CN112599587B - A semiconductor device with a buffer layer structure - Google Patents
A semiconductor device with a buffer layer structure Download PDFInfo
- Publication number
- CN112599587B CN112599587B CN202011443412.4A CN202011443412A CN112599587B CN 112599587 B CN112599587 B CN 112599587B CN 202011443412 A CN202011443412 A CN 202011443412A CN 112599587 B CN112599587 B CN 112599587B
- Authority
- CN
- China
- Prior art keywords
- dopant region
- region
- dopant
- buffer layer
- semiconductor device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 19
- 239000002019 doping agent Substances 0.000 claims abstract description 216
- 230000005684 electric field Effects 0.000 description 22
- 230000000903 blocking effect Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 8
- 238000009792 diffusion process Methods 0.000 description 7
- 239000000969 carrier Substances 0.000 description 6
- 230000002457 bidirectional effect Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 3
- 230000003321 amplification Effects 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D12/00—Bipolar devices controlled by the field effect, e.g. insulated-gate bipolar transistors [IGBT]
- H10D12/411—Insulated-gate bipolar transistors [IGBT]
- H10D12/441—Vertical IGBTs
- H10D12/491—Vertical IGBTs having both emitter contacts and collector contacts in the same substrate side
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/102—Constructional design considerations for preventing surface leakage or controlling electric field concentration
- H10D62/112—Constructional design considerations for preventing surface leakage or controlling electric field concentration for preventing surface leakage due to surface inversion layers, e.g. by using channel stoppers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/124—Shapes, relative sizes or dispositions of the regions of semiconductor bodies or of junctions between the regions
Landscapes
- Thin Film Transistor (AREA)
Abstract
本发明属于功率半导体器件测试领域,特别涉及一种具有缓冲层结构的半导体器件,包括依次设置的第一掺杂剂区域、第二掺杂剂区域、第三掺杂剂区域,还包括择一或多个组合设置的上掺杂剂区域、下掺杂剂区域、中部掺杂剂区域;所述上掺杂剂区域位于第一掺杂剂区域和第二掺杂剂区域之间;所述下掺杂剂区域位于第二掺杂剂区域和第三掺杂剂区域之间;所述中部掺杂剂区域位于第二掺杂剂区域中间,本发明的优点在于,能够实现较小的漏电流,从而提高器件的耐压能力,以及可运行的最高结温,增大器件的通流能力。
The invention belongs to the field of power semiconductor device testing, and in particular relates to a semiconductor device with a buffer layer structure, comprising a first dopant region, a second dopant region, and a third dopant region arranged in sequence, and further comprising an optional or a plurality of upper dopant regions, lower dopant regions, and middle dopant regions arranged in combination; the upper dopant region is located between the first dopant region and the second dopant region; the The lower dopant region is located between the second dopant region and the third dopant region; the middle dopant region is located in the middle of the second dopant region, and the present invention has the advantage that smaller leakage can be achieved current, thereby improving the withstand voltage capability of the device, as well as the maximum junction temperature that can be operated, and increasing the current capacity of the device.
Description
技术领域technical field
本发明属于功率半导体器件测试领域,特别涉及一种具有缓冲层结构的半导体器件。The invention belongs to the field of power semiconductor device testing, in particular to a semiconductor device with a buffer layer structure.
背景技术Background technique
大容量电力电子器件作为电力设备的核心组成部分,已逐渐成为提升可靠性、降低成本的关键。在单向通流双向阻断的应用中,需要器件具有反向阻断能力,故一般采用非对称器件与二极管串联的方法。而逆阻器件具有正向通流和双向阻断能力,可以省去串联二极管,减少器件数目,节约成本,降低损耗,在电流源换流器、双向固态断路器等应用中具有显著优势。As the core component of power equipment, large-capacity power electronic devices have gradually become the key to improving reliability and reducing costs. In the application of unidirectional flow and bidirectional blocking, the device is required to have reverse blocking capability, so the method of connecting an asymmetric device and a diode in series is generally used. The reverse resistance device has forward flow and bidirectional blocking capabilities, which can save series diodes, reduce the number of devices, save costs, and reduce losses. It has significant advantages in applications such as current source converters and bidirectional solid state circuit breakers.
传统的非对称器件通过设置缓冲层或者场截止层改变电场分布,在保证相同耐压条件下,减小器件整体片厚,从而减小导通压降等参数,属于穿通型结构。带有缓冲层的非穿通IGCT结构及其内部电场分布如图1所示,穿通型IGCT结构及其内部电场分布如图2所示。缓冲层可以使电场分布从三角形变为梯形,大大减小了片厚要求。The traditional asymmetric device changes the electric field distribution by setting the buffer layer or the field stop layer, and reduces the overall thickness of the device under the condition of ensuring the same withstand voltage, thereby reducing the parameters such as the on-voltage drop, and belongs to the punch-through structure. The non-punch-through IGCT structure with the buffer layer and its internal electric field distribution are shown in FIG. 1 , and the punch-through IGCT structure and its internal electric field distribution are shown in FIG. 2 . The buffer layer can change the electric field distribution from triangular to trapezoidal, greatly reducing the thickness requirement.
为了实现反向耐压能力,逆阻器件无法再采用图1所示缓冲层结构,这是因为若PN结两侧均为高掺杂,电场分布集中在结两侧,峰值电场强度超过临界电场强度后,PN结在很低电压下就会发生雪崩击穿。去除缓冲层结构后,随之而来的问题便是器件的漏电流增大,尤其是高温漏电流。In order to achieve reverse voltage withstand capability, the buffer layer structure shown in Figure 1 cannot be used for the reverse resistance device. This is because if both sides of the PN junction are highly doped, the electric field distribution is concentrated on both sides of the junction, and the peak electric field strength exceeds the critical electric field. After the strength, the PN junction will have avalanche breakdown at very low voltage. After the buffer layer structure is removed, the subsequent problem is that the leakage current of the device increases, especially the leakage current at high temperature.
逆阻器件的漏电流主要有两部分组成,体漏电流和边缘漏电流。在相同电压等级下,如果采用相同的边缘终端结构,非对称器件和逆阻器件的边缘漏电流理论上相同,但体漏电流则完全不同。体漏电流由两部分组成,一是自由载流子扩散产生,二是在空间电荷区产生。其中,自由载流子扩散产生这部分漏电流与PNP晶体管的放大系数密切相关。The leakage current of the reverse resistance device mainly consists of two parts, the body leakage current and the edge leakage current. Under the same voltage level, if the same edge termination structure is used, the edge leakage current of the asymmetric device and the reverse resistance device are theoretically the same, but the body leakage current is completely different. The body leakage current consists of two parts, one is generated by the diffusion of free carriers, and the other is generated in the space charge region. Among them, the leakage current generated by free carrier diffusion is closely related to the amplification factor of the PNP transistor.
以传统逆阻IGCT为例,门阴极短路时,其正向阻断状态下的耗尽层分布如图3所示,W为耗尽层扩展宽度,L为漂移区未耗尽的宽度。随着电压升高,未耗尽层的宽度逐渐减小,阳极侧注入的空穴在扩散运动的作用下穿过未耗尽层,在空间电荷区强电场作用下,载流子漂移至阴极,形成了部分漏电流。逆阻器件为了实现反向阻断能力,J1结需要保证一侧低掺杂,这样使得阻断状态下,逆阻器件阳极侧发射效率较高,PNP晶体管放大系数较大。Taking the traditional reverse resistance IGCT as an example, when the gate cathode is short-circuited, the depletion layer distribution in the forward blocking state is shown in Figure 3, where W is the extension width of the depletion layer, and L is the undepleted width of the drift region. As the voltage increases, the width of the undepleted layer gradually decreases. The holes injected from the anode side pass through the undepleted layer under the action of diffusion motion. Under the action of the strong electric field in the space charge region, the carriers drift to the cathode. , forming part of the leakage current. In order to realize the reverse blocking capability of the reverse resistance device, the J1 junction needs to ensure that one side of the junction is low-doped, so that in the blocking state, the anode side of the reverse resistance device has a higher emission efficiency and a larger amplification factor of the PNP transistor.
传统逆阻器件的结构如图4所示,器件由第一掺杂剂区域、第二掺杂剂区域和第三掺杂剂区域组成,第一掺杂剂区域内往往还有发射极结构,在考虑器件阻断时,这部分结构可以忽略。第一掺杂剂区域与阴极和第二掺杂剂区相连,第三掺杂剂区域与阳极和第二掺杂剂区域相连。若器件第一掺杂剂区域为P型掺杂,第二掺杂剂区域为N型掺杂,第三掺杂剂区域为P型掺杂,器件阳极耐受正向电压时,由第一掺杂剂和第二掺杂剂之间的PN结耐受电压;器件阳极耐受反向电压时,由第二掺杂剂和第三掺杂剂之间的PN结耐受电压。The structure of the traditional reverse resistance device is shown in Figure 4. The device consists of a first dopant region, a second dopant region and a third dopant region. The first dopant region often has an emitter structure. When considering device blocking, this part of the structure can be ignored. The first dopant region is connected to the cathode and the second dopant region, and the third dopant region is connected to the anode and the second dopant region. If the first dopant region of the device is P-type doped, the second dopant region is N-type doped, and the third dopant region is P-type doped, when the device anode withstands the forward voltage, the first The withstand voltage of the PN junction between the dopant and the second dopant; when the anode of the device withstands the reverse voltage, the withstand voltage of the PN junction between the second dopant and the third dopant is used.
发明内容SUMMARY OF THE INVENTION
在高压直流的应用场景中,需要开关器件的阻断电压等级尽可能高,且漏电流尽可能小。较小的漏电流不仅可以减小系统的损耗,也提高了器件的耐压能力,以及可运行的最高结温,增大器件的通流能力。为了解决上述问题,本专利提出一种具有缓冲层结构的半导体器件。In HVDC application scenarios, the blocking voltage level of the switching device needs to be as high as possible, and the leakage current should be as small as possible. The smaller leakage current can not only reduce the loss of the system, but also improve the withstand voltage capability of the device, as well as the maximum junction temperature that can be operated, and increase the current capacity of the device. In order to solve the above problems, the present patent proposes a semiconductor device with a buffer layer structure.
具体技术方案如下所述:The specific technical solutions are as follows:
一种具有缓冲层结构的半导体器件,包括依次设置的第一掺杂剂区域(1)、第二掺杂剂区域(2)、第三掺杂剂区域(3),还包括择一或多个组合设置的上掺杂剂区域(4)、下掺杂剂区域(5)、中部掺杂剂区域(6);A semiconductor device with a buffer layer structure, comprising a first dopant region (1), a second dopant region (2), and a third dopant region (3) arranged in sequence, and further comprising selecting one or more an upper dopant region (4), a lower dopant region (5), and a middle dopant region (6) arranged in combination;
所述上掺杂剂区域(4)位于第一掺杂剂区域(1)和第二掺杂剂区域(2)之间;the upper dopant region (4) is located between the first dopant region (1) and the second dopant region (2);
所述下掺杂剂区域(5)位于第二掺杂剂区域(2)和第三掺杂剂区域(3)之间;the lower dopant region (5) is located between the second dopant region (2) and the third dopant region (3);
所述中部掺杂剂区域(6)位于第二掺杂剂区域(2)中间。The central dopant region (6) is located in the middle of the second dopant region (2).
具体地说,上掺杂剂区域(4)和下掺杂剂区域(5)位于承受耐压的PN结位置Specifically, the upper dopant region (4) and the lower dopant region (5) are located at the positions of the PN junctions subjected to withstand voltage
具体地说,所述上掺杂剂区域(4)和下掺杂剂区域(5)与第二掺杂剂区域(2)的掺杂类型相同。Specifically, the upper dopant region (4) and the lower dopant region (5) are of the same doping type as the second dopant region (2).
具体地说,所述上掺杂剂区域(4)和下掺杂剂区域(5)为N型掺杂。Specifically, the upper dopant region (4) and the lower dopant region (5) are N-type doped.
具体地说,所述上掺杂剂区域(4)和下掺杂剂区域(5)的厚度为1-10um。Specifically, the thickness of the upper dopant region (4) and the lower dopant region (5) is 1-10 um.
具体地说,所述上掺杂剂区域(4)和下掺杂剂区域(5)的掺杂浓度大于第二掺杂剂区域(2)的浓度,且小于第三掺杂剂区域(3)的峰值浓度。Specifically, the doping concentration of the upper dopant region (4) and the lower dopant region (5) is greater than the concentration of the second dopant region (2) and smaller than that of the third dopant region (3). ) peak concentration.
具体地说,所述上掺杂剂区域(4)和下掺杂剂区域(5)的掺杂浓度范围是1e13-1e16cm-3。Specifically, the doping concentration range of the upper dopant region (4) and the lower dopant region (5) is 1e13-1e16 cm −3 .
具体地说,所述中部掺杂剂区域(6)两侧分别为第二掺杂剂上区域(21)和第二掺杂剂下区域(22);所述中部掺杂剂区域(6)的厚度均小于第二掺杂剂上区域(21)和第二掺杂剂下区域(22)的厚度。.Specifically, two sides of the middle dopant region (6) are respectively a second upper dopant region (21) and a second dopant lower region (22); the middle dopant region (6) The thicknesses of both are smaller than the thicknesses of the second dopant upper region (21) and the second dopant lower region (22). .
具体地说,中部掺杂剂区域(6)厚度取值范围为1-50um。Specifically, the thickness of the central dopant region (6) ranges from 1 to 50 um.
具体地说,若中部掺杂剂区域(6)的掺杂类型和第二掺杂剂区域(2)被其分割的两部分类型相同,中部掺杂剂区域(6)掺杂浓度大于第二掺杂剂区域(2)的掺杂浓度。Specifically, if the doping type of the central dopant region (6) is the same as the type of the two parts by which the second dopant region (2) is divided, the doping concentration of the central dopant region (6) is greater than that of the second dopant region (2). Doping concentration of the dopant region (2).
具体地说,中部掺杂剂区域(6)掺杂浓度范围为1e13-1e16cm-3。Specifically, the doping concentration range of the central dopant region (6) is 1e13-1e16 cm −3 .
本发明的优点在于:The advantages of the present invention are:
(1)设置上掺杂剂区域和下掺杂剂区域时对应的结构,由于透明缓冲层掺杂浓度高于n-基区,根据泊松方程,透明缓冲层电场强度变化斜率较大。但由于透明缓冲层很薄,其对电场分布的实际调节作用非常小,甚至可以忽略,这种情况下,器件仍然属于非穿通型,可以保证器件的双向阻断能力。而透明缓冲层可以降低小电流密度下PNP晶体管的发射效率,在不增加片厚的情况下极大程度减小由自由载流子扩散形成的漏电流,特别适用于各类半导体逆阻器件。(1) The corresponding structure when the upper dopant region and the lower dopant region are provided, since the doping concentration of the transparent buffer layer is higher than that of the n-base region, according to the Poisson equation, the electric field intensity of the transparent buffer layer has a larger slope. However, because the transparent buffer layer is very thin, its actual adjustment effect on the electric field distribution is very small, or even negligible. In this case, the device is still a non-punch-through type, which can ensure the bidirectional blocking capability of the device. The transparent buffer layer can reduce the emission efficiency of PNP transistors at low current density, and greatly reduce the leakage current formed by the diffusion of free carriers without increasing the thickness of the film, which is especially suitable for various semiconductor reverse resistance devices.
(2)中部掺杂剂区域结构对电场有调制作用,第二掺杂剂上区域、第二掺杂剂下区域、中部掺杂剂区域的掺杂浓度以及厚度的配合可以减小整体片厚,进而降低器件的压降,同时也可以有效抑制由自由载流子扩散形成的漏电流,减小系统的损耗的同时,也提高了器件了最高可运行结温,增大器件的通流能力。(2) The structure of the central dopant region has a modulating effect on the electric field, and the coordination of the doping concentration and thickness of the second dopant upper region, the second dopant lower region, and the middle dopant region can reduce the overall sheet thickness , thereby reducing the voltage drop of the device, and at the same time, it can effectively suppress the leakage current formed by the diffusion of free carriers, reduce the loss of the system, and at the same time improve the maximum operating junction temperature of the device and increase the current capacity of the device. .
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the following briefly introduces the accompanying drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description These are some embodiments of the present invention. For those of ordinary skill in the art, other drawings can also be obtained according to these drawings without creative efforts.
图1为非穿通IGCT结构及其内部电场分布图;Figure 1 is a non-punch-through IGCT structure and its internal electric field distribution diagram;
图2为穿通型IGCT结构及其内部电场分布图;Fig. 2 is the punch-through IGCT structure and its internal electric field distribution diagram;
图3为传统逆阻IGCT耗尽层分布图;Figure 3 is the traditional reverse resistance IGCT depletion layer distribution diagram;
图4为传统逆阻器件结构图;Figure 4 is a structural diagram of a traditional reverse resistance device;
图5为具有上掺杂剂区域和下掺杂剂区域的半导体器件结构;5 is a semiconductor device structure having an upper dopant region and a lower dopant region;
图6为具有中部掺杂剂区域的半导体器件结构;6 is a semiconductor device structure with a central dopant region;
图7为具有上掺杂剂区域和下掺杂剂区域的逆阻IGCT的结构图、正向耐压和反向耐压对应的不同位置电场强度图;7 is a structural diagram of a reverse-resistance IGCT with an upper dopant region and a lower dopant region, and a diagram of electric field strengths at different positions corresponding to forward withstand voltage and reverse withstand voltage;
图8为具有中部掺杂剂区域的逆阻IGCT的结构图、正向耐压和反向耐压对应的不同位置电场强度图。FIG. 8 is a structural diagram of a reverse resistance IGCT with a central dopant region, and electric field strength diagrams at different positions corresponding to forward withstand voltage and reverse withstand voltage.
附图标记说明如下:The reference numerals are explained as follows:
1、第一掺杂剂区域;2、第二掺杂剂区域;21、第二掺杂剂上区域;22、第二掺杂剂下区域;3、第三掺杂剂区域;4、上掺杂剂区域;5、下掺杂剂区域;6、中部掺杂剂区域1. first dopant region; 2. second dopant region; 21, second dopant upper region; 22, second dopant lower region; 3, third dopant region; 4, upper Dopant region; 5. Lower dopant region; 6. Middle dopant region
具体实施方式Detailed ways
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地说明,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purposes, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments These are some embodiments of the present invention, but not all embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
一种具有缓冲层结构的半导体器件,包括依次设置的第一掺杂剂区域1、第二掺杂剂区域2、第三掺杂剂区域3,还包括在第一掺杂剂区域1和第三掺杂剂区域3之间还至少包括另外一个掺杂剂区域。具体地说,所述另外一个掺杂剂区域包括以下几种技术方案:如图5-6所示,位于第一掺杂剂区域1和第二掺杂剂区域2之间的上掺杂剂区域4,位于第二掺杂剂区域2和第三掺杂剂区域3之间的下掺杂剂区域5,位于第二掺杂剂区域2中间的中部掺杂剂区域6;以下以两种具体方案解释说明。A semiconductor device with a buffer layer structure, comprising a first dopant region 1, a second dopant region 2, and a third dopant region 3 arranged in sequence, and further comprising the first dopant region 1 and the third dopant region 3. At least one other dopant region is also included between the three dopant regions 3 . Specifically, the other dopant region includes the following technical solutions: as shown in FIGS. 5-6 , the upper dopant located between the first dopant region 1 and the second dopant region 2 region 4,
第一种方案具体如下:The first option is as follows:
如图5所示,同时设置上掺杂剂区域4和下掺杂剂区域5。上掺杂剂区域4和下掺杂剂区域5位于承受耐压的PN结位置;上掺杂剂区域4和下掺杂剂区域5掺杂类型与第二掺杂剂区域2掺杂类型相同,在逆阻器件的具体实施例中,第二掺杂剂类型为N型掺杂;在半导体结构中,P型掺杂和N型掺杂都可以。上掺杂剂区域4和下掺杂剂区域5均厚度为1-10um,其掺杂浓度大于第二掺杂剂区域2浓度,且第三掺杂剂区域3的峰值浓度。在该方案中,上掺杂剂区域4和下掺杂剂区域5的掺杂浓度是1e13-1e16cm-3。As shown in FIG. 5, an upper dopant region 4 and a
当将该方案运用到具体的逆阻IGCT中,如图7所示,其中第一掺杂剂区域1为P基区,第二掺杂剂区域2为n-基区,第三掺杂剂区域3为P+发射极,上掺杂剂区域4位于P基区和n-基区之间,下掺杂剂区域5位于n-基区和P+发射极之间,其中P基区外侧设置有P+基区,P+基区的外侧中部设置有n+发射极作为阴极,两侧设置有门极,上掺杂剂区域4和下掺杂剂区域5统称为透明缓冲层。在该方案中,阳极侧的P+发射极厚度为50-120um,峰值掺杂浓度为1e14-1e16cm-3;阴极区的n+发射极厚度为10-25um,峰值掺杂浓度为1e18-1e21cm-3;P+基区厚度为30-60um,峰值掺杂浓度为1e16-1e18cm-3;P基区厚度为50-120um,峰值掺杂浓度为1e14-5e15cm-3;漂移区n-基区掺杂浓度在5e11-1e14cm-3之间,在该方案中小于5e13cm-3;以上峰值掺杂浓度指净掺杂浓度,指实际结构中各层中浓度最大值。When this scheme is applied to a specific reverse resistance IGCT, as shown in FIG. 7 , the first dopant region 1 is a p-based region, the second dopant region 2 is an n-based region, and the third dopant region is The region 3 is the P+ emitter, the upper dopant region 4 is located between the P base region and the n- base region, and the
该结构在正向耐压和反向耐压时的电场分布如图7所示,由于透明缓冲层掺杂浓度高于n-基区,根据泊松方程,透明缓冲层电场强度变化斜率较大。但由于透明缓冲层很薄,其对电场分布的实际调节作用非常小,甚至可以忽略,这种情况下,器件仍然属于非穿通型,可以保证器件的双向阻断能力。而透明缓冲层可以降低小电流密度下PNP晶体管的发射效率,在不增加片厚的情况下极大程度减小由自由载流子扩散形成的漏电流,特别适用于各类半导体逆阻器件。The electric field distribution of the structure under forward voltage and reverse voltage is shown in Figure 7. Since the doping concentration of the transparent buffer layer is higher than that of the n-base region, according to Poisson's equation, the change slope of the electric field strength of the transparent buffer layer is relatively large. . However, because the transparent buffer layer is very thin, its actual adjustment effect on the electric field distribution is very small, or even negligible. In this case, the device is still a non-punch-through type, which can ensure the bidirectional blocking capability of the device. The transparent buffer layer can reduce the emission efficiency of PNP transistors at low current density, and greatly reduce the leakage current formed by the diffusion of free carriers without increasing the thickness of the film, which is especially suitable for various semiconductor reverse resistance devices.
第二种方案具体如下:The second option is as follows:
如图6所示,第二掺杂剂区域2的中部设置有中部掺杂剂区域6,中部掺杂剂区域6将传统结构中的第二掺杂剂区域2分为成了上下两部分,分别为第二掺杂剂上区域21和第二掺杂剂下区域22。在该方案中,中部掺杂剂区域6位于整体结构的中心;中部掺杂剂区域6的掺杂类型可以与第二掺杂剂区域2相同,也可以与其相反;若中部掺杂剂区域6的掺杂类型和第二掺杂剂区域2类型相同,其掺杂浓度均大于第二掺杂剂区域2的浓度。中部掺杂剂区域6的厚度均小于第二掺杂剂上区域21和第二掺杂剂下区域22,具体地说,小于50um。As shown in FIG. 6 , a
将该方案运用到具体的逆阻IGCT中,如图8所示,其中第一掺杂剂区域1为P基区,第二掺杂剂区域2为n-基区,第三掺杂剂区域3为P+发射极,中部掺杂剂区域6将第二掺杂剂区域2分为成了第二掺杂剂上区域21和第二掺杂剂下区域22,其中P基区外侧设置有P+基区,P+基区的外侧中部设置有n+发射极作为阴极,两侧设置有门极。在该方案中,中部掺杂剂区域6的掺杂类型可以是N型掺杂,也可以是P型掺杂,具体的说,中部掺杂剂区域6厚度取值范围为1-50um,掺杂浓度范围为1e13-1e16cm-3;该结构中的阳极侧P+发射极、P基区、P+基区特征与第一种方式中的具有透明缓冲层的逆阻IGCT相同。中部掺杂剂区域6掺杂类型不同时,电场分布也会不同。当中部掺杂剂区域6的掺杂类型是N型掺杂时,正向耐压时电场分布如图8中正向耐压1所示,电场强度在坐标方向的变化趋势与第二掺杂剂上区域21和第二掺杂剂下区域22相同,但斜率大于第二掺杂剂上区域21和第二掺杂剂下区域22。当中部掺杂剂区域6的掺杂类型是P型掺杂时,正向耐压时电场分布如图8中正向耐压2所示,电场强度在坐标方向的变化趋势与第二掺杂剂上区域21和第二掺杂剂下区域22相反。This scheme is applied to a specific reverse resistance IGCT, as shown in Figure 8, wherein the first dopant region 1 is a p-based region, the second dopant region 2 is an n-based region, and the third dopant region is 3 is a P+ emitter, and the
中部掺杂剂区域6结构对电场有调制作用,第二掺杂剂上区域21、第二掺杂剂下区域22、中部掺杂剂区域6的掺杂浓度以及厚度的配合可以减小整体片厚,进而降低器件的压降,同时也可以有效抑制由自由载流子扩散形成的漏电流,减小系统的损耗的同时,也提高了器件了最高可运行结温,增大器件的通流能力。The structure of the
尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。Although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: it is still possible to modify the technical solutions described in the foregoing embodiments, or perform equivalent replacements to some of the technical features; and these Modifications or substitutions do not make the essence of the corresponding technical solutions deviate from the spirit and scope of the technical solutions of the embodiments of the present invention.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011443412.4A CN112599587B (en) | 2020-12-08 | 2020-12-08 | A semiconductor device with a buffer layer structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011443412.4A CN112599587B (en) | 2020-12-08 | 2020-12-08 | A semiconductor device with a buffer layer structure |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112599587A CN112599587A (en) | 2021-04-02 |
CN112599587B true CN112599587B (en) | 2022-04-29 |
Family
ID=75192130
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011443412.4A Active CN112599587B (en) | 2020-12-08 | 2020-12-08 | A semiconductor device with a buffer layer structure |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112599587B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116387359A (en) * | 2023-06-02 | 2023-07-04 | 清华大学 | Reverse-resistance gate pole commutation thyristor and manufacturing method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102687277A (en) * | 2009-11-02 | 2012-09-19 | 富士电机株式会社 | Semiconductor device and method for manufacturing semiconductor device |
CN106098553A (en) * | 2015-04-30 | 2016-11-09 | 英飞凌科技股份有限公司 | Semiconductor device is manufactured by epitaxial growth |
CN107591454A (en) * | 2016-07-07 | 2018-01-16 | 英飞凌科技股份有限公司 | Semiconductor devices and the method for forming semiconductor devices |
CN110521000A (en) * | 2017-04-24 | 2019-11-29 | 力特半导体(无锡)有限公司 | Improved field prevents thyristor structure and its manufacturing method |
CN110534567A (en) * | 2019-09-06 | 2019-12-03 | 电子科技大学 | A kind of silicon carbide gate level turn-off thyristor |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7989888B2 (en) * | 2006-08-31 | 2011-08-02 | Infineon Technologies Autria AG | Semiconductor device with a field stop zone and process of producing the same |
-
2020
- 2020-12-08 CN CN202011443412.4A patent/CN112599587B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102687277A (en) * | 2009-11-02 | 2012-09-19 | 富士电机株式会社 | Semiconductor device and method for manufacturing semiconductor device |
CN106098553A (en) * | 2015-04-30 | 2016-11-09 | 英飞凌科技股份有限公司 | Semiconductor device is manufactured by epitaxial growth |
CN107591454A (en) * | 2016-07-07 | 2018-01-16 | 英飞凌科技股份有限公司 | Semiconductor devices and the method for forming semiconductor devices |
CN110521000A (en) * | 2017-04-24 | 2019-11-29 | 力特半导体(无锡)有限公司 | Improved field prevents thyristor structure and its manufacturing method |
CN110534567A (en) * | 2019-09-06 | 2019-12-03 | 电子科技大学 | A kind of silicon carbide gate level turn-off thyristor |
Also Published As
Publication number | Publication date |
---|---|
CN112599587A (en) | 2021-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3968912B2 (en) | diode | |
KR100726901B1 (en) | Semiconductor devices | |
JP6824135B2 (en) | Semiconductor devices and their manufacturing methods | |
CN103311287A (en) | RC-IGBT (Reverse-Conducting Insulated-Gate Bipolar Transistor) provided with series P floating buried layer | |
CN110137250B (en) | A high-speed IGBT device with ultra-low on-voltage drop | |
CN104409519A (en) | Diode with floating island structure | |
CN108336085B (en) | A gate-embedded island type silicon controlled thyristor electrostatic protection device | |
CN104600101A (en) | Dual-gate-electrode contact ring cathode surface layer structure of integrated gate electrode commutation thyristor chip | |
CN104241349B (en) | A kind of inverse conductivity type insulated gate bipolar transistor | |
CN111834449B (en) | A fast-turn-off RC-IGBT device with back-side dual MOS structure | |
CN111755501A (en) | A wafer chip structure with edge deep junction structure | |
CN112599587B (en) | A semiconductor device with a buffer layer structure | |
CN209029379U (en) | A New Wide Bandgap Power Semiconductor Device | |
CN105405870A (en) | Fabrication method of fast soft recovery diode | |
CN109686787B (en) | An IGBT device with a carrier storage layer using diode clamping | |
CN113437158B (en) | Fast recovery diode | |
CN103915489B (en) | Insulated gate bipolar transistor | |
CN107749420B (en) | Reverse resistance type IGBT | |
CN212161818U (en) | Buffer variable doping structure and semiconductor device for overvoltage breakdown function | |
CN114628530A (en) | Fast recovery diode, chip and manufacturing method thereof | |
CN118472020A (en) | Junction field effect transistor controlled RC-IGBT device and preparation method thereof | |
CN107516669A (en) | A kind of IGBT device | |
CN204577431U (en) | A kind of Dual Gated contact ring cathode plane structure of integrated gate commutated thyristor chip | |
WO2020134177A1 (en) | Component having reverse flow function | |
CN212161819U (en) | A wafer chip structure with edge deep junction structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |