CN112595435B - High-sensitivity temperature measurement demodulation sensing system based on optical fiber strong evanescent field interferometer - Google Patents
High-sensitivity temperature measurement demodulation sensing system based on optical fiber strong evanescent field interferometer Download PDFInfo
- Publication number
- CN112595435B CN112595435B CN202011462545.6A CN202011462545A CN112595435B CN 112595435 B CN112595435 B CN 112595435B CN 202011462545 A CN202011462545 A CN 202011462545A CN 112595435 B CN112595435 B CN 112595435B
- Authority
- CN
- China
- Prior art keywords
- optical fiber
- interferometer
- section
- temperature measurement
- sensing system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000013307 optical fiber Substances 0.000 title claims abstract description 77
- 238000009529 body temperature measurement Methods 0.000 title claims abstract description 23
- 239000000382 optic material Substances 0.000 claims abstract description 28
- 238000005253 cladding Methods 0.000 claims abstract description 22
- 238000001228 spectrum Methods 0.000 claims abstract description 22
- 239000000835 fiber Substances 0.000 claims description 40
- 230000003287 optical effect Effects 0.000 claims description 10
- 230000002093 peripheral effect Effects 0.000 claims description 9
- 229910052751 metal Inorganic materials 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 7
- 239000004205 dimethyl polysiloxane Substances 0.000 claims description 5
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 claims description 5
- -1 polydimethylsiloxane Polymers 0.000 claims description 5
- ORUIBWPALBXDOA-UHFFFAOYSA-L magnesium fluoride Chemical compound [F-].[F-].[Mg+2] ORUIBWPALBXDOA-UHFFFAOYSA-L 0.000 claims description 4
- 229910001635 magnesium fluoride Inorganic materials 0.000 claims description 4
- 239000004814 polyurethane Substances 0.000 claims description 4
- 229920002635 polyurethane Polymers 0.000 claims description 4
- 239000004642 Polyimide Substances 0.000 claims description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 3
- 229920001721 polyimide Polymers 0.000 claims description 3
- 230000035945 sensitivity Effects 0.000 abstract description 16
- 238000013461 design Methods 0.000 abstract description 3
- 230000009977 dual effect Effects 0.000 abstract description 3
- 238000012545 processing Methods 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 5
- 230000009286 beneficial effect Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 230000010412 perfusion Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 238000000411 transmission spectrum Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K11/00—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
- G01K11/32—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
- G01K11/3206—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres at discrete locations in the fibre, e.g. using Bragg scattering
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
- G01D5/32—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
- G01D5/34—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
- G01D5/353—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
- G01D5/35306—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Temperature Or Quantity Of Heat (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种光纤传感测温系统,属于光纤传感技术领域,也属于材料科学以及光电子技术的交叉领域,尤其涉及一种基于光纤强倏逝场干涉仪的高灵敏测温解调传感系统。The invention relates to an optical fiber sensing temperature measurement system, which belongs to the field of optical fiber sensing technology, and also belongs to the intersecting field of material science and optoelectronic technology. sense system.
背景技术Background technique
自20世纪70年代以来,光纤测温就已成为检测温度的最先进的技术,由于其不易受电磁干扰的优点,普遍应用于检测温度的工作当中。光纤测温技术操作起来非常简便,再加上光纤不仅传输性能强,而且还具有抗电磁干扰的优点,因此被广泛使用在各种环境的作业中。国外很多发达国家都十分青睐此项技术,逐渐地用其取代传统的检测温度的技术,光纤技术得到了广泛应用。Since the 1970s, optical fiber temperature measurement has become the most advanced technology for temperature detection. Due to its advantages of not being susceptible to electromagnetic interference, it is widely used in temperature detection work. Optical fiber temperature measurement technology is very easy to operate, and optical fiber not only has strong transmission performance, but also has the advantages of anti-electromagnetic interference, so it is widely used in various environments. Many developed countries in foreign countries are very fond of this technology, and gradually use it to replace the traditional temperature detection technology, and optical fiber technology has been widely used.
但现有的光纤温度传感器难以兼具高灵敏度、方便解调的优点,给其推广应用造成了障碍。However, the existing optical fiber temperature sensor is difficult to have the advantages of high sensitivity and convenient demodulation, which has caused obstacles to its popularization and application.
公开该背景技术部分的信息仅仅旨在增加对本专利申请的总体背景的理解,而不应当被视为承认或以任何形式暗示该信息构成已为本领域一般技术人员所公知的现有技术。The disclosure of information in this background section is only intended to increase the understanding of the general background of this patent application, and should not be considered as an acknowledgment or any form of suggestion that the information constitutes prior art known to those skilled in the art.
发明内容Contents of the invention
本发明的目的是克服现有技术中存在的不能兼具高灵敏度、方便解调的缺陷与问题,提供一种能够兼具高灵敏度、方便解调的基于光纤强倏逝场干涉仪的高灵敏测温解调传感系统。The purpose of the present invention is to overcome the defects and problems in the prior art that cannot have both high sensitivity and convenient demodulation, and provide a high-sensitivity optical fiber interferometer based on strong evanescent field interferometer that can have both high sensitivity and convenient demodulation. Temperature measurement and demodulation sensing system.
为实现以上目的,本发明的技术解决方案是:一种基于光纤强倏逝场干涉仪的高灵敏测温解调传感系统,其包括光纤分路装置、外包裹层、干涉仪、光反射器件与解调仪,所述干涉仪包括包层及其内设置的多根纤芯;To achieve the above objectives, the technical solution of the present invention is: a high-sensitivity temperature measurement and demodulation sensing system based on an optical fiber strong evanescent field interferometer, which includes an optical fiber branching device, an outer cladding, an interferometer, a light reflection A device and a demodulator, the interferometer includes a cladding and a plurality of fiber cores arranged in it;
所述光纤分路装置的一端与光源、解调仪均连接,光纤分路装置的另一端与干涉仪的一端相连接,干涉仪的另一端与光反射器件相串联,所述包层的中部外包裹有外包裹层,且该外包裹层为热光材料。One end of the optical fiber branching device is connected to the light source and the demodulator, the other end of the optical fiber branching device is connected to one end of the interferometer, the other end of the interferometer is connected in series with the light reflection device, and the middle part of the cladding The outer wrapping layer is wrapped, and the outer wrapping layer is a thermo-optic material.
所述光纤分路装置为2×2耦合器并联折射率传感器,或者为2×1光开关。The optical fiber splitting device is a 2×2 coupler connected in parallel with a refractive index sensor, or a 2×1 optical switch.
所述光反射器件为光纤布拉格光栅、宽带布拉格光栅或经表面修饰的纳米银反射膜。The light reflection device is a fiber Bragg grating, a broadband Bragg grating or a surface-modified nano-silver reflective film.
所述光反射器件的波段选择宽度为干涉仪的传感峰自由频谱宽度的1.1—1.6倍。The band selection width of the light reflection device is 1.1-1.6 times of the free spectrum width of the sensing peak of the interferometer.
所述光反射器件的波段中心波长范围为干涉仪的传感峰的波长范围的1.2—2.0倍。The central wavelength range of the band of the light reflection device is 1.2-2.0 times the wavelength range of the sensing peak of the interferometer.
所述热光材料的热光系数绝对值大于3*104,折射率为1.38—1.43,表面张力为20.6—21.2mN/m。The absolute value of the thermo-optic coefficient of the thermo-optic material is greater than 3*10 4 , the refractive index is 1.38-1.43, and the surface tension is 20.6-21.2 mN/m.
所述热光材料为聚二甲基硅氧烷、聚酰亚胺、氟化镁或聚氨酯。The thermo-optic material is polydimethylsiloxane, polyimide, magnesium fluoride or polyurethane.
所述干涉仪包括左光纤段、左锥形段、平直腰段、右锥形段与右光纤段,所述左光纤段的一端与光纤分路装置相连接,左光纤段的另一端依次经左锥形段、平直腰段、右锥形段、右光纤段后与光反射器件相串联;所述左光纤段、右光纤段的直径一致,所述平直腰段的直径为左光纤段的直径的1/10至1/20;The interferometer includes a left optical fiber section, a left tapered section, a straight waist section, a right tapered section and a right optical fiber section, one end of the left optical fiber section is connected to an optical fiber branching device, and the other end of the left optical fiber section is sequentially After the left tapered section, the straight waist section, the right tapered section, and the right optical fiber section, it is connected in series with the light reflection device; the diameters of the left optical fiber section and the right optical fiber section are consistent, and the diameter of the straight waist section is the left 1/10 to 1/20 of the diameter of the fiber segment;
所述左光纤段上近左锥形段的部位、左锥形段、平直腰段、右锥形段、右光纤段上近右锥形段的部位的外部共同包裹有同一个外包裹层。The parts near the left tapered section on the left optical fiber section, the left tapered section, the straight waist section, the right tapered section, and the parts near the right tapered section on the right optical fiber section are jointly wrapped with the same outer wrapping layer .
所述纤芯的数量为七根,包括一根中间芯与六根外围芯,所有的外围芯都围绕中间芯以正六边形均匀分布。There are seven fiber cores, including one central core and six peripheral cores, and all the peripheral cores are uniformly distributed in a regular hexagon around the central core.
所述外包裹层的外部包裹有毛细金属管。The outside of the outer wrapping layer is wrapped with a capillary metal tube.
与现有技术相比,本发明的有益效果为:Compared with prior art, the beneficial effect of the present invention is:
1、本发明一种基于光纤强倏逝场干涉仪的高灵敏测温解调传感系统中,主要包括光纤分路装置、外包裹层、干涉仪、光反射器件与解调仪,干涉仪包括包层及其内设置的多根纤芯,其中,光纤分路装置的一端与光源、解调仪均连接,光纤分路装置的另一端与干涉仪的一端相连接,干涉仪的另一端与光反射器件相串联,包层的中部外包裹有外包裹层(热光材料),应用时,光源发出的入射光经过干涉仪产生干涉光谱(热光材料同时放大环境温度对干涉光谱波长的影响),该干涉光谱经光反射器件后,干涉光谱中的传感峰会被反射回干涉仪(热光材料再次同时放大环境温度对干涉光谱波长的影响),并在后续经光纤分路装置发至解调仪,再由解调仪对反射光谱进行寻峰处理,进行自动解调,利用数学分析可将波长数据转换成为温度数据,使得测量精度更高,使用更加便捷,更易于光学集成。因此,本发明不仅能提高测温的灵敏度,而且能够在线实时的自动解调,从而兼具高灵敏度、方便解调的双重优点。1. In the high-sensitivity temperature measurement and demodulation sensing system based on the optical fiber strong evanescent field interferometer of the present invention, it mainly includes an optical fiber branching device, an outer cladding layer, an interferometer, a light reflection device and a demodulator, and an interferometer Including the cladding and multiple fiber cores set in it, wherein one end of the fiber branching device is connected to the light source and the demodulator, the other end of the fiber branching device is connected to one end of the interferometer, and the other end of the interferometer It is connected in series with the light reflection device, and the middle part of the cladding is wrapped with an outer cladding layer (thermo-optic material). After the interference spectrum passes through the light reflection device, the sensing peak in the interference spectrum is reflected back to the interferometer (the thermo-optic material simultaneously amplifies the influence of the ambient temperature on the wavelength of the interference spectrum), and is subsequently transmitted through the optical fiber splitting device. To the demodulator, then the demodulator performs peak-finding processing on the reflection spectrum, and performs automatic demodulation. Using mathematical analysis, the wavelength data can be converted into temperature data, which makes the measurement accuracy higher, more convenient to use, and easier to optical integration. Therefore, the present invention can not only improve the sensitivity of temperature measurement, but also can perform online real-time automatic demodulation, thereby having the dual advantages of high sensitivity and convenient demodulation.
2、本发明一种基于光纤强倏逝场干涉仪的高灵敏测温解调传感系统中,干涉仪内包层的中部外包裹有外包裹层,该外包裹层为热光材料,应用时,外部环境的温度变化会引起热光材料的折射率发生相应的线性变化,而热光材料的折射率变化又会导致干涉仪产生的干涉光谱的波长发生漂移,从而在外部环境温度、干涉光谱的波长之间构建一种线性关系,进而克服裸光纤干涉仪温度敏感度较低的缺陷,实现增敏,此外,当入射光第一次经过干涉仪,以及被光反射器件反射回干涉仪中时,都会得到增敏,双重叠加,干涉光谱的传感峰强度被大大增加,从而较大幅度的提高灵敏度。因此,本发明不仅能监测环境的温度,而且灵敏度较高。2. In the high-sensitivity temperature measurement and demodulation sensing system based on the optical fiber strong evanescent field interferometer of the present invention, the middle part of the inner cladding of the interferometer is wrapped with an outer cladding layer, and the outer cladding layer is a thermo-optic material. , the temperature change of the external environment will cause a corresponding linear change in the refractive index of the thermo-optic material, and the change in the refractive index of the thermo-optic material will cause the wavelength of the interference spectrum generated by the interferometer to drift, so that the temperature of the external environment, the interference spectrum A linear relationship is constructed between the wavelengths of the bare fiber interferometer, thereby overcoming the defect of low temperature sensitivity of the bare fiber interferometer and achieving sensitivity enhancement. In addition, when the incident light passes through the interferometer for the first time and is reflected back into the interferometer by the light reflection device When the sensitivity is increased, double superposition, the sensing peak intensity of the interference spectrum is greatly increased, thereby greatly improving the sensitivity. Therefore, the invention not only can monitor the temperature of the environment, but also has high sensitivity.
3、本发明一种基于光纤强倏逝场干涉仪的高灵敏测温解调传感系统中,在外包裹层的外部包裹有毛细金属管,应用时,毛细金属管不仅能够对外包裹层(即热光材料)进行保护封装,克服热光材料柔性的缺点,而且可减少响应时间以及避免震动或压强对传感产生的干扰,有利于实现在线实时高精度解调。因此,本发明不仅便于封装固定,而且抗干扰能力较强,利于实现高精度监测。3. In the high-sensitivity temperature measurement and demodulation sensing system based on the optical fiber strong evanescent field interferometer of the present invention, a capillary metal tube is wrapped outside the outer cladding layer. When applied, the capillary metal tube can not only Thermo-optic material) for protection and packaging, overcomes the shortcomings of thermo-optic material flexibility, and can reduce response time and avoid vibration or pressure interference on sensing, which is conducive to realizing online real-time high-precision demodulation. Therefore, the present invention is not only convenient for packaging and fixing, but also has strong anti-interference ability, which is beneficial to realize high-precision monitoring.
附图说明Description of drawings
图1是本发明的结构示意图。Fig. 1 is a schematic structural view of the present invention.
图2是图1中干涉仪、外包裹层相结合的结构示意图。Fig. 2 is a schematic structural diagram of the combination of the interferometer and the outer cladding layer in Fig. 1 .
图3是图2的横向剖视图。FIG. 3 is a transverse sectional view of FIG. 2 .
图4是图2中干涉仪的结构示意图。FIG. 4 is a schematic structural diagram of the interferometer in FIG. 2 .
图5是图4的横向剖视图。FIG. 5 is a transverse sectional view of FIG. 4 .
图6是本发明中实施例1的温度敏感度的对比示意图。Fig. 6 is a comparative schematic diagram of the temperature sensitivity of Example 1 of the present invention.
图7是本发明中实施例1的传感峰波段对比示意图。Fig. 7 is a schematic diagram of comparison of sensing peak bands in Example 1 of the present invention.
图中:外包裹层1、干涉仪2、包层21、纤芯22、中间芯221、外围芯222、左光纤段23、左锥形段24、平直腰段25、右锥形段26、右光纤段27、光反射器件3、毛细金属管4、光源5、封端套头6、热光材料灌注窗口7、解调仪8、光纤分路装置9。In the figure:
具体实施方式detailed description
以下结合附图说明和具体实施方式对本发明作进一步详细的说明。The present invention will be described in further detail below in conjunction with the accompanying drawings and specific embodiments.
参见图1—图5,一种基于光纤强倏逝场干涉仪的高灵敏测温解调传感系统,其包括光纤分路装置9、外包裹层1、干涉仪2、光反射器件3与解调仪8,所述干涉仪2包括包层21及其内设置的多根纤芯22;Referring to Figures 1-5, a high-sensitivity temperature measurement and demodulation sensing system based on an optical fiber strong evanescent field interferometer includes an optical fiber branching device 9, an
所述光纤分路装置9的一端与光源5、解调仪8均连接,光纤分路装置9的另一端与干涉仪2的一端相连接,干涉仪2的另一端与光反射器件3相串联,所述包层21的中部外包裹有外包裹层1,且该外包裹层1为热光材料。One end of the optical fiber branching device 9 is connected to the
所述光纤分路装置9为2×2耦合器并联折射率传感器,或者为2×1光开关。The optical fiber branching device 9 is a 2×2 coupler connected in parallel with a refractive index sensor, or a 2×1 optical switch.
所述光反射器件3为光纤布拉格光栅、宽带布拉格光栅或经表面修饰的纳米银反射膜。The
所述光反射器件3的波段选择宽度为干涉仪2的传感峰自由频谱宽度的1.1—1.6倍。The band selection width of the
所述光反射器件3的波段中心波长范围为干涉仪2的传感峰的波长范围的1.2—2.0倍。The central wavelength range of the band of the
所述热光材料的热光系数绝对值大于3*104,折射率为1.38—1.43,表面张力为20.6—21.2mN/m。The absolute value of the thermo-optic coefficient of the thermo-optic material is greater than 3*10 4 , the refractive index is 1.38-1.43, and the surface tension is 20.6-21.2 mN/m.
所述热光材料为聚二甲基硅氧烷、聚酰亚胺、氟化镁或聚氨酯。The thermo-optic material is polydimethylsiloxane, polyimide, magnesium fluoride or polyurethane.
所述干涉仪2包括左光纤段23、左锥形段24、平直腰段25、右锥形段26与右光纤段27,所述左光纤段23的一端与光纤分路装置9相连接,左光纤段23的另一端依次经左锥形段24、平直腰段25、右锥形段26、右光纤段27后与光反射器件3相串联;所述左光纤段23、右光纤段27的直径一致,所述平直腰段25的直径为左光纤段23的直径的1/10至1/20;所述左光纤段23上近左锥形段24的部位、左锥形段24、平直腰段25、右锥形段26、右光纤段27上近右锥形段26的部位的外部共同包裹有同一个外包裹层1。The
所述纤芯22的数量为七根,包括一根中间芯221与六根外围芯222,所有的外围芯222都围绕中间芯221以正六边形均匀分布。优选纤芯22的直径为9μm,相邻纤芯22的间距为35μm,所述左光纤段23、右光纤段27的直径均为125μm,所述平直腰段25的直径为6μm—15μm。The number of the
所述外包裹层1的外部包裹有毛细金属管4。A
本发明的原理说明如下:Principle of the present invention is described as follows:
本发明中的光反射器件为波段选择性光反射器件。应用时,通过选取合适的波段选择性光反射器件将干涉光谱传感峰波长范围的光谱反射,从而利于解调仪对反射光谱进行寻峰处理,实现自动解调。The light reflective device in the present invention is a band-selective light reflective device. In application, by selecting a suitable band-selective optical reflection device to reflect the spectrum in the peak wavelength range of the interference spectrum sensing, it is beneficial for the demodulator to perform peak-seeking processing on the reflected spectrum and realize automatic demodulation.
本发明中,对光纤进行加热熔融拉锥处理成微纳尺寸,以使光纤表面形成倏逝场(包括左锥形段24、平直腰段25、右锥形段26,尤其在平直腰段25的表面形成强倏逝场),从而得到干涉仪,然后,再使干涉仪与热光材料(即外包裹层)相接触,最后,用毛细金属管进行封装。应用时,光穿过干涉仪时会产生干涉光谱,此时,外界温度或折射率发生改变都会引起干涉仪的有效折射率发生改变,导致干涉谱发生波长漂移,从而感应外界温度或折射率的变化。但由于二氧化硅的热光系数较小,干涉仪的温度敏感度较低,因此,本设计主要关注于外界折射率变化,为此,在干涉仪的外部包裹有热光材料,即关注热光材料折射率的变化与波长漂移之间的联系,而热光材料之外环境温度的变化又会引起热光材料折射率的线性变化,从而,在外界环境温度与波长漂移之间建立一种线性的对应联系。In the present invention, the optical fiber is heated, melted and tapered into a micro-nano size, so that the surface of the optical fiber forms an evanescent field (including the left tapered
本发明中优选热光材料折射率为1.3907-1.4125,所处温度为10-60摄氏度。In the present invention, the thermo-optic material preferably has a refractive index of 1.3907-1.4125 and a temperature of 10-60 degrees Celsius.
实施例1:Example 1:
参见图1—图5,一种基于光纤强倏逝场干涉仪的高灵敏测温解调传感系统,其包括光纤分路装置9、外包裹层1、干涉仪2、光反射器件3与解调仪8,干涉仪2包括包层21及其内设置的七根纤芯22(包括一根中间芯221与六根外围芯222,所有的外围芯222围绕中间芯221以正六边形均匀分布),所述干涉仪2包括左光纤段23、左锥形段24、平直腰段25、右锥形段26与右光纤段27,所述左光纤段23的一端与光纤分路装置9的一端相连接,光纤分路装置9的另一端与光源5、解调仪8均连接,左光纤段23的另一端依次经左锥形段24、平直腰段25、右锥形段26、右光纤段27后与光反射器件3相串联;所述左光纤段23、右光纤段27的直径一致,所述平直腰段25的直径为左光纤段23的直径的1/10至1/20;所述左光纤段23上近左锥形段24的部位、左锥形段24、平直腰段25、右锥形段26、右光纤段27上近右锥形段26的部位的外部共同包裹有同一个外包裹层1,该外包裹层1为热光材料(本实施例中为聚二甲基硅氧烷)。Referring to Figures 1-5, a high-sensitivity temperature measurement and demodulation sensing system based on an optical fiber strong evanescent field interferometer includes an optical fiber branching device 9, an
根据实验数据,上述解调传感系统的灵敏度可达14338pm/℃,与裸光纤MZI相比,增加了500倍,精度最高可达0.001℃。According to the experimental data, the sensitivity of the above-mentioned demodulation sensing system can reach 14338pm/°C, which is 500 times higher than that of the bare fiber MZI, and the accuracy can reach up to 0.001°C.
请参见图6,该图为本实施例1的温度敏感度对比示意图,由图可见,聚二甲基硅氧烷包裹之后,本传感系统对温度的敏感性大幅增加。Please refer to FIG. 6 , which is a schematic diagram of the comparison of temperature sensitivity in Example 1. It can be seen from the figure that after polydimethylsiloxane wrapping, the sensitivity of the sensing system to temperature is greatly increased.
请参见图7,该图为在15℃下,分别用光谱仪采集到的干涉仪透射谱(虚线),以及本设计中解调仪采集到的反射谱(实线),两相对比,可以看到反射谱中干涉谱的幅度明显增大,更有利于解调仪解调,从而利于实现实时的在线自动解调。Please refer to Figure 7, which shows the interferometer transmission spectrum (dotted line) collected by the spectrometer at 15°C, and the reflection spectrum (solid line) collected by the demodulator in this design. The comparison of the two phases can be seen The amplitude of the interference spectrum in the reflection spectrum is significantly increased, which is more conducive to the demodulation of the demodulator, thereby facilitating the realization of real-time online automatic demodulation.
实施例2:Example 2:
基本内容同实施例1,不同之处在于:Basic content is the same as
热光材料选用氟化镁,干涉仪2选用拉锥单模光纤干涉仪。The thermo-optic material is magnesium fluoride, and the
实施例3:Example 3:
基本内容同实施例1,不同之处在于:Basic content is the same as
热光材料选用聚氨酯,干涉仪2选用拉锥七芯光纤干涉仪,光纤分路装置9选用2×1光开关。The thermo-optic material is polyurethane, the
实施例4:Example 4:
基本内容同实施例1,不同之处在于:Basic content is the same as
光纤分路装置9选用2×2耦合器并联折射率传感器,实现温度折射率双参量高灵敏度测量。The optical fiber branching device 9 uses 2×2 couplers to connect the refractive index sensors in parallel to realize the high-sensitivity measurement of the dual parameters of the temperature and refractive index.
以上所述仅为本发明的较佳实施方式,本发明的保护范围并不以上述实施方式为限,但凡本领域普通技术人员根据本发明所揭示内容所作的等效修饰或变化,皆应纳入权利要求书中记载的保护范围内。The above descriptions are only preferred embodiments of the present invention, and the scope of protection of the present invention is not limited to the above embodiments, but all equivalent modifications or changes made by those of ordinary skill in the art according to the disclosure of the present invention should be included within the scope of protection described in the claims.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011462545.6A CN112595435B (en) | 2020-12-14 | 2020-12-14 | High-sensitivity temperature measurement demodulation sensing system based on optical fiber strong evanescent field interferometer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011462545.6A CN112595435B (en) | 2020-12-14 | 2020-12-14 | High-sensitivity temperature measurement demodulation sensing system based on optical fiber strong evanescent field interferometer |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112595435A CN112595435A (en) | 2021-04-02 |
CN112595435B true CN112595435B (en) | 2023-01-13 |
Family
ID=75192942
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011462545.6A Active CN112595435B (en) | 2020-12-14 | 2020-12-14 | High-sensitivity temperature measurement demodulation sensing system based on optical fiber strong evanescent field interferometer |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112595435B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112595435B (en) * | 2020-12-14 | 2023-01-13 | 武汉理工大学 | High-sensitivity temperature measurement demodulation sensing system based on optical fiber strong evanescent field interferometer |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1712916A (en) * | 2005-09-09 | 2005-12-28 | 上海大学 | High-sensitivity optical fiber evanescent wave temperature sensor and manufacturing method of optical fiber coupler for fusion cone type sensing |
CN102735368A (en) * | 2011-04-13 | 2012-10-17 | 上海大学 | Tapered optical fiber temperature sensor and sensing probe manufacture method thereof |
CN104535091A (en) * | 2014-12-29 | 2015-04-22 | 华中科技大学 | Optical fiber sensing unit and application thereof for simultaneously measuring refractive index and temperature |
CN108603977A (en) * | 2016-05-11 | 2018-09-28 | 直观外科手术操作公司 | Redundant core for security in multi-core optical fiber |
CN110325816A (en) * | 2016-12-06 | 2019-10-11 | 信息技术有限公司 | waveguide interferometer |
CN112595435A (en) * | 2020-12-14 | 2021-04-02 | 武汉理工大学 | High-sensitivity temperature measurement demodulation sensing system based on optical fiber strong evanescent field interferometer |
-
2020
- 2020-12-14 CN CN202011462545.6A patent/CN112595435B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1712916A (en) * | 2005-09-09 | 2005-12-28 | 上海大学 | High-sensitivity optical fiber evanescent wave temperature sensor and manufacturing method of optical fiber coupler for fusion cone type sensing |
CN102735368A (en) * | 2011-04-13 | 2012-10-17 | 上海大学 | Tapered optical fiber temperature sensor and sensing probe manufacture method thereof |
CN104535091A (en) * | 2014-12-29 | 2015-04-22 | 华中科技大学 | Optical fiber sensing unit and application thereof for simultaneously measuring refractive index and temperature |
CN108603977A (en) * | 2016-05-11 | 2018-09-28 | 直观外科手术操作公司 | Redundant core for security in multi-core optical fiber |
CN110325816A (en) * | 2016-12-06 | 2019-10-11 | 信息技术有限公司 | waveguide interferometer |
CN112595435A (en) * | 2020-12-14 | 2021-04-02 | 武汉理工大学 | High-sensitivity temperature measurement demodulation sensing system based on optical fiber strong evanescent field interferometer |
Non-Patent Citations (3)
Title |
---|
Weakly-coupled Multicore Optical Fiber Taper-based High-Temperature Sensor;Yue Chunxia;《Sensors and Actuators A》;20181231;第1-13页 * |
耦合式光纤温度传感器光源波长漂移的软件补偿;卢军等;《上海大学学报(自然科学版)》;20071215(第06期);第692-695页 * |
锥形三包层石英特种光纤折射率与温度传感器;付兴虎等;《光学学报》;20151210(第12期);第82-89页 * |
Also Published As
Publication number | Publication date |
---|---|
CN112595435A (en) | 2021-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113029381B (en) | High Precision Temperature Sensor Based on Quartz Tube Encapsulating PDMS Cavity and Air Cavity | |
CN110319786B (en) | A strain sensing Fabry-Perot interferometer and a strain sensing method based on the interferometer | |
CN103940530B (en) | A kind of temperature sensor based on hollow annular waveguide fiber | |
CN203287311U (en) | Double-cone fine-core single mode fiber based transmission-type optical fiber humidity sensor | |
CN113324570B (en) | Sensing device based on balloon-shaped optical fiber MZI and manufacturing method of balloon-shaped optical fiber MZI sensor | |
CN103852428A (en) | Humidity sensor based on multimode fiber core and fiber grating and preparation method of humidity sensor | |
CN102879357A (en) | Micro-nano fiber bragg grating refractive index sensor and manufacturing method thereof | |
CN108844919A (en) | The reflection type inclined fiber grating index sensor of covering and production, measurement method | |
CN209821048U (en) | An optional dual-channel fiber optic sensor | |
CN111077080A (en) | Optical fiber Mach-Zehnder interference humidity sensor based on graphene oxide sensitization | |
CN105698858A (en) | Bending direction judging optical fiber sensor capable of simultaneously measuring curvature and temperature | |
JP2009025199A (en) | Optical fiber type surface plasmon humidity sensor, surface plasmon humidity sensor, optical fiber type humidity sensor, and humidity measuring device | |
CN212301270U (en) | Optical fiber Mach-Zehnder interferometric humidity sensor based on graphene oxide sensitization | |
CN105928469A (en) | High-sensitivity fiber curvature sensor capable of discriminating bending direction and free of cross temperature sensitivity | |
CN108333144A (en) | A kind of self-reference micron plastic optical fiber liquid refractive index sensor of coupled structure | |
CN112595435B (en) | High-sensitivity temperature measurement demodulation sensing system based on optical fiber strong evanescent field interferometer | |
US5129022A (en) | Method and apparatus for providing reference signals from points along an optical fiber transmission path | |
Salman et al. | Sensitivity-enhanced moisture sensor based on θ-shape bending fiber coated with copper-polyvinyl alcohol thin film | |
CN203083927U (en) | Optical fiber refraction index sensor based on single mode, fine core, multi-mode and single mode structure | |
CN112577628B (en) | A high-sensitivity temperature sensor with strong evanescent field interferometer cascaded optical reflection devices | |
CN216385762U (en) | Sensor and sensing experimental device based on resonant reflection waveguide and Mach-Zehnder | |
Dang et al. | Sensing performance improvement of resonating sensors based on knotting micro/nanofibers: A review | |
CN216348692U (en) | Asymmetric peanut-shaped optical fiber MZI temperature and refractive index sensing system | |
CN112833928B (en) | Cascaded Macrobending and Alternating Single-Multimode Optical Fiber Structure Temperature-Refractive Index Sensor | |
CN101109663A (en) | An Optical Fiber Temperature Sensor Based on Bending Loss |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |