施例2所述转化成功的农杆菌单克隆或农杆菌stock,用2mL LB液体培养基加载体对应的抗生素,置于摇床200rpm 28℃过夜。2) Agrobacterium preparation. Two days before the genetic transformation experiment, pick the successfully transformed Agrobacterium monoclonal or Agrobacterium stock described in Example 2,
3)将100μL摇起的农杆菌液进行扩繁,将其置于30-50mL液体培养基(含相应的抗生素),200rpm28℃过夜培养,农杆菌菌液OD600nm约0.8-1.0。3) Proliferate 100 μL of the shaken Agrobacterium liquid, place it in 30-50 mL liquid medium (containing the corresponding antibiotics), and cultivate overnight at 200 rpm at 28° C. The OD 600 nm of the Agrobacterium liquid is about 0.8-1.0.
4)紫花苜蓿SY4D叶片表面灭菌。选择年轻且完全展开的健康叶片用于遗传转化实验。取下的叶片置于冰上带回实验室。若用超声波法,取一个完整复叶;如果要切叶盘,则取单个叶片。4) Surface sterilization of alfalfa SY4D leaves. Young and fully expanded healthy leaves were selected for genetic transformation experiments. The removed leaves were placed on ice and brought back to the laboratory. If using the ultrasonic method, take a whole compound leaf; if the leaf disc is to be cut, take a single leaf.
5)消毒。将取回的叶片放置在50mL带盖离心管(叶片不要太多,过多会导致灭菌不完全)。加入30%次氯酸钠溶液与1‰Tween-20,上下颠倒离心管数次,保证每片叶被浸润后,置水平摇床低速水平震荡15min(7分钟时换一次新的次氯酸钠溶液)。倒掉次氯酸钠溶液,换清水洗3-4遍。清洗后将叶片放置于灭菌后的滤纸上吸掉多余的水分。5) Disinfection. Place the retrieved leaves in a 50mL centrifuge tube with a lid (do not have too many leaves, too much will lead to incomplete sterilization). Add 30% sodium hypochlorite solution and 1‰ Tween-20, and invert the centrifuge tube several times to ensure that after each leaf is infiltrated, place it on a horizontal shaker for 15 minutes at low speed (change a new sodium hypochlorite solution every 7 minutes). Pour out the sodium hypochlorite solution and wash with clean water 3-4 times. After washing, the leaves were placed on sterilized filter paper to absorb excess water.
6)外植体接种菌液与共培养。将菌液在4000rpm离心10min,倒掉上清,用SM4液体培养基轻柔重悬并稀释菌液至OD600nm 0.2。6) The explants were inoculated with bacterial liquid and co-cultured. The bacterial solution was centrifuged at 4000 rpm for 10 min, the supernatant was discarded, and the bacterial solution was gently resuspended in SM4 liquid medium and diluted to an OD 600 nm of 0.2.
7)切叶盘:将无菌叶片置于灭菌的培养皿,用锋利的无菌刀片将叶缘切掉,切成四方形叶盘。切的过程中,要注意防止叶片过分干燥。7) Leaf cutting disc: Place the sterile leaves in a sterilized petri dish, cut off the leaf edge with a sharp sterile blade, and cut into a square leaf disc. When cutting, be careful not to over-dry the leaves.
8)农杆菌侵染:将切下的叶盘放入农杆菌SM4液体培养基中。轻柔震荡让叶盘彼此不会叠在一起。8) Agrobacterium infection: The cut leaf discs were placed in Agrobacterium SM4 liquid medium. Gentle shaking keeps the blisks from overlapping each other.
9)抽真空:将放入叶盘的农杆菌SM4溶液0.5Mbar抽真空10min。为避免对细胞的损伤,真空的开关应缓慢进行。再慢摇5-10min。9) Vacuuming: vacuumize the Agrobacterium SM4 solution 0.5 Mbar put into the leaf disc for 10 min. To avoid damage to the cells, the vacuum switch should be performed slowly. Shake slowly for another 5-10min.
10)在超净工作台中,将菌液吸掉,将侵染后的叶片转移到灭过菌的滤纸上吸掉叶片周围多余的菌液,但注意避免工作台中的风把叶片吹得过于干燥。将上述步骤的叶片转移至SM4固体培养基(含1mLcefo)。尽量让叶盘的下表面接触培养基。10) In the ultra-clean workbench, suck up the bacterial liquid, and transfer the infected leaves to sterilized filter paper to absorb the excess bacterial liquid around the leaves, but be careful to avoid the wind in the workbench from blowing the leaves too dry. . The leaves from the above steps were transferred to SM4 solid medium (containing 1 mL of cefo). Try to keep the lower surface of the leaf disc in contact with the medium.
11)5-7天后,将叶盘转移至含有载体相应抗性抗生素的SM4固体培养基(加cefo500mg/L,同时加筛选抗生素如Kan 50mg/L,PPT 3mg/L,hyg 10mg/L),在植物培养箱中24℃暗培养4-6周。11) After 5-7 days, transfer the leaf discs to SM4 solid medium containing carrier-corresponding resistant antibiotics (add cefo 500mg/L, and add screening antibiotics such as Kan 50mg/L, PPT 3mg/L, hyg 10mg/L), Incubate in the dark at 24°C for 4-6 weeks in a plant incubator.
12)当愈伤组织足够大(一般SM4筛选培养基放4-5周),转到再生培养基MSBK上,培养2周。12) When the callus is large enough (generally 4-5 weeks in SM4 screening medium), transfer to regeneration medium MSBK and cultivate for 2 weeks.
13)转到伸长培养基MSS直到植株长大,一般6-8周。13) Transfer to elongation medium MSS until plants grow, typically 6-8 weeks.
14)将植株转到培养瓶中,培养基为MSR。待幼苗生根后,将健壮的植株移到土里。14) Transfer the plants to culture flasks, and the medium is MSR. After the seedlings have taken root, move the robust plants to the soil.
15)蒺藜苜蓿DNA提取。提前配制2×CTAB(pH8.0)提取液(1L):15) Medicago truncatula DNA extraction. Prepare 2×CTAB (pH8.0) extract (1L) in advance:
注意:首先定容至1L,再加CTAB粉末,搅拌溶解后可置于65℃烘箱加速溶解,室温保存。Note: First make the volume to 1L, add CTAB powder, stir and dissolve, and then place it in a 65°C oven to accelerate the dissolution, and store at room temperature.
16)对提取紫花苜蓿的基因组DNA,使用载体引物GCACAATCCCACTATCCTTC和基因反向引物进行PCR扩增检测。提取上述阳性的转基因植株和野生植株的RNA反转cDNA进行使用基因正向引物TACACTGCTGAACAGATTGAAG和基因反向引物ACCAGGCTTCATCCCAGGCATC进行RT-PCR检测,结果见图2。16) For the genomic DNA extracted from alfalfa, use the vector primer GCACAATCCCACTATCCTTC and the gene reverse primer to perform PCR amplification detection. The RNA reverse cDNAs of the above-mentioned positive transgenic plants and wild plants were extracted for RT-PCR detection using the gene forward primer TACACTGCTGAACAGATTGAAG and the gene reverse primer ACCAGGCTTCATCCCAGGCATC. The results are shown in Figure 2.
内参使用MsACTIN-F:TTTGAGACTTTCAATGTGCCCGCC和MsACTIN-R:TAGCATGTGGGAGTGCATAACCCT。Internal reference used MsACTIN-F: TTTGAGACTTTCAATGTGCCCGCC and MsACTIN-R: TAGCATGTGGGAGTGCATAACCCT.
结果见图2。The results are shown in Figure 2.
图2显示:RT-PCR检测不同株系的35S:MtREV紫花苜蓿转基因植株叶片中的MtREVOLUTA表达量具有明显的差异,表达量高的命名为35S:MtREV#1,表达量低的命名为35S:MtREV#2。其中上排胶图指示的是野生型紫花苜蓿SY4D和不同株系的35S:MtREV紫花苜蓿转基因植株叶片中的MtREVOLUTA的表达量。下排胶图指示的是野生型紫花苜蓿SY4D和不同株系的35S:MtREV紫花苜蓿转基因植株叶片中的看家基因MsActin的表达量。Figure 2 shows: RT-PCR detection of MtREVOLUTA expression in leaves of 35S:MtREV alfalfa transgenic plants of different lines has obvious differences, the high expression is named 35S:
实施例4:35S:MtREV紫花转基因扦插幼苗耐盐性分析Example 4: Salt tolerance analysis of 35S:MtREV purple flower transgenic cutting seedlings
将野生植株和转基因植株35S:MtREV紫花扦插,挑选扦插存活状态一致的小苗各25棵,培养一个月,将小盆的幼苗使用高盐1.5%NaCl处理5周,生物重复三次,统计存活率。The wild plants and
结果见图3和图4。The results are shown in Figures 3 and 4.
图3显示:盐处理一个月大小35S:MtREV#1紫花转基因扦插植株相比对照野生型紫花苜蓿SY4D扦插植株耐盐性提高。图中所示A、B、C、D、I、J、K、L、Q、R、S、T显示的分别是不加盐水的对照组的野生型紫花苜蓿SY4D和35S:MtREV#1紫花苜蓿转基因植株在处理前和处理开始后的1、2、3、4、5周的生长情况。图中所示E、F、G、H、M、N、O、P、U、V、W、X显示的分别是施加1.5%NaCl盐水的处理组的野生型紫花苜蓿SY4D和35S:MtREV#1紫花苜蓿转基因植株在处理前和处理开始后的1、2、3、4、5周的生长情况。Figure 3 shows that the salt-treated one-month-old 35S:
图4显示:t-test统计分析显示35S:MtREV紫花苜蓿转基因植株35S:MtREV#1相对野生型SY4D盐处理后存活率显著提高。三个生物学重复;*表示P<0.05,每批植物各25棵苗。Figure 4 shows: t-test statistical analysis shows that the survival rate of 35S:MtREV alfalfa
序列表sequence listing
<110> 山东大学<110> Shandong University
<120>蒺藜苜蓿基因MtREVOLUTA在提高豆科近缘饲草紫花苜蓿耐盐性中的应用Application of <120> Medicago truncatula gene MtREVOLUTA in improving the salinity tolerance of alfalfa, a closely related leguminous forage grass
<141> 2022-03-11<141> 2022-03-11
<160>1<160>1
<210> 1<210> 1
<211> 4380<211> 4380
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<221> 蒺藜苜蓿基因MtREVOLUTA的核苷酸序列<221> Nucleotide sequence of Medicago truncatula gene MtREVOLUTA
<222>(1)…(4380)<222>(1)…(4380)
<400>1<400>1
atggctatgg ctgttgcaca acaacaaaga gataacagca ttgagagaca ccttgattcg 60atggctatgg ctgttgcaca acaacaaaga gataacagca ttgagagaca ccttgattcg 60
tctggcaaat atgtgaggta cactgctgaa cagattgaag ctttggaaaa ggtttatgtg 120tctggcaaat atgtgaggta cactgctgaa cagattgaag ctttggaaaa ggtttatgtg 120
gaatgcccta agcctagttc attgagaagg caacagctga ttcgggagtg cccggttctg 180gaatgcccta agcctagttc attgagaagg caacagctga ttcgggagtg cccggttctg 180
gccaacattg agcctaagca gatcaaggtt tggtttcaga ataggaggta atggagattc 240gccaacattg agcctaagca gatcaaggtt tggtttcaga ataggaggta atggagattc 240
tgattcacct ttttttgttt gttttgaatt tgtgtcgtgt ggaagggttt ggctcttttt 300tgattcacct ttttttgttt gttttgaatt tgtgtcgtgt ggaagggttt ggctcttttt 300
ggttgtgtga tttgatttgt gtctttcttg ttttgcaggt gtagggagaa gcagagaaaa 360ggttgtgtga tttgatttgt gtctttcttg ttttgcaggt gtagggagaa gcagagaaaa 360
gaggcttctc agcttcagag tgtgaacagg aaactttctg cgatgaataa gctgttgatg 420gaggcttctc agcttcagag tgtgaacagg aaactttctg cgatgaataa gctgttgatg 420
gaggaaaatg agaggctgca gaagcaggtt tcacagctgg tgaatgagaa tggatttatg 480gaggaaaatg agaggctgca gaagcaggtt tcacagctgg tgaatgagaa tggatttatg 480
cgccagcaac tacaccctgt aagccctatc attgttcatt ttcattcact actatacatt 540cgccagcaac tacaccctgt aagccctatc attgttcatt ttcattcact actatacatt 540
ttttttttgt gaaatggtaa ttatcattgt ttggttgagg catgtagttg ttgtatgata 600ttttttttgt gaaatggtaa ttatcattgt ttggttgagg catgtagttg ttgtatgata 600
tgatatgatt tgggttattt tgaatgtaaa tttgtattgt tacttactgt catgtcattg 660tgatatgatt tgggttattt tgaatgtaaa tttgtattgt tacttactgt catgtcattg 660
cagaccccag cagctccaaa tgctgacggt agtggcgttg attccgcggc tgctgctcct 720cagaccccag cagctccaaa tgctgacggt agtggcgttg attccgcggc tgctgctcct 720
atgaactcat tgagagatgc taatagccct gctgggtaat tttgaagttc ttgatttgag 780atgaactcat tgagagatgc taatagccct gctgggtaat tttgaagttc ttgatttgag 780
tgctttttat tttattttaa ttatttcgct tgttgagctt tctttgattg atctttgcag 840tgctttttat ttattttaa ttatttcgct tgttgagctt tctttgattg atctttgcag 840
attcctatca attgcggagg agacattgac agagttcctt tcaaaggcta caggaactgc 900attcctatca attgcggagg agacattgac agagttcctt tcaaaggcta caggaactgc 900
tgtcgattgg gtccagatgc ctgggatgaa ggtagagaat catgtttcta gtggacaatt 960tgtcgattgg gtccagatgc ctgggatgaa ggtagagaat catgtttcta gtggacaatt 960
ggtttttgct tttacaattt tgatactgtg atgattatga catggaggtt aatttccttc 1020ggttttttgct tttacaattt tgatactgtg atgattatga catggaggtt aatttccttc 1020
cactaatatc tcatactata tttactttca accattgttt gttagcctgg tccggattcg 1080cactaatatc tcatactata tttactttca accattgttt gttagcctgg tccggattcg 1080
gttgggatat ttgccatttc tcaaggtggc aacggagtgg cagctcgagc ctgtggtctt 1140gttgggatat ttgccatttc tcaaggtggc aacggagtgg cagctcgagc ctgtggtctt 1140
gttagtttag aacctactaa ggtaattaaa aaggacatgt ggatggatat tttcagtaat 1200gttagtttag aacctactaa ggtaattaaa aaggacatgt ggatggatat tttcagtaat 1200
ttcttttgat gttatttatg tagtttgtaa gctatctgaa ttttgaattg ctgaaaaatt 1260ttcttttgat gttatttatg tagtttgtaa gctatctgaa ttttgaattg ctgaaaaatt 1260
tcaatagatt gtggagatat taaaagatcg cccaacttgg taccgtgatt gtcggagttc 1320tcaatagatt gtggagatat taaaagatcg cccaacttgg taccgtgatt gtcggagttc 1320
agaagttttc acaatgttcc cagctggaaa tggaggaaca attgaacttg tttacacaca 1380agaagttttc acaatgttcc cagctggaaa tggaggaaca attgaacttg tttacacaca 1380
ggtgaagaat caaatgtgaa taggatgctt tatttattat ttaatgagca ttttgcataa 1440ggtgaagaat caaatgtgaa taggatgctt tatttattat ttaatgagca ttttgcataa 1440
acgtttagtt tgctgcagac atatgctcca atgacactgg cttctgctcg cgacttctgg 1500acgtttagtt tgctgcagac atatgctcca atgacactgg cttctgctcg cgacttctgg 1500
actctaagat acactacaaa tttggaaaac ggaagtgttg tggtgagtat atttgctgtc 1560actctaagat acactacaaa tttggaaaac ggaagtgttg tggtgagtat atttgctgtc 1560
aaaagcgtta ctattgttgc atgggattat atatctagct gcatcgattt aatataattg 1620aaaagcgtta ctattgttgc atgggattat atatctagct gcatcgattt aatataattg 1620
cactttggaa ggtttgtgaa aggtcactgt ctggtactgg tgctggccct aatgctgcag 1680cactttggaa ggtttgtgaa aggtcactgt ctggtactgg tgctggccct aatgctgcag 1680
ccgcctcaca gtttgagagg gctgaaatgc tccctagtgg ctatttgatt cgaccatgtg 1740ccgcctcaca gtttgagagg gctgaaatgc tccctagtgg ctatttgatt cgaccatgtg 1740
aaggtggagg atcgatcatc cacattgtag accacctaaa cctgcaggtt tgagttcttg 1800aaggtggagg atcgatcatc cacattgtag accacctaaa cctgcaggtt tgagttcttg 1800
accattagct agaataccta ctatattctt attttctttt catatacatt tttttttttg 1860accattagct agaataccta ctatattctt attttctttt catatacatt ttttttttttg 1860
accaaaatcc agaattttct tttcatatac attaattaac atgattaaca ttttcttcta 1920accaaaatcc agaattttct tttcatatac attaattaac atgattaaca ttttcttcta 1920
ggcatggagt gtgccagaag tgctgcggcc gatctatgaa tcgtcgcaaa tggtagctca 1980ggcatggagt gtgccagaag tgctgcggcc gatctatgaa tcgtcgcaaa tggtagctca 1980
gagactgaca attgcggtaa gcatagtatt attaattcac gatgtaggat tctattgcaa 2040gagactgaca attgcggtaa gcatagtatt attaattcac gatgtaggat tctattgcaa 2040
gctttggtgg actaatgtga tcaatattat ggcttttgtg caggcacttc gctatatcag 2100gctttggtgg actaatgtga tcaatattat ggcttttgtg caggcacttc gctatatcag 2100
gcaagtagct caagaaacaa gtggtgacgt ggtgtatagc atgggtcggc aacctgcagt 2160gcaagtagct caagaaacaa gtggtgacgt ggtgtatagc atgggtcggc aacctgcagt 2160
tcttagaact tttagccaac ggttgagcag gtacgtcacg tgaaataaat ttatgcctca 2220tcttagaact tttagccaac ggttgagcag gtacgtcacg tgaaataaat ttatgcctca 2220
aaacctattt cagccttgct ttttacagaa cgatctgttg tgtttggtaa aaataaattt 2280aaacctattt cagccttgct ttttacagaa cgatctgttg tgtttggtaa aaataaattt 2280
aaacatcatt cttgcagagg tttcaatgac gctgtcaatg gattcaatga taatggttgg 2340aaacatcatt cttgcagagg tttcaatgac gctgtcaatg gattcaatga taatggttgg 2340
tctgttctga actgtgatgg tgctgagggt gttactattt cagtaaattc aatcaagaat 2400tctgttctga actgtgatgg tgctgagggt gttactattt cagtaaattc aatcaagaat 2400
ttgagtggca cttctaatcc agcaagttcc ctttcactcc ttggaggaat tgtctgtgca 2460ttgagtggca cttctaatcc agcaagttcc ctttcactcc ttggaggaat tgtctgtgca 2460
aaagcttcta tgttactcca agtaagtgcg taaatccatt ggcatggcgc agtaatcggt 2520aaagcttcta tgttactcca agtaagtgcg taaatccatt ggcatggcgc agtaatcggt 2520
ccttctataa tttaacattt agttcttcta atcgttacac ggaaagtttt cactttgttt 2580ccttctataa tttaacattt agttcttcta atcgttacac ggaaagtttt cactttgttt 2580
tacttgcaga acaccactcc tgctgtttta gttcgctttc tgagggagca tcgctcggag 2640tacttgcaga acaccactcc tgctgtttta gttcgctttc tgagggagca tcgctcggag 2640
tgggctgatt ttagtgttga tgccttttct gctgcatcac ttaaagctgg ctcctatggc 2700tgggctgatt ttagtgttga tgccttttct gctgcatcac ttaaagctgg ctcctatggc 2700
tatcctggaa tgaggtctac aaagttcacc ggcaatcaag caatcatgcc tcttggacat 2760tatcctggaa tgaggtctac aaagttcacc ggcaatcaag caatcatgcc tcttggacat 2760
acaattgaac atgaagaggt atgagagatt ttttgcttgc ttgaccttga ccatgtcttt 2820acaattgaac atgaagaggt atgagagatt ttttgcttgc ttgaccttga ccatgtcttt 2820
ttaagatggt agattcatat ttgcatttgg ctaagatttg gtttatatac tttctatgat 2880ttaagatggt agattcatat ttgcatttgg ctaagatttg gtttatatac tttctatgat 2880
ttggtttata ctgatttctg ttgaaattcc agatgctaga aattatccgc cttgaaggtc 2940ttggtttata ctgatttctg ttgaaattcc agatgctaga aattatccgc cttgaaggtc 2940
ttgctcaaga tgattctttt gtttctaggg atgttcatct cttacaggtg cttcctctga 3000ttgctcaaga tgattctttt gtttctaggg atgttcatct cttacaggtg cttcctctga 3000
cccttgttat ggtttgttta cctgcatgtt tatcggtttt ttgttgttgc ttaattctta 3060cccttgttat ggtttgttta cctgcatgtt tatcggtttt ttgttgttgc ttaattctta 3060
tgatcaccat catcatcgtt tgaacagtta tgtactggaa ttgatgagaa tgctgtgggg 3120tgatcaccat catcatcgtt tgaacagtta tgtactggaa ttgatgagaa tgctgtgggg 3120
gcttgttccg agctcatatt tgctccaatt gatgacatgt tcccagaaga tgctccctta 3180gcttgttccg agctcatatt tgctccaatt gatgacatgt tcccagaaga tgctccctta 3180
gtgccttctg gtttccgcat tgtcctgttg aattctcaac cagttgagtc ccgtttcttg 3240gtgccttctg gtttccgcat tgtcctgttg aattctcaac cagttgagtc ccgtttcttg 3240
tatttgattt ttctctaatc ggtactgttc atatatgaag catagtaatc tagttgacat 3300tatttgattt ttctctaatc ggtactgttc atatatgaag catagtaatc tagttgacat 3300
catattgtgt ttcagggtga tacaaagaac acaacaacag caaatcgaac cttggatttg 3360catattgtgt ttcagggtga tacaaagaac acaacaacag caaatcgaac cttggatttg 3360
acatctggtc ttgaagtaag cccggcaaca gctcatgcta acggagacgc atcgtgtcct 3420acatctggtc ttgaagtaag cccggcaaca gctcatgcta acggagacgc atcgtgtcct 3420
aacaatcgat gtgtgttgac tgttgccttt cagtttcctt ttgagagcgg tctgcaggat 3480aacaatcgat gtgtgttgac tgttgccttt cagtttcctt ttgagagcgg tctgcaggat 3480
aatgttgcag ccatggcacg tcaatatgtc cggcgtgtag tttctgccgt gcaggcggtt 3540aatgttgcag ccatggcacg tcaatatgtc cggcgtgtag tttctgccgt gcaggcggtt 3540
gcaacggcta tatctccatc cagtgttaac acttctggtg gagcaaagct ctcccctggc 3600gcaacggcta tatctccatc cagtgttaac acttctggtg gagcaaagct ctcccctggc 3600
actccagaag cacttacact agctcaatgg atctgccaga gttataggta aagtctgcat 3660actccagaag cacttacact agctcaatgg atctgccaga gttataggta aagtctgcat 3660
gaatctctga tgttctcttt caaagtttct aacatgattc tctatttacc tctctttcta 3720gaatctctga tgttctcttt caaagtttct aacatgattc tctatttacc tctctttcta 3720
tatctcttgt ccgaaagcag tcatcatctg ggcgcgcaac tgctgagatc tgattctctt 3780tatctcttgt ccgaaagcag tcatcatctg ggcgcgcaac tgctgagatc tgattctctt 3780
attggtgata tgctactgaa acatttgtgg catcatccag atgctatttt atgctgctct 3840attggtgata tgctactgaa acatttgtgg catcatccag atgctatttt atgctgctct 3840
ttgaaggtat gtccatgatc tcattttatg gtacaattga atctggaagt gtataaataa 3900ttgaaggtat gtccatgatc tcattttatg gtacaattga atctggaagt gtataaataa 3900
tgcagtactt cgaagatttt aatgtaactt ctctatcctt gtttggtttt gcagcaagtg 3960tgcagtactt cgaagatttt aatgtaactt ctctatcctt gtttggtttt gcagcaagtg 3960
cccgtattca tctttgctaa ccaggctggc cttgacatgt tggaaacaac tctagtggct 4020cccgtattca tctttgctaa ccaggctggc cttgacatgt tggaaacaac tctagtggct 4020
ctacaagata tcacactgga caaaatattt gatgagtctg cacgcaagaa tttgattgca 4080ctacaagata tcacactgga caaaatattt gatgagtctg cacgcaagaa tttgattgca 4080
tattttgcga agttaatgca gcaggtaatt tcctggagtt tggcatcatt agcttagctt 4140tattttgcga agttaatgca gcaggtaatt tcctggagtt tggcatcatt agcttagctt 4140
ttttttatcg ttacaacctc aaatttgttt taaacaacac accatgctct taagtaaatg 4200ttttttatcg ttacaacctc aaatttgttt taaacaacac accatgctct taagtaaatg 4200
tctgaattgt tgcacggatt ttttttcgtt caggggtttg cttgtatgcc agctgggatc 4260tctgaattgt tgcacggatt ttttttcgtt caggggtttg cttgtatgcc agctgggatc 4260
tgcatgtcaa caatggggcg acatgcttca tatgatcaag ccgtcgcgtg gaaagtgcat 4320tgcatgtcaa caatggggcg acatgcttca tatgatcaag ccgtcgcgtg gaaagtgcat 4320
gctgaagaca acagtgttca ttgcttggct ttctcattca ttaattggtc atttatatga 4380gctgaagaca acagtgttca ttgcttggct ttctcattca ttaattggtc atttatatga 4380
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110075452.6A CN112626086B (en) | 2021-01-20 | 2021-01-20 | Application of Medicago truncatula gene MtREVOLUTA in improving the salt tolerance of alfalfa, a forage relative of leguminous family |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110075452.6A CN112626086B (en) | 2021-01-20 | 2021-01-20 | Application of Medicago truncatula gene MtREVOLUTA in improving the salt tolerance of alfalfa, a forage relative of leguminous family |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112626086A CN112626086A (en) | 2021-04-09 |
CN112626086B true CN112626086B (en) | 2022-05-06 |
Family
ID=75294865
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110075452.6A Active CN112626086B (en) | 2021-01-20 | 2021-01-20 | Application of Medicago truncatula gene MtREVOLUTA in improving the salt tolerance of alfalfa, a forage relative of leguminous family |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112626086B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113564198A (en) * | 2021-07-20 | 2021-10-29 | 山东大学 | Application of RNAi (ribonucleic acid interference) on PALM1 gene to increase number of small leaves of leguminous forage |
CN118834905A (en) * | 2024-08-02 | 2024-10-25 | 山东大学 | Application of medicago sativa gene STMP in improving salt tolerance of medicago sativa |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101338316A (en) * | 2008-08-18 | 2009-01-07 | 山东省农业科学院蔬菜研究所 | Gene BrARGOS for controlling organ sizes of Chinese cabbage and use thereof |
CN101495640A (en) * | 2006-05-30 | 2009-07-29 | 克罗普迪塞恩股份有限公司 | Plants having enhanced yield-related traits and a method formaking the same |
CA2865677A1 (en) * | 2012-02-02 | 2013-08-08 | Conicet | Hahb11 provides improved plant yield and tolerance to abiotic stress |
CN103421829A (en) * | 2013-08-22 | 2013-12-04 | 山东大学 | Salt-tolerant gene TaAOC1 for wheat and application of salt-tolerant gene TaAOC1 |
CN105039354A (en) * | 2015-08-31 | 2015-11-11 | 哈尔滨师范大学 | Medicago sativa MsSOS3 gene and encoding protein and application thereof |
CN107299104A (en) * | 2017-08-08 | 2017-10-27 | 山东大学 | Application of REVOLUTA Gene in Regulation of Leaflet Number and Leaf-to-Stem Ratio in Leguminous Plants |
CN107787180A (en) * | 2013-09-11 | 2018-03-09 | 中国科学院植物研究所 | transgenic plant |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BRPI0619837A2 (en) * | 2005-12-15 | 2011-10-18 | Targeted Growth Inc | method for increasing the seed size of a plant and / or for increasing the number of seeds obtainable from a plant, genetic construction and methods for producing a transgenic plant |
BRPI1015903B1 (en) * | 2010-11-12 | 2019-11-05 | Empresa Brasileira De Pesquisa Agropecuaria Embrapa Cenargen | use of cahb12 coffee homeobox gene in the production of transgenic plants more tolerant to water deficit and salt stress |
CN105367644B (en) * | 2015-12-23 | 2019-04-12 | 江苏省农业科学院 | Plant stress tolerance related transcription factor and its encoding gene and application |
CN111423499B (en) * | 2020-03-19 | 2022-02-25 | 山东师范大学 | Thellungiella halophila transcription factor EsbZip60 for regulating and controlling plant antioxidant capacity and salt tolerance, and coding gene and application thereof |
-
2021
- 2021-01-20 CN CN202110075452.6A patent/CN112626086B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101495640A (en) * | 2006-05-30 | 2009-07-29 | 克罗普迪塞恩股份有限公司 | Plants having enhanced yield-related traits and a method formaking the same |
CN101338316A (en) * | 2008-08-18 | 2009-01-07 | 山东省农业科学院蔬菜研究所 | Gene BrARGOS for controlling organ sizes of Chinese cabbage and use thereof |
CA2865677A1 (en) * | 2012-02-02 | 2013-08-08 | Conicet | Hahb11 provides improved plant yield and tolerance to abiotic stress |
CN103421829A (en) * | 2013-08-22 | 2013-12-04 | 山东大学 | Salt-tolerant gene TaAOC1 for wheat and application of salt-tolerant gene TaAOC1 |
CN107787180A (en) * | 2013-09-11 | 2018-03-09 | 中国科学院植物研究所 | transgenic plant |
CN105039354A (en) * | 2015-08-31 | 2015-11-11 | 哈尔滨师范大学 | Medicago sativa MsSOS3 gene and encoding protein and application thereof |
CN107299104A (en) * | 2017-08-08 | 2017-10-27 | 山东大学 | Application of REVOLUTA Gene in Regulation of Leaflet Number and Leaf-to-Stem Ratio in Leguminous Plants |
Non-Patent Citations (4)
Title |
---|
Functional plasticity of miR165/166 in plant development revealed by small tandem target mimic;Xiaoyun Jia et al.;《Plant Science》;20150103;第233卷;第11页摘要、右栏、第12页左栏、第13页左栏第3.1节、第16页右栏-第18页左栏第3.5节、第19页右栏-20页左栏第4.4节 * |
Genome wide identification, characterization and expression analysis of HD-ZIP gene family in Cucumis sativus L. under biotic and various abiotic stresses;Rahat Sharif et al.;《International Journal of Biological Macromolecules》;20200503;第158卷;第502-520页 * |
Knockdown of Rice MicroRNA166 Confers Drought Resistance by Causing Leaf Rolling and Altering Stem Xylem Development;Jinshan Zhang et al.;《Plant Physiology》;20180124;第176卷;第2082-2094页 * |
紫花苜蓿耐苏打盐碱相关基因的转录组学分析;李红等;《草地学报》;20190731;第27卷(第4期);第848-858页 * |
Also Published As
Publication number | Publication date |
---|---|
CN112626086A (en) | 2021-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110791523A (en) | A cotton drought resistance related gene GhRCHY1 and its application | |
CN112724214B (en) | Xanthoceras sorbifolia drought induction transcription factor XsMYB308L and application thereof | |
CN102234653A (en) | Salt-tolerant and drought-resistant gene TaMYB33 of wheat and coding protein as well as application thereof | |
CN104829700A (en) | Corn CCCH-type zinc finger protein, and encoding gene ZmC3H54 and application thereof | |
CN110872598A (en) | A kind of cotton drought resistance related gene GhDT1 and its application | |
CN112626086B (en) | Application of Medicago truncatula gene MtREVOLUTA in improving the salt tolerance of alfalfa, a forage relative of leguminous family | |
CN111593058A (en) | Bna-miR169n gene and application thereof in controlling drought resistance of brassica napus | |
CN118147175B (en) | Application of MtCOMT13 gene in regulating salt and drought tolerance in plants | |
CN118726410A (en) | WRKY40 transcription factor of peanut for promoting drought tolerance and early flowering in plants and its application | |
CN109055396A (en) | Application of the arabidopsis PPR1 gene in regulation plant Cadmium resistance performance | |
CN111778261A (en) | Cloning and application of rice salt tolerance gene OsMYB106 | |
CN116024228B (en) | Application of Rice Ospep5 Gene and Its Encoded Peptide in Regulating Plant Salt Tolerance | |
CN113584051B (en) | Application of GhGAI Gene in Regulating Plant Flowering | |
CN105063062A (en) | Wheat salt-resistant drought-resistant gene TaDHN3, and expression vector and applications thereof | |
CN1291021C (en) | Use of boea crassifolia BcBCP1 gene for breeding drought-salt-tolerant plants | |
CN114606243A (en) | IbTCP11 gene for coding sweet potato TCP transcription factor and application thereof | |
CN111961672A (en) | Cloning and application of rice salt tolerance gene OsDnaJ15 | |
CN107586324A (en) | TabZIP15 albumen and its encoding gene and application | |
CN116640769B (en) | Peanut AhGATA11 gene and its application in improving plant stress resistance | |
CN116445508B (en) | Soybean GmMATE109 gene and its application | |
CN115850412B (en) | Application of Soybean GmSUI1 Gene and Its Encoded Protein in Phytophthora Soybean Root Rot Infection | |
CN117568289B (en) | Protein for resisting soybean cyst nematode disease, encoding gene and application thereof | |
CN116640200B (en) | Application of regulating MfERF086 gene in alfalfa growth and development and/or cold tolerance | |
CN116179574B (en) | Application of CmEAF7 gene in improving cold tolerance and/or fruit quality of melon | |
CN110734483B (en) | Low-potassium-resistant related protein TaPR1 and coding gene and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |