CN112596281B - Spatial light modulator and method of making the same - Google Patents
Spatial light modulator and method of making the same Download PDFInfo
- Publication number
- CN112596281B CN112596281B CN202011499623.XA CN202011499623A CN112596281B CN 112596281 B CN112596281 B CN 112596281B CN 202011499623 A CN202011499623 A CN 202011499623A CN 112596281 B CN112596281 B CN 112596281B
- Authority
- CN
- China
- Prior art keywords
- modulation
- layer
- electrode
- pixel
- light modulator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title description 14
- 230000003287 optical effect Effects 0.000 claims abstract description 25
- 238000002360 preparation method Methods 0.000 claims abstract description 19
- 239000000463 material Substances 0.000 claims description 26
- 238000000034 method Methods 0.000 claims description 23
- 238000000059 patterning Methods 0.000 claims description 18
- 238000000605 extraction Methods 0.000 claims description 16
- 239000000382 optic material Substances 0.000 claims description 14
- 239000000758 substrate Substances 0.000 claims description 12
- 239000000126 substance Substances 0.000 claims description 10
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 7
- 239000004065 semiconductor Substances 0.000 claims description 7
- 239000004020 conductor Substances 0.000 claims description 6
- 239000012212 insulator Substances 0.000 claims description 5
- 238000000053 physical method Methods 0.000 claims description 5
- 238000005498 polishing Methods 0.000 claims description 4
- 239000000956 alloy Substances 0.000 claims description 3
- 229910045601 alloy Inorganic materials 0.000 claims description 3
- 238000005229 chemical vapour deposition Methods 0.000 claims description 3
- 238000005566 electron beam evaporation Methods 0.000 claims description 3
- 238000001659 ion-beam spectroscopy Methods 0.000 claims description 3
- 238000001755 magnetron sputter deposition Methods 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 238000001451 molecular beam epitaxy Methods 0.000 claims description 3
- 238000002207 thermal evaporation Methods 0.000 claims description 3
- 238000001027 hydrothermal synthesis Methods 0.000 claims description 2
- 238000003980 solgel method Methods 0.000 claims description 2
- 230000008859 change Effects 0.000 abstract description 6
- 239000004973 liquid crystal related substance Substances 0.000 description 29
- 238000000151 deposition Methods 0.000 description 8
- 230000008021 deposition Effects 0.000 description 8
- 230000008901 benefit Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 229910003480 inorganic solid Inorganic materials 0.000 description 4
- 238000002310 reflectometry Methods 0.000 description 4
- 239000000565 sealant Substances 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 229910052814 silicon oxide Inorganic materials 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 239000003292 glue Substances 0.000 description 3
- 230000010365 information processing Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical group N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 229910005540 GaP Inorganic materials 0.000 description 1
- 229910013641 LiNbO 3 Inorganic materials 0.000 description 1
- -1 Ta 2 O 5 Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000002848 electrochemical method Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 239000004038 photonic crystal Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/0102—Constructional details, not otherwise provided for in this subclass
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Abstract
Description
技术领域technical field
本发明涉及光学领域,特别是涉及一种空间光调制器及其制备方法。The invention relates to the field of optics, in particular to a spatial light modulator and a preparation method thereof.
背景技术Background technique
光学信息处理技术以光学器件为基础,利用光波承载信息,采用并行方式处理信息,具有信息容量大、信息处理速度快的优点,在飞速发展的信息时代具有重要的应用价值,在光通信、生物传感器、光学计算机和数字全息成像等领域具有重要作用。Optical information processing technology is based on optical devices, uses light waves to carry information, and uses parallel methods to process information. It has the advantages of large information capacity and fast information processing speed. It has important application value in the rapidly developing information age. Areas such as sensors, optical computers, and digital holographic imaging play an important role.
空间光调制器在光学信息处理系统中是一种重要的光学器件,具有多个像素单元,能够调节光波的振幅和相位等光学参量,使光学参量在空间中形成一维或二维分布。目前空间光调制器的种类主要是液晶空间光调制器。液晶空间光调制器的主要功能材料是液晶,还包括导向层和封框胶。封框胶等连接结构容易移动,存在固定稳定性弱的问题。液晶的使用温度通常不超过50℃。液晶、导向层和封框胶都是温度稳定性较低的有机物,在光照和较高温度下使用容易老化,存在使用温度低、使用寿命短的问题。液晶空间光调制器的调制机理通常采用液晶的电致双折射效应,由于液晶材料、液晶层的厚度的最小均匀性和液晶层最小厚度的限制,液晶空间光调制器存在调制速度低的缺点,调制速度通常在百赫兹量级。The spatial light modulator is an important optical device in the optical information processing system. It has multiple pixel units and can adjust the optical parameters such as the amplitude and phase of the light wave, so that the optical parameters form a one-dimensional or two-dimensional distribution in space. At present, the main types of spatial light modulators are liquid crystal spatial light modulators. The main functional material of the liquid crystal spatial light modulator is liquid crystal, which also includes the guiding layer and the sealing glue. Connection structures such as sealing glue are easy to move, and there is a problem of weak fixing stability. The operating temperature of liquid crystals usually does not exceed 50°C. Liquid crystals, guide layers, and frame sealants are all organic substances with low temperature stability. They are prone to aging when used under sunlight and high temperature, and have the problems of low operating temperature and short service life. The modulation mechanism of the liquid crystal spatial light modulator usually adopts the electric birefringence effect of the liquid crystal. Due to the minimum uniformity of the thickness of the liquid crystal material and the liquid crystal layer and the limitation of the minimum thickness of the liquid crystal layer, the liquid crystal spatial light modulator has the disadvantage of low modulation speed. The modulation speed is usually on the order of hundreds of Hertz.
由于液晶空间光调制器包含的结构零件较多,液晶空间光调制器的制备方法存在加工步骤多、加工难度高、生产成本高和成品率低的缺点。液晶空间光调制器的制备步骤通常包括硅基互补金属氧化物半导体集成电路的制备步骤和液晶面板贴合封装的步骤。硅基互补金属氧化物半导体集成电路的制备步骤通常包括第一次沉积氧化硅、第一次图形化、离子注入、去除剩余氧化硅、第二次沉积氧化硅、沉积氮化硅、第二次图形化、第三次沉积氧化硅、沉积氮化硅、第三次图形化以及制备接触孔、栅极和电极等,共包括9次沉积、3次离子注入和7次图形化等19个步骤,成品率为90%。液晶面板贴合封装的步骤包括制备导向层、曝光导向层、涂布封框胶、液晶灌注和涂布封口胶等5个步骤,成品率为30%。因此,液晶空间光调制器的制备步骤共24个,成品率为27%,成品率较低,生产成本高。其中,图形化的次数较多、对准偏差较大,接触孔的制备难度大,涂布封框胶对准偏差较大,因此液晶空间光调制器的加工难度高。Since the liquid crystal spatial light modulator contains many structural parts, the preparation method of the liquid crystal spatial light modulator has the disadvantages of many processing steps, high processing difficulty, high production cost and low yield. The preparation steps of the liquid crystal spatial light modulator generally include the preparation steps of silicon-based complementary metal oxide semiconductor integrated circuits and the steps of bonding and packaging liquid crystal panels. The preparation steps of silicon-based complementary metal oxide semiconductor integrated circuits usually include the first deposition of silicon oxide, the first patterning, ion implantation, the removal of remaining silicon oxide, the second deposition of silicon oxide, the deposition of silicon nitride, the second Patterning, the third deposition of silicon oxide, the deposition of silicon nitride, the third patterning and the preparation of contact holes, gates and electrodes, etc., including a total of 19 steps including 9 depositions, 3 ion implantations and 7 patterning , The yield rate is 90%. The steps of bonding and encapsulating the liquid crystal panel include five steps of preparing the orientation layer, exposing the orientation layer, coating the frame sealant, pouring the liquid crystal and coating the sealant, and the yield rate is 30%. Therefore, the preparation steps of the liquid crystal spatial light modulator are totally 24, and the yield rate is 27%, which is low and the production cost is high. Among them, the number of times of patterning is large, the alignment deviation is large, the preparation of the contact hole is difficult, and the alignment deviation of the coated frame sealant is large, so the processing of the liquid crystal spatial light modulator is difficult.
发明内容Contents of the invention
为了解决上述技术问题,降低空间光调制器的加工难度,提高空间光调制器的成品率,本发明公开一种空间光调制器及其制备方法,具体方案如下。In order to solve the above technical problems, reduce the processing difficulty of the spatial light modulator, and improve the yield of the spatial light modulator, the present invention discloses a spatial light modulator and a preparation method thereof, and the specific scheme is as follows.
一种空间光调制器,包括:A spatial light modulator comprising:
反射层,用于对入射波进行反射;A reflective layer for reflecting incident waves;
调制层,设置在所述反射层上,所述调制层的光学性质可调节,包括像素调制单元;a modulation layer, disposed on the reflective layer, the optical properties of the modulation layer can be adjusted, including a pixel modulation unit;
电极层,设置在所述调制层上,包括调制电极,所述调制电极设置在所述像素调制单元上,所述调制电极通过改变施加在所述像素调制单元的电压完成改变调制层的光学性质。The electrode layer is arranged on the modulation layer, including a modulation electrode, the modulation electrode is arranged on the pixel modulation unit, and the modulation electrode changes the optical properties of the modulation layer by changing the voltage applied to the pixel modulation unit .
根据本发明的一些实施例,所述调制电极的数量为多个,多个所述调制电极呈阵列排布在所述电极层上。According to some embodiments of the present invention, there are multiple modulation electrodes, and the multiple modulation electrodes are arranged in an array on the electrode layer.
根据本发明的一些实施例,所述反射层包括至少两层分层,每层所述分层的折射率均不同;所述反射层材质包括以下之一:导体、半导体或绝缘体。According to some embodiments of the present invention, the reflective layer includes at least two layers, and the refractive index of each layer is different; the material of the reflective layer includes one of the following: conductor, semiconductor or insulator.
根据本发明的一些实施例,所述反射层的层数为偶数层,层数编号为奇数的分层的材质为SiO2,厚度为240nm的正整数倍,折射率为1.5;层数编号为偶数的分层的材质为Ta2O5,厚度为190nm的正整数倍,折射率为2.0。According to some embodiments of the present invention, the number of layers of the reflective layer is an even number of layers, and the material of the layer with an odd number of layers is SiO 2 , the thickness is a positive integer multiple of 240nm, and the refractive index is 1.5; the number of layers is The material of the even numbered layers is Ta 2 O 5 , the thickness is a positive integer multiple of 190 nm, and the refractive index is 2.0.
根据本发明的一些实施例,所述调制层的材质包括以下之一:热光材料、电光材料、声光材料或磁光材料。According to some embodiments of the present invention, the material of the modulation layer includes one of the following: thermo-optic material, electro-optic material, acousto-optic material or magneto-optic material.
根据本发明的一些实施例,所述电极层还包括:According to some embodiments of the present invention, the electrode layer further includes:
公共电极焊盘,通过引出电极与所述调制电极连接;The common electrode pad is connected to the modulation electrode through the lead-out electrode;
像素电极焊盘,通过引出电极与所述调制电极连接;The pixel electrode pad is connected to the modulation electrode through the lead-out electrode;
其中,所述公共电极焊盘与外接电源的负极连接,所述像素电极焊盘与外接电源的正极连接;或者,Wherein, the common electrode pad is connected to the negative pole of the external power supply, and the pixel electrode pad is connected to the positive pole of the external power supply; or,
所述公共电极焊盘与外接电源的正极连接,所述像素电极焊盘与外接电源的负极连接。The common electrode pad is connected to the positive pole of the external power supply, and the pixel electrode pad is connected to the negative pole of the external power supply.
根据本发明的一些实施例,所述电极层的材质包括以下之一或组合:金属、合金和透明导电氧化物。According to some embodiments of the present invention, the material of the electrode layer includes one or a combination of the following: metal, alloy and transparent conductive oxide.
一种空间光调制器的制备方法,包括:A method for preparing a spatial light modulator, comprising:
在衬底层上制备反射层;preparing a reflective layer on the substrate layer;
在反射层上制备调制层,将所述调制层进行图形化制备像素调制单元;preparing a modulation layer on the reflective layer, and patterning the modulation layer to prepare a pixel modulation unit;
在所述调制层上制备电极层,将所述电极层进行图形化制备调制电极、引出电极、公共电极焊盘和像素电极焊盘;An electrode layer is prepared on the modulation layer, and the electrode layer is patterned to prepare a modulation electrode, an extraction electrode, a common electrode pad, and a pixel electrode pad;
在所述电极层上制备绝缘层,将所述绝缘层进行图形化;preparing an insulating layer on the electrode layer, and patterning the insulating layer;
其中,所述调制电极设置在所述像素调制单元上,所述公共电极焊盘与外接电源的负极连接,所述像素电极焊盘与外接电源的正极连接;或者,Wherein, the modulation electrode is arranged on the pixel modulation unit, the common electrode pad is connected to the negative pole of the external power supply, and the pixel electrode pad is connected to the positive pole of the external power supply; or,
所述公共电极焊盘与外接电源的正极连接,所述像素电极焊盘与外接电源的负极连接。The common electrode pad is connected to the positive pole of the external power supply, and the pixel electrode pad is connected to the negative pole of the external power supply.
根据本发明的一些实施例,将所述调制层进行图形化之前还包括,将所述调制层的下表面进行减薄和抛光,将所述反射层的上表面和所述调制层的下表面进行键合。According to some embodiments of the present invention, before patterning the modulation layer, it further includes thinning and polishing the lower surface of the modulation layer, and the upper surface of the reflection layer and the lower surface of the modulation layer to bond.
根据本发明的一些实施例,制备所述反射层、制备所述调制层、制备所述电极层和制备所述绝缘层包括物理法或化学法;所述物理法包括以下之一:磁控溅射法、离子束溅射法、电子束蒸发法、热蒸发法或分子束外延法;所述化学法包括以下之一:化学气相沉积法、电化学法、溶胶凝胶法或水热法。According to some embodiments of the present invention, preparing the reflective layer, preparing the modulation layer, preparing the electrode layer and preparing the insulating layer include physical methods or chemical methods; the physical methods include one of the following: magnetron sputtering radiation method, ion beam sputtering method, electron beam evaporation method, thermal evaporation method or molecular beam epitaxy method; said chemical method includes one of the following: chemical vapor deposition method, electrochemical method, sol-gel method or hydrothermal method.
通过上述技术方案,通过采用调制电极通过改变所述像素调制单元的电压完成改变调制层的光学性质,进而实现对光波的调制,相较于液晶空间光调制器,同时,因为采用了使用无机物作为固体状态的反射层、调制层、电极层以及绝缘层,具有稳定性高,鲁棒性高,使用寿命长和调制速度高的特点。Through the above technical solution, the optical properties of the modulation layer are changed by changing the voltage of the pixel modulation unit by using the modulation electrode, thereby realizing the modulation of the light wave. Compared with the liquid crystal spatial light modulator, at the same time, because the inorganic material is used As a reflection layer, a modulation layer, an electrode layer and an insulation layer in a solid state, it has the characteristics of high stability, high robustness, long service life and high modulation speed.
附图说明Description of drawings
图1示意性示出了本发明实施例的空间光调制器结构示意图;FIG. 1 schematically shows a schematic structural diagram of a spatial light modulator according to an embodiment of the present invention;
图2示意性示出了本发明另一实施例的空间光调制器结构示意图;Fig. 2 schematically shows a schematic structural diagram of a spatial light modulator according to another embodiment of the present invention;
图3示意性示出了本发明实施例的空间光调制器的俯视示意图;Fig. 3 schematically shows a schematic top view of a spatial light modulator according to an embodiment of the present invention;
图4示意性示出了本发明另一实施例的空间光调制器的俯视示意图;Fig. 4 schematically shows a schematic top view of a spatial light modulator according to another embodiment of the present invention;
图5示意性示出了本发明实施例的空间光调制器的制备方法的流程图;FIG. 5 schematically shows a flowchart of a method for manufacturing a spatial light modulator according to an embodiment of the present invention;
其中,100表示衬底层;200表示反射层,201-208分别表示反射层的奇数分层和偶数分层;300表示调制层,301表示像素调制单元;400表示电极层,401表示公共电极焊盘,402表示像素电极焊盘,403表示引出电极,404表示调制电极;500表示绝缘层。Among them, 100 represents the substrate layer; 200 represents the reflective layer, 201-208 represent the odd layer and even layer of the reflective layer respectively; 300 represents the modulation layer, 301 represents the pixel modulation unit; 400 represents the electrode layer, 401 represents the common electrode pad , 402 denotes a pixel electrode pad, 403 denotes an extraction electrode, 404 denotes a modulation electrode; 500 denotes an insulating layer.
具体实施方式detailed description
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明作进一步的详细说明。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below in conjunction with specific embodiments and with reference to the accompanying drawings.
但是应该理解,这些描述只是示例性的,而并非要限制本发明的范围。在下面的详细描述中,为便于解释,阐述了许多具体的细节以提供对本发明实施例的全面理解。然而,明显地,一个或多个实施例在没有这些具体细节的情况下也可以被实施。此外,在以下说明中,省略了对公知技术的描述,以避免不必要地混淆本发明的概念。It should be understood, however, that these descriptions are exemplary only and are not intended to limit the scope of the present invention. In the following detailed description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the embodiments of the invention. It may be evident, however, that one or more embodiments may be practiced without these specific details. In addition, in the following description, descriptions of known technologies are omitted to avoid unnecessarily confusing the concept of the present invention.
在此使用的术语仅仅是为了描述具体实施例,而并非意在限制本发明。在此使用的术语“包括”表明了特征、步骤、操作的存在,但是并不排除存在或添加一个或多个其他特征。The terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting of the invention. The term "comprising" used herein indicates the presence of features, steps, operations, but does not exclude the presence or addition of one or more other features.
在此使用的所有术语(包括技术和科学术语)具有本领域技术人员通常所理解的含义,除非另外定义。应注意,这里使用的术语应解释为具有与本说明书的上下文相一致的含义,而不应以理想化或过于刻板的方式来解释。All terms (including technical and scientific terms) used herein have the meaning commonly understood by one of ordinary skill in the art, unless otherwise defined. It should be noted that the terms used herein should be interpreted to have a meaning consistent with the context of this specification, and not be interpreted in an idealized or overly rigid manner.
本发明的目的在于提供一种空间光调制器及其制备方法,利用所述空间光调制器可以解决固定稳定性弱、使用温度低、使用寿命短和调制速度低的问题,利用所述空间光调制器的所述制备方法可以解决加工步骤多、加工难度高、成品率低和生产成本高的问题。The object of the present invention is to provide a spatial light modulator and its preparation method. The problems of weak fixing stability, low operating temperature, short service life and low modulation speed can be solved by using the spatial light modulator. The preparation method of the modulator can solve the problems of many processing steps, high processing difficulty, low yield and high production cost.
为了解决上述技术问题,本发明公开一种空间光调制器及其制备方法,具体方案如下。In order to solve the above technical problems, the present invention discloses a spatial light modulator and a preparation method thereof, and the specific scheme is as follows.
图1示意性示出了本发明实施例的空间光调制器结构示意图。Fig. 1 schematically shows a schematic structural diagram of a spatial light modulator according to an embodiment of the present invention.
如图1所示,一种空间光调制器,包括:反射层200、调制层300和电极层400。As shown in FIG. 1 , a spatial light modulator includes: a
根据本发明的一些实施例,反射层200用于对入射波进行反射,具体的,光波依次穿过电极层400和调制层300,在反射层200发生反射,再依次穿出调制层300和电极层400,完成对光波的调制。According to some embodiments of the present invention, the
根据本发明的一些实施例,反射层200包括至少两层分层,每层分层的折射率均不同;反射层200材质包括以下之一:导体、半导体或绝缘体。According to some embodiments of the present invention, the
根据本发明的一些实施例,反射层200的层数为偶数层,层数编号为奇数的分层的材质为SiO2,厚度为240nm的正整数倍,折射率为1.5;层数编号为偶数的分层的材质为Ta2O5,厚度为190nm的正整数倍,折射率为2.0。According to some embodiments of the present invention, the number of layers of the
图2示意性示出了本发明另一实施例的空间光调制器结构示意图。Fig. 2 schematically shows a structural diagram of a spatial light modulator according to another embodiment of the present invention.
根据本发明的一些实施例,如图2所示,可选地,反射层200包括8层。According to some embodiments of the present invention, as shown in FIG. 2 , optionally, the
其中,编号为奇数的分层(如:分层201、分层203、分层205和分层207)的材质为SiO2,厚度为240nm的正整数倍,折射率为1.5。Among them, the layers with odd numbers (for example:
编号为偶数的分层(如:分层202、分层204、分层206和分层208)的材质为Ta2O5,厚度为190nm的正整数倍,折射率为2.0。Layers with even numbers (for example:
通过上述结构,可以使得反射层200在1550nm波长光波的反射率为95%。Through the above structure, the reflectivity of the
根据本发明的一些实施例,反射层200由高折射率材料和低折射率材料的分层间隔组成,可以实现较高的反射率。According to some embodiments of the present invention, the
根据本发明的一些实施例,反射层200位于调制层300的下方,反射层200具有较高的反射率,所以反射层200可以将从上方入射穿过调制层300的光波反射回到上方,从而实现光波的调制,构成反射式空间光调制器。According to some embodiments of the present invention, the
根据本发明的一些实施例,反射层200的厚度为1nm至1mm。According to some embodiments of the present invention, the
根据本发明的一些实施例,反射层200为导体Al。Al的厚度为200nm,在1550nm波长的反射率为90%。According to some embodiments of the present invention, the
根据本发明的一些实施例,调制层300设置在反射层200上,调制层300的光学性质可调节,包括像素调制单元301。According to some embodiments of the present invention, the
根据本发明的一些实施例,调制层300的光学性质可调节,包括折射率或吸收系数。According to some embodiments of the present invention, the optical properties of the
根据本发明的一些实施例,像素调制单元301的形状包括立方体、长方体、圆柱体或梯形锥体。According to some embodiments of the present invention, the shape of the
根据本发明的一些实施例,像素调制单元301的数量为多个,相邻的两个像素调制单元301之间设置有间隙。According to some embodiments of the present invention, there are multiple
根据本发明的一些实施例,调制层300的材质包括以下之一:热光材料、电光材料、声光材料或磁光材料。According to some embodiments of the present invention, the material of the
根据本发明的一些实施例,调制层300为导体、半导体或绝缘体。According to some embodiments of the present invention, the
根据本发明的一些实施例,调制层300的结构为薄膜结构、纳米结构、超晶格结构或光子晶体结构。According to some embodiments of the present invention, the structure of the
根据本发明的一些实施例,调制层300包括以下之一:Si、Ge、ITO、AZO、ZnO、GaN、AlN、ZnS、SiC、AlP、GaP、Au、Ag、Pt、VO2、LiNbO3、LiTaO3、BaTiO3、Ta2O5或SiO2。According to some embodiments of the present invention, the
根据本发明的一些实施例,调制层300的厚度为1nm至1mm。According to some embodiments of the present invention, the
根据本发明的一些实施例,可选地,调制层300为BaTiO3。BaTiO3的厚度为500nm。BaTiO3是一种电光材料,其电光系数为105pm/V,在1550nm波长的折射率为2.1。可以理解的是,调制层300位于电极层400的下方,调制层300具有较大的电光系数,所以通过电极层400对调制层300施加电压,可以改变调制层300的折射率,从而改变入射光通过调制层的光程差,实现光波的调制。According to some embodiments of the present invention, optionally, the
根据本发明的一些实施例,可选地,调制层300为VO2。VO2的厚度为100nm。VO2是一种热光材料,在1550nm波长的折射率为2.1。可以理解的是,调制层300位于电极层400的下方,所以通过对电极层400施加电压产生的热量可以使调制层300的温度发生改变,从而改变调制层300的折射率,进而改变入射光通过调制层300的光程差,实现光波的调制。According to some embodiments of the present invention, optionally, the
图3示意性示出了本发明实施例的空间光调制器的俯视示意图;图4示意性示出了本发明另一实施例的空间光调制器的俯视示意图。FIG. 3 schematically shows a top view of a spatial light modulator according to an embodiment of the present invention; FIG. 4 schematically shows a top view of a spatial light modulator according to another embodiment of the present invention.
根据本发明的一些实施例,可以结合图2进行描述,如图3和图4所示,电极层400设置在调制层300上,包括调制电极404,调制电极404设置在像素调制单元301上,调制电极404通过改变施加在像素调制单元301的电压完成改变调制层300的光学性质。According to some embodiments of the present invention, it can be described in conjunction with FIG. 2. As shown in FIG. 3 and FIG. 4, the
根据本发明的一些实施例,调制电极404的数量为多个,多个调制电极404呈阵列排布在电极层上。According to some embodiments of the present invention, there are
根据本发明的一些实施例,调制电极404的形状包括立方体、长方体、圆柱体或梯形锥体。According to some embodiments of the present invention, the shape of the
根据本发明的一些实施例,调制电极404的形状与像素调制单元301的形状一致。According to some embodiments of the present invention, the shape of the
根据本发明的一些实施例,可选地,电极层400为Au。Au的厚度为100nm。Au材料的电阻率为2.4×10-8Ω·m。调制电极404的长度为1mm,宽度为1μm,间距为1mm。According to some embodiments of the present invention, optionally, the
根据本发明的一些实施例,可选地,公共电极焊盘401的长度和宽度都为100μm。According to some embodiments of the present invention, optionally, the length and width of the
根据本发明的一些实施例,可选地,像素电极焊盘402的长度和宽度都为100μm,竖直方向的较小的间距为10μm。According to some embodiments of the present invention, optionally, the length and width of the
根据本发明的一些实施例,引出电极403的宽度为1μm,引出电极和调制电极在竖直方向的较小的间距为1μm。According to some embodiments of the present invention, the width of the
根据本发明的一些实施例,电极层共有16个调制电极404,呈4*4阵列排布,对应的,每个调制电极404下方对应一个像素调制单元301。公共电极焊盘401的数量是1个,公共电极焊盘401用于连接外部电源的负极,通过引出电极403与每一个调制电极404的一端连接。像素电极焊盘402的数量是16个,像素电极焊盘402用于连接外部电源的正极,每一个像素电极焊盘402通过引出电极403与一个调制电极404的另一端连接。可以理解的是,电极层400位于调制层300的上方,公共电极焊盘401和每个像素电极焊盘402可以独立控制每个像素调制单元301上的电压,从而独立控制调制层300的折射率,进而实现光波在空间的二维分布。According to some embodiments of the present invention, the electrode layer has a total of 16
根据本发明的一些实施例,电极层400还包括公共电极焊盘401、引出电极403和像素电极焊盘402。According to some embodiments of the present invention, the
根据本发明的一些实施例,公共电极焊盘401、像素电极焊盘402、引出电极403和调制电极404之间均设置有间隙。According to some embodiments of the present invention, there is a gap between the
根据本发明的一些实施例,电极层400的厚度为1nm至1mm。According to some embodiments of the present invention, the
根据本发明的一些实施例,调制电极404的长度为1nm至1mm,宽度为1nm至1mm。According to some embodiments of the present invention, the
根据本发明的一些实施例,公共电极焊盘401的长度为1nm至1mm,宽度为1nm至1mm。According to some embodiments of the present invention, the length of the
根据本发明的一些实施例,像素电极焊盘402的长度为1nm至1mm,宽度为1nm至1mm。According to some embodiments of the present invention, the length of the
根据本发明的一些实施例,引出电极403的长度为1nm至1mm。According to some embodiments of the present invention, the length of the
根据本发明的一些实施例,两个相邻的调制电极404的间距为1nm至1mm。According to some embodiments of the present invention, the distance between two
根据本发明的一些实施例,引出电极403和调制电极404在竖直方向的间距为1nm到1mm。According to some embodiments of the present invention, the distance between the
根据本发明的一些实施例,公共电极焊盘401通过引出电极403与调制电极404连接。According to some embodiments of the present invention, the
根据本发明的一些实施例,像素电极焊盘402通过引出电极403与调制电极404连接。According to some embodiments of the present invention, the
根据本发明的一些实施例,公共电极焊盘401与外接电源的负极连接,像素电极焊盘402与外接电源的正极连接;或者,According to some embodiments of the present invention, the
公共电极焊盘401与外接电源的正极连接,像素电极焊盘402与外接电源的负极连接。The
根据本发明的一些实施例,电极层400的材质包括以下之一或组合:金属、合金和透明导电氧化物。According to some embodiments of the present invention, the material of the
根据本发明的一些实施例,电极层400包括Ag、Cu、Au、Al、Pt、Ni、Cr、Ti或ITO。According to some embodiments of the present invention, the
根据本发明的一些实施例,电极层400为Au。Au的厚度为100nm。Au材料的电阻率为2.4×10-8Ω·m。调制电极404的宽度为1μm。According to some embodiments of the present invention, the
根据本发明的一些实施例,如图4所示,调制电极404的形状为正方形框架或正方形结构,如图4中所示,301表示调制层300内位于调制电极404下方区域内部分结构,调制电极404的正方形的边长为1mm。公共电极焊盘401的长度和宽度都为100μm。像素电极焊盘402的长度和宽度都为100μm,竖直方向的较小的间距为10μm。引出电极403的宽度为1μm。引出电极和调制电极在竖直方向的较小的间距为1μm。电极层共有16个调制电极404,呈4*4阵列排布,对应的,每个调制电极404下方对应一个像素调制单元301。公共电极焊盘401的数量是1个,公共电极焊盘401用于连接外部电源的负极,通过引出电极403与每一个调制电极404的一端连接。像素电极焊盘402的数量是16个,像素电极焊盘402用于连接外部电源的正极,每一个像素电极焊盘402通过引出电极403与一个调制电极404的另一端连接。可以理解的是,电极层400位于调制层300的上方,公共电极焊盘401和每个像素电极焊盘402可以独立控制每个像素调制单元301上的电压,从而独立控制调制层300的折射率,进而实现光波在空间的二维分布。According to some embodiments of the present invention, as shown in FIG. 4, the shape of the
图2示意性示出了本发明另一实施例的空间光调制器结构示意图。Fig. 2 schematically shows a structural diagram of a spatial light modulator according to another embodiment of the present invention.
根据本发明的一些实施例,如图2所示,空间光调制器还包括衬底层100,衬底层100设置在反射层200的下面。According to some embodiments of the present invention, as shown in FIG. 2 , the spatial light modulator further includes a
根据本发明的一些实施例,衬底层100为导体、半导体或绝缘体。According to some embodiments of the present invention, the
根据本发明的一些实施例,衬底层的材质包括Al、Si、SiO2或Al2O3。According to some embodiments of the present invention, the material of the substrate layer includes Al, Si, SiO 2 or Al 2 O 3 .
根据本发明的一些实施例,衬底层100的厚度为1nm至1mm。According to some embodiments of the present invention, the thickness of the
根据本发明的一些实施例,衬底层100为Si材料。衬底层的厚度为0.4mm。衬底层主要用于承载,有利于实现高度集成。衬底层的价格比较便宜,能降低生产成本。According to some embodiments of the present invention, the
根据本发明的一些实施例,空间光调制器还包括绝缘层500,绝缘层500设置在电极层400的上面。According to some embodiments of the present invention, the spatial light modulator further includes an insulating
根据本发明的一些实施例,绝缘层500为单晶材料、多晶材料或非晶材料。According to some embodiments of the present invention, the insulating
根据本发明的一些实施例,绝缘层500包括以下之一:SiO2、TiO2、Ta2O5、Al2O3或Si3N4。According to some embodiments of the present invention, the insulating
根据本发明的一些实施例,绝缘层500的厚度为1nm至1mm。According to some embodiments of the present invention, the thickness of the insulating
根据本发明的一些实施例,绝缘层500为Al2O3。Al2O3的厚度为200nm,在1550nm波长的折射率为1.9。可以理解的是,绝缘层具有优良的绝缘性能和耐磨性能,从而能够防止电极短路、防止电极层的表面被氧化、保护调制层表面。According to some embodiments of the present invention, the insulating
根据本发明的一些实施例,反射层200、调制层300和电极层400都是固体,且反射层200、调制层300和电极层400都是无机物。无机物固体的使用温度通常高于液晶等有机物,具有使用温度高的优点。同时,无机物固体的抗老化性通常高于有机物,具有使用寿命长的优点,并且,反射层200、调制层300和电极层400的位置及相对位置均为固定不可变的,因此,本发明公开的空间光调制器相较于现有技术中的液晶空间光调制器,具有稳定性高,鲁棒性高,使用寿命长的特点。According to some embodiments of the present invention, the
另外,调制层300是固体,且调制层300是无机物。无机物固体调制层300的厚度的最小均匀性优于液晶层,无机物固体调制层300的最小厚度比液晶层的厚度小1个量级,具有调制速度高的优点,所以,本申请的空间光调制器的调制速度比液晶空间调制器的调制速度高4个量级以上,相较于现有技术中液晶空间光调制器的调制速度在百赫兹量级,本发明公开的空间光调制器的调制速度可以达到兆赫兹量级。In addition, the
图5示意性示出了本发明实施例的空间光调制器的制备方法的流程图。Fig. 5 schematically shows a flowchart of a method for manufacturing a spatial light modulator according to an embodiment of the present invention.
如图5所述,本发明还公开了一种空间光调制器的制备方法,包括:As shown in Figure 5, the present invention also discloses a method for preparing a spatial light modulator, including:
S1:在衬底层100上制备反射层200;S1: preparing a
S2:在反射层200上制备调制层300,将调制层300进行图形化制备像素调制单元301;S2: preparing a
S3:在调制层300上制备电极层400,将电极层400进行图形化制备调制电极404、引出电极403、公共电极焊盘401和像素电极焊盘402;S3: Prepare the
S4:在电极层400上制备绝缘层500,将绝缘层500进行图形化;S4: preparing an insulating
其中,调制电极404设置在像素调制单元301上,公共电极焊盘401与外接电源的负极连接,像素电极焊盘402与外接电源的正极连接;或者,Wherein, the
公共电极焊盘401与外接电源的正极连接,像素电极焊盘402与外接电源的负极连接。The
根据本发明的一些实施例,图形化的工艺方法包括光刻和刻蚀。According to some embodiments of the present invention, the patterning process includes photolithography and etching.
根据本发明的一些实施例,将调制层300进行图形化之前还包括,将调制层300的下表面进行减薄和抛光,将反射层200的上表面和调制层300的下表面进行键合。According to some embodiments of the present invention, before patterning the
根据本发明的一些实施例,制备反射层200、制备调制层300、制备电极层400和制备绝缘层500包括物理法或化学法;物理法包括以下之一:磁控溅射法、离子束溅射法、电子束蒸发法、热蒸发法或分子束外延法;化学法包括以下之一:化学气相沉积法、电化学法、溶胶凝胶法或水热法。According to some embodiments of the present invention, preparing the
根据本发明的一些实施例,本发明公开的空间光调制器的制备方法包括4次沉积和3次图形化,共7个小步骤,远远地少于现有技术中液晶空间光调制器的加工步骤(24个),因此,本发明公开的空间光调制器的制备方法简化了加工工艺,提高了生产效率,降低了生产成本。According to some embodiments of the present invention, the manufacturing method of the spatial light modulator disclosed in the present invention includes 4 times of deposition and 3 times of patterning, a total of 7 small steps, far less than that of the liquid crystal spatial light modulator in the prior art There are 24 processing steps. Therefore, the manufacturing method of the spatial light modulator disclosed in the present invention simplifies the processing technology, improves the production efficiency, and reduces the production cost.
另外,本发明公开的空间光调制器的制备方法只包括沉积和图形化等加工难度较低的工艺,图形化的次数较少、对准偏差较小,不存在接触孔和封框胶的制备,具有加工难度低的优点,进一步降低了成产成本和提高了生产效率。In addition, the preparation method of the spatial light modulator disclosed in the present invention only includes processes such as deposition and patterning with low processing difficulty, the number of patterning is small, the alignment deviation is small, and there is no preparation of contact holes and sealing glue. , has the advantages of low processing difficulty, further reduces the production cost and improves the production efficiency.
通过本发明公开的空间光调制器的制备方法生产空间光调制器的成品率可以高达90%,相较于现有技术中液晶空间光调制器的成品率27%,提高了产率,降低了损耗与成本。The yield of the spatial light modulator produced by the preparation method of the spatial light modulator disclosed in the present invention can be as high as 90%. Compared with the yield of 27% of the liquid crystal spatial light modulator in the prior art, the yield is improved and the loss and cost.
本发明公开的空间光调制器的调制机理为:利用调制层300的光学性质的变化调制经过空间光调制器的光波的光学参量。采用入射光照射空间光调制器,通过电极层400对调制层300施加某种能量(例如:电和热等)改变调制层300的光学性质(例如:折射率和吸收系数等),从而改变空间光调制器的反射光的光学参量(例如:相位和振幅等)。反射层200位于调制层300的下方,反射层200对某个波长或某段波长具有较高的反射率,所以反射层200可以将从上方入射穿过调制层300的光波反射回到上方,从而实现光波的调制。电极层400位于调制层300的上方,公共电极焊盘401和每个像素电极焊盘402可以独立控制每个像素调制单元301的电压,从而独立控制调制层300的折射率,进而实现光波在空间的二维分布。The modulation mechanism of the spatial light modulator disclosed in the present invention is to use the change of the optical properties of the
通过上述技术方案,通过采用调制电极通过改变像素调制单元的电压完成改变调制层的光学性质,进而实现对光波的调制,同时,因为采用了使用无机物作为固体状态的反射层、调制层、电极层以及绝缘层,相较于液晶空间光调制器,具有结构简单,稳定性高,鲁棒性高,使用寿命长以及调制速度高的特点,调制速度可以达到兆赫兹量级。配合其对应的制备方法,具有加工步骤少、加工难度低、成品率高,生产成本低等诸多的有益效果。Through the above technical scheme, the optical properties of the modulation layer are changed by changing the voltage of the pixel modulation unit by using the modulation electrode, and then the modulation of the light wave is realized. Compared with the liquid crystal spatial light modulator, the layer and the insulating layer have the characteristics of simple structure, high stability, high robustness, long service life and high modulation speed, and the modulation speed can reach the order of megahertz. Cooperating with the corresponding preparation method, it has many beneficial effects such as few processing steps, low processing difficulty, high yield and low production cost.
至此,已经结合附图对本公开实施例进行了详细描述。需要说明的是,在附图或说明书正文中,未绘示或描述的实现方式,均为所属技术领域中普通技术人员所知的形式,并未进行详细说明。此外,上述对各零部件的定义并不仅限于实施例中提到的各种具体结构、形状或方式,本领域普通技术人员可对其进行简单地更改或替换。So far, the embodiments of the present disclosure have been described in detail with reference to the accompanying drawings. It should be noted that, in the accompanying drawings or in the text of the specification, implementations that are not shown or described are forms known to those of ordinary skill in the art, and are not described in detail. In addition, the above definition of each component is not limited to the various specific structures, shapes or methods mentioned in the embodiments, and those skilled in the art can easily modify or replace them.
还需要说明的是,在本公开的具体实施例中,除非有所知名为相反之意,本说明书及所附权利要求中的数值参数是近似值,能够根据通过本公开的内容所得的所需特性改变。具体而言,所有使用于说明书及权利要求中表示组成的尺寸、范围条件等等的数字,应理解为在所有情况中是受到“约”的用语所修饰。一般情况下,其表达的含义是指包含由特定数量在一些实施例中±10%的变化、在一些实施例中±5%的变化、在一些实施例中±1%的变化、在一些实施例中±0.5%的变化。It should also be noted that, in the specific embodiments of the present disclosure, unless otherwise known to the contrary, the numerical parameters in this description and the appended claims are approximate values, and can be obtained according to the requirements obtained through the contents of the present disclosure. Characteristics change. In particular, all numbers expressing compositional dimensions, range conditions and the like used in the specification and claims are to be understood as being modified in all instances by the word "about". In general, the expressed meaning is meant to include a variation of ±10% in some embodiments, a variation of ±5% in some embodiments, a variation of ±1% in some embodiments, a variation of ±1% in some embodiments, and a variation of ±1% in some embodiments ±0.5% variation in the example.
本领域技术人员可以理解,本发明的各个实施例和/或权利要求中记载的特征可以进行多种组合或/或结合,即使这样的组合或结合没有明确记载于本发明中。特别地,在不脱离本发明精神和教导的情况下,本发明的各个实施例和/或权利要求中记载的特征可以进行多种组合和/或结合。所有这些组合和/或结合均落入本发明的范围。Those skilled in the art can understand that the features described in the various embodiments and/or claims of the present invention can be combined and/or combined in various ways, even if such a combination or combination is not explicitly recorded in the present invention. In particular, without departing from the spirit and teaching of the present invention, the various embodiments of the present invention and/or the features recited in the claims can be combined and/or combined in various ways. All such combinations and/or combinations fall within the scope of the present invention.
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above have further described the purpose, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above descriptions are only specific embodiments of the present invention, and are not intended to limit the present invention. Within the spirit and principles of the present invention, any modifications, equivalent replacements, improvements, etc., shall be included in the protection scope of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011499623.XA CN112596281B (en) | 2020-12-17 | 2020-12-17 | Spatial light modulator and method of making the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011499623.XA CN112596281B (en) | 2020-12-17 | 2020-12-17 | Spatial light modulator and method of making the same |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112596281A CN112596281A (en) | 2021-04-02 |
CN112596281B true CN112596281B (en) | 2022-12-23 |
Family
ID=75199148
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011499623.XA Active CN112596281B (en) | 2020-12-17 | 2020-12-17 | Spatial light modulator and method of making the same |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112596281B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113391471B (en) * | 2021-06-11 | 2023-04-14 | 中国科学院半导体研究所 | Spatial light modulator and its preparation method |
CN114047651B (en) * | 2021-11-17 | 2022-11-08 | 中国科学院半导体研究所 | Spatial light modulator and method for manufacturing the same |
CN116859643A (en) * | 2023-07-24 | 2023-10-10 | 中国科学院半导体研究所 | Spatial light modulator and preparation method thereof |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5412499A (en) * | 1993-03-29 | 1995-05-02 | At&T Corp. | Spatial light modulator using quantum well material |
JPH07209665A (en) * | 1993-11-30 | 1995-08-11 | Victor Co Of Japan Ltd | Spatial optical modulation device |
US6798550B1 (en) * | 1999-11-18 | 2004-09-28 | Corning Applied Technologies Corporation | Spatial light modulator |
JP2005043770A (en) * | 2003-07-24 | 2005-02-17 | Sun Tec Kk | Spatial light modulator, method for optical recording, and device for optical recording |
US8687260B2 (en) * | 2007-12-28 | 2014-04-01 | Texas Instruments Incorporated | Solid-state optical modulator |
EP3282305B1 (en) * | 2016-08-10 | 2020-05-06 | Samsung Electronics Co., Ltd. | Optical modulator using phase change material and device including the same |
CN107942539A (en) * | 2017-11-17 | 2018-04-20 | 厦门大学 | A kind of reflective spatial electrooptic modulator based on graphene |
-
2020
- 2020-12-17 CN CN202011499623.XA patent/CN112596281B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN112596281A (en) | 2021-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112596281B (en) | Spatial light modulator and method of making the same | |
CN104570402B (en) | Spatial light modulator based on metamaterial structure and preparation method thereof | |
CN113376870B (en) | Spatial light type electro-optic modulation device based on phase change material and manufacturing method thereof | |
JP4920996B2 (en) | Light control element, display device and stress measuring device | |
CN106918927A (en) | Optical modulation device and Optical devices including diectric antenna | |
US9256113B2 (en) | Plasmonic modulator and optical apparatus including the same | |
KR20120077417A (en) | Light modulator and optical apparatus employing the same | |
JP2005509919A (en) | Electro-optical device, electro-optical crystal thin film, and manufacturing method thereof | |
CN113196150B (en) | Light Modulator | |
CN111273467A (en) | Terahertz wavefront phase control device based on liquid crystal and wire grid metasurface | |
CN114047651B (en) | Spatial light modulator and method for manufacturing the same | |
KR102730614B1 (en) | Optical device and method for manufacturing the same | |
KR101803320B1 (en) | Method for fabricating complex spatial light modulator | |
JP6606631B2 (en) | Light modulator | |
CN113391471B (en) | Spatial light modulator and its preparation method | |
CN115047655A (en) | Electro-optical modulation device based on micro electric heater and manufacturing method thereof | |
CN113311522B (en) | Optical asymmetric transmission structure and optical device | |
CN114609803B (en) | Dynamic super-structured surface based on liquid crystal material | |
CN116859643A (en) | Spatial light modulator and preparation method thereof | |
CN115933226A (en) | Light modulator and light modulator array | |
JP2007298895A (en) | Optical element, optical integrated device and manufacturing method thereof | |
CN114994809A (en) | Transmission-type dynamic super-structure surface device | |
CN111736371A (en) | High-speed phase-type one-dimensional spatial light modulator and method | |
WO2022085455A1 (en) | Optical modulator and optical modulator array | |
JP4419537B2 (en) | Diffractive optical element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |