[go: up one dir, main page]

CN112626086B - Application of Medicago truncatula gene MtREVOLUTA in improving the salt tolerance of alfalfa, a forage relative of leguminous family - Google Patents

Application of Medicago truncatula gene MtREVOLUTA in improving the salt tolerance of alfalfa, a forage relative of leguminous family Download PDF

Info

Publication number
CN112626086B
CN112626086B CN202110075452.6A CN202110075452A CN112626086B CN 112626086 B CN112626086 B CN 112626086B CN 202110075452 A CN202110075452 A CN 202110075452A CN 112626086 B CN112626086 B CN 112626086B
Authority
CN
China
Prior art keywords
alfalfa
mtrevoluta
gene
medicago truncatula
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110075452.6A
Other languages
Chinese (zh)
Other versions
CN112626086A (en
Inventor
周传恩
赵阳
朱琳
史建军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University
Original Assignee
Shandong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University filed Critical Shandong University
Priority to CN202110075452.6A priority Critical patent/CN112626086B/en
Publication of CN112626086A publication Critical patent/CN112626086A/en
Application granted granted Critical
Publication of CN112626086B publication Critical patent/CN112626086B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8273Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Botany (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

The invention discloses a medicago truncatula gene MtREVOLUTA and application of a dicotyledonous plant expression vector pEARLEYGATE100 containing the medicago truncatula gene MtREVOLUTA in improving salt tolerance of leguminous kindred forage grass alfalfa. The invention also discloses application of the medicago truncatula gene MtREVOLUTA in cultivating salt-tolerant medicago sativa. Experiments prove that the gene MtREVOLUTA of the invention is a regulatory gene responding to abiotic stress, can be expressed in large quantity in the alfalfa of the leguminous forage grasses of the kindred species, and obviously enhances the salt tolerance of the transgenic alfalfa. The survival rate of the transgenic plant after high salt treatment is higher than that of wild alfalfa SY 4D. The application of the medicago truncatula gene MtREVOLUTA in improving the salt tolerance of the medicago truncatula in the kindred forage grass of leguminosae is shown to have important significance and economic value.

Description

蒺藜苜蓿基因MtREVOLUTA在提高豆科近缘饲草紫花苜蓿耐盐 性中的应用Application of the Medicago truncatula gene MtREVOLUTA in improving the salt tolerance of alfalfa, a forage relative of the leguminous family

技术领域technical field

本发明涉及蒺藜苜蓿基因MtREVOLUTA的应用,尤其涉及一种蒺藜苜蓿基因MtREVOLUTA在提高豆科近缘饲草紫花苜蓿耐盐性中的应用,属于生物基因工程技术领域。The invention relates to the application of the Medicago truncatula gene MtREVOLUTA, in particular to the application of a Medicago truncatula gene MtREVOLUTA in improving the salt tolerance of alfalfa, a closely related forage grass of the leguminous family, and belongs to the technical field of biological genetic engineering.

背景技术Background technique

豆科属于双子叶植物,约650个属,18000个种,分布范围及其广泛。紫花苜蓿属于豆科植物,是世界上一种重要的多年生优质牧草,其蛋白含量高、适口性好,无论是作为牧草、青贮还是干草,都是最为经济的饲料来源,因此,紫花苜蓿被称为“牧草之王”。Legumes belong to dicotyledonous plants, with about 650 genera and 18,000 species, with a wide distribution range. Alfalfa is a leguminous plant and is an important perennial high-quality pasture in the world. It has high protein content and good palatability. Whether it is used as pasture, silage or hay, it is the most economical source of feed. Therefore, alfalfa is called "King of Pastures".

对紫花苜蓿的耐盐机制进行研究,可为苜蓿优质新品系的遗传改良和育种提供理论基础和技术支撑。但是紫花苜蓿属于异花授粉植物,是高度杂合的同源四倍体(2n=4x=32),这使得对其开展耐盐机制研究十分困难。近期有研究报道:不同浓度的盐处理条件下,紫花苜蓿可以适应中低浓度的盐胁迫,其中有些品种的耐盐性较强,具有在盐地推广的潜力。尽管苜蓿对盐胁迫具有一定的耐受性,但是土地盐化日益加剧,严重影响了紫花苜蓿的产量和品质。The study on the salt tolerance mechanism of alfalfa can provide theoretical basis and technical support for the genetic improvement and breeding of new high-quality alfalfa lines. However, alfalfa is a cross-pollinated plant and is a highly heterozygous autotetraploid (2n=4x=32), which makes it very difficult to study its salt tolerance mechanism. Recent studies have reported that under different concentrations of salt treatment, alfalfa can adapt to medium and low concentrations of salt stress, and some varieties have strong salt tolerance and have the potential to be promoted in salty land. Although alfalfa has a certain tolerance to salt stress, the increasing soil salinity seriously affects the yield and quality of alfalfa.

经过多国科学家十几年的研究,蒺藜苜蓿(Medicago truncatula)已成为豆科植物生物学和基因组学研究的模式植物。蒺藜苜蓿为二倍体(2n=16)植物,自花授粉、基因组小、生活周期短、遗传转化效率高,便于进行研究。因此,通过研究蒺藜苜蓿有助于揭示紫花苜蓿的耐盐机理,加快苜蓿耐受盐胁迫调控机制的研究进程。After more than ten years of research by scientists from many countries, Medicago truncatula has become a model plant for legume biology and genomics research. Medicago truncatula is a diploid (2n=16) plant with self-pollination, small genome, short life cycle and high genetic transformation efficiency, which is convenient for research. Therefore, the study of Medicago truncatula will help to reveal the salt tolerance mechanism of alfalfa, and accelerate the research process of the regulation mechanism of alfalfa tolerance to salt stress.

植物通常含有许多miRNA,其中miR166来源于具有独立基因loci的多基因家族。miR166高度保守地靶向HD-ZipⅢ家族基因,这些HD-ZipⅢ家族基因中包括基因REVOLUTA(REV)。申请人前期研究已证实:蒺藜苜蓿HD-ZIP III基因家族成员MtREVOLUTA基因参与了调控豆科植物的小叶片数目和叶茎比。敲除该基因,可以得到小叶片数目和叶茎比高于野生型植株的转基因豆科植物,实验显示敲除突变体株系植株的小叶片数目由三个变为四个或五个的比例显著提高,达到81.5%,同时叶茎比提高了约11%。并且以此成果申报了专利“REVOLUTA基因在调控豆科植物小叶片数目和叶茎比中的应用(专利号CN201710672282.3)”。申请人研究还证实:在过量表达MtREVOLUTA的转基因蒺藜苜蓿植株中,MtREVOLUTA的表达水平并无显著的变化,只能通过构建突变了MtmiR166靶向位点的MtREVOLUTA的转基因蒺藜苜蓿植株,来得到表达量显著提高的mMtREVOLUTA的转基因蒺藜苜蓿植株,该植株虽然单个复叶的叶片增多,但整株弱小。因此,在蒺藜苜蓿中转基因表达MtREVOLUTA的表达量会受到MtmiR166的严格调控,无法通过常规的转基因过表达改变没有突变的MtREVOLUTA的表达量。经检索,不同于以往发现的MtREVOLUTA只负责调控叶的发育而证实MtREVOLUTA是一个蒺藜苜蓿应答盐胁迫调控基因,且蒺藜苜蓿基因MtREVOLUTA能够在其近缘物种豆科饲用牧草紫花苜蓿中呈现不同的表达水平而大量表达的文献或专利还未见报道。Plants usually contain many miRNAs, of which miR166 is derived from a multigene family with independent genes loci. miR166 is highly conserved targeting HD-Zip III family genes, including the gene REVOLUTA (REV). The applicant's previous studies have confirmed that the MtREVOLUTA gene, a member of the Medicago truncatula HD-ZIP III gene family, is involved in regulating the number of leaflets and the ratio of leaf to stem in legumes. Knockout of this gene can obtain transgenic legumes with higher leaflet number and leaf-to-stem ratio than wild-type plants. Experiments show that the number of leaflets in the knockout mutant lines changes from three to four or five ratios. Significantly increased, reaching 81.5%, while the leaf-to-stem ratio increased by about 11%. And this achievement applied for the patent "application of REVOLUTA gene in regulating the number of small leaves and leaf-to-stem ratio of legumes (patent number CN201710672282.3)". The applicant's research also confirmed that in the transgenic Medicago truncatula plants overexpressing MtREVOLUTA, the expression level of MtREVOLUTA did not change significantly, and the expression level could only be obtained by constructing transgenic Medicago truncatula plants with MtREVOLUTA mutated at the target site of MtmiR166. In the transgenic Medicago truncatula plants with significantly increased mMtREVOLUTA, although the leaves of a single compound leaf increased, the whole plant was weak. Therefore, the expression level of transgenic MtREVOLUTA in Medicago truncatula is tightly regulated by MtmiR166, and the expression level of MtREVOLUTA without mutation cannot be changed by conventional transgene overexpression. After searching, it was found that MtREVOLUTA was different from the previous discovery that MtREVOLUTA was only responsible for regulating the development of leaves. It was confirmed that MtREVOLUTA is a Medicago truncatula regulated gene in response to salt stress, and the Medicago truncatula gene MtREVOLUTA could show different differences in its related species, alfalfa forage legumes. The literature or patent about the expression level and the large amount of expression has not yet been reported.

发明内容SUMMARY OF THE INVENTION

针对现有技术的不足,本发明要解决的问题是提供一种蒺藜苜蓿基因MtREVOLUTA在提高豆科近缘饲草紫花苜蓿耐盐性中的应用。Aiming at the deficiencies of the prior art, the problem to be solved by the present invention is to provide the application of a Medicago truncatula gene MtREVOLUTA in improving the salt tolerance of alfalfa, a closely related forage of the leguminous family.

本发明所述蒺藜苜蓿基因MtREVOLUTA在提高豆科近缘饲草紫花苜蓿耐盐性中的应用。The application of the Medicago truncatula gene MtREVOLUTA of the present invention in improving the salt tolerance of alfalfa, a closely related forage grass of the leguminous family.

其中:所述蒺藜苜蓿基因MtREVOLUTA是一个蒺藜苜蓿应答盐胁迫调控基因,且所述蒺藜苜蓿基因MtREVOLUTA在其近缘物种豆科饲用牧草紫花苜蓿中大量表达能够提高紫花苜蓿的耐盐性。Wherein: the Medicago truncatula gene MtREVOLUTA is a Medicago truncatula regulated gene in response to salt stress, and the abundant expression of the Medicago truncatula gene MtREVOLUTA in its close relative legume forage alfalfa can improve the salt tolerance of alfalfa.

其中:所述紫花苜蓿是中苜1号、中苜3号、公农、农菁或紫花苜蓿SY4D,进一步优选是紫花苜蓿SY4D。Wherein: the alfalfa is Zhongmu No. 1, Zhongmu No. 3, Gongnong, Nongjing or alfalfa SY4D, more preferably alfalfa SY4D.

申请人将蒺藜苜蓿进行盐的非生物胁迫处理,证实基因MtREVOLUTA随着处理时间的增加,与对照相比表达量显著提高,显示基因MtREVOLUTA参与植物的盐胁迫应答,见图1所示。The applicant subjected Medicago truncatula to abiotic stress treatment of salt, and it was confirmed that the expression of the gene MtREVOLUTA was significantly increased with the increase of treatment time compared with the control, indicating that the gene MtREVOLUTA participated in the salt stress response of plants, as shown in Figure 1.

本发明还提供了一种含蒺藜苜蓿基因MtREVOLUTA的双子叶植物表达载体pEARLEYGATE100在提高豆科近缘饲草紫花苜蓿耐盐性中的应用。The invention also provides the application of a dicotyledonous plant expression vector pEARLEYGATE100 containing the alfalfa gene MtREVOLUTA in improving the salt tolerance of alfalfa, a closely related forage grass of the leguminous family.

本发明所述蒺藜苜蓿基因MtREVOLUTA在培育耐盐紫花苜蓿中的应用,其特征在于:培育耐盐紫花苜蓿的方法是利用蒺藜苜蓿基因MtREVOLUTA构建双子叶植物表达载体pEARLEYGATE100/MtREVOLUTA并转化紫花苜蓿,获得含有蒺藜苜蓿基因MtREVOLUTA的转基因紫花苜蓿。The application of the Medicago truncatula gene MtREVOLUTA in cultivating salt-tolerant alfalfa is characterized in that: the method for cultivating the salt-tolerant alfalfa is to construct a dicot expression vector pEARLEYGATE100/MtREVOLUTA by using the Medicago truncatula gene MtREVOLUTA and transform the alfalfa to obtain Transgenic alfalfa containing the Medicago truncatula gene MtREVOLUTA.

通过将蒺藜苜蓿基因MtREVOLUTA在紫花苜蓿中表达的实验证实,利用蒺藜苜蓿基因MtREVOLUTA构建双子叶植物表达载体pEARLEYGATE100/MtREVOLUTA并转化紫花苜蓿,发现MtREVOLUTA在紫花苜蓿中表达发生显著的变化,可以大量表达,见图2所示。Through the experiment of expressing the Medicago truncatula gene MtREVOLUTA in alfalfa, it was confirmed that the dicot expression vector pEARLEYGATE100/MtREVOLUTA was constructed by using the Medicago truncatula gene MtREVOLUTA and transformed into alfalfa. See Figure 2.

将鉴定得到的含有蒺藜苜蓿基因MtREVOLUTA的转基因紫花苜蓿与野生型对照紫花苜蓿SY4D,在高盐的条件下胁迫处理5周,鉴定基因MtREVOLUTA在紫花苜蓿抗逆中的作用,发现野生型紫花苜蓿随着处理时间的延长叶片枯黄萎蔫直至死亡,而转基因紫花苜蓿依然存活,见图3所示。The identified transgenic alfalfa containing the Medicago truncatula gene MtREVOLUTA and the wild-type control alfalfa SY4D were treated under high-salt conditions for 5 weeks to identify the role of the gene MtREVOLUTA in alfalfa stress resistance. With the prolongation of the treatment time, the leaves withered and withered until death, while the transgenic alfalfa still survived, as shown in Figure 3.

将处理后的MtREVOLUTA转基因紫花苜蓿和野生型对照紫花苜蓿SY4D的存活率进行统计,发现MtREVOLUTA转基因紫花苜蓿相比野生型对照紫花苜蓿SY4D显著提高,见图4所示。The survival rate of the treated MtREVOLUTA transgenic alfalfa and wild-type control alfalfa SY4D was counted, and it was found that MtREVOLUTA transgenic alfalfa was significantly improved compared with the wild-type control alfalfa SY4D, as shown in Figure 4.

本发明中,申请人首次公开并证实蒺藜苜蓿基因MtREVOLUTA是一个蒺藜苜蓿应答盐胁迫调控基因,不同于以往发现的MtREVOLUTA只负责调控叶的发育,并且也确认通过蒺藜苜蓿基因MtREVOLUTA的转基因紫花苜蓿能够改变MtREVOLUTA基因的表达水平进而提高豆科近缘饲草紫花苜蓿耐盐性,具备了突出的实质性特点和显著进步。进一步的,本发明公开的蒺藜苜蓿基因MtREVOLUTA可广泛用于培育抗逆豆科近缘农作物新品种,并可为深入阐明植物抗逆机制提供理论依据。In the present invention, the applicant discloses and confirms for the first time that the Medicago truncatula gene MtREVOLUTA is a Medicago truncatula responsive salt stress regulatory gene, which is different from the previously discovered MtREVOLUTA that is only responsible for regulating leaf development, and also confirms that the transgenic alfalfa through the Medicago truncatula gene MtREVOLUTA can Altering the expression level of the MtREVOLUTA gene to improve the salinity tolerance of alfalfa, a forage relative of the legume family, has outstanding substantive characteristics and significant progress. Further, the Medicago truncatula gene MtREVOLUTA disclosed in the present invention can be widely used for cultivating new varieties of crops that are closely related to the leguminous family with resistance to stress, and can provide a theoretical basis for in-depth clarification of the mechanism of plant stress resistance.

本发明公开的蒺藜苜蓿基因MtREVOLUTA在提高豆科近缘饲草紫花苜蓿耐盐性中的应用及提高豆科近缘饲草紫花苜蓿耐盐性的方法所体现出的有益效果是:利用现有的植物基因工程技术,本发明首次将盐胁迫应答基因蒺藜苜蓿基因MtREVOLUTA在紫花苜蓿中转基因表达,经过比较分析证明,蒺藜苜蓿基因MtREVOLUTA能够在其近缘物种豆科饲用牧草紫花苜蓿中大量表达且MtREVOLUTA的转基因紫花苜蓿的耐盐能力明显增强。生物学重复统计分析表明,转基因植株在高盐处理后存活率高于野生型紫花苜蓿SY4D。预示本发明所述蒺藜苜蓿基因MtREVOLUTA在提高豆科近缘饲草紫花苜蓿耐盐性中的应用具有重要意义和经济价值。The application of the Medicago truncatula gene MtREVOLUTA disclosed in the present invention in improving the salt tolerance of the leguminous relative forage grass alfalfa and the method for improving the salt tolerance of the leguminous relative forage grass alfalfa have the following beneficial effects: using existing The present invention transgenic expression of the Medicago truncatula gene MtREVOLUTA in alfalfa is the first time that the salt stress response gene MtREVOLUTA is transgenic in alfalfa. Through comparative analysis, it is proved that the Medicago truncatula gene MtREVOLUTA can be expressed in a large amount in its related species, the legume forage grass, alfalfa. And the salt tolerance of transgenic alfalfa of MtREVOLUTA was obviously enhanced. Biological replicate statistical analysis showed that the survival rate of transgenic plants was higher than that of wild-type alfalfa SY4D after high salt treatment. It is predicted that the application of the Medicago truncatula gene MtREVOLUTA in the present invention in improving the salt tolerance of alfalfa, a closely related forage of the leguminous family, has important significance and economic value.

附图说明Description of drawings

图1:qRT-PCR检测MtREVOLUTA在蒺藜苜蓿转基因中对盐胁迫的应答表达量上调。Figure 1: Up-regulation of MtREVOLUTA in Medicago truncatula transgenics in response to salt stress detected by qRT-PCR.

图中0h的柱状图表示的是100mMNaCl处理前的一个月大小的野生型蒺藜苜蓿R108的叶片中MtREVOLUTA的表达量。图中12h的柱状图表示的是100mMNaCl处理后12h的一个月大小的野生型蒺藜苜蓿R108的叶片中MtREVOLUTA的表达量。图中24h的柱状图表示的是100mMNaCl处理后24h的一个月大小的野生型蒺藜苜蓿R108的叶片中MtREVOLUTA的表达量。三个生物学重复;*表示P<0.05,每批植物各25棵苗。The bar graph at 0 h in the figure represents the expression level of MtREVOLUTA in leaves of wild-type Medicago truncatula R108 one month old before 100 mM NaCl treatment. The bar graph at 12h in the figure represents the expression level of MtREVOLUTA in leaves of one-month-old wild-type Medicago truncatula R108 at 12h after 100 mM NaCl treatment. The bar graph at 24 h in the figure represents the expression level of MtREVOLUTA in the leaves of one-month-old wild-type Medicago truncatula R108 at 24 h after 100 mM NaCl treatment. Three biological replicates; * indicates P<0.05, 25 seedlings per batch of plants.

图2:RT-PCR检测不同株系的35S:MtREV紫花苜蓿转基因植株叶片中的MtREVOLUTA表达量具有明显的差异,表达量高的命名为35S:MtREV#1,表达量低的命名为35S:MtREV#2。Figure 2: RT-PCR detection of MtREVOLUTA expression in leaves of 35S:MtREV alfalfa transgenic plants of different lines has obvious differences, the high expression is named 35S:MtREV#1, and the low expression is named 35S:MtREV #2.

其中上排胶图指示的是野生型紫花苜蓿SY4D和不同株系的35S:MtREV紫花苜蓿转基因植株叶片中的MtREVOLUTA的表达量。下排胶图指示的是野生型紫花苜蓿SY4D和不同株系的35S:MtREV紫花苜蓿转基因植株叶片中的看家基因MsActin的表达量。The upper row of gels indicated the expression levels of MtREVOLUTA in leaves of wild-type alfalfa SY4D and 35S:MtREV alfalfa transgenic plants of different lines. The bottom row of gums indicated the expression levels of housekeeping gene MsActin in leaves of wild-type alfalfa SY4D and 35S:MtREV alfalfa transgenic plants of different lines.

图3:盐处理一个月大小35S:MtREV#1紫花转基因扦插植株相比对照野生型紫花苜蓿SY4D扦插植株耐盐性提高。Figure 3: Salt-treated one-month-old 35S:MtREV#1 transgenic cuttings of alfalfa improved salt tolerance compared to control wild-type alfalfa SY4D cuttings.

图中所示A、B、C、D、I、J、K、L、Q、R、S、T显示的分别是不加盐水的对照组的野生型紫花苜蓿SY4D和35S:MtREV#1紫花苜蓿转基因植株在处理前和处理开始后的1、2、3、4、5周的生长情况。图中所示E、F、G、H、M、N、O、P、U、V、W、X显示的分别是施加1.5%NaCl盐水的处理组的野生型紫花苜蓿SY4D和35S:MtREV#1紫花苜蓿转基因植株在处理前和处理开始后的1、2、3、4、5周的生长情况。A, B, C, D, I, J, K, L, Q, R, S, T shown in the figure show wild-type alfalfa SY4D and 35S:MtREV#1 flowers of the control group without saline, respectively Growth of alfalfa transgenic plants before treatment and 1, 2, 3, 4, and 5 weeks after treatment. E, F, G, H, M, N, O, P, U, V, W, X shown in the figure show the wild-type alfalfa SY4D and 35S:MtREV of the treatment group applied with 1.5% NaCl saline, respectively. 1 Growth of alfalfa transgenic plants before treatment and 1, 2, 3, 4, and 5 weeks after treatment.

图4:t-test统计分析显示35S:MtREV紫花苜蓿转基因植株35S:MtREV#1相对野生型SY4D盐处理后存活率显著提高。Figure 4: t-test statistical analysis shows that the survival rate of 35S:MtREV alfalfa transgenic plants 35S:MtREV#1 was significantly improved compared to wild-type SY4D after salt treatment.

三个生物学重复;*表示P<0.05,每批植物各25棵苗。Three biological replicates; * indicates P<0.05, 25 seedlings per batch of plants.

具体实施方式Detailed ways

下面结合具体附图和实施例对本发明内容进行详细说明。如下所述例子仅是本发明的较佳实施方式而已,应该说明的是,下述说明仅仅是为了解释本发明,并非对本发明作任何形式上的限制,凡是依据本发明的技术实质对实施方式所做的任何简单修改,等同变化与修饰,均属于本发明技术方案的范围内。The content of the present invention will be described in detail below with reference to the specific drawings and embodiments. The following examples are only preferred embodiments of the present invention. It should be noted that the following descriptions are only for explaining the present invention, and do not limit the present invention in any form. Any simple modifications, equivalent changes and modifications made all fall within the scope of the technical solutions of the present invention.

下述实施例中,涉及的蒺藜苜蓿R108购自Noble Research Institute Mutantcollections;紫花苜蓿SY4D购自Noble Research Institute Mutant collections。大肠杆菌DH5α,农杆菌EHA105购自Shanghai Weidi Biotechnology;载体pENTR-TOPO,表达载体pEARLYGATE100购自Invitrogen。蒺藜苜蓿基因MtREVOLUTA的核苷酸序列已在专利CN201710672282.3中公开,其核苷酸序列如SEQ ID No.1所示。In the following examples, the involved alfalfa R108 was purchased from Noble Research Institute Mutant collections; alfalfa SY4D was purchased from Noble Research Institute Mutant collections. Escherichia coli DH5α and Agrobacterium EHA105 were purchased from Shanghai Weidi Biotechnology; vector pENTR-TOPO and expression vector pEARLYGATE100 were purchased from Invitrogen. The nucleotide sequence of the Medicago truncatula gene MtREVOLUTA has been disclosed in patent CN201710672282.3, and its nucleotide sequence is shown in SEQ ID No.1.

其它所使用的材料、试剂等,如无特殊说明,均从公开商业途径得到。Other materials, reagents, etc. used, unless otherwise specified, are obtained from open commercial sources.

实施例1:MtREVOLUTA的表达分析Example 1: Expression analysis of MtREVOLUTA

(1)材料的培养(1) Cultivation of materials

用砂纸适度打磨蒺藜苜蓿R108种子的坚硬外皮,打破种子的休眠,在湿润的滤纸上于4℃培养一周左右,随后将萌发的种子移至育苗盘,放于培养箱里生长。培养箱环境条件为:长日照(16h/8h),温度23℃,65%湿度,光照强度150mmol m-2s-1。在育苗盘中生长两周左右(长出第一片复叶展开叶),移入大盆,放于温室生长。温室正常生长条件为:长日照(16h/8h),温度22℃~25℃,60%-70%湿度,光照强度150mmol m-2s-1。培养至一个月大小时开始进行100mM NaCl的盐处理。处理不同时间后,Trizol法提取幼苗叶RNA。The hard outer skin of Medicago truncatula R108 seeds was moderately sanded with sandpaper to break the dormancy of the seeds. The seeds were cultured on moist filter paper at 4°C for about a week, and then the germinated seeds were transferred to a seedling tray and grown in an incubator. The environmental conditions of the incubator were as follows: long sunshine (16h/8h), temperature of 23°C, humidity of 65%, and light intensity of 150mmol m -2 s -1 . It was grown in the seedling tray for about two weeks (the first compound leaf developed), transferred into a large pot, and placed in the greenhouse for growth. The normal growth conditions in the greenhouse are: long sunshine (16h/8h), temperature 22℃~25℃, 60%-70% humidity, light intensity 150mmol m -2 s -1 . Salt treatment with 100 mM NaCl was initiated when cultured to one month old. After treatment for different time, the leaf RNA of seedlings was extracted by Trizol method.

(2)RNA的提取(2) RNA extraction

准备工作:无RNase枪尖,无RNase EP管(2.0mL,加钢珠;1.5mL),液氮,75%乙醇;桌面及离心机等需用到的仪器用70%酒精消毒;Preparations: RNase-free gun tip, RNase-free EP tube (2.0mL, with steel balls; 1.5mL), liquid nitrogen, 75% ethanol; 70% alcohol for sterilizing the tabletop and centrifuge instruments;

DEPC水配制:配1000mL的DEPC处理水,加1mL DEPC,用超纯水定容到1000mL,磁力搅拌器搅拌过夜。然后高压蒸汽灭菌123℃,40min(DEPC有毒,但灭菌后分解成二氧化碳和酒精),尽量避免污染,4℃冷藏或室温备用。DEPC water preparation: prepare 1000 mL of DEPC treated water, add 1 mL of DEPC, make up to 1000 mL with ultrapure water, and stir with a magnetic stirrer overnight. Then high pressure steam sterilization at 123 ℃, 40min (DEPC is toxic, but decomposes into carbon dioxide and alcohol after sterilization), try to avoid pollution, refrigerate at 4 ℃ or room temperature for use.

通过TrizoLRT提取叶片总RNA,主要步骤如下:The total RNA of leaves was extracted by TrizoLRT. The main steps are as follows:

1)取样品(≤100mg)放入2mL加钢珠的EP管,立即放入液氮,用研磨仪打碎,研磨仪参数:25-30HZ 60秒;1) Take the sample (≤100mg) and put it into a 2mL EP tube with steel balls, put it into liquid nitrogen immediately, and crush it with a grinder. The grinder parameters: 25-30HZ for 60 seconds;

2)加1mL TrizoLRT,恒温混匀仪涡旋震荡,2000rpm,3min;2) Add 1 mL of TrizoLRT, vortex the constant temperature mixer, 2000rpm, 3min;

3)加400μL DEPC水,恒温混匀仪涡旋震荡,2000rpm,3min;静置5min,室温12000rpm离心,15min;3) Add 400 μL of DEPC water, vortex with a constant temperature mixer, 2000 rpm, 3 min; let stand for 5 min, centrifuge at 12000 rpm at room temperature, 15 min;

4)取上清移入1.5mL EP管(一式两份,600uL/管),加等体积异丙醇,轻轻混匀,室温静置15min,室温12000rpm离心10min,弃上清;4) Transfer the supernatant into a 1.5mL EP tube (in duplicate, 600uL/tube), add an equal volume of isopropanol, mix gently, stand at room temperature for 15 minutes, centrifuge at 12000 rpm for 10 minutes at room temperature, and discard the supernatant;

5)加800μL 75%乙醇洗涤沉淀,将沉淀轻轻弹起,4000rpm 3min室温离心;再次用75%乙醇重复洗涤沉淀,倒掉上清,瞬时离心,酒精尽量用枪尖吸尽,然后放超净工作台1~2min,直至边缘半透明取出。5) Add 800 μL of 75% ethanol to wash the precipitate, gently bounce the precipitate, and centrifuge at 4000 rpm for 3 min at room temperature; repeat the washing with 75% ethanol, discard the supernatant, and centrifuge briefly. Clean the workbench for 1 to 2 minutes, until the edge is translucent and taken out.

6)加入50μL DEPC水,轻弹,60℃金属浴10min;6) Add 50 μL of DEPC water, flick, 60 ℃ metal bath for 10 minutes;

7)室温放置2min,放冰上测浓度。7) Place at room temperature for 2 min, and measure the concentration on ice.

(3)逆转录获得cDNA(3) Reverse transcription to obtain cDNA

反转录试剂盒:5×All-In-One RT MasterMix(with AccuRT Genomic DNARemoval Kit)Reverse transcription kit: 5×All-In-One RT MasterMix (with AccuRT Genomic DNARemoval Kit)

1)将提取好的RNA和反转录试剂盒中的冷冻试剂放在冰上,待溶解后瞬时离心,将样品收集于管底,以下所有步骤均在冰上操作;1) Put the extracted RNA and the freezing reagents in the reverse transcription kit on ice, centrifuge briefly after dissolving, and collect the samples at the bottom of the tube. All the following steps are performed on ice;

2)将无RNase的200μLPCR小管放在96孔冰板上,一般做三个生物学重复,一个反应总体积20μL;2) Put the RNase-free 200μL PCR tube on a 96-well ice plate, generally do three biological replicates, and the total volume of one reaction is 20μL;

3)先将管子中加入反应体系1:3) Add reaction system 1 to the tube first:

Figure GDA0003548808910000051
Figure GDA0003548808910000051

4)将上述反应体系1放入PCR仪中,42℃孵育2min,待反应结束后将管子置于冰上冷却;4) Put the above reaction system 1 into the PCR machine, incubate at 42°C for 2 min, and place the tube on ice to cool after the reaction is over;

5)再将管子中加入反应体系2:5) Add reaction system 2 to the tube:

Figure GDA0003548808910000052
Figure GDA0003548808910000052

使模板与引物混合物变性,停止反应;Denature the template and primer mixture to stop the reaction;

6)最后将管子中加入反应体系3:6) Finally, add reaction system 3 to the tube:

Figure GDA0003548808910000053
Figure GDA0003548808910000053

7)将上述总体系小心混匀,瞬时离心于管底,放入PCR仪中,反应程序如下所示:7) Carefully mix the above total system, centrifuge at the bottom of the tube briefly, and put it into the PCR machine. The reaction procedure is as follows:

Figure GDA0003548808910000054
Figure GDA0003548808910000054

反应结束后将产物放在-20℃冰箱保存。After the reaction, the product was stored in a -20°C refrigerator.

(4)实时荧光定量PCR(4) Real-time fluorescence quantitative PCR

BIO-RAD实时荧光定量PCR仪;SYBR green Mix;BIO-RAD real-time PCR instrument; SYBR green Mix;

引物序列如下:The primer sequences are as follows:

MtREV-qF:GGAAAATGAGAGGCTGCAGAAG;MtREV-qR:TGCTGGCGCATAAATCCAT;MtUBQ-qF:CTGACAGCCCACTGAATTGTGA;MtUBQ-qR:TTTTGGCATTGCTGCAAGC。MtREV-qF: GGAAAATGAGAGGCTGCAGAAG; MtREV-qR: TGCTGGCGCATAAATCCAT; MtUBQ-qF: CTGACAGCCCACTGAATTGTGA; MtUBQ-qR: TTTTGGCATTGCTGCAAGC.

cDNA稀释到15ng/μL,作为模板;正向引物与反向引物提前混合,2.5μMcDNA was diluted to 15ng/μL as template; forward primer and reverse primer were mixed in advance, 2.5μM

ReaL-time PCR体系(10μL):ReaL-time PCR system (10μL):

SYBR 5μLSYBR 5μL

primers 2μLprimers 2μL

cDNA模板 3μLcDNA template 3μL

Real-time PCR程序:Real-time PCR procedure:

Figure GDA0003548808910000061
Figure GDA0003548808910000061

相对表达量的计算按照2-△△CT方法进行。使用t-test统计分析;三个生物学重复;*表示P<0.05,结果见图1。The relative expression level was calculated according to the 2 -ΔΔCT method. Statistical analysis using t-test; three biological replicates; * indicates P<0.05, the results are shown in Figure 1.

图1显示:qRT-PCR检测MtREVOLUTA在蒺藜苜蓿转基因中对盐胁迫的应答表达量上调。图中0h的柱状图表示的是100mMNaCl处理前的一个月大小的野生型蒺藜苜蓿R108的叶片中MtREVOLUTA的表达量。图中12h的柱状图表示的是100mMNaCl处理后12h的一个月大小的野生型蒺藜苜蓿R108的叶片中MtREVOLUTA的表达量。图中24h的柱状图表示的是100mMNaCl处理后24h的一个月大小的野生型蒺藜苜蓿R108的叶片中MtREVOLUTA的表达量。三个生物学重复;*表示P<0.05,每批植物各25棵苗。Figure 1 shows: qRT-PCR detection of MtREVOLUTA up-regulated expression in Medicago truncatula transgenic in response to salt stress. The bar graph at 0 h in the figure represents the expression level of MtREVOLUTA in leaves of wild-type Medicago truncatula R108 one month old before 100 mM NaCl treatment. The bar graph at 12h in the figure represents the expression level of MtREVOLUTA in leaves of one-month-old wild-type Medicago truncatula R108 at 12h after 100 mM NaCl treatment. The bar graph at 24 h in the figure represents the expression level of MtREVOLUTA in the leaves of one-month-old wild-type Medicago truncatula R108 at 24 h after 100 mM NaCl treatment. Three biological replicates; * indicates P<0.05, 25 seedlings per batch of plants.

实施例2:双子叶植物表达载体的构建Example 2: Construction of Dicotyledonous Plant Expression Vector

扩增MtREVOLUTA特异引物序列如下:Amplify MtREVOLUTA-specific primer sequences as follows:

MtREV-F:CACCATGGCTATGGCTGTTGCAC;MtREV-F: CACCATGGCTATGGCTGTTGCAC;

MtREV-qR:GGGGGTTTAAATCCAGCAATAGGTC。MtREV-qR:GGGGGTTTAAATCCAGCAATAGGTC.

1)PCR体系:1) PCR system:

Figure GDA0003548808910000062
Figure GDA0003548808910000062

Figure GDA0003548808910000071
Figure GDA0003548808910000071

2)PCR程序:2) PCR program:

95℃5min;25~30cycles 95℃30s,60℃30s,72℃30s;72℃5min。95℃5min; 25~30cycles 9530s, 60℃30s, 72℃30s; 72℃5min.

3)回收连接转化3) Recycling connection conversion

PCR产物进行琼脂糖凝胶电泳后,切割目的片段大小位置处的胶块至1.5mL EP管内。参照普通琼脂糖凝胶DNA回收试剂盒(TIANGEN,DP209)说明操作进行PCR产物回收。After the PCR product was subjected to agarose gel electrophoresis, the gel block at the size of the target fragment was cut into a 1.5mL EP tube. The PCR product was recovered according to the instructions of the ordinary agarose gel DNA recovery kit (TIANGEN, DP209).

将回收产物连接到pEntry-T载体上(Thermo Fisher Scientific,货号12536017),通过转化的方法该质粒在大肠杆菌DH5α中得到大量克隆。进行LR反应把基因MtREVOLUTA连接到表达载体pEARLYGATE100中后提取质粒,将质粒转入农杆菌菌株EHA105中。The recovered product was ligated into the pEntry-T vector (Thermo Fisher Scientific, product number 12536017), and the plasmid was cloned in E. coli DH5α by the method of transformation. LR reaction was performed to connect the gene MtREVOLUTA to the expression vector pEARLYGATE100, and then the plasmid was extracted, and the plasmid was transformed into Agrobacterium strain EHA105.

实施例3:紫花苜蓿转化及转基因植株筛选Example 3: Transformation of alfalfa and screening of transgenic plants

按以下配方配制紫花苜蓿遗传转化所需培养基。The medium required for genetic transformation of alfalfa was prepared according to the following formula.

Figure GDA0003548808910000072
Figure GDA0003548808910000072

1)提前配培养基灭菌,二级水、培养皿、滤纸、三角瓶、50mL离心管灭菌。1) Prepare medium for sterilization in advance, and sterilize secondary water, petri dish, filter paper, triangular flask, and 50mL centrifuge tube.

2)农杆菌制备。遗传转化实验前两天,挑取实施例2所述转化成功的农杆菌单克隆或农杆菌stock,用2mL LB液体培养基加载体对应的抗生素,置于摇床200rpm 28℃过夜。2) Agrobacterium preparation. Two days before the genetic transformation experiment, pick the successfully transformed Agrobacterium monoclonal or Agrobacterium stock described in Example 2, use 2 mL of LB liquid medium to load the corresponding antibiotics, and place it on a shaker at 200 rpm and 28°C overnight.

3)将100μL摇起的农杆菌液进行扩繁,将其置于30-50mL液体培养基(含相应的抗生素),200rpm28℃过夜培养,农杆菌菌液OD600nm约0.8-1.0。3) Proliferate 100 μL of the shaken Agrobacterium liquid, place it in 30-50 mL liquid medium (containing the corresponding antibiotics), and cultivate overnight at 200 rpm at 28° C. The OD 600 nm of the Agrobacterium liquid is about 0.8-1.0.

4)紫花苜蓿SY4D叶片表面灭菌。选择年轻且完全展开的健康叶片用于遗传转化实验。取下的叶片置于冰上带回实验室。若用超声波法,取一个完整复叶;如果要切叶盘,则取单个叶片。4) Surface sterilization of alfalfa SY4D leaves. Young and fully expanded healthy leaves were selected for genetic transformation experiments. The removed leaves were placed on ice and brought back to the laboratory. If using the ultrasonic method, take a whole compound leaf; if the leaf disc is to be cut, take a single leaf.

5)消毒。将取回的叶片放置在50mL带盖离心管(叶片不要太多,过多会导致灭菌不完全)。加入30%次氯酸钠溶液与1‰Tween-20,上下颠倒离心管数次,保证每片叶被浸润后,置水平摇床低速水平震荡15min(7分钟时换一次新的次氯酸钠溶液)。倒掉次氯酸钠溶液,换清水洗3-4遍。清洗后将叶片放置于灭菌后的滤纸上吸掉多余的水分。5) Disinfection. Place the retrieved leaves in a 50mL centrifuge tube with a lid (do not have too many leaves, too much will lead to incomplete sterilization). Add 30% sodium hypochlorite solution and 1‰ Tween-20, and invert the centrifuge tube several times to ensure that after each leaf is infiltrated, place it on a horizontal shaker for 15 minutes at low speed (change a new sodium hypochlorite solution every 7 minutes). Pour out the sodium hypochlorite solution and wash with clean water 3-4 times. After washing, the leaves were placed on sterilized filter paper to absorb excess water.

6)外植体接种菌液与共培养。将菌液在4000rpm离心10min,倒掉上清,用SM4液体培养基轻柔重悬并稀释菌液至OD600nm 0.2。6) The explants were inoculated with bacterial liquid and co-cultured. The bacterial solution was centrifuged at 4000 rpm for 10 min, the supernatant was discarded, and the bacterial solution was gently resuspended in SM4 liquid medium and diluted to an OD 600 nm of 0.2.

7)切叶盘:将无菌叶片置于灭菌的培养皿,用锋利的无菌刀片将叶缘切掉,切成四方形叶盘。切的过程中,要注意防止叶片过分干燥。7) Leaf cutting disc: Place the sterile leaves in a sterilized petri dish, cut off the leaf edge with a sharp sterile blade, and cut into a square leaf disc. When cutting, be careful not to over-dry the leaves.

8)农杆菌侵染:将切下的叶盘放入农杆菌SM4液体培养基中。轻柔震荡让叶盘彼此不会叠在一起。8) Agrobacterium infection: The cut leaf discs were placed in Agrobacterium SM4 liquid medium. Gentle shaking keeps the blisks from overlapping each other.

9)抽真空:将放入叶盘的农杆菌SM4溶液0.5Mbar抽真空10min。为避免对细胞的损伤,真空的开关应缓慢进行。再慢摇5-10min。9) Vacuuming: vacuumize the Agrobacterium SM4 solution 0.5 Mbar put into the leaf disc for 10 min. To avoid damage to the cells, the vacuum switch should be performed slowly. Shake slowly for another 5-10min.

10)在超净工作台中,将菌液吸掉,将侵染后的叶片转移到灭过菌的滤纸上吸掉叶片周围多余的菌液,但注意避免工作台中的风把叶片吹得过于干燥。将上述步骤的叶片转移至SM4固体培养基(含1mLcefo)。尽量让叶盘的下表面接触培养基。10) In the ultra-clean workbench, suck up the bacterial liquid, and transfer the infected leaves to sterilized filter paper to absorb the excess bacterial liquid around the leaves, but be careful to avoid the wind in the workbench from blowing the leaves too dry. . The leaves from the above steps were transferred to SM4 solid medium (containing 1 mL of cefo). Try to keep the lower surface of the leaf disc in contact with the medium.

11)5-7天后,将叶盘转移至含有载体相应抗性抗生素的SM4固体培养基(加cefo500mg/L,同时加筛选抗生素如Kan 50mg/L,PPT 3mg/L,hyg 10mg/L),在植物培养箱中24℃暗培养4-6周。11) After 5-7 days, transfer the leaf discs to SM4 solid medium containing carrier-corresponding resistant antibiotics (add cefo 500mg/L, and add screening antibiotics such as Kan 50mg/L, PPT 3mg/L, hyg 10mg/L), Incubate in the dark at 24°C for 4-6 weeks in a plant incubator.

12)当愈伤组织足够大(一般SM4筛选培养基放4-5周),转到再生培养基MSBK上,培养2周。12) When the callus is large enough (generally 4-5 weeks in SM4 screening medium), transfer to regeneration medium MSBK and cultivate for 2 weeks.

13)转到伸长培养基MSS直到植株长大,一般6-8周。13) Transfer to elongation medium MSS until plants grow, typically 6-8 weeks.

14)将植株转到培养瓶中,培养基为MSR。待幼苗生根后,将健壮的植株移到土里。14) Transfer the plants to culture flasks, and the medium is MSR. After the seedlings have taken root, move the robust plants to the soil.

15)蒺藜苜蓿DNA提取。提前配制2×CTAB(pH8.0)提取液(1L):15) Medicago truncatula DNA extraction. Prepare 2×CTAB (pH8.0) extract (1L) in advance:

Figure GDA0003548808910000081
Figure GDA0003548808910000081

注意:首先定容至1L,再加CTAB粉末,搅拌溶解后可置于65℃烘箱加速溶解,室温保存。Note: First make the volume to 1L, add CTAB powder, stir and dissolve, and then place it in a 65°C oven to accelerate the dissolution, and store at room temperature.

16)对提取紫花苜蓿的基因组DNA,使用载体引物GCACAATCCCACTATCCTTC和基因反向引物进行PCR扩增检测。提取上述阳性的转基因植株和野生植株的RNA反转cDNA进行使用基因正向引物TACACTGCTGAACAGATTGAAG和基因反向引物ACCAGGCTTCATCCCAGGCATC进行RT-PCR检测,结果见图2。16) For the genomic DNA extracted from alfalfa, use the vector primer GCACAATCCCACTATCCTTC and the gene reverse primer to perform PCR amplification detection. The RNA reverse cDNAs of the above-mentioned positive transgenic plants and wild plants were extracted for RT-PCR detection using the gene forward primer TACACTGCTGAACAGATTGAAG and the gene reverse primer ACCAGGCTTCATCCCAGGCATC. The results are shown in Figure 2.

内参使用MsACTIN-F:TTTGAGACTTTCAATGTGCCCGCC和MsACTIN-R:TAGCATGTGGGAGTGCATAACCCT。Internal reference used MsACTIN-F: TTTGAGACTTTCAATGTGCCCGCC and MsACTIN-R: TAGCATGTGGGAGTGCATAACCCT.

结果见图2。The results are shown in Figure 2.

图2显示:RT-PCR检测不同株系的35S:MtREV紫花苜蓿转基因植株叶片中的MtREVOLUTA表达量具有明显的差异,表达量高的命名为35S:MtREV#1,表达量低的命名为35S:MtREV#2。其中上排胶图指示的是野生型紫花苜蓿SY4D和不同株系的35S:MtREV紫花苜蓿转基因植株叶片中的MtREVOLUTA的表达量。下排胶图指示的是野生型紫花苜蓿SY4D和不同株系的35S:MtREV紫花苜蓿转基因植株叶片中的看家基因MsActin的表达量。Figure 2 shows: RT-PCR detection of MtREVOLUTA expression in leaves of 35S:MtREV alfalfa transgenic plants of different lines has obvious differences, the high expression is named 35S:MtREV#1, and the low expression is named 35S: MtREV#2. The upper row of gels indicated the expression levels of MtREVOLUTA in leaves of wild-type alfalfa SY4D and 35S:MtREV alfalfa transgenic plants of different lines. The bottom row of gums indicated the expression levels of housekeeping gene MsActin in leaves of wild-type alfalfa SY4D and 35S:MtREV alfalfa transgenic plants of different lines.

实施例4:35S:MtREV紫花转基因扦插幼苗耐盐性分析Example 4: Salt tolerance analysis of 35S:MtREV purple flower transgenic cutting seedlings

将野生植株和转基因植株35S:MtREV紫花扦插,挑选扦插存活状态一致的小苗各25棵,培养一个月,将小盆的幼苗使用高盐1.5%NaCl处理5周,生物重复三次,统计存活率。The wild plants and transgenic plants 35S:MtREV purple flower cuttings were selected, and 25 seedlings with the same cutting survival status were selected, cultivated for one month, and the seedlings in the small pots were treated with high-salt 1.5% NaCl for 5 weeks.

结果见图3和图4。The results are shown in Figures 3 and 4.

图3显示:盐处理一个月大小35S:MtREV#1紫花转基因扦插植株相比对照野生型紫花苜蓿SY4D扦插植株耐盐性提高。图中所示A、B、C、D、I、J、K、L、Q、R、S、T显示的分别是不加盐水的对照组的野生型紫花苜蓿SY4D和35S:MtREV#1紫花苜蓿转基因植株在处理前和处理开始后的1、2、3、4、5周的生长情况。图中所示E、F、G、H、M、N、O、P、U、V、W、X显示的分别是施加1.5%NaCl盐水的处理组的野生型紫花苜蓿SY4D和35S:MtREV#1紫花苜蓿转基因植株在处理前和处理开始后的1、2、3、4、5周的生长情况。Figure 3 shows that the salt-treated one-month-old 35S:MtREV#1 transgenic cutting plants of alfalfa have improved salt tolerance compared to the control wild-type alfalfa SY4D cutting plants. A, B, C, D, I, J, K, L, Q, R, S, T shown in the figure show wild-type alfalfa SY4D and 35S:MtREV#1 flowers of the control group without saline, respectively Growth of alfalfa transgenic plants before treatment and 1, 2, 3, 4, and 5 weeks after treatment. E, F, G, H, M, N, O, P, U, V, W, X shown in the figure show the wild-type alfalfa SY4D and 35S:MtREV of the treatment group applied with 1.5% NaCl saline, respectively. 1 Growth of alfalfa transgenic plants before treatment and 1, 2, 3, 4, and 5 weeks after treatment.

图4显示:t-test统计分析显示35S:MtREV紫花苜蓿转基因植株35S:MtREV#1相对野生型SY4D盐处理后存活率显著提高。三个生物学重复;*表示P<0.05,每批植物各25棵苗。Figure 4 shows: t-test statistical analysis shows that the survival rate of 35S:MtREV alfalfa transgenic plants 35S:MtREV#1 was significantly improved compared to wild type SY4D after salt treatment. Three biological replicates; * indicates P<0.05, 25 seedlings per batch of plants.

序列表sequence listing

<110> 山东大学<110> Shandong University

<120>蒺藜苜蓿基因MtREVOLUTA在提高豆科近缘饲草紫花苜蓿耐盐性中的应用Application of <120> Medicago truncatula gene MtREVOLUTA in improving the salinity tolerance of alfalfa, a closely related leguminous forage grass

<141> 2022-03-11<141> 2022-03-11

<160>1<160>1

<210> 1<210> 1

<211> 4380<211> 4380

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<221> 蒺藜苜蓿基因MtREVOLUTA的核苷酸序列<221> Nucleotide sequence of Medicago truncatula gene MtREVOLUTA

<222>(1)…(4380)<222>(1)…(4380)

<400>1<400>1

atggctatgg ctgttgcaca acaacaaaga gataacagca ttgagagaca ccttgattcg 60atggctatgg ctgttgcaca acaacaaaga gataacagca ttgagagaca ccttgattcg 60

tctggcaaat atgtgaggta cactgctgaa cagattgaag ctttggaaaa ggtttatgtg 120tctggcaaat atgtgaggta cactgctgaa cagattgaag ctttggaaaa ggtttatgtg 120

gaatgcccta agcctagttc attgagaagg caacagctga ttcgggagtg cccggttctg 180gaatgcccta agcctagttc attgagaagg caacagctga ttcgggagtg cccggttctg 180

gccaacattg agcctaagca gatcaaggtt tggtttcaga ataggaggta atggagattc 240gccaacattg agcctaagca gatcaaggtt tggtttcaga ataggaggta atggagattc 240

tgattcacct ttttttgttt gttttgaatt tgtgtcgtgt ggaagggttt ggctcttttt 300tgattcacct ttttttgttt gttttgaatt tgtgtcgtgt ggaagggttt ggctcttttt 300

ggttgtgtga tttgatttgt gtctttcttg ttttgcaggt gtagggagaa gcagagaaaa 360ggttgtgtga tttgatttgt gtctttcttg ttttgcaggt gtagggagaa gcagagaaaa 360

gaggcttctc agcttcagag tgtgaacagg aaactttctg cgatgaataa gctgttgatg 420gaggcttctc agcttcagag tgtgaacagg aaactttctg cgatgaataa gctgttgatg 420

gaggaaaatg agaggctgca gaagcaggtt tcacagctgg tgaatgagaa tggatttatg 480gaggaaaatg agaggctgca gaagcaggtt tcacagctgg tgaatgagaa tggatttatg 480

cgccagcaac tacaccctgt aagccctatc attgttcatt ttcattcact actatacatt 540cgccagcaac tacaccctgt aagccctatc attgttcatt ttcattcact actatacatt 540

ttttttttgt gaaatggtaa ttatcattgt ttggttgagg catgtagttg ttgtatgata 600ttttttttgt gaaatggtaa ttatcattgt ttggttgagg catgtagttg ttgtatgata 600

tgatatgatt tgggttattt tgaatgtaaa tttgtattgt tacttactgt catgtcattg 660tgatatgatt tgggttattt tgaatgtaaa tttgtattgt tacttactgt catgtcattg 660

cagaccccag cagctccaaa tgctgacggt agtggcgttg attccgcggc tgctgctcct 720cagaccccag cagctccaaa tgctgacggt agtggcgttg attccgcggc tgctgctcct 720

atgaactcat tgagagatgc taatagccct gctgggtaat tttgaagttc ttgatttgag 780atgaactcat tgagagatgc taatagccct gctgggtaat tttgaagttc ttgatttgag 780

tgctttttat tttattttaa ttatttcgct tgttgagctt tctttgattg atctttgcag 840tgctttttat ttattttaa ttatttcgct tgttgagctt tctttgattg atctttgcag 840

attcctatca attgcggagg agacattgac agagttcctt tcaaaggcta caggaactgc 900attcctatca attgcggagg agacattgac agagttcctt tcaaaggcta caggaactgc 900

tgtcgattgg gtccagatgc ctgggatgaa ggtagagaat catgtttcta gtggacaatt 960tgtcgattgg gtccagatgc ctgggatgaa ggtagagaat catgtttcta gtggacaatt 960

ggtttttgct tttacaattt tgatactgtg atgattatga catggaggtt aatttccttc 1020ggttttttgct tttacaattt tgatactgtg atgattatga catggaggtt aatttccttc 1020

cactaatatc tcatactata tttactttca accattgttt gttagcctgg tccggattcg 1080cactaatatc tcatactata tttactttca accattgttt gttagcctgg tccggattcg 1080

gttgggatat ttgccatttc tcaaggtggc aacggagtgg cagctcgagc ctgtggtctt 1140gttgggatat ttgccatttc tcaaggtggc aacggagtgg cagctcgagc ctgtggtctt 1140

gttagtttag aacctactaa ggtaattaaa aaggacatgt ggatggatat tttcagtaat 1200gttagtttag aacctactaa ggtaattaaa aaggacatgt ggatggatat tttcagtaat 1200

ttcttttgat gttatttatg tagtttgtaa gctatctgaa ttttgaattg ctgaaaaatt 1260ttcttttgat gttatttatg tagtttgtaa gctatctgaa ttttgaattg ctgaaaaatt 1260

tcaatagatt gtggagatat taaaagatcg cccaacttgg taccgtgatt gtcggagttc 1320tcaatagatt gtggagatat taaaagatcg cccaacttgg taccgtgatt gtcggagttc 1320

agaagttttc acaatgttcc cagctggaaa tggaggaaca attgaacttg tttacacaca 1380agaagttttc acaatgttcc cagctggaaa tggaggaaca attgaacttg tttacacaca 1380

ggtgaagaat caaatgtgaa taggatgctt tatttattat ttaatgagca ttttgcataa 1440ggtgaagaat caaatgtgaa taggatgctt tatttattat ttaatgagca ttttgcataa 1440

acgtttagtt tgctgcagac atatgctcca atgacactgg cttctgctcg cgacttctgg 1500acgtttagtt tgctgcagac atatgctcca atgacactgg cttctgctcg cgacttctgg 1500

actctaagat acactacaaa tttggaaaac ggaagtgttg tggtgagtat atttgctgtc 1560actctaagat acactacaaa tttggaaaac ggaagtgttg tggtgagtat atttgctgtc 1560

aaaagcgtta ctattgttgc atgggattat atatctagct gcatcgattt aatataattg 1620aaaagcgtta ctattgttgc atgggattat atatctagct gcatcgattt aatataattg 1620

cactttggaa ggtttgtgaa aggtcactgt ctggtactgg tgctggccct aatgctgcag 1680cactttggaa ggtttgtgaa aggtcactgt ctggtactgg tgctggccct aatgctgcag 1680

ccgcctcaca gtttgagagg gctgaaatgc tccctagtgg ctatttgatt cgaccatgtg 1740ccgcctcaca gtttgagagg gctgaaatgc tccctagtgg ctatttgatt cgaccatgtg 1740

aaggtggagg atcgatcatc cacattgtag accacctaaa cctgcaggtt tgagttcttg 1800aaggtggagg atcgatcatc cacattgtag accacctaaa cctgcaggtt tgagttcttg 1800

accattagct agaataccta ctatattctt attttctttt catatacatt tttttttttg 1860accattagct agaataccta ctatattctt attttctttt catatacatt ttttttttttg 1860

accaaaatcc agaattttct tttcatatac attaattaac atgattaaca ttttcttcta 1920accaaaatcc agaattttct tttcatatac attaattaac atgattaaca ttttcttcta 1920

ggcatggagt gtgccagaag tgctgcggcc gatctatgaa tcgtcgcaaa tggtagctca 1980ggcatggagt gtgccagaag tgctgcggcc gatctatgaa tcgtcgcaaa tggtagctca 1980

gagactgaca attgcggtaa gcatagtatt attaattcac gatgtaggat tctattgcaa 2040gagactgaca attgcggtaa gcatagtatt attaattcac gatgtaggat tctattgcaa 2040

gctttggtgg actaatgtga tcaatattat ggcttttgtg caggcacttc gctatatcag 2100gctttggtgg actaatgtga tcaatattat ggcttttgtg caggcacttc gctatatcag 2100

gcaagtagct caagaaacaa gtggtgacgt ggtgtatagc atgggtcggc aacctgcagt 2160gcaagtagct caagaaacaa gtggtgacgt ggtgtatagc atgggtcggc aacctgcagt 2160

tcttagaact tttagccaac ggttgagcag gtacgtcacg tgaaataaat ttatgcctca 2220tcttagaact tttagccaac ggttgagcag gtacgtcacg tgaaataaat ttatgcctca 2220

aaacctattt cagccttgct ttttacagaa cgatctgttg tgtttggtaa aaataaattt 2280aaacctattt cagccttgct ttttacagaa cgatctgttg tgtttggtaa aaataaattt 2280

aaacatcatt cttgcagagg tttcaatgac gctgtcaatg gattcaatga taatggttgg 2340aaacatcatt cttgcagagg tttcaatgac gctgtcaatg gattcaatga taatggttgg 2340

tctgttctga actgtgatgg tgctgagggt gttactattt cagtaaattc aatcaagaat 2400tctgttctga actgtgatgg tgctgagggt gttactattt cagtaaattc aatcaagaat 2400

ttgagtggca cttctaatcc agcaagttcc ctttcactcc ttggaggaat tgtctgtgca 2460ttgagtggca cttctaatcc agcaagttcc ctttcactcc ttggaggaat tgtctgtgca 2460

aaagcttcta tgttactcca agtaagtgcg taaatccatt ggcatggcgc agtaatcggt 2520aaagcttcta tgttactcca agtaagtgcg taaatccatt ggcatggcgc agtaatcggt 2520

ccttctataa tttaacattt agttcttcta atcgttacac ggaaagtttt cactttgttt 2580ccttctataa tttaacattt agttcttcta atcgttacac ggaaagtttt cactttgttt 2580

tacttgcaga acaccactcc tgctgtttta gttcgctttc tgagggagca tcgctcggag 2640tacttgcaga acaccactcc tgctgtttta gttcgctttc tgagggagca tcgctcggag 2640

tgggctgatt ttagtgttga tgccttttct gctgcatcac ttaaagctgg ctcctatggc 2700tgggctgatt ttagtgttga tgccttttct gctgcatcac ttaaagctgg ctcctatggc 2700

tatcctggaa tgaggtctac aaagttcacc ggcaatcaag caatcatgcc tcttggacat 2760tatcctggaa tgaggtctac aaagttcacc ggcaatcaag caatcatgcc tcttggacat 2760

acaattgaac atgaagaggt atgagagatt ttttgcttgc ttgaccttga ccatgtcttt 2820acaattgaac atgaagaggt atgagagatt ttttgcttgc ttgaccttga ccatgtcttt 2820

ttaagatggt agattcatat ttgcatttgg ctaagatttg gtttatatac tttctatgat 2880ttaagatggt agattcatat ttgcatttgg ctaagatttg gtttatatac tttctatgat 2880

ttggtttata ctgatttctg ttgaaattcc agatgctaga aattatccgc cttgaaggtc 2940ttggtttata ctgatttctg ttgaaattcc agatgctaga aattatccgc cttgaaggtc 2940

ttgctcaaga tgattctttt gtttctaggg atgttcatct cttacaggtg cttcctctga 3000ttgctcaaga tgattctttt gtttctaggg atgttcatct cttacaggtg cttcctctga 3000

cccttgttat ggtttgttta cctgcatgtt tatcggtttt ttgttgttgc ttaattctta 3060cccttgttat ggtttgttta cctgcatgtt tatcggtttt ttgttgttgc ttaattctta 3060

tgatcaccat catcatcgtt tgaacagtta tgtactggaa ttgatgagaa tgctgtgggg 3120tgatcaccat catcatcgtt tgaacagtta tgtactggaa ttgatgagaa tgctgtgggg 3120

gcttgttccg agctcatatt tgctccaatt gatgacatgt tcccagaaga tgctccctta 3180gcttgttccg agctcatatt tgctccaatt gatgacatgt tcccagaaga tgctccctta 3180

gtgccttctg gtttccgcat tgtcctgttg aattctcaac cagttgagtc ccgtttcttg 3240gtgccttctg gtttccgcat tgtcctgttg aattctcaac cagttgagtc ccgtttcttg 3240

tatttgattt ttctctaatc ggtactgttc atatatgaag catagtaatc tagttgacat 3300tatttgattt ttctctaatc ggtactgttc atatatgaag catagtaatc tagttgacat 3300

catattgtgt ttcagggtga tacaaagaac acaacaacag caaatcgaac cttggatttg 3360catattgtgt ttcagggtga tacaaagaac acaacaacag caaatcgaac cttggatttg 3360

acatctggtc ttgaagtaag cccggcaaca gctcatgcta acggagacgc atcgtgtcct 3420acatctggtc ttgaagtaag cccggcaaca gctcatgcta acggagacgc atcgtgtcct 3420

aacaatcgat gtgtgttgac tgttgccttt cagtttcctt ttgagagcgg tctgcaggat 3480aacaatcgat gtgtgttgac tgttgccttt cagtttcctt ttgagagcgg tctgcaggat 3480

aatgttgcag ccatggcacg tcaatatgtc cggcgtgtag tttctgccgt gcaggcggtt 3540aatgttgcag ccatggcacg tcaatatgtc cggcgtgtag tttctgccgt gcaggcggtt 3540

gcaacggcta tatctccatc cagtgttaac acttctggtg gagcaaagct ctcccctggc 3600gcaacggcta tatctccatc cagtgttaac acttctggtg gagcaaagct ctcccctggc 3600

actccagaag cacttacact agctcaatgg atctgccaga gttataggta aagtctgcat 3660actccagaag cacttacact agctcaatgg atctgccaga gttataggta aagtctgcat 3660

gaatctctga tgttctcttt caaagtttct aacatgattc tctatttacc tctctttcta 3720gaatctctga tgttctcttt caaagtttct aacatgattc tctatttacc tctctttcta 3720

tatctcttgt ccgaaagcag tcatcatctg ggcgcgcaac tgctgagatc tgattctctt 3780tatctcttgt ccgaaagcag tcatcatctg ggcgcgcaac tgctgagatc tgattctctt 3780

attggtgata tgctactgaa acatttgtgg catcatccag atgctatttt atgctgctct 3840attggtgata tgctactgaa acatttgtgg catcatccag atgctatttt atgctgctct 3840

ttgaaggtat gtccatgatc tcattttatg gtacaattga atctggaagt gtataaataa 3900ttgaaggtat gtccatgatc tcattttatg gtacaattga atctggaagt gtataaataa 3900

tgcagtactt cgaagatttt aatgtaactt ctctatcctt gtttggtttt gcagcaagtg 3960tgcagtactt cgaagatttt aatgtaactt ctctatcctt gtttggtttt gcagcaagtg 3960

cccgtattca tctttgctaa ccaggctggc cttgacatgt tggaaacaac tctagtggct 4020cccgtattca tctttgctaa ccaggctggc cttgacatgt tggaaacaac tctagtggct 4020

ctacaagata tcacactgga caaaatattt gatgagtctg cacgcaagaa tttgattgca 4080ctacaagata tcacactgga caaaatattt gatgagtctg cacgcaagaa tttgattgca 4080

tattttgcga agttaatgca gcaggtaatt tcctggagtt tggcatcatt agcttagctt 4140tattttgcga agttaatgca gcaggtaatt tcctggagtt tggcatcatt agcttagctt 4140

ttttttatcg ttacaacctc aaatttgttt taaacaacac accatgctct taagtaaatg 4200ttttttatcg ttacaacctc aaatttgttt taaacaacac accatgctct taagtaaatg 4200

tctgaattgt tgcacggatt ttttttcgtt caggggtttg cttgtatgcc agctgggatc 4260tctgaattgt tgcacggatt ttttttcgtt caggggtttg cttgtatgcc agctgggatc 4260

tgcatgtcaa caatggggcg acatgcttca tatgatcaag ccgtcgcgtg gaaagtgcat 4320tgcatgtcaa caatggggcg acatgcttca tatgatcaag ccgtcgcgtg gaaagtgcat 4320

gctgaagaca acagtgttca ttgcttggct ttctcattca ttaattggtc atttatatga 4380gctgaagaca acagtgttca ttgcttggct ttctcattca ttaattggtc atttatatga 4380

Claims (1)

1.蒺藜苜蓿基因MtREVOLUTA在提高紫花苜蓿SY4D耐受1.5%的NaCl处理存活率中的应用,其中所述蒺藜苜蓿基因MtREVOLUTA的核苷酸序列如SEQ ID No.1所示。1. Application of the Medicago truncatula gene MtREVOLUTA in improving the survival rate of alfalfa SY4D tolerant to 1.5% NaCl treatment, wherein the nucleotide sequence of the Medicago truncatula gene MtREVOLUTA is shown in SEQ ID No.1.
CN202110075452.6A 2021-01-20 2021-01-20 Application of Medicago truncatula gene MtREVOLUTA in improving the salt tolerance of alfalfa, a forage relative of leguminous family Active CN112626086B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110075452.6A CN112626086B (en) 2021-01-20 2021-01-20 Application of Medicago truncatula gene MtREVOLUTA in improving the salt tolerance of alfalfa, a forage relative of leguminous family

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110075452.6A CN112626086B (en) 2021-01-20 2021-01-20 Application of Medicago truncatula gene MtREVOLUTA in improving the salt tolerance of alfalfa, a forage relative of leguminous family

Publications (2)

Publication Number Publication Date
CN112626086A CN112626086A (en) 2021-04-09
CN112626086B true CN112626086B (en) 2022-05-06

Family

ID=75294865

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110075452.6A Active CN112626086B (en) 2021-01-20 2021-01-20 Application of Medicago truncatula gene MtREVOLUTA in improving the salt tolerance of alfalfa, a forage relative of leguminous family

Country Status (1)

Country Link
CN (1) CN112626086B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113564198A (en) * 2021-07-20 2021-10-29 山东大学 Application of RNAi (ribonucleic acid interference) on PALM1 gene to increase number of small leaves of leguminous forage
CN118834905A (en) * 2024-08-02 2024-10-25 山东大学 Application of medicago sativa gene STMP in improving salt tolerance of medicago sativa

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101338316A (en) * 2008-08-18 2009-01-07 山东省农业科学院蔬菜研究所 Gene BrARGOS for controlling organ sizes of Chinese cabbage and use thereof
CN101495640A (en) * 2006-05-30 2009-07-29 克罗普迪塞恩股份有限公司 Plants having enhanced yield-related traits and a method formaking the same
CA2865677A1 (en) * 2012-02-02 2013-08-08 Conicet Hahb11 provides improved plant yield and tolerance to abiotic stress
CN103421829A (en) * 2013-08-22 2013-12-04 山东大学 Salt-tolerant gene TaAOC1 for wheat and application of salt-tolerant gene TaAOC1
CN105039354A (en) * 2015-08-31 2015-11-11 哈尔滨师范大学 Medicago sativa MsSOS3 gene and encoding protein and application thereof
CN107299104A (en) * 2017-08-08 2017-10-27 山东大学 Application of REVOLUTA Gene in Regulation of Leaflet Number and Leaf-to-Stem Ratio in Leguminous Plants
CN107787180A (en) * 2013-09-11 2018-03-09 中国科学院植物研究所 transgenic plant

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0619837A2 (en) * 2005-12-15 2011-10-18 Targeted Growth Inc method for increasing the seed size of a plant and / or for increasing the number of seeds obtainable from a plant, genetic construction and methods for producing a transgenic plant
BRPI1015903B1 (en) * 2010-11-12 2019-11-05 Empresa Brasileira De Pesquisa Agropecuaria Embrapa Cenargen use of cahb12 coffee homeobox gene in the production of transgenic plants more tolerant to water deficit and salt stress
CN105367644B (en) * 2015-12-23 2019-04-12 江苏省农业科学院 Plant stress tolerance related transcription factor and its encoding gene and application
CN111423499B (en) * 2020-03-19 2022-02-25 山东师范大学 Thellungiella halophila transcription factor EsbZip60 for regulating and controlling plant antioxidant capacity and salt tolerance, and coding gene and application thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101495640A (en) * 2006-05-30 2009-07-29 克罗普迪塞恩股份有限公司 Plants having enhanced yield-related traits and a method formaking the same
CN101338316A (en) * 2008-08-18 2009-01-07 山东省农业科学院蔬菜研究所 Gene BrARGOS for controlling organ sizes of Chinese cabbage and use thereof
CA2865677A1 (en) * 2012-02-02 2013-08-08 Conicet Hahb11 provides improved plant yield and tolerance to abiotic stress
CN103421829A (en) * 2013-08-22 2013-12-04 山东大学 Salt-tolerant gene TaAOC1 for wheat and application of salt-tolerant gene TaAOC1
CN107787180A (en) * 2013-09-11 2018-03-09 中国科学院植物研究所 transgenic plant
CN105039354A (en) * 2015-08-31 2015-11-11 哈尔滨师范大学 Medicago sativa MsSOS3 gene and encoding protein and application thereof
CN107299104A (en) * 2017-08-08 2017-10-27 山东大学 Application of REVOLUTA Gene in Regulation of Leaflet Number and Leaf-to-Stem Ratio in Leguminous Plants

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Functional plasticity of miR165/166 in plant development revealed by small tandem target mimic;Xiaoyun Jia et al.;《Plant Science》;20150103;第233卷;第11页摘要、右栏、第12页左栏、第13页左栏第3.1节、第16页右栏-第18页左栏第3.5节、第19页右栏-20页左栏第4.4节 *
Genome wide identification, characterization and expression analysis of HD-ZIP gene family in Cucumis sativus L. under biotic and various abiotic stresses;Rahat Sharif et al.;《International Journal of Biological Macromolecules》;20200503;第158卷;第502-520页 *
Knockdown of Rice MicroRNA166 Confers Drought Resistance by Causing Leaf Rolling and Altering Stem Xylem Development;Jinshan Zhang et al.;《Plant Physiology》;20180124;第176卷;第2082-2094页 *
紫花苜蓿耐苏打盐碱相关基因的转录组学分析;李红等;《草地学报》;20190731;第27卷(第4期);第848-858页 *

Also Published As

Publication number Publication date
CN112626086A (en) 2021-04-09

Similar Documents

Publication Publication Date Title
CN110791523A (en) A cotton drought resistance related gene GhRCHY1 and its application
CN112724214B (en) Xanthoceras sorbifolia drought induction transcription factor XsMYB308L and application thereof
CN102234653A (en) Salt-tolerant and drought-resistant gene TaMYB33 of wheat and coding protein as well as application thereof
CN104829700A (en) Corn CCCH-type zinc finger protein, and encoding gene ZmC3H54 and application thereof
CN110872598A (en) A kind of cotton drought resistance related gene GhDT1 and its application
CN112626086B (en) Application of Medicago truncatula gene MtREVOLUTA in improving the salt tolerance of alfalfa, a forage relative of leguminous family
CN111593058A (en) Bna-miR169n gene and application thereof in controlling drought resistance of brassica napus
CN118147175B (en) Application of MtCOMT13 gene in regulating salt and drought tolerance in plants
CN118726410A (en) WRKY40 transcription factor of peanut for promoting drought tolerance and early flowering in plants and its application
CN109055396A (en) Application of the arabidopsis PPR1 gene in regulation plant Cadmium resistance performance
CN111778261A (en) Cloning and application of rice salt tolerance gene OsMYB106
CN116024228B (en) Application of Rice Ospep5 Gene and Its Encoded Peptide in Regulating Plant Salt Tolerance
CN113584051B (en) Application of GhGAI Gene in Regulating Plant Flowering
CN105063062A (en) Wheat salt-resistant drought-resistant gene TaDHN3, and expression vector and applications thereof
CN1291021C (en) Use of boea crassifolia BcBCP1 gene for breeding drought-salt-tolerant plants
CN114606243A (en) IbTCP11 gene for coding sweet potato TCP transcription factor and application thereof
CN111961672A (en) Cloning and application of rice salt tolerance gene OsDnaJ15
CN107586324A (en) TabZIP15 albumen and its encoding gene and application
CN116640769B (en) Peanut AhGATA11 gene and its application in improving plant stress resistance
CN116445508B (en) Soybean GmMATE109 gene and its application
CN115850412B (en) Application of Soybean GmSUI1 Gene and Its Encoded Protein in Phytophthora Soybean Root Rot Infection
CN117568289B (en) Protein for resisting soybean cyst nematode disease, encoding gene and application thereof
CN116640200B (en) Application of regulating MfERF086 gene in alfalfa growth and development and/or cold tolerance
CN116179574B (en) Application of CmEAF7 gene in improving cold tolerance and/or fruit quality of melon
CN110734483B (en) Low-potassium-resistant related protein TaPR1 and coding gene and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant