[go: up one dir, main page]

CN112592404B - Antibody Activity Modification and Screening Method - Google Patents

Antibody Activity Modification and Screening Method Download PDF

Info

Publication number
CN112592404B
CN112592404B CN202010997819.5A CN202010997819A CN112592404B CN 112592404 B CN112592404 B CN 112592404B CN 202010997819 A CN202010997819 A CN 202010997819A CN 112592404 B CN112592404 B CN 112592404B
Authority
CN
China
Prior art keywords
antibody
hinge domain
flexibility
region
hinge region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010997819.5A
Other languages
Chinese (zh)
Other versions
CN112592404A (en
Inventor
李福彬
赵英杰
刘小波
张燕
石欢
张慧慧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiao Tong University
Original Assignee
Shanghai Jiao Tong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiao Tong University filed Critical Shanghai Jiao Tong University
Publication of CN112592404A publication Critical patent/CN112592404A/en
Application granted granted Critical
Publication of CN112592404B publication Critical patent/CN112592404B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2878Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the NGF-receptor/TNF-receptor superfamily, e.g. CD27, CD30, CD40, CD95
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6402Atomic fluorescence; Laser induced fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/531Production of immunochemical test materials
    • G01N33/532Production of labelled immunochemicals
    • G01N33/533Production of labelled immunochemicals with fluorescent label
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • C07K2317/522CH1 domain
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • C07K2317/53Hinge
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/75Agonist effect on antigen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Physics & Mathematics (AREA)
  • Hematology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Food Science & Technology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Peptides Or Proteins (AREA)

Abstract

The invention discloses a method for modifying the agonistic activity of an antibody, which comprises the step of modifying a heavy chain constant region of the antibody to improve or reduce the flexibility of the antibody, so as to respectively obtain the antibody with reduced agonistic activity and improved agonistic activity. The method is simple and convenient, and the antibody with enhanced or reduced agonistic activity can be obtained through transformation so as to adapt to the requirements of different classes of antibodies, thereby having wide application prospects.

Description

抗体活性改造及其筛选方法Antibody Activity Modification and Screening Method

技术领域technical field

本发明涉及生物制药领域,特别是涉及一种激动型抗体或分子活性的改造以及筛选方法。The invention relates to the field of biopharmaceuticals, in particular to a method for modifying and screening agonistic antibodies or molecular activities.

背景技术Background technique

生物大分子药物的发展为多种疾病的治疗提供了新的方法和可能,尤其是基于抗体和重链恒定区(包含Fc片段)的分子靶向治疗,包括抗体和重链恒定区融合蛋白,三十多年来在生物制药领域已经取得了巨大成功并持续成为该领域的重点。所有生物大分子药物的基础都是其结构特征,正是这些特征使得它们能够特异的结合生物活性分子并影响生物学过程(如免疫应答)。因此,分析生物大分子结构特征并建立与其功能之间的关系对药物研发具有重要的意义。The development of biomacromolecular drugs has provided new methods and possibilities for the treatment of various diseases, especially molecular targeted therapy based on antibodies and heavy chain constant regions (including Fc fragments), including antibody and heavy chain constant region fusion proteins, has achieved great success in the field of biopharmaceuticals for more than 30 years and continues to be the focus of this field. The basis of all biomacromolecular drugs is their structural features, which allow them to specifically bind bioactive molecules and affect biological processes (such as immune responses). Therefore, it is of great significance to analyze the structural characteristics of biomacromolecules and establish the relationship between them and their functions for drug development.

从作用方式上,生物大分子主要可以分为三类:清除靶标(分子和细胞)的效应分子、阻断靶标参与的信号通路的阻断型分子、和激活靶标下游信号通路的激动型分子。肿瘤免疫治疗近年取得了重要突破。这得益于通过阻断免疫抑制节点,提高免疫细胞活性杀灭肿瘤的抗体的使用。但是目前仍有大量癌症患者对已有治疗手段没有应答。因此,一方面需要对目前已有的肿瘤免疫治疗手段进行优化;另一方面亟需研发新的肿瘤免疫治疗药物。需要特别指出的是有一类被称为“激动型抗体”的肿瘤免疫治疗手段,能够通过结合免疫细胞表面传递免疫激活信号的靶标分子并激活其控制的重要免疫激活信号通路,进而增强抗肿瘤免疫应答间接杀死肿瘤细胞。然而,虽然激动型肿瘤免疫治疗抗体已经在动物模型中证明了其巨大潜力,并且已经成为一个被广泛接受并看好的肿瘤免疫治疗理念,但是这类抗体的研发至今尚未成功,是肿瘤免疫治疗领域当前的一个主要挑战。此外,激动型抗体激活也是干预和调控其它生物学过程的关键信号通路的有利手段,在疾病防控和治疗领域有着广泛的应用前景。例如激活免疫抑制信号通路,可能有利于减轻炎症和自身免疫症状。From the mode of action, biomacromolecules can be mainly divided into three categories: effector molecules that clear targets (molecules and cells), blocking molecules that block signaling pathways involved in targets, and agonist molecules that activate downstream signaling pathways of targets. Tumor immunotherapy has made important breakthroughs in recent years. This is aided by the use of antibodies that increase the activity of immune cells to kill tumors by blocking the immunosuppressive node. However, there are still a large number of cancer patients who do not respond to existing treatments. Therefore, on the one hand, it is necessary to optimize the existing tumor immunotherapy methods; on the other hand, it is urgent to develop new tumor immunotherapy drugs. It should be pointed out that there is a class of tumor immunotherapy methods called "agonistic antibodies", which can bind to target molecules that transmit immune activation signals on the surface of immune cells and activate important immune activation signaling pathways controlled by them, thereby enhancing anti-tumor immune responses and indirectly killing tumor cells. However, although agonistic tumor immunotherapy antibodies have demonstrated their great potential in animal models and have become a widely accepted and optimistic concept of tumor immunotherapy, the development of such antibodies has not been successful so far, which is currently a major challenge in the field of tumor immunotherapy. In addition, the activation of agonistic antibodies is also a favorable means to intervene and regulate key signaling pathways in other biological processes, and has broad application prospects in the field of disease prevention and treatment. For example, activation of immunosuppressive signaling pathways may be beneficial in reducing inflammation and autoimmune symptoms.

发明内容Contents of the invention

本发明主要提供一种抗体的激动活性的改造方法,主要是通过对抗体的柔性进行改造从而使之具有不同的激动活性,同时本发明还提供能够检测蛋白的柔性的方法,结合上述方法可以简单易行地获得激动活性增强或者减弱的抗体,为治疗性抗体的功能改造提供新的思路。The present invention mainly provides a method for modifying the agonistic activity of an antibody, mainly by modifying the flexibility of the antibody so that it has different agonistic activities. At the same time, the present invention also provides a method capable of detecting the flexibility of the protein. Combining the above method, antibodies with enhanced or weakened agonistic activity can be obtained simply and easily, providing a new idea for the functional modification of therapeutic antibodies.

本发明提供了一种提高激动型抗体的激动活性的方法,对所述激动型抗体的重链恒定区进行修饰,以降低所述激动型抗体的柔性。The invention provides a method for improving the agonistic activity of an agonistic antibody, wherein the heavy chain constant region of the agonistic antibody is modified to reduce the flexibility of the agonistic antibody.

在一些方案中,修饰之后所述激动型抗体的柔性不超过人IgG1。In some aspects, the agonistic antibody is no more flexible than human IgGl after modification.

在一些优选方案中,对所述重链恒定区中的CH1-铰链区进行修饰,较优地将所述重链恒定区中的铰链区被柔性更弱的序列替换,更优地所述序列为人IgA2的铰链区序列。In some preferred schemes, the CH1-hinge region in the heavy chain constant region is modified, preferably the hinge region in the heavy chain constant region is replaced by a less flexible sequence, more preferably the sequence is the hinge region sequence of human IgA2.

在一些优选方案中,对所述抗体的修饰不显著降低所述抗体对其特异性靶向的抗原的亲和力。In some preferred embodiments, the modification of the antibody does not significantly reduce the affinity of the antibody for the antigen to which it is specifically targeted.

在另一些优选方案中,进一步对所述重链恒定区中Fc段进行修饰,以提高所述激动型抗体和FcγRIIB的亲和力或者所述激动型抗体的I/A比值。In some other preferred schemes, the Fc segment in the constant region of the heavy chain is further modified to increase the affinity between the agonistic antibody and FcγRIIB or the I/A ratio of the agonistic antibody.

在另一些优选方案中,修饰后的所述激动型抗体的回转半径(Rg)为优选地为/>或者小于IgG1(例如人IgG1)的Rg。In some other preferred schemes, the radius of gyration (Rg) of the modified agonistic antibody is preferably /> Or less than the Rg of IgGl (eg, human IgGl).

在其他一些优选方案中,所述抗体特异性识别TNF受体超家族中受体;或者所述抗体为抗CD40抗体或者抗DR5抗体。In some other preferred schemes, the antibody specifically recognizes receptors in the TNF receptor superfamily; or the antibody is an anti-CD40 antibody or an anti-DR5 antibody.

本发明还了提供一种降低抗体的激动活性的方法,对所述激动型抗体的重链恒定区进行修饰,提高所述抗体的柔性。较优地,修饰之后所述激动型抗体的柔性大于或相当于IgG3。The present invention also provides a method for reducing the agonistic activity of the antibody, modifying the heavy chain constant region of the agonistic antibody to improve the flexibility of the antibody. Preferably, the flexibility of the agonistic antibody after modification is greater than or equivalent to that of IgG3.

在一些方案中,对所述重链恒定区中的CH1-铰链区进行修饰,优选地,在所述CH1-铰链区中插入柔性连接序列,较优地所述柔性连接序列为包含G、S的柔性连接序列,更优地所述柔性连接序列为GSGSGS或者其它包含G、S的柔性链接序列,或者将所述CH1-铰链区替换为人IgG3的CH1-铰链区,以提高所述激动型抗体的柔性。In some schemes, the CH1-hinge region in the heavy chain constant region is modified, preferably, a flexible linking sequence is inserted into the CH1-hinge region, preferably the flexible linking sequence is a flexible linking sequence comprising G and S, more preferably the flexible linking sequence is GSGSGS or other flexible linking sequences comprising G and S, or the CH1-hinge region is replaced with a CH1-hinge region of human IgG3 to improve the flexibility of the agonist antibody.

在一些方案中,对所述抗体的修饰不显著降低所述抗体对其特异性靶向的抗原的亲和力。In some aspects, the modification to the antibody does not substantially reduce the affinity of the antibody for the antigen to which it is specifically targeted.

在一些优选方案中,修饰后的所述激动型抗体的回转半径(Rg)大于 In some preferred embodiments, the radius of gyration (Rg) of the modified agonistic antibody is greater than

在另一些优选方案中,进一步对所述重链恒定区中Fc段进行修饰,以降低所述激动型抗体和FcγRIIB的亲和力或者所述激动型抗体的I/A比值。In some other preferred schemes, the Fc segment in the constant region of the heavy chain is further modified to reduce the affinity between the agonistic antibody and FcγRIIB or the I/A ratio of the agonistic antibody.

在其他一些优选方案中,所述抗体为人抗体、嵌合抗体或者人源化抗体。In some other preferred embodiments, the antibody is a human antibody, a chimeric antibody or a humanized antibody.

本发明还提供了一种抗体的激动活性的筛选方法,包括以下步骤:The present invention also provides a method for screening the agonistic activity of antibodies, comprising the following steps:

1)提供一种激动型抗体作为母本,并提供在母本基础上CH1-铰链区经过修饰的所述母本的变体,其中将母本的CH1-铰链区替换为人IgG1的CH1-铰链区的抗体被称为人IgG1变体;1) providing an agonistic antibody as a parent, and providing a variant of the parent whose CH1-hinge region has been modified on the basis of the parent, wherein the antibody in which the CH1-hinge region of the parent is replaced by the CH1-hinge region of human IgG1 is called a human IgG1 variant;

2)对母本以及变体的柔性进行检测;2) Detect the flexibility of the female parent and the variant;

3)根据柔性检测结果,从所有激动型抗体中筛选出柔性不高于人IgG1变体的抗体,这些抗体具有较好的激动活性。3) According to the results of flexibility detection, antibodies with flexibility not higher than human IgG1 variants were selected from all agonistic antibodies, and these antibodies had better agonistic activity.

在一些方案中,所述的筛选方法还包括对所述母本以及变体和FcγRIIB的亲和力和/或所述激动型抗体的I/A比值进行检测,比较检测结果,筛选出FcγRIIB的亲和力以及I/A比值不低于人IgG1变体的抗体,这些抗体具有较好的激动活性。In some schemes, the screening method further includes detecting the affinity of the parent and variants to FcγRIIB and/or the I/A ratio of the agonistic antibody, comparing the detection results, and screening out antibodies whose affinity to FcγRIIB and I/A ratio are not lower than those of the human IgG1 variant, and these antibodies have better agonistic activity.

优选地,所述步骤2)包括:Preferably, said step 2) includes:

1)提供一种能够与所述激动型抗体的抗原结合部分特异性结合的抗原;1) providing an antigen capable of specifically binding to the antigen-binding portion of the agonistic antibody;

2)将抗原分别标记能够实现荧光共振能量转移的一对供体荧光分子和受体荧光分子,获得供体荧光标记抗原以及受体荧光标记抗原;2) The antigens are respectively labeled with a pair of donor fluorescent molecules and acceptor fluorescent molecules capable of realizing fluorescence resonance energy transfer to obtain donor fluorescently labeled antigens and acceptor fluorescently labeled antigens;

3)在所述激动型抗体中分别加入所述供体荧光标记抗原以及受体荧光标记抗原;3) adding the donor fluorescently-labeled antigen and acceptor fluorescently-labeled antigen to the agonistic antibody;

4)对供体荧光分子进行激发,检测受体荧光分子发射出的荧光信号,所述荧光信号的强度与所述激动型抗体的柔性程度呈正相关性。4) Exciting the donor fluorescent molecule and detecting the fluorescent signal emitted by the acceptor fluorescent molecule, the intensity of the fluorescent signal is positively correlated with the flexibility of the agonistic antibody.

更优地,所述步骤2)包括:More preferably, said step 2) includes:

1)运用小角X射线散射的方法检测所述抗体母本以及变体的以下参数中的任意一种或者多种:回转半径(Rg)、Dimensionless Kratky plots(或Kratky plots)特征、P(R)/I(0)(或P(R))分布、P(R)/I(0)(或P(R))大尺寸分布、EOM方法计算的回转半径(Rg)、EOM方法计算的最大原子间距离(Dmax)分布、EOM方法计算的Rflex或Rσ数值;1) Using the method of small-angle X-ray scattering to detect any one or more of the following parameters of the antibody parent and variant: radius of gyration (Rg), Dimensionless Kratky plots (or Kratky plots) feature, P(R)/I(0) (or P(R)) distribution, P(R)/I(0) (or P(R)) large size distribution, radius of gyration (Rg) calculated by EOM method, and maximum interatomic distance calculated by EOM method (Dmax) distribution, Rflex or Rσ value calculated by EOM method;

2)所述回转半径(Rg)越大、Dimensionless Kratky plots(或Kratky plots)曲线上扬程度越高、EOM方法计算的回转半径(Rg)和最大原子间距离(Dmax)分布越宽、Rflex和Rσ数值越大,抗体柔性越强;反之,抗体柔性越弱。2) The larger the radius of gyration (Rg), the higher the upward degree of the Dimensionless Kratky plots (or Kratky plots) curve, the wider the distribution of the radius of gyration (Rg) and the maximum interatomic distance (Dmax) calculated by the EOM method, and the larger the values of Rflex and Rσ, the stronger the antibody flexibility; conversely, the weaker the antibody flexibility.

本发明还提供了一种生物大分子的柔性的检测方法,包括以下步骤:The present invention also provides a flexible detection method of biomacromolecules, comprising the following steps:

1)提供所述生物大分子,优选地这些生物大分子为蛋白、核酸、脂类分子、糖类分子或者他们相互结合的形成的复合体;1) providing the biomacromolecules, preferably these biomacromolecules are proteins, nucleic acids, lipid molecules, sugar molecules or complexes formed by their mutual association;

2)提供能够与所述生物大分子的两个单独的表位分别进行特异性结合的两种表位识别分子;2) providing two epitope recognition molecules capable of specifically binding to two separate epitopes of the biomacromolecule;

3)将两种表位识别分子分别标记供体荧光分子和受体荧光分子,所述供体荧光分子和所述受体荧光分子互相匹配,并能够实现荧光共振能量转移;3) The two epitope recognition molecules are respectively labeled with a donor fluorescent molecule and an acceptor fluorescent molecule, and the donor fluorescent molecule and the acceptor fluorescent molecule match each other and can realize fluorescence resonance energy transfer;

4)将标记后的两种表位识别分子与所述生物大分子混合;4) mixing the two labeled epitope recognition molecules with the biomacromolecule;

5)对供体荧光分子进行激发,检测受体荧光分子发射出的荧光信号,所述荧光信号的强度与所述抗体的柔性程度呈正相关性。5) Exciting the donor fluorescent molecule and detecting the fluorescent signal emitted by the acceptor fluorescent molecule, the intensity of the fluorescent signal is positively correlated with the flexibility of the antibody.

优选地,所述生物大分子存在所述两个单独的表位之间的距离介于所述供体荧光分子和配体荧光分子的R0和2R0之间的构象。Preferably, the biomacromolecule exists in a conformation in which the distance between the two individual epitopes is between R0 and 2R0 of the donor fluorescent molecule and the ligand fluorescent molecule.

优选地,所述生物大分子的两个单独的表位之间的距离有可能介于所述供体荧光分子和配体荧光分子的R0和2R0之间。Preferably, the distance between two individual epitopes of the biomacromolecule may be between R0 and 2R0 of the donor fluorescent molecule and the ligand fluorescent molecule.

在一些方案中,所述生物大分子为抗体,所述表位为抗体的抗原结合位点,所述表位识别分子为抗原。In some embodiments, the biomacromolecule is an antibody, the epitope is an antigen-binding site of the antibody, and the epitope recognition molecule is an antigen.

在一些优选方案中,所述供体荧光分子为Tb,与之配对的所述受体荧光分子选自于D2,XL665,Fluorescein,GFP,Lucifer yellow,Acridine yellow,Proflavine,Atto465,Nitrobenzoxadiazole,Courmarin 6,Alexa750,Cy7,Nile red,Alexa488,Dy495,Dy490,Dy648,Dy647,Oregon green,Atto488,Atto495,Alexa514,Atto520,Cy2,Rhodamine6G,Alexa700,Alexa680,Atto532,Alexa532,APC,EGFP,YFP,mPlum,Atto425,Alexa430,Coumarin 343,Acridine Orange,Tetramethylrhodamine,Sulforhodamine 101,Merocyanine 540,Atto565,Cy3,Cy5,Att0590,Atto550,Cy3.5,Cy5.5,Dy547,Dy548,Dy549,Dy554,Dy555,Dy556,Dy560,Alexa647,mCherry,mStrawberry中的任意一种;或者,所述供体荧光分子为Eu,与之配对的所述受体荧光分子选自于APC,D2,XL665,Fluorescein,GFP,Rhodamine6G,Tetramethylrhodamine,Sulforhodamine 101,Merocyanine 540,Atto565,Cy3,Atto550Cy3.5,Dy547,Dy548,Dy549,Dy554,Dy555,Dy556,Dy560,mCherry,mStrawberry,Alexa680,Alexa700,Alexa750,Alexa647,Cy5,Cy5.5,Cy7,Dy647,Dy648,Atto590中的任意一种。In some preferred schemes, the donor fluorescent molecule is Tb, and the acceptor fluorescent molecule paired with it is selected from D2, XL665, Fluorescein, GFP, Lucifer yellow, Acridine yellow, Proflavine, Atto465, Nitrobenzoxadiazole, Courmarin 6, Alexa750, Cy7, Nile red, Alexa488, Dy495, Dy490, D y648, Dy647, Oregon green, Atto488, Atto495, Alexa514, Atto520, Cy2, Rhodamine6G, Alexa700, Alexa680, Atto532, Alexa532, APC, EGFP, YFP, mPlum, Atto425, Alexa430, Coumarin 343, Acridine Orange, Tetramethyl Any of rhodamine, Sulforhodamine 101, Merocyanine 540, Atto565, Cy3, Cy5, Att0590, Atto550, Cy3.5, Cy5.5, Dy547, Dy548, Dy549, Dy554, Dy555, Dy556, Dy560, Alexa647, mCherry, mStrawberry one; or, the donor fluorescent molecule is Eu, and the acceptor fluorescent molecule paired with it is selected from APC, D2, XL665, Fluorescein, GFP, Rhodamine6G, Tetramethylrhodamine, Sulforhodamine 101, Merocyanine 540, Atto565, Cy3, Atto550Cy3.5, Dy547, Dy548, Dy549, Any one of Dy554, Dy555, Dy556, Dy560, mCherry, mStrawberry, Alexa680, Alexa700, Alexa750, Alexa647, Cy5, Cy5.5, Cy7, Dy647, Dy648, Atto590.

本发明还提供一种调节抗体柔性或调节抗体激动活性的方法,包括突变铰链区的上部铰链结构域。所述突变改变铰链区的上部铰链结构域中位阻较小的氨基酸数量和/或占比,或改变上部铰链结构域的长度。The invention also provides a method of modulating antibody flexibility or modulating agonistic activity of an antibody comprising mutating the upper hinge domain of the hinge region. The mutation changes the number and/or ratio of amino acids with less hindrance in the upper hinge domain of the hinge region, or changes the length of the upper hinge domain.

在一个或多个实施方案中,所述抗体为人抗体、嵌合抗体或者人源化抗体。In one or more embodiments, the antibody is a human antibody, a chimeric antibody, or a humanized antibody.

在一个或多个实施方案中,所述抗体为抗CD40抗体或者抗DR5抗体。In one or more embodiments, the antibody is an anti-CD40 antibody or an anti-DR5 antibody.

在一些实施方案中,所述方法是上调抗体柔性或下调抗体激动活性的方法,所述突变使铰链区的上部和/或中部铰链结构域中位阻较小的氨基酸数量和/或占比增加,或使上部和/或中部铰链结构域的长度增加。In some embodiments, the method is a method of up-regulating antibody flexibility or down-regulating antibody agonistic activity, and the mutation increases the number and/or proportion of amino acids with less steric hindrance in the upper and/or middle hinge domain of the hinge region, or increases the length of the upper and/or middle hinge domain.

在一个或多个实施方案中,所述突变选自以下一种或多种,(1)在上部铰链结构域中插入1个、2个、5个或至少6个位阻较小的氨基酸,(2)从上部和/或中部铰链结构域中删除位阻较大的氨基酸,(3)将上部和/或中部铰链结构域中位阻较大氨基酸突变为位阻更小的氨基酸。In one or more embodiments, the mutation is selected from one or more of the following, (1) inserting 1, 2, 5 or at least 6 amino acids with less hindrance in the upper hinge domain, (2) deleting amino acids with greater hindrance from the upper and/or middle hinge domain, (3) mutating amino acids with more hindrance in the upper and/or middle hinge domains to amino acids with less hindrance.

在一个或多个实施方案中,位阻较小的氨基酸选自:甘氨酸(G)、丙氨酸(A)、丝氨酸(S)、缬氨酸(V)、苏氨酸(T)、异亮氨酸(I)、亮氨酸(L)。优选地,位阻较小的氨基酸选自G或S。In one or more embodiments, the amino acid with less hindrance is selected from: glycine (G), alanine (A), serine (S), valine (V), threonine (T), isoleucine (I), leucine (L). Preferably, the amino acid with less hindrance is selected from G or S.

在一个或多个实施方案中,位阻较大的氨基酸包括芳香族氨基酸和杂环基氨基酸。In one or more embodiments, more sterically hindered amino acids include aromatic amino acids and heterocyclyl amino acids.

在一个或多个实施方案中,位阻较大的氨基酸选自脯氨酸(P)、羟脯氨酸(O)、天冬酰胺(N)、天冬氨酸(D)、焦谷氨酸(U)、谷氨酰胺(Q)、赖氨酸(K)、谷氨酸(E)、甲硫氨酸(M)、组氨酸(H)、苯丙氨酸(F)、精氨酸(R)、酪氨酸(Y)、色氨酸(W)。In one or more embodiments, the amino acid with greater steric hindrance is selected from proline (P), hydroxyproline (O), asparagine (N), aspartic acid (D), pyroglutamic acid (U), glutamine (Q), lysine (K), glutamic acid (E), methionine (M), histidine (H), phenylalanine (F), arginine (R), tyrosine (Y), tryptophan (W).

在一个或多个实施方案中,(1)是在上部铰链结构域的N端至少第1个、至少第2个、至少第3个、至少第4个或至少第5个氨基酸后、或上部铰链结构域和中间铰链结构域之间插入1个、2个、5个或至少6个位阻较小的氨基酸。In one or more embodiments, (1) is to insert 1, 2, 5 or at least 6 less sterically hindered amino acids after at least the 1st, at least the 2nd, at least the 3rd, at least the 4th or at least the 5th amino acid at the N-terminal of the upper hinge domain, or between the upper hinge domain and the middle hinge domain.

在一个或多个实施方案中,(1)中的插入是插入1个、2个、5个或至少6个选自G和S的氨基酸。In one or more embodiments, the insertion in (1) is the insertion of 1, 2, 5 or at least 6 amino acids selected from G and S.

优选地,(1)是在上部铰链结构域和中间铰链结构域之间插入G、GS、SG、GSGSG、SGSGS、GGGGS、GGGSG、GGSGG、GSGGG、SGGGG、GSGSG、GSSGG、GGSSG、GSGGS、GGSGS、GGGSS、SGGSG、SGSGG、SSGGG、SGGGS、SGSGS、SGGSS、SSGGS、SGSSG、SSGSG、SSSGG、GSSGS、GSGSS、GGSSS、GSSSG、GSSSS、SGSSS、SSGSS、SSSGS、SSSSG或(GSGSGS)n,其中n为1、2或3。Preferably, (1) is the insertion of G, GS, SG, GSGSG, SGSGS, GGGGS, GGGSG, GGSGG, GSGGG, SGGGG, GSGSG, GSSGG, GGSSG, GSGGS, GGSGS, GGGSS, SGGSG, SGSGG, SSGGG, SGGGS, SGSGS, SGGSS, SSG between the upper hinge domain and the middle hinge domain GS, SGSSG, SSGSG, SSSGG, GSSGS, GSGSS, GGSSS, GSSSG, GSSSS, SGSSS, SSGSS, SSSGS, SSSSG or (GSGSGS) n , where n is 1, 2 or 3.

在一个或多个实施方案中,(1)中所述至少6个是6、12或18个。In one or more embodiments, the at least 6 in (1) is 6, 12 or 18.

在一个或多个实施方案中,(2)是从上部和/或中部铰链结构域的C端至少第1个、至少第2个、至少第3个、至少第4个或至少第5个氨基酸开始删除位阻较大的氨基酸。In one or more embodiments, (2) is to delete amino acids with greater steric hindrance from at least the first, at least the second, at least the third, at least the fourth or at least the fifth amino acid at the C-terminus of the upper and/or middle hinge domain.

在一个或多个实施方案中,(3)包括将上部和/或中部铰链结构域突变为IgG3或mIgG2a的相应区域,或将铰链区突变为IgG3或mIgG2a的铰链区,或将CH1-铰链区突变为IgG3或mIgG2a的CH1铰链区。上述各区域氨基酸序列参见图15。In one or more embodiments, (3) includes mutating the upper and/or middle hinge domains to the corresponding regions of IgG3 or mIgG2a, or the hinge region to the hinge region of IgG3 or mIgG2a, or the CH1-hinge region to the CH1 hinge region of IgG3 or mIgG2a. See Figure 15 for the amino acid sequences of the above regions.

在一个或多个实施方案中,突变后的抗体的柔性大于或相当于IgG3的柔性。In one or more embodiments, the flexibility of the mutated antibody is greater than or comparable to that of IgG3.

在一些方案中,对所述抗体的突变不显著降低所述抗体对其特异性靶向的抗原的亲和力。In some aspects, mutations to the antibody do not significantly reduce the affinity of the antibody for the antigen to which it is specifically targeted.

在一些优选方案中,突变后的所述激动型抗体的回转半径(Rg)大于 In some preferred embodiments, the radius of gyration (Rg) of the agonistic antibody after mutation is greater than

在另一些优选方案中,进一步对所述重链恒定区中Fc段进行突变,以降低所述激动型抗体和FcγRIIB的亲和力或者所述激动型抗体的I/A比值。In some other preferred schemes, the Fc segment in the constant region of the heavy chain is further mutated to reduce the affinity between the agonistic antibody and FcγRIIB or the I/A ratio of the agonistic antibody.

在其他实施方案中,所述方法是下调抗体柔性或上调抗体激动活性的方法,所述突变使铰链区的上部和/或中部铰链结构域中位阻较小的氨基酸数量和/或占比降低,或使上部和/或中部铰链结构域的长度减小。In other embodiments, the method is a method of down-regulating antibody flexibility or up-regulating antibody agonistic activity, and the mutation reduces the number and/or proportion of amino acids with less steric hindrance in the upper and/or middle hinge domain of the hinge region, or reduces the length of the upper and/or middle hinge domain.

在一个或多个实施方案中,所述突变选自以下一种或多种,(1)在上部铰链结构域中插入3或4个位阻较小的氨基酸,(2)从上部和/或中部铰链结构域中删除位阻较小的氨基酸,(3)将上部和/或中部铰链结构域中位阻较小氨基酸突变为位阻更大的氨基酸,(4)在上部和/或中部铰链结构域中插入位阻较大的氨基酸。In one or more embodiments, the mutation is selected from one or more of the following: (1) inserting 3 or 4 amino acids with less hindrance in the upper hinge domain, (2) deleting amino acids with less hindrance from the upper and/or middle hinge domain, (3) mutating amino acids with less hindrance in the upper and/or middle hinge domains to amino acids with more hindrance, (4) inserting amino acids with more hindrance in the upper and/or middle hinge domains.

在一个或多个实施方案中,(1)是在上部铰链结构域的N端至少第1个、至少第2个、至少第3个、至少第4个或至少第5个氨基酸后、或上部铰链结构域和中间铰链结构域之间插入3或4个位阻较小的氨基酸。In one or more embodiments, (1) is to insert 3 or 4 less sterically hindered amino acids after at least the 1st, at least the 2nd, at least the 3rd, at least the 4th or at least the 5th amino acid at the N-terminal of the upper hinge domain, or between the upper hinge domain and the middle hinge domain.

在一个或多个实施方案中,(1)中的插入是插入3或4个选自G和S的氨基酸。In one or more embodiments, the insertion in (1) is an insertion of 3 or 4 amino acids selected from G and S.

优选地,(1)是在上部铰链结构域和中间铰链结构域之间插入GSG、(GGS、SGG、GSS、SGS、SGG、GGGS、GGSG、GSGG、SGGG、GGSS、GSGS、SGGS、GSSG、SSGG、SGSG、SSSG、SSGS、SGSS或GSSS。Preferably, (1) is the insertion of GSG, (GGS, SGG, GSS, SGS, SGG, GGGS, GGSG, GSGG, SGGG, GGSS, GSGS, SGGS, GSSG, SSGG, SGSG, SSSG, SSGS, SGSS or GSSS between the upper hinge domain and the middle hinge domain.

在一个或多个实施方案中,(2)是从上部和/或中部铰链结构域的C端至少第1个、至少第2个、至少第3个、至少第4个或至少第5个氨基酸开始删除位阻较小的氨基酸。In one or more embodiments, (2) is to delete amino acids with less steric hindrance from at least the 1st, at least the 2nd, at least the 3rd, at least the 4th or at least the 5th amino acid from the C-terminus of the upper and/or middle hinge domain.

在一个或多个实施方案中,(3)包括将上部和/或中部铰链结构域突变为IgG1、IgG2或IgA2的相应区域,或将铰链区突变为IgG1、IgG2或IgA2的铰链区,或将CH1-铰链区突变为IgG1、IgG2或IgA2的CH1-铰链区。上述各区域氨基酸序列参见图15。In one or more embodiments, (3) includes mutating the upper and/or middle hinge domain to the corresponding region of IgG1, IgG2 or IgA2, or the hinge region to the hinge region of IgG1, IgG2 or IgA2, or the CH1-hinge region to the CH1-hinge region of IgG1, IgG2 or IgA2. See Figure 15 for the amino acid sequences of the above regions.

在一个或多个实施方案中,所述抗体特异性识别TNF受体超家族中受体;或者所述抗体为抗CD40抗体或者抗DR5抗体。In one or more embodiments, the antibody specifically recognizes a receptor in the TNF receptor superfamily; or the antibody is an anti-CD40 antibody or an anti-DR5 antibody.

在一个或多个实施方案中,(4)是在上部和/或中部铰链结构域的N端至少第1个、至少第2个、至少第3个、至少第4个或至少第5个氨基酸后、或上部铰链结构域和中间铰链结构域之间插入至少1个、至少2个、至少3个、例如1-20个、1-15个或1-10个位阻较大的氨基酸。In one or more embodiments, (4) is to insert at least 1, at least 2, at least 3, such as 1-20, 1-15 or 1-10 amino acids with relatively large steric hindrance after at least the first, at least the second, at least the third, at least the fourth or at least the fifth amino acid at the N-terminal of the upper and/or middle hinge domain, or between the upper hinge domain and the middle hinge domain.

在一个或多个实施方案中,突变后的抗体的柔性不超过人IgG1的柔性。In one or more embodiments, the flexibility of the mutated antibody does not exceed the flexibility of human IgG1.

在一些优选方案中,对所述抗体的突变不显著降低所述抗体对其特异性靶向的抗原的亲和力。In some preferred embodiments, mutations to the antibody do not significantly reduce the affinity of the antibody for the antigen to which it is specifically targeted.

在另一些优选方案中,进一步对所述重链恒定区中Fc段进行突变,以提高所述激动型抗体和FcγRIIB的亲和力或者所述激动型抗体的I/A比值。In some other preferred schemes, the Fc segment in the constant region of the heavy chain is further mutated to increase the affinity between the agonistic antibody and FcγRIIB or the I/A ratio of the agonistic antibody.

在另一些优选方案中,突变后的所述激动型抗体的回转半径(Rg)为优选地为/>或者小于IgG1(例如人IgG1)的Rg。In some other preferred schemes, the radius of gyration (Rg) of the agonistic antibody after mutation is preferably /> Or less than the Rg of IgGl (eg, human IgGl).

本发明还提供一种抗体柔性检测方法,包括步骤:运用小角X射线散射的方法检测所述抗体以下参数中的任意一种或者多种:回转半径(Rg)、Dimensionless Kratky plots(或Kratky plots)特征、P(R)/I(0)(或P(R))分布、P(R)/I(0)(或P(R))大尺寸分布、EOM方法计算的回转半径(Rg)、EOM方法计算的最大原子间距离(Dmax)分布、EOM方法计算的Rflex或Rσ数值;其中,具有选自以下的一个或多个特征的抗体是柔性抗体,(1)回转半径(Rg)大于IgG1的回转半径(Rg),(2)EOM方法计算的回转半径(Rg)大于IgG1的EOM方法计算的回转半径(Rg),(3)Rflex大于IgG1的该参数,(4)Rσ大于IgG1的Rσ。The present invention also provides a flexible antibody detection method, comprising the steps of: using small-angle X-ray scattering to detect any one or more of the following parameters of the antibody: radius of gyration (Rg), Dimensionless Kratky plots (or Kratky plots) features, P(R)/I(0) (or P(R)) distribution, P(R)/I(0) (or P(R)) large size distribution, radius of gyration (Rg) calculated by EOM method, and EOM method. Maximum interatomic distance (Dmax) distribution, Rflex or Rσ value calculated by EOM method; wherein, the antibody with one or more characteristics selected from the following is a flexible antibody, (1) the radius of gyration (Rg) is greater than the radius of gyration (Rg) of IgG1, (2) the radius of gyration (Rg) calculated by the EOM method is greater than the radius of gyration (Rg) calculated by the EOM method of IgG1, (3) Rflex is greater than this parameter of IgG1, (4) Rσ is greater than that of IgG1 Rσ.

在一个或多个实施方案中,上述IgG1的各特征如图6第二列所示。In one or more embodiments, each feature of IgG1 described above is shown in the second column of FIG. 6 .

本发明的有益效果是:使用本发明提供的方法,能够更加快捷的分析抗体和其它蛋白分子的柔性特征;使用本发明提供的方法,能够在母本抗体的基础上获得激动活性显著减弱或者消失的抗体修饰形式;使用本发明提供的方法,能够在母本抗体的基础上获得激动活性显著增强的抗体修饰形式。The beneficial effects of the present invention are: using the method provided by the present invention, the flexible characteristics of antibodies and other protein molecules can be analyzed more quickly; using the method provided by the present invention, an antibody modified form with significantly weakened or disappeared agonistic activity can be obtained on the basis of the parental antibody; using the method provided by the present invention, an antibody modified form with significantly enhanced agonistic activity can be obtained on the basis of the parental antibody.

附图说明Description of drawings

图1.抗体结构图。Figure 1. Antibody structure diagram.

图2.TR-FRET分析柔性的示意图Figure 2. Schematic diagram of TR-FRET analysis flexibility

人源IgG2 CH1-铰链具有优异的刚性。a.显示TR-FRET检测抗鼠CD40抗体的简图。与CD40-Tb、CD40-D2(鼠源CD40分子分别标记荧光镧系元素Tb和D2)混合的抗鼠CD40抗体分子同时结合CD40-Tb和CD40-D2,发出TR-FRET信号,以刺激后检测到665nm荧光到620nm荧光的相对比例(Em665/Em620)为定量。b.显示hIgG抗mCD40抗体的铰链柔性与TR-FRET信号水平成正比的模型图。左侧,由于CD40-Tb和CD40-D2之间的距离较大,具有很小铰链柔性的抗鼠CD40抗体不会触发TR-FRET信号;中间,铰链柔性可以使CD40-Tb和CD40-D2足够接近触发TR-FRET信号;右边,具有大铰链柔性的抗鼠CD40抗体产生更强的TR-FRET信号,因为更多的分子具有更接近的CD40结合位点。Human IgG2 CH1-hinge has excellent rigidity. a. Diagram showing detection of anti-mouse CD40 antibody by TR-FRET. Anti-mouse CD40 antibody molecules mixed with CD40-Tb and CD40-D2 (mouse-derived CD40 molecules are labeled with fluorescent lanthanides Tb and D2 respectively) simultaneously bind to CD40-Tb and CD40-D2, and emit TR-FRET signals. Quantification is based on the relative ratio (Em665/Em620) of fluorescence detected at 665nm to 620nm after stimulation. b. Model diagram showing that the hinge flexibility of hIgG anti-mCD40 antibody is directly proportional to the level of TR-FRET signal. Left, anti-mouse CD40 antibody with little hinge flexibility does not trigger TR-FRET signal due to the large distance between CD40-Tb and CD40-D2; middle, hinge flexibility can bring CD40-Tb and CD40-D2 close enough to trigger TR-FRET signal; right, anti-mouse CD40 antibody with large hinge flexibility produces stronger TR-FRET signal because more molecules have closer CD40 binding sites.

图3全长抗体晶体结构图Figure 3 Crystal structure of full-length antibody

全长人类IgG1(PDB:1HZH,左)和IgG4(PDB:5DK3,右)的晶体结构。两个抗体的两个抗原结合位点之间的距离由PyMOL软件计算,为各自重链CDR3的顶点(1HZH的W100位点,5D3K的F103位点)之间的距离。图中显示IgG抗体结晶构象的两个抗原结合位点之间的距离超过12纳米。Crystal structures of full-length human IgG1 (PDB: 1HZH, left) and IgG4 (PDB: 5DK3, right). The distance between the two antigen-binding sites of the two antibodies was calculated by PyMOL software as the distance between the vertices of the respective heavy chain CDR3 (W100 site of 1HZH, F103 site of 5D3K). The distance between two antigen-binding sites showing the crystalline conformation of an IgG antibody exceeds 12 nanometers.

图4 TR-FRET分析柔性结果Figure 4 TR-FRET analysis flexibility results

a-c相应恒定结构域的抗鼠CD40抗体的TR-FRET信号水平。显示了对照IgG或相应恒定结构域的抗鼠CD40抗体各浓度的相对TR-FRET信号水平(Em665/Em620)。条形代表平均值±SEM。*p≤0.05,**p≤0.01,***p≤0.001,****p≤0.0001,用two-way ANOVA withHolm-Sidak’s post hoc的分析方法分析。a-c TR-FRET signal levels of anti-mouse CD40 antibodies with corresponding constant domains. Relative TR-FRET signal levels (Em665/Em620) are shown for each concentration of control IgG or the corresponding constant domain anti-mouse CD40 antibody. Bars represent mean ± SEM. *p≤0.05, **p≤0.01, ***p≤0.001, ****p≤0.0001, analyzed by two-way ANOVA with Holm-Sidak’s post hoc analysis method.

图5 SAXS分析柔性结果Figure 5 SAXS analysis flexibility results

IgG3 CH1-铰链具有出众的柔性。a-f相应恒定域的抗鼠CD40抗体(最高检测浓度的数值)的无量纲(Dimensionless)Kratky图(a,c,e)和标准化的原子间距离分布(P(R)/I(0))(b,d,f)。在无量纲(Dimensionless)Kratky图中,Guinier-Kratky点(√3,1.103)的位置用黑色虚线标记。g-l在指定抗体的EOM分析中产生的优化集合中Rg(g,i,k)和Dmax(h,j,l)的分布(最低检测浓度的数值)。The IgG3 CH1-hinge is exceptionally flexible. a-f Dimensionless Kratky plots (a, c, e) and normalized interatomic distance distributions (P(R)/I(0)) (b,d,f) of anti-mouse CD40 antibodies (values at the highest concentration detected) for the corresponding constant domains. In the dimensionless (Dimensionless) Kratky diagram, the position of the Guinier-Kratky point (√3, 1.103) is marked with a black dashed line. g-l Distribution of Rg(g,i,k) and Dmax(h,j,l) (values for the lowest concentration of detection) in the optimized set generated in the EOM analysis of the indicated antibody.

图6 SAXS分析柔性结果(数据)Figure 6 SAXS analysis flexibility results (data)

IgG2和3分别是人IgG1-3抗体中最优刚性和最优柔性亚型。与IgG1和2抗体相比,IgG3抗体还具有更大的Rg和Dmax值(分别与平均和最大原子间距离相关)。具有人IgG1-3抗体CH1-铰链的V11变体分别具有与人IgG1-3抗体相似的Rg和Dmax分布特征以及Rflex和Rσ排名。不同的SAXS分布曲线以及IgG2和3抗体的参数可以在很大程度上与它们的CH1-铰链一起转换。IgG2 and 3 are the most rigid and most flexible subtypes of human IgG1-3 antibodies, respectively. IgG3 antibodies also had larger Rg and Dmax values (relating to the average and maximum interatomic distance, respectively) compared to IgG1 and 2 antibodies. The V11 variant with the CH1-hinge of the human IgG1-3 antibody had similar Rg and Dmax distribution characteristics and Rflex and ranks, respectively, to the human IgG1-3 antibody. Different SAXS distribution curves and parameters of IgG2 and 3 antibodies can be switched to a large extent together with their CH1-hinge.

图7鼠IgG抗体激动性与铰链灵活性的关系Figure 7 The relationship between mouse IgG antibody agonism and hinge flexibility

(a)通过SAXS方法检测鼠源IgG抗体柔性,Dimensionless Kratky plots分析显示,mIgG2a具有比mIgG1更强的柔性,而通过铰链区更换,铰链区柔性也随之转移。(b-c)OT1系统中柔性强的IgG2a激动性最弱,刚性强的IgG1激动性最强,而且IgG2a激动性通过铰链区更换转移给嵌合抗体IgG1H2a。在8周龄C57B6/L的WT小鼠中,运用OVA特异性CD8+T细胞反应模型,分别用5ugDEC-OVA205伴随30ug对照或者1C10抗mCD40嵌合抗体处理,脾脏细胞中特异OT1细胞数(b),CD8+OT1特异细胞百分比(c)。(a) The flexibility of the murine IgG antibody was detected by SAXS method. Dimensionless Kratky plots analysis showed that mIgG2a has stronger flexibility than mIgG1, and the flexibility of the hinge region is also transferred through the replacement of the hinge region. (b-c) In the OT1 system, the flexible IgG2a has the weakest agonism, and the rigid IgG1 has the strongest agonism, and the IgG2a agonism is transferred to the chimeric antibody IgG1H2a through the replacement of the hinge region. In 8-week-old C57B6/L WT mice, using the OVA-specific CD8+ T cell response model, treated with 5ugDEC-OVA205 together with 30ug control or 1C10 anti-mCD40 chimeric antibody, the number of specific OT1 cells in spleen cells (b), the percentage of CD8+OT1 specific cells (c).

图8在铰链区插入氨基酸序列能够破坏IgG2柔性(IgG2 vs IgG2(GS)3vs IgG2(GS)6vs IgG2(GS)9的TR-FRET结果)Figure 8 Inserting amino acid sequences in the hinge region can destroy IgG2 flexibility (TR-FRET results of IgG2 vs IgG2(GS) 3 vs IgG2(GS) 6 vs IgG2(GS) 9 )

TR-FRET实验数据显示,在IgG2的铰链区中插入链接序列GS,铰链区变体G2GS3,G2GS6,G2GS9柔性随连接序列长度增长逐渐变高。The TR-FRET experimental data showed that the linker sequence GS was inserted into the hinge region of IgG2, and the flexibility of the hinge region variants G2GS3, G2GS6, and G2GS9 gradually increased with the length of the linker sequence.

图9在铰链区插入氨基酸序列能够破坏IgG2柔性(IgG2 vs IgG2(GS)3vs IgG2(GS)6vs IgG2(GS)9的SAXS结果)Figure 9 Inserting amino acid sequences in the hinge region can destroy the flexibility of IgG2 (SAXS results of IgG2 vs IgG2(GS) 3 vs IgG2(GS) 6 vs IgG2(GS) 9 )

SAXS实验数据显示,在IgG2的铰链区中插入链接序列GS,铰链区变体G2GS3,G2GS6,G2GS9柔性随连接序列长度增长逐渐变高。(a)hIgG2铰链区变体SAXS的dimensionless Kratky分析。连接子长度增长会逐渐增强抗体灵活性。(b)灵活性更高的分子通常采用更延展的构象,这可以通过分析大分子内的原子间距离(R)的归一化分布来评估,即P(R)/I(0),hIgG2铰链区变体SAXS的P(R)/I(0)(或P(R))分布显示,连接子长度增长会逐渐增强抗体灵活性。The SAXS experimental data showed that the linker sequence GS was inserted into the hinge region of IgG2, and the flexibility of the hinge region variants G2GS3, G2GS6, and G2GS9 gradually increased with the length of the linker sequence. (a) dimensionless Kratky analysis of hIgG2 hinge region variant SAXS. Increasing linker length gradually increases antibody flexibility. (b) Molecules with greater flexibility generally adopt a more extended conformation, which can be assessed by analyzing the normalized distribution of the interatomic distance (R) within the macromolecule, that is, P(R)/I(0).

图10在铰链区插入氨基酸序列破坏IgG2柔性会影响激动活性(IgG2 vs IgG2(GS)3vs IgG2(GS)6vs IgG2(GS)9的体内活性数据)Figure 10 Insertion of amino acid sequence in the hinge region to destroy IgG2 flexibility will affect agonistic activity (In vivo activity data of IgG2 vs IgG2(GS) 3 vs IgG2(GS) 6 vs IgG2(GS) 9 )

OT1系统中铰链区变体G2GS3,G2GS6,G2GS9失去活性。(a-b)在hFCGRTg小鼠模型中,运用OVA特异性CD8+T细胞反应模型,分别用2ugDEC-OVA205伴随10ug对照或者1C10抗mCD40抗体诱导小鼠,分析脾脏细胞中CD8+OT1特异细胞的细胞数(a)和百分比(b)。The hinge region variants G2GS3, G2GS6, and G2GS9 were inactivated in the OT1 system. (a-b) In the hFCGRTg mouse model, using the OVA-specific CD8+ T cell response model, mice were induced with 2ugDEC-OVA205 together with 10ug control or 1C10 anti-mCD40 antibody, and the number (a) and percentage (b) of CD8+OT1-specific cells in spleen cells were analyzed.

图11改变铰链区氨基酸序列能够降低IgG抗体柔性并影响抗体激动活性(IgG1 vsIgG1-A2,以及其它降低柔性的例子)Figure 11 Changing the amino acid sequence of the hinge region can reduce IgG antibody flexibility and affect antibody agonistic activity (IgG1 vs IgG1-A2, and other examples of reduced flexibility)

(a)TR-FRET实验数据显示,将人IgG1的铰链区替换为IgA2的铰链区后产生的IgG1-A2变体(G1A2)的柔性减弱。(b)SAXS实验数据Dimensionless Kratky plots分析显示,IgG1A2变体柔性减弱(刚性更强)。(a) TR-FRET experimental data showing that the IgG1-A2 variant (G1A2) produced by replacing the hinge region of human IgG1 with the hinge region of IgA2 is less flexible. (b) Dimensionless Kratky plots analysis of SAXS experimental data shows that the IgG1A2 variant is less flexible (more rigid).

图12改变铰链区氨基酸序列增强IgG抗体灵活性能够影响抗体激动活性(IgG1 vsIgG1-A2,增强活性的示例)Figure 12 Changing the amino acid sequence of the hinge region to enhance the flexibility of the IgG antibody can affect the agonistic activity of the antibody (IgG1 vs IgG1-A2, an example of enhanced activity)

利用OVA特异性CD8+T细胞反应模型,在第1天给FcγR人源小鼠过继转移OT-1细胞,在第2天腹腔共同免疫DEC-OVA以及对照或抗CD40抗体,第7天收集脾细胞定量OVA特异性CD8+T细胞。如所述处理和分析FcγR-人源化小鼠中的OT-1细胞的定量以及对照或所示恒定结构域的抗鼠CD40抗体(每只小鼠30μg)。每个符号代表一只单独的小鼠。条形代表平均值±SEM。**p≤0.01,***p≤0.001,****p≤0.0001,用two-way ANOVA with Holm-Sidak’s post hoc的分析方法分析。如图所示,G1A2抗体处理的动物有更多的抗原特异OT-1细胞扩增(a,b)和CD8细胞扩增(c)。Using the OVA-specific CD8 + T cell response model, FcγR human-derived mice were adoptively transferred OT-1 cells on day 1, co-immunized with DEC-OVA and control or anti-CD40 antibody intraperitoneally on day 2, and splenocytes were collected on day 7 to quantify OVA-specific CD8 + T cells. Quantification of OT-1 cells in FcyR-humanized mice were processed and analyzed as described, as well as control or anti-mouse CD40 antibodies of the indicated constant domains (30 μg per mouse). Each symbol represents an individual mouse. Bars represent mean ± SEM. **p≤0.01, ***p≤0.001, ****p≤0.0001, analyzed by two-way ANOVA with Holm-Sidak's post hoc analysis method. As shown, G1A2 antibody-treated animals had more antigen-specific OT-1 cell expansion (a, b) and CD8 cell expansion (c).

图13不同抗体具有不同最佳抗体柔性要求((a):1C10:V11H2>V11H1>V11H3活性数据;(b):MD5-1:V11H1>V11H2>V11H3活性数据)Figure 13 Different antibodies have different optimal antibody flexibility requirements ((a): 1C10:V11H2>V11H1>V11H3 activity data; (b): MD5-1:V11H1>V11H2>V11H3 activity data)

图14在铰链区插入不是3-4的倍数个氨基酸会破坏IgG2激动活性(IgG2 vsIgG2V1vs IgG2V2 vs IgG2V3 vs IgG2V4 vs IgG2V5G vs IgG2V6的体内活性数据)Figure 14 Insertion of amino acids that are not multiples of 3-4 in the hinge region will destroy IgG2 agonistic activity (In vivo activity data of IgG2 vs IgG2V1 vs IgG2V2 vs IgG2V3 vs IgG2V4 vs IgG2V5G vs IgG2V6)

(a)1C10克隆抗CD40抗体,体外刺激FcγR人源化小鼠的脾脏细胞,结果显示,在IgG2铰链区插入不是3-4的倍数个氨基酸的铰链区变体失去活性。(b)MD5-1克隆抗DR5抗体,体外刺激与FcγR人源化小鼠的脾脏细胞共培养的MC38肿瘤细胞,结果显示,在V11H2铰链区插入不是3-4的倍数个氨基酸的铰链区变体失去活性。(a) The 1C10 cloned anti-CD40 antibody stimulated the spleen cells of FcγR humanized mice in vitro, and the results showed that the hinge region variants inserted into the IgG2 hinge region that were not multiples of 3-4 amino acids were inactivated. (b) MD5-1 cloned anti-DR5 antibody stimulated MC38 tumor cells co-cultured with spleen cells of FcγR humanized mice in vitro. The results showed that the hinge region variants inserted in the hinge region of V11H2 that were not multiples of 3-4 amino acids were inactivated.

图15不同铰链序列表Figure 15 List of different hinge sequences

CH1是重链恒定区的CH1,UH是铰链区的上部铰链结构域,MH是铰链区的中间铰链结构域,LH是铰链区的下部铰链结构域。CH1 is CH1 of the heavy chain constant region, UH is the upper hinge domain of the hinge region, MH is the middle hinge domain of the hinge region, and LH is the lower hinge domain of the hinge region.

具体实施方式Detailed ways

除非另有说明,否则本文中所使用的科学与技术术语应具有那些本领域普通技术人员通常理解的含义。此外,除非本文中另有要求,否则单数术语应包括复数,且复数术语应包括单数。通常,本文中所描述的细胞及组织培养、分子生物学、免疫学及蛋白质与核酸化学所涉及的命名法与其技术均是本领域已知且常用的。Unless otherwise specified, scientific and technical terms used herein shall have the meanings commonly understood by those of ordinary skill in the art. Further, unless otherwise required herein, singular terms shall include pluralities and plural terms shall include the singular. Generally, nomenclatures and techniques involved in cell and tissue culture, molecular biology, immunology, and protein and nucleic acid chemistry described herein are known and commonly used in the art.

本发明的方法与技术通常依据本领域已知的传统方法进行,且说明于本说明书所摘录和讨论的多种一般性及较专业性参考书中,除非另有说明。参见例如:Sambrook等人的Molecular Cloning:A Laboratory Manual,第2版(Cold Spring Harbor LaboratoryPress,Cold Spring Harbor,N.Y.(1989))及Ausubel等人的Current Protocols inMolecular Biology(Greene Publishing Associates(1992)),及Harlow与Lane的Antibodies:A Laboratory Manual(Cold Spring Harbor Laboratory Press,ColdSpring Harbor,N.Y.(1990)),其内容已以引用的方式并入本文中。酶反应与纯化技术是根据制造商的说明书进行,通常可依本领域已知的方法或依本文说明的方法进行。与本文中描述的分析化学、合成有机化学、及医学与医药化学相关的命名法,及实验方法与技术是本领域已知且常用的。化学合成法、化学分析法、医药制法、调配法与药物递送法,及患者的治疗法均采用标准技术。The methods and techniques of the present invention are generally performed according to conventional methods known in the art and are described in various general and more technical references that are cited and discussed in this specification unless otherwise indicated. See, e.g., Molecular Cloning: A Laboratory Manual by Sambrook et al., 2nd Edition (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989)) and Current Protocols in Molecular Biology by Ausubel et al. (Greene Publishing Associates (1992)), and Antibiotics by Harlow and Lane. bodies: A Laboratory Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1990)), the contents of which are incorporated herein by reference. Enzyme reactions and purification techniques are performed according to manufacturer's instructions, generally by methods known in the art or as described herein. The nomenclatures associated with, and the experimental methods and techniques of, analytical chemistry, synthetic organic chemistry, and medical and medicinal chemistry described herein are those known and commonly used in the art. Standard techniques are used for chemical synthesis, chemical analysis, pharmaceutical preparation, formulation and drug delivery, and patient treatment.

除非另有说明,否则下列术语具有如下定义:Unless otherwise stated, the following terms have the following definitions:

“抗体”(Ab)应包括,但不仅限于,糖蛋白免疫球蛋白,其特异性结合抗原并且至少包括通过二硫键相互连接的两个重(H)链和两个轻(L)链,或其抗原结合部分。每个H链包含重链可变区(本文缩写为VH)和重链恒定区。"Antibody" (Ab) shall include, but is not limited to, a glycoprotein immunoglobulin that specifically binds an antigen and comprises at least two heavy (H) chains and two light (L) chains interconnected by disulfide bonds, or an antigen-binding portion thereof. Each H chain is comprised of a heavy chain variable region (abbreviated herein as VH) and a heavy chain constant region.

抗体“重链恒定区”,又称CDs,包含CH1、CH2和CH3三个结构域以及位于CH1结构域与CH2结构域之间的铰链区。每条轻链包含轻链可变区(本文缩写为VL)和轻链恒定区。轻链恒定区由一个结构域CL组成。VH和VL区可以进一步细分为高变性的区域,称为互补决定区(CDR),它们之间散在着较为保守的称作框架区(FR)的区域。每个VH和VL由三个CDR和四个FR组成,从氨基端向羧基端按以下顺序排列:FR1、CDR1、FR2、CDR2、FR3、CDR3、FR4。重链和轻链的可变区包含与抗原相互作用的结合结构域。The "heavy chain constant region" of an antibody, also known as CDs, consists of three domains CH1, CH2 and CH3 and a hinge region between the CH1 domain and the CH2 domain. Each light chain comprises a light chain variable region (abbreviated herein as VL) and a light chain constant region. The light chain constant region consists of one domain, CL. The VH and VL regions can be further subdivided into regions of hypervariability called complementarity determining regions (CDRs), interspersed with more conserved regions called framework regions (FRs). Each VH and VL consists of three CDRs and four FRs, arranged in the following order from the amino terminus to the carboxyl terminus: FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4. The variable regions of the heavy and light chains contain the binding domains that interact with the antigen.

术语“铰链区”意指使CH1结构域与CH2结构域连接的重链恒定区的部分。铰链区包括约25个残基,并且是柔性的,从而允许2个N末端抗原结合区独立移动。铰链区可以再分成3个独特结构域:上部、中间和下部铰链结构域(Roux等人(1998)J.Immunol.161:4083)。已制备了一些改变的抗体分子,其中铰链区中的半胱氨酸残基数目进行了增加,以促进抗体分子形成固定构象,提高激动型抗体的免疫调节活性(专利号WO2015145360A1)。The term "hinge region" means the part of the heavy chain constant region that connects the CH1 domain to the CH2 domain. The hinge region consists of approximately 25 residues and is flexible, allowing the two N-terminal antigen-binding regions to move independently. The hinge region can be subdivided into 3 distinct domains: upper, middle and lower hinge domains (Roux et al. (1998) J. Immunol. 161:4083). Some altered antibody molecules have been prepared, in which the number of cysteine residues in the hinge region has been increased to promote the formation of a fixed conformation of the antibody molecule and improve the immunomodulatory activity of agonistic antibodies (Patent No. WO2015145360A1).

“Fc区”(可结晶片段区域)或“Fc结构域”或“Fc”是指抗体重链的C-末端区域,其介导免疫球蛋白与宿主组织或因子的结合,包括与位于免疫系统的各种细胞(例如,效应细胞)上的Fc受体的结合,或者与经典补体系统的第一组分(C1q)的结合。因此,Fc区是构成(comprising)抗体重链恒定区中除第一恒定区免疫球蛋白结构域之外的部分的多肽。在IgG,IgA和IgD抗体同种型中,Fc区由来自抗体两条重链的第二(CH2)和第三(CH2)恒定结构域的两个相同的蛋白片段构成;IgM和IgE的Fc区在每个多肽链中包含三个重链恒定结构域(CH结构域2-4)。对于IgG,Fc区包含免疫球蛋白结构域Cγ2和Cγ3以及Cγ1和Cγ2之间的铰链。虽然免疫球蛋白重链的Fc区的边界可以变化,但是人IgG重链Fc区通常定义为从重链位置C226或P230的氨基酸残基到羧基端的序列段,其中该编号是根据EU索引,如在Kabat中一样。人IgG Fc区的CH2结构域从大约氨基酸231延伸至大约氨基酸340,而CH3结构域位于Fc区的CH2结构域的C末端侧,即,它从IgG的大约氨基酸341延伸至大约氨基酸447。如本文所使用的,Fc区可以是天然序列Fc或变体Fc。Fc还可以指处于分离状态的这个区域,或者处于包含Fc的蛋白多肽中的这个区域,这样的多肽例如“包含Fc区的结合蛋白”,又称“Fc融合蛋白”(例如,抗体或免疫粘附素)。"Fc region" (fragment crystallizable region) or "Fc domain" or "Fc" refers to the C-terminal region of an antibody heavy chain that mediates the binding of the immunoglobulin to host tissues or factors, including binding to Fc receptors located on various cells of the immune system (e.g., effector cells), or binding to the first component (CIq) of the classical complement system. Thus, an Fc region is a polypeptide comprising the portion of the constant region of an antibody heavy chain other than the first constant region immunoglobulin domain. In IgG, IgA, and IgD antibody isotypes, the Fc region is composed of two identical protein fragments derived from the second (CH2) and third (CH2) constant domains of the two heavy chains of the antibody; the Fc region of IgM and IgE contains three heavy chain constant domains (CH domains 2-4) in each polypeptide chain. For IgG, the Fc region comprises the immunoglobulin domains Cγ2 and Cγ3 and the hinge between Cγ1 and Cγ2. Although the boundaries of the Fc region of an immunoglobulin heavy chain can vary, the human IgG heavy chain Fc region is generally defined as the sequence stretch from the amino acid residue at positions C226 or P230 of the heavy chain to the carboxy-terminus, where this numbering is according to the EU index, as in Kabat. The CH2 domain of the human IgG Fc region extends from about amino acid 231 to about amino acid 340, while the CH3 domain is located on the C-terminal side of the CH2 domain of the Fc region, ie, it extends from about amino acid 341 to about amino acid 447 of IgG. As used herein, the Fc region can be a native sequence Fc or a variant Fc. Fc may also refer to this region in isolation, or within an Fc-containing protein polypeptide, such as a "binding protein comprising an Fc region", also known as an "Fc fusion protein" (e.g., an antibody or an immunoadhesin).

“Fc受体”或“FcR”是结合免疫球蛋白Fc区的受体。结合IgG抗体的FcR包括FcγR家族的受体,包括这些受体的等位基因变体和可变剪接形式。人Fcγ受体家族包括几个成员:FcγRI(CD64)、FcγRIIA(CD32a)、FcγRIIB(CD32b)、FcγRIIIA(CD16a)、FcγRIIIB(CD16b)。其中,FcγRIIB是唯一的抑制性Fcγ受体,其它均为活化型Fcγ受体。大多数天然效应器细胞类型共表达一种或多种激活性FcγR和抑制性FcγRIIB,而自然杀伤(NK)细胞选择性地表达一种激活性Fcγ受体(在小鼠中是FcγRIII,在人中是FcγRIIIA),但在小鼠和人类中不表达抑制性FcγRIIB。这些Fcγ受体的分子结构不同,也因此对各IgG抗体亚类具有不同的亲和力。在这些Fcγ受体中FcγRI是高亲和力受体,而FcγRIIA、FcγRIIB和FcγRIIIA是低亲和力受体。基因多态性也存在于这些不同的Fcγ受体中并影响它们的结合亲和力。最常见的基因多态性是FcγRIIA的R131/H131和FcγRIIIA的V158/F158等多态形式。这些多态形式中有的被发现与多种疾病有相关性,一些特定治疗抗体的效果也依赖于病人是否带有特定的Fcγ受体基因多态形式。"Fc receptor" or "FcR" is a receptor that binds the Fc region of an immunoglobulin. FcRs that bind IgG antibodies include receptors of the FcγR family, including allelic variants and alternatively spliced forms of these receptors. The human Fcγ receptor family includes several members: FcγRI (CD64), FcγRIIA (CD32a), FcγRIIB (CD32b), FcγRIIIA (CD16a), FcγRIIIB (CD16b). Among them, FcγRIIB is the only inhibitory Fcγ receptor, and the others are activating Fcγ receptors. Most natural effector cell types co-express one or more activating FcγRs and inhibitory FcγRIIB, whereas natural killer (NK) cells selectively express one activating Fcγ receptor (FcγRIII in mice and FcγRIIIA in humans) but not the inhibitory FcγRIIB in mice and humans. These Fcγ receptors differ in their molecular structure and thus have different affinities for the various IgG antibody subclasses. Among these Fcy receptors, FcyRI is a high-affinity receptor, while FcyRIIA, FcyRIIB and FcyRIIIA are low-affinity receptors. Genetic polymorphisms also exist in these different Fcγ receptors and affect their binding affinities. The most common gene polymorphisms are polymorphic forms such as R131/H131 of FcγRIIA and V158/F158 of FcγRIIIA. Some of these polymorphic forms have been found to be associated with various diseases, and the effect of some specific therapeutic antibodies also depends on whether the patient has a specific polymorphic form of the Fcγ receptor gene.

本发明抗体及其片段或者结构域的氨基酸的序号是以IgG Eu编号为依据的。The amino acid sequence numbers of the antibodies and their fragments or structural domains of the present invention are based on IgG Eu numbering.

术语“抗原结合位点”指负责抗原结合的抗体的氨基酸残基。抗体的抗原结合位点包含来自“互补决定区”或“CDR”的氨基酸残基。“构架”或“FR”区是非如本文中定义的高变区残基的这些可变区区域。因此,抗体的轻链和重链可变结构域从N末端到C末端包含区域FR1、CDR1、FR2、CDR2、FR3、CDR3和FR4。特别地,重链的CDR3是最有助于抗原结合的和定义抗体性能的区域。CDR和FR根据Kabat等,SEQ ID NO:uences of Proteins of ImmunologicalInterest,第5版,Public Health Service,National Institutes of Health,Bethesda,MD(1991)的标准定义和/或来自“高变环”的残基确定。The term "antigen binding site" refers to the amino acid residues of an antibody that are responsible for antigen binding. The antigen binding site of an antibody comprises amino acid residues from "complementarity determining regions" or "CDRs". "Framework" or "FR" regions are those variable region regions that are not hypervariable region residues as defined herein. Thus, the light and heavy chain variable domains of an antibody comprise, from N-terminus to C-terminus, the regions FR1, CDR1, FR2, CDR2, FR3, CDR3 and FR4. In particular, CDR3 of the heavy chain is the region that contributes most to antigen binding and defines antibody properties. CDRs and FRs are determined according to the standard definition of Kabat et al., SEQ ID NO: uences of Proteins of Immunological Interest, 5th Edition, Public Health Service, National Institutes of Health, Bethesda, MD (1991) and/or residues from "hypervariable loops".

抗体通常以高亲和力特异性结合其关联抗原(同样地,本发明的蛋白也可以特异性结合其表位识别分子),这表现为10-5-10-11M或更小的解离常数(KD)。任何大于大约10-4M-1的KD通常被认为指示非特异性结合。如本文所使用的,与抗原“特异性结合”的抗体是指以高亲和力与抗原和基本上相同的抗原结合的抗体,这意味着KD为10-7M或更小,优选地10-8M或更小,甚至更优选地5×10-9M或更小,最优选地10-8-10-10M或更小,但是不会以高亲和力与无关抗原结合。如果抗原与给定抗原显示高度的序列同一性,例如,如果它与给定抗原的序列显示至少80%,至少90%,优选至少95%,更优选至少97%,或甚至更优选至少99%的序列同一性,则该抗原与给定抗原是“基本上相同的”。Antibodies usually specifically bind their cognate antigens (similarly, proteins of the invention can also specifically bind their epitope recognition molecules) with high affinity, which is manifested by a dissociation constant (KD) of 10 −5 -10 −11 M or less. Any KD greater than about 10 −4 M −1 is generally considered to indicate non-specific binding. As used herein, an antibody that "specifically binds" an antigen refers to an antibody that binds the antigen and substantially the same antigen with high affinity, meaning a KD of 10-7 M or less, preferably 10-8 M or less, even more preferably 5 x 10-9 M or less, most preferably 10-8-10-10 M or less, but does not bind with high affinity to an unrelated antigen. An antigen is "substantially identical" to a given antigen if it exhibits a high degree of sequence identity with the given antigen, for example, if it exhibits at least 80%, at least 90%, preferably at least 95%, more preferably at least 97%, or even more preferably at least 99% sequence identity to the given antigen's sequence.

免疫球蛋白可能来自任何通常已知的同种型。IgG同种型在某些物种中可以被分细为亚类:人类中的IgG1,IgG2,IgG3和IgG4,小鼠中的IgG1,IgG2a,IgG2b和IgG3。“同种型”是指由重链恒定区基因编码的抗体类别(例如IgM或IgG1)。“抗体”包括例如天然存在的和非天然存在的抗体;单克隆和多克隆抗体;嵌合和人源化抗体;人或非人抗体;全合成抗体;和单链抗体。Immunoglobulins may be from any of the generally known isotypes. IgG isotypes can be subdivided in some species into subclasses: IgG1, IgG2, IgG3 and IgG4 in humans, IgG1, IgG2a, IgG2b and IgG3 in mice. "Isotype" refers to the antibody class (eg, IgM or IgGl) encoded by the heavy chain constant region genes. "Antibody" includes, for example, naturally-occurring and non-naturally-occurring antibodies; monoclonal and polyclonal antibodies; chimeric and humanized antibodies; human or non-human antibodies; fully synthetic antibodies;

“激动型抗体”是与受体结合并激活受体的抗体,激动型抗体的功能实例是与肿瘤坏死因子受体(TNFR)超家族中受体结合并诱导表达TNF受体的细胞凋亡。测定细胞凋亡诱导作用的试验描述在WO98/51793和WO99/37684中,该两篇文献特别在此引入作为参考。本发明具体的实施例中抗CD40的激动型抗体能够通过结合免疫细胞表面传递免疫激活信号的靶标分子并激活其控制的重要免疫激活信号通路,进而增强抗肿瘤免疫应答间接杀死肿瘤细胞。一些已经进入临床研究阶段的激动型抗体的实例可以参考专利PCT/CN2017/087620。An "agonistic antibody" is an antibody that binds to and activates a receptor, an example of the function of an agonistic antibody is binding to a receptor in the tumor necrosis factor receptor (TNFR) superfamily and inducing apoptosis in cells expressing the TNF receptor. Assays for determining induction of apoptosis are described in WO98/51793 and WO99/37684, both of which are expressly incorporated herein by reference. In a specific embodiment of the present invention, the anti-CD40 agonistic antibody can bind to the target molecule that transmits the immune activation signal on the surface of the immune cell and activate the important immune activation signaling pathway controlled by it, thereby enhancing the anti-tumor immune response to indirectly kill tumor cells. Some examples of agonistic antibodies that have entered the clinical research stage can refer to patent PCT/CN2017/087620.

“激动活性”是指通过使抗体与抗原分子结合,激发该抗原分子产生信号,诱导某些特异性生理活性变化的活性。抗原分子包括受体分子和其它具有信号或生理功能的分子。上述特异性生理活性包括,例如:增殖活性、生存活性、分化活性、转录活性、膜转运活性、结合活性、蛋白分解活性、磷酸化/脱磷酸化活性、氧化还原活性、转移活性、核酸分解活性、脱水活性、细胞死亡诱导活性及凋亡诱导活性等,但不限于这些。本文中描述的激动活性并不限于激动型抗体。在一些实施方案中,激动活性的降低可增强抗体的其他活性,例如抑制活性。"Agonist activity" refers to the activity of inducing certain specific physiological activity changes by binding the antibody to the antigen molecule, stimulating the antigen molecule to generate a signal. Antigen molecules include receptor molecules and other molecules with signaling or physiological functions. The above-mentioned specific physiological activities include, for example, proliferation activity, survival activity, differentiation activity, transcription activity, membrane transport activity, binding activity, proteolytic activity, phosphorylation/dephosphorylation activity, redox activity, transfer activity, nucleic acid decomposition activity, dehydration activity, cell death-inducing activity and apoptosis-inducing activity, etc., but are not limited to these. The agonistic activity described herein is not limited to agonistic antibodies. In some embodiments, a reduction in agonistic activity enhances other activities of the antibody, such as inhibitory activity.

“母本”指在蛋白质改造过程中,改造的对象。在一些实施例中,所述母本为未被改造的抗体。"Mother parent" refers to the object to be modified during the process of protein modification. In some embodiments, the parent is an unengineered antibody.

“变体”指在蛋白质改造过程中,母本经过修饰后所获得的蛋白。具体的可以是通过对母本氨基酸的突变、缺失和/或添加而衍生出来的,且保留母本中固有的一些或所有功能的蛋白质。"Variant" refers to the protein obtained after the parent parent is modified in the process of protein engineering. Specifically, it may be a protein derived by mutation, deletion and/or addition of parent amino acids and retains some or all of the functions inherent in the parent.

“修饰”是指通过化学基团(包括氨基酸或氨基酸组成的片段、非天然氨基酸、糖基、乙酰基等)的引入和/或除去,而使蛋白质结构和/或功能发生改变的现象。本发明所指的对抗体或者其片段的“修饰”包括对抗体或者其片段中的氨基酸进行突变、删除、侧链修饰(例如糖基化、乙酰化等)和/或插入额外的氨基酸等。"Modification" refers to the phenomenon of changing the protein structure and/or function through the introduction and/or removal of chemical groups (including amino acids or amino acid fragments, unnatural amino acids, sugar groups, acetyl groups, etc.). The "modification" of the antibody or its fragments referred to in the present invention includes mutation, deletion, side chain modification (such as glycosylation, acetylation, etc.) and/or insertion of additional amino acids in the antibody or its fragments.

“柔性”是指具有分子(内)运动性,在本发明中主要指蛋白质的结构易变性。如文中所述,当铰链区具有“柔性”时,意思是其连接的两个N-末端抗原结合区可以独立地移动。同时,文中也用“灵活”和“僵硬”来描述抗体的柔性程度,“灵活”意味着抗体柔性强,而“僵硬”意味着抗体柔性弱。生物大分子的柔性可以通过本发明所提供的柔性检测方法来进行检测,具体的,可以采用本发明提供的小角X射线散射方法或者TR-FRET的方法进行检测。"Flexibility" refers to having molecular (intra)mobility, and in the present invention mainly refers to the structural variability of proteins. As mentioned herein, when a hinge region is "flexible," it means that the two N-terminal antigen-binding regions it connects can move independently. At the same time, "flexible" and "stiff" are also used in the article to describe the degree of flexibility of the antibody. "Flexible" means that the antibody is flexible, while "stiff" means that the antibody is weak. The flexibility of biological macromolecules can be detected by the flexible detection method provided by the present invention, specifically, the small angle X-ray scattering method or the TR-FRET method provided by the present invention can be used for detection.

在本专利中,当所述变体比母本具有更强柔性时,通常具有更差的激动活性;当所述变体比母本具有更弱柔性时,通常具有更好的激动活性。但是,对于不同的抗体,其激动活性最优的变体所需的柔性的最佳值或最佳值范围是不同的,当柔性达到最佳值或落入最佳值范围时,其激动活性最强,在此基础上增加或者减弱柔性,激动活性都可能减弱。在人类的IgG中,通常IgG3的柔性是强的,包含IgG3的CH1-铰链区的抗体其激动活性通常是差的,而IgG2和IgG1的柔性相对较低,因而包含IgG2和IgG1的CH1-铰链区的抗体的激动活性通常会比包含IgG3的CH1-铰链区的抗体的激动活性要强。因而IgG1或IgG2的CH1-铰链区都是可以选择的天然的IgG CH1-铰链区。事实上,尽管IgG2的柔性比IgG1要低,并且在一些抗体的实施例中,采用IgG2 CH1-铰链区确实能够提供比IgG1 CH1-铰链区和IgG3 CH1-铰链区更好的激动活性,但在另外一些抗体的实施例中,柔性居中的IgG1 CH1-铰链区能够提供比IgG2CH1-铰链区和IgG3 CH1-铰链区更好的激动活性。因此,出于增强抗体的激动活性的目的,需要将抗体的柔性调节到一个相对低的区间;较佳的,该抗体的柔性程度不应超过人IgG1的柔性程度,但柔性程度也不能过低;可以从具有较低柔性的抗体中进一步通过活性筛选获得激动活性最优的变体。相反,出于降低抗体的激动活性的目的,需要将抗体的柔性调节到一个相对高的区间;较佳的,该抗体的柔性程度应大于或相当于天然IgG3的柔性程度。In this patent, when the variant is more flexible than the parent, it generally has poorer agonistic activity; when the variant is less flexible than the parent, it generally has better agonistic activity. However, for different antibodies, the optimal value or optimal value range of the flexibility required for the variant with the optimal agonistic activity is different. When the flexibility reaches the optimal value or falls within the optimal value range, the agonistic activity is the strongest. On this basis, if the flexibility is increased or weakened, the agonistic activity may be weakened. In human IgG, the flexibility of IgG3 is generally strong, and the agonistic activity of antibodies containing the CH1-hinge region of IgG3 is usually poor, while the flexibility of IgG2 and IgG1 is relatively low, so the agonistic activity of antibodies containing the CH1-hinge region of IgG2 and IgG1 is usually stronger than that of antibodies containing the CH1-hinge region of IgG3. Thus the CH1-hinge region of IgG1 or IgG2 is the natural IgG CH1-hinge region of choice. In fact, although IgG2 is less flexible than IgG1, and in some antibody embodiments, the use of IgG2 CH1-hinge region can indeed provide better agonistic activity than IgG1 CH1-hinge region and IgG3 CH1-hinge region, but in other antibody embodiments, the IgG1 CH1-hinge region with central flexibility can provide better activity than IgG2 CH1-hinge region and IgG3 CH1-hinge region. Agonist activity. Therefore, for the purpose of enhancing the agonistic activity of the antibody, it is necessary to adjust the flexibility of the antibody to a relatively low range; preferably, the degree of flexibility of the antibody should not exceed the degree of flexibility of human IgG1, but the degree of flexibility should not be too low; the variant with the best agonistic activity can be obtained from antibodies with lower flexibility through further activity screening. On the contrary, for the purpose of reducing the agonistic activity of the antibody, the flexibility of the antibody needs to be adjusted to a relatively high range; preferably, the degree of flexibility of the antibody should be greater than or equivalent to that of natural IgG3.

“回转半径(Radius of gyration,Rg)”又称惯性半径,是指物体微分质量假设的集中点到转动轴间的距离,可以大概描述分子结构有多紧密。Rg反应了蛋白质的体积和形状,可用于衡量蛋白质结构的延展广度。Rg越大,说明体系越膨胀,对于本发明的抗体来说,其柔性越强。本专利中,通过对小角度X射线散射所获得的参数来估算Rg。"Radius of gyration (Rg)", also known as the radius of inertia, refers to the distance between the assumed concentration point of the differential mass of the object and the rotation axis, which can roughly describe how tight the molecular structure is. Rg reflects the volume and shape of the protein and can be used to measure the breadth of the protein structure. The larger the Rg, the more expanded the system, and the stronger the flexibility of the antibody of the present invention. In this patent, Rg is estimated by the parameters obtained from small-angle X-ray scattering.

本文的″肿瘤坏死因子受体超家族″或″TNF受体超家族″,是指可与TNF家族的细胞因子结合的受体多肽。一般而言,这些受体是在其胞外区具有一个或多个半胱氨酸丰富的重复序列的I型跨膜受体。TNF基因家族中细胞因子的实例包括:肿瘤坏死因子-α(TNF-α)、肿瘤坏死因子-β(TNF-β或淋巴毒素)、CD30配体、CD27配体、CD40配体、OX-40配体、4-1BB配体、Apo-1配体(也称作Fas配体或CD95配体)、Apo-2配体(也称作TRAIL)、Apo-3配体(也称作TWEAK)、osteoprotegerin(OPG),APRIL、RANK配体(也称作TRANCE),和TALL-1(也称作BlyS、BAFF或THANK)。TNF受体超家族中受体的实例包括:1型肿瘤坏死因子受体(TNFR1)、2型肿瘤坏死因子受体(TNFR2)、p75神经生长因子受体(NGFR)、B细胞表面抗原CD40、T细胞抗原OX-40、Apo-1受体(也称作Fas或CD95)、Apo-3受体(也称作DR3、sw1-1、TRAMP和LARD)、称作″跨膜激活剂和CAML-相互作用子(interactor)″或″TACI″的受体、BCMA蛋白、DR4、DR5(或者,也称作Apo-2;TRAIL-R2,TR6,Tango-63,hAPO8,TRICK2或KILLER)、DR6、DcR1(也称作TRID、LIT或TRAIL-R3)、DcR2(也称作TRAIL-R4或TRUNDD)、OPG、DcR3(也称作TR6或M68)、CAR1、HVEM(也称作ATAR或TR2)、GITR、ZTNFR-5、NTR-1、TNFL1、CD30、淋巴毒素β受体(LTBr)、4-1BB受体和TR9(EP988,371A1)。"Tumor necrosis factor receptor superfamily" or "TNF receptor superfamily" herein refers to receptor polypeptides that can bind to cytokines of the TNF family. In general, these receptors are type I transmembrane receptors with one or more cysteine-rich repeats in their extracellular region. Examples of cytokines in the TNF gene family include: tumor necrosis factor-alpha (TNF-alpha), tumor necrosis factor-beta (TNF-beta or lymphotoxin), CD30 ligand, CD27 ligand, CD40 ligand, OX-40 ligand, 4-1BB ligand, Apo-1 ligand (also known as Fas ligand or CD95 ligand), Apo-2 ligand (also known as TRAIL), Apo-3 ligand (also known as TWEAK) , osteoprotegerin (OPG), APRIL, RANK ligand (also known as TRANCE), and TALL-1 (also known as BlyS, BAFF or THANK). Examples of receptors in the TNF receptor superfamily include: tumor necrosis factor receptor type 1 (TNFR1), tumor necrosis factor receptor type 2 (TNFR2), p75 nerve growth factor receptor (NGFR), B cell surface antigen CD40, T cell antigen OX-40, Apo-1 receptor (also known as Fas or CD95), Apo-3 receptor (also known as DR3, sw1-1, TRAMP and LARD), known as "transmembrane activator and CAML-interactor (inter actor)" or "TACI" receptor, BCMA protein, DR4, DR5 (or, also known as Apo-2; TRAIL-R2, TR6, Tango-63, hAPO8, TRICK2 or KILLER), DR6, DcR1 (also known as TRID, LIT or TRAIL-R3), DcR2 (also known as TRAIL-R4 or TRUNDD), OPG, DcR3 (also known as TR6 or M68 ), CAR1, HVEM (also known as ATAR or TR2), GITR, ZTNFR-5, NTR-1, TNFL1, CD30, lymphotoxin beta receptor (LTBr), 4-1BB receptor and TR9 (EP988,371A1).

本发明所述的“对抑制性Fcγ受体以及活化性Fcγ受体的亲和力比值”或者“I/A比值”等于抗体重链恒定区与抑制性Fcγ受体(例如:人FcγRIIB)的亲和力值除于抗体重链恒定区与同种属的活化性Fcγ受体(例如:包括人FcγRI、FcγRIIA、FcγRIIIA、FcγRIIIB)的最高亲和力值。The "affinity ratio to inhibitory Fcγ receptors and activating Fcγ receptors" or "I/A ratio" described in the present invention is equal to the affinity value of the antibody heavy chain constant region and inhibitory Fcγ receptors (for example: human FcγRIIB) divided by the highest affinity value between the antibody heavy chain constant region and activating Fcγ receptors of the same species (for example: including human FcγRI, FcγRIIA, FcγRIIIA, FcγRIIIB).

所述的“亲和力”是指两个分子之间的结合能力的大小,通常地可以用KD来衡量。“KD”指两个分子(例如:特定抗体和抗原或者配体和受体)相互作用的平衡解离常数。The "affinity" refers to the magnitude of the binding ability between two molecules, which can usually be measured by KD. "KD"refers to the equilibrium dissociation constant for the interaction of two molecules (eg, a particular antibody and antigen or a ligand and receptor).

“人”抗体是指这样的抗体,其可变区具有来自人种系免疫球蛋白序列的框架区和CDR区。而且,如果抗体含有恒定区,则恒定区也来自人种系免疫球蛋白序列。本发明的人抗体可以包括不是由人种系免疫球蛋白序列编码的氨基酸残基(例如,通过体外随机或定点突变或者通过体内体细胞突变引入的突变)。然而,如本文所使用的,术语“人抗体”,不意图包括来自其它哺乳动物物种(如小鼠)的种系的CDR序列被嫁接到人框架序列上的抗体。术语“人”抗体和“完全人”抗体被同义使用。A "human" antibody is one whose variable regions have framework and CDR regions derived from human germline immunoglobulin sequences. Furthermore, if the antibody contains a constant region, the constant region also is derived from human germline immunoglobulin sequences. The human antibodies of the invention may include amino acid residues not encoded by human germline immunoglobulin sequences (eg, mutations introduced by random or site-directed mutagenesis in vitro or by somatic mutation in vivo). However, the term "human antibody", as used herein, is not intended to include antibodies in which CDR sequences from the germline of other mammalian species, such as mice, have been grafted onto human framework sequences. The terms "human" antibody and "fully human" antibody are used synonymously.

“人源化”抗体是指其中非人抗体CDR结构域以外的一些、大部分或全部的氨基酸被来自人免疫球蛋白的相应氨基酸所替换的抗体。在人源化形式抗体的一个实施方案中,CDR结构域以外的一些、大部分或全部氨基酸被来自人免疫球蛋白的氨基酸代替,而一个或多个CDR区域内的一些、大部分或全部氨基酸都不变。允许对氨基酸进行小的添加、删除、插入、取代或修饰,只要它们不会消除抗体结合特定抗原的能力即可。“人源化”抗体保留与原始抗体相似的抗原特异性。A "humanized" antibody is one in which some, most or all of the amino acids outside the CDR domains of a non-human antibody have been replaced by the corresponding amino acids from a human immunoglobulin. In one embodiment of a humanized form of the antibody, some, most or all of the amino acids outside the CDR domains are replaced with amino acids from a human immunoglobulin, while some, most or all of the amino acids within one or more CDR regions are unchanged. Small additions, deletions, insertions, substitutions or modifications of amino acids are permissible so long as they do not eliminate the ability of the antibody to bind the particular antigen. A "humanized" antibody retains similar antigen specificity to the original antibody.

“嵌合抗体”是指可变区来自一个物种而恒定区来自另一个物种的抗体,例如可变区来自小鼠抗体而恒定区来自人抗体的抗体。A "chimeric antibody" refers to an antibody in which the variable regions are from one species and the constant regions are from another species, eg, an antibody in which the variable regions are from a mouse antibody and the constant regions are from a human antibody.

“柔性连接序列”是指具有柔性结构的氨基酸序列。本发明具体的实施例中“柔性连接序列”被用于添加、插入、取代或修饰抗体铰链区,以使铰链区具有柔性,或增加原有铰链区柔性的氨基酸序列。Joshua S.Klein等提供了一系列柔性连接序列(Design andcharacterization of structured protein linkers with differing flexibilities,Protein Engineering,Design&Selection vol.27no.10pp.325–330,2014),这些序列一并引用作为本发明具体的柔性连接序列的实例。"Flexible linking sequence" refers to an amino acid sequence having a flexible structure. In the specific embodiment of the present invention, the "flexible linking sequence" is used to add, insert, replace or modify the hinge region of the antibody to make the hinge region flexible, or to increase the flexibility of the original hinge region. Joshua S. Klein et al. provided a series of flexible linker sequences (Design and characterization of structured protein linkers with differing flexibilities, Protein Engineering, Design&Selection vol.27no.10pp.325-330, 2014), and these sequences were cited together as examples of specific flexible linker sequences in the present invention.

此外,发明人发现,通过突变(修饰)抗体的上部和/或中部铰链结构域(例如改变位阻较小的氨基酸数量和/或占比,或改变上部铰链结构域的长度),可以调节抗体柔性。发明人还发现,这种对抗体柔性的调节与抗体的激动活性密切相关;下调柔性可提高激活型抗体的激动活性,反之则可以调低激动型抗体的激动活性。本文中,位阻较小的氨基酸可选自:甘氨酸(G)、丙氨酸(A)、丝氨酸(S)、缬氨酸(V)、苏氨酸(T)、异亮氨酸(I)、亮氨酸(L)。优选地,位阻较小的氨基酸选自G或S。本文所位阻较大的氨基酸包括芳香族氨基酸和杂环基氨基酸。在一个或多个实施方案中,位阻较大的氨基酸选自脯氨酸(P)、羟脯氨酸(O)、天冬酰胺(N)、天冬氨酸(D)、焦谷氨酸(U)、谷氨酰胺(Q)、赖氨酸(K)、谷氨酸(E)、甲硫氨酸(M)、组氨酸(H)、苯丙氨酸(F)、精氨酸(R)、酪氨酸(Y)、色氨酸(W)。In addition, the inventors found that antibody flexibility can be adjusted by mutating (modifying) the upper and/or middle hinge domains of the antibody (for example, changing the number and/or ratio of amino acids with less steric hindrance, or changing the length of the upper hinge domain). The inventors also found that this regulation of antibody flexibility is closely related to the agonistic activity of the antibody; down-regulating the flexibility can increase the agonistic activity of the activating antibody, and vice versa can reduce the agonistic activity of the activating antibody. Herein, the amino acid with less steric hindrance can be selected from: glycine (G), alanine (A), serine (S), valine (V), threonine (T), isoleucine (I), leucine (L). Preferably, the amino acid with less hindrance is selected from G or S. The relatively hindered amino acids herein include aromatic amino acids and heterocyclic amino acids. In one or more embodiments, the amino acid with greater steric hindrance is selected from proline (P), hydroxyproline (O), asparagine (N), aspartic acid (D), pyroglutamic acid (U), glutamine (Q), lysine (K), glutamic acid (E), methionine (M), histidine (H), phenylalanine (F), arginine (R), tyrosine (Y), tryptophan (W).

当所述调节是上调抗体柔性或者降低抗体激动活性时,所述突变使铰链区的上部和/或中部铰链结构域中位阻较小的氨基酸数量和/或占比增加,或使上部和/或中部铰链结构域的长度增加。所述突变选自以下一种或多种,(1)在上部铰链结构域中插入1个、2个、5个或至少6个位阻较小的氨基酸,(2)从上部和/或中部铰链结构域中删除位阻较大的氨基酸,(3)将上部和/或中部铰链结构域中位阻较大氨基酸突变为位阻更小的氨基酸。例如,(1)中所述的氨基酸插入位于上部铰链结构域的N端至少第1个、至少第2个、至少第3个、至少第4个或至少第5个氨基酸后、或上部铰链结构域和中间铰链结构域之间。(1)中所述的插入包括1个、2个、5个或至少6个选自G和S的氨基酸。在具体实施方案中,(1)是在上部铰链结构域和中间铰链结构域之间插入G、GS、SG、GSGSG、SGSGS、GGGGS、GGGSG、GGSGG、GSGGG、SGGGG、GSGSG、GSSGG、GGSSG、GSGGS、GGSGS、GGGSS、SGGSG、SGSGG、SSGGG、SGGGS、SGSGS、SGGSS、SSGGS、SGSSG、SSGSG、SSSGG、GSSGS、GSGSS、GGSSS、GSSSG、GSSSS、SGSSS、SSGSS、SSSGS、SSSSG或(GSGSGS)n,其中n为1、2或3。在具体实施方案中,(2)是从上部和/或中部铰链结构域的C端至少第1个、至少第2个、至少第3个、至少第4个或至少第5个氨基酸开始删除位阻较大的氨基酸。在具体实施方案中,(3)包括将上部和/或中部铰链结构域中空间位阻大的氨基酸残基例如(R、K、D)取代成空间位阻小的氨基酸残基(例如G、S);在一些实施方案中,(3)还包括将上部和/或中部铰链结构域突变为IgG3或mIgG2a的相应区域,或将铰链区突变为IgG3或mIgG2a的铰链区,或将CH1-铰链区突变为IgG3或mIgG2a的CH1铰链区。在一个或多个实施方案中,突变之后所述抗体的柔性大于或相当于IgG3。在一个或多个实施方案中,突变后的所述抗体的回转半径(Rg)大于 When the adjustment is to upregulate antibody flexibility or reduce antibody agonistic activity, the mutation increases the number and/or proportion of amino acids with less steric hindrance in the upper and/or middle hinge domain of the hinge region, or increases the length of the upper and/or middle hinge domain. The mutation is selected from one or more of the following, (1) inserting 1, 2, 5 or at least 6 amino acids with less steric hindrance in the upper hinge domain, (2) deleting amino acids with larger steric hindrance from the upper and/or middle hinge domain, (3) mutating the amino acids with larger steric hindrance in the upper and/or middle hinge domain to amino acids with less steric hindrance. For example, the amino acid insertion described in (1) is located after at least the first, at least the second, at least the third, at least the fourth or at least the fifth amino acid at the N-terminus of the upper hinge domain, or between the upper hinge domain and the middle hinge domain. The insertion described in (1) includes 1, 2, 5 or at least 6 amino acids selected from G and S. In specific embodiments, (1) is the insertion of G, GS, SG, GSGSG, SGSGS, GGGGS, GGGSG, GGSGG, GSGGG, SGGGG, GSGSG, GSSGG, GGSSG, GSGGS, GGSGS, GGGSS, SGGSG, SGSGG, SSGGG, SGGGS, SGSGS, SGGSS, SSGGS, SGSSG, SSGSG, SSSGG, GSSGS, GSGSS, GGSSS, GSSSG, GSSSS, SGSSS, SSGSS, SSSGS, SSSSG or (GSGSGS) n , where n is 1, 2 or 3. In a specific embodiment, (2) is to delete amino acids with greater steric hindrance from at least the first, at least the second, at least the third, at least the fourth or at least the fifth amino acid at the C-terminus of the upper and/or middle hinge domain. In specific embodiments, (3) includes replacing amino acid residues with large steric hindrance such as (R, K, D) in the upper and/or middle hinge domains with amino acid residues with less steric hindrance (such as G, S); in some embodiments, (3) also includes mutating the upper and/or middle hinge domains to the corresponding regions of IgG3 or mIgG2a, or mutating the hinge region to the hinge region of IgG3 or mIgG2a, or mutating the CH 1 - Hinge region mutated to CH1 hinge region of IgG3 or mIgG2a. In one or more embodiments, the flexibility of the antibody after mutation is greater than or comparable to IgG3. In one or more embodiments, the mutated antibody has a radius of gyration (Rg) greater than

当所述调节是下调抗体柔性或者提升抗体激动性活性时,所述突变使铰链区的上部和/或中部铰链结构域中位阻较小的氨基酸数量和/或占比降低,或使上部和/或中部铰链结构域的长度减小。所述突变选自以下一种或多种,(1)在上部铰链结构域中插入3或4个位阻较小的的氨基酸,(2)从上部和/或中部铰链结构域中删除位阻较小的氨基酸,(3)将上部和/或中部铰链结构域中位阻较小氨基酸突变为位阻更大的氨基酸,(4)在上部和/或中部铰链结构域中插入位阻较大的氨基酸。此时,(1)中所述插入位于上部铰链结构域的N端至少第1个、至少第2个、至少第3个、至少第4个或至少第5个氨基酸后、或上部铰链结构域和中间铰链结构域之间。(1)中所述插入包括插入3或4个位阻较小的氨基酸,其中n是正整数,例如插入3或4个选自G和S的氨基酸。在具体实施方案中,(1)是在上部铰链结构域和中间铰链结构域之间插入GSG、GGS、SGG、GSS、SGS、SGG、GGGS、GGSG、GSGG、SGGG、GGSS、GSGS、SGGS、GSSG、SSGG、SGSG、SSSG、SSGS、SGSS或GSSS。在具体实施方案中,(2)是从上部和/或中部铰链结构域的C端至少第1个、至少第2个、至少第3个、至少第4个或至少第5个氨基酸开始删除位阻较小的氨基酸。在具体实施方案中,(3)包括将上部和/或中部铰链结构域中空间位阻小的氨基酸残基例如(G、S)取代成空间位阻大的氨基酸残基(例如R、K、D);在一些实施方案中,(3)包括将上部和/或中部铰链结构域突变为IgG1、IgG2或IgA2的相应区域,或将铰链区突变为IgG1、IgG2或IgA2的铰链区,或将CH1-铰链区突变为IgG1、IgG2或IgA2的CH1-铰链区。在具体实施方案中,(4)是在上部和/或中部铰链结构域的N端至少第1个、至少第2个、至少第3个、至少第4个或至少第5个氨基酸后、或上部铰链结构域和中间铰链结构域之间插入至少1个、至少2个、至少3个、例如1-20个、1-15个或1-10个位阻较大的氨基酸。在一个或多个实施方案中,突变后的抗体的柔性不超过人IgG1的柔性。在一个或多个实施方案中,突变后的抗体的回转半径(Rg)为优选地为/>或者小于IgG1(例如人IgG1)的Rg。When the adjustment is down-regulating antibody flexibility or increasing antibody agonistic activity, the mutation reduces the number and/or ratio of amino acids with less hindrance in the upper and/or middle hinge domain of the hinge region, or reduces the length of the upper and/or middle hinge domain. The mutation is selected from one or more of the following, (1) inserting 3 or 4 amino acids with less hindrance in the upper hinge domain, (2) deleting amino acids with less hindrance from the upper and/or middle hinge domain, (3) mutating amino acids with less hindrance in the upper and/or middle hinge domains to amino acids with greater hindrance, (4) inserting amino acids with greater hindrance in the upper and/or middle hinge domains. In this case, the insertion in (1) is located after at least the first, at least the second, at least the third, at least the fourth or at least the fifth amino acid at the N-terminal of the upper hinge domain, or between the upper hinge domain and the middle hinge domain. The insertion in (1) includes the insertion of 3 or 4 amino acids with less hindrance, wherein n is a positive integer, for example, the insertion of 3 or 4 amino acids selected from G and S. In specific embodiments, (1) is the insertion of GSG, GGS, SGG, GSS, SGS, SGG, GGGS, GGSG, GSGG, SGGG, GGSS, GSGS, SGGS, GSSG, SSGG, SGSG, SSSG, SSGS, SGSS, or GSSS between the upper hinge domain and the middle hinge domain. In a specific embodiment, (2) is to delete amino acids with less steric hindrance from at least the 1st, at least the 2nd, at least the 3rd, at least the 4th or at least the 5th amino acid from the C-terminus of the upper and/or middle hinge domain. In specific embodiments, (3) includes substituting amino acid residues with small steric hindrance such as (G, S) in the upper and/or middle hinge domains with amino acid residues with large steric hindrances (such as R, K, D); in some embodiments, (3) includes mutating the upper and/or middle hinge domains to the corresponding regions of IgG1, IgG2 or IgA2, or mutating the hinge region to the hinge of IgG1, IgG2 or IgA2 region, or mutate the CH1-hinge region to the CH1-hinge region of IgG1, IgG2 or IgA2. In a specific embodiment, (4) is to insert at least 1, at least 2, at least 3, such as 1-20, 1-15 or 1-10 relatively hindered amino acids after at least the 1st, at least 2nd, at least 3rd, at least 4th or at least 5th amino acid at the N-terminal of the upper and/or middle hinge domain, or between the upper hinge domain and the middle hinge domain. In one or more embodiments, the flexibility of the mutated antibody does not exceed the flexibility of human IgG1. In one or more embodiments, the radius of gyration (Rg) of the mutated antibody is preferably /> Or less than the Rg of IgGl (eg, human IgGl).

本发明所述“生物大分子”是指作为生物体内主要活性成分的各种有机分子,它们通常分子量较大(分子量达到上万或更多),常见的生物大分子包括蛋白质、核酸、脂类、糖类,以及由这些分子或分子片段相互结合而形成的产物或体系,如糖蛋白、脂蛋白、核蛋白等。The term "biological macromolecules" in the present invention refers to various organic molecules that are the main active ingredients in living organisms. They usually have relatively large molecular weights (up to tens of thousands or more). Common biological macromolecules include proteins, nucleic acids, lipids, sugars, and products or systems formed by the combination of these molecules or molecular fragments, such as glycoproteins, lipoproteins, and nucleoproteins.

“表位”又称为抗原决定族,是存在于抗原/蛋白表面的,决定抗原特异性的特殊性结构的化学基团,是抗原的可以被免疫系统(特别是抗体、B细胞或T细胞)识别的部分。一个抗原分子可具有一种或多种不同的表位,其大小相当于相应抗体的抗原结合部位,每种表位只有一种抗原特异性。"Epitope", also known as an antigenic determinant, is a chemical group that exists on the surface of an antigen/protein and determines the specific structure of the antigen. It is a part of the antigen that can be recognized by the immune system (especially antibodies, B cells or T cells). An antigen molecule can have one or more different epitopes, the size of which is equivalent to the antigen-binding site of the corresponding antibody, and each epitope has only one antigen specificity.

“表位识别分子”是指能够与表位进行特异性结合的分子。"Epitope recognition molecule" refers to a molecule capable of specifically binding to an epitope.

“荧光共振能量转移”(FRET)是指在不同的荧光基团中,若一个荧光基团(供体荧光分子,Donor)的荧光发射光谱与另一个基团(受体荧光分子,Acceptor)的吸收光谱有一定的重叠,当两个基团间的距离合适时(一般小于50nm,较优地小于10nm),即可观察到荧光能量由供体向受体转移的现象,即供体荧光猝灭和受体荧光增强。"Fluorescence resonance energy transfer" (FRET) refers to the phenomenon that among different fluorophores, if the fluorescence emission spectrum of one fluorophore (donor) overlaps with the absorption spectrum of another group (acceptor), when the distance between the two groups is appropriate (generally less than 50nm, preferably less than 10nm), the phenomenon of fluorescence energy transfer from the donor to the acceptor can be observed, that is, the fluorescence of the donor is quenched and the fluorescence of the acceptor is enhanced.

半径”(R0),也称福氏半径,表示在FRET中,50%的供体荧光分子(Donor)失活,转移能量至受体荧光分子(Acceptor)时,供体和受体之间的距离。" "Radius" (R0), also known as Freund's radius, indicates the distance between the donor and the acceptor when 50% of the donor fluorescent molecules (Donor) are inactivated and energy is transferred to the acceptor fluorescent molecule (Acceptor) in FRET.

本发明所述“TR-FRET”是时间分辨荧光共振能量转移的简称,时间分辨荧光共振能量转移分析(Time-Resolved Fluoresence Resonance Energy Transfer assay,TR-FRET分析),主要的作用原理是由时间分辨荧光分子作为供体荧光分子,在一定的作用距离下可将能量转移至邻近的受体荧光分子,而此受体荧光分子即会受到激发产生特定波长的荧光信号(即本发明所述的“TR-FRET信号”)供实验者检测。具体地,由发射光半衰期较长的镧系元素作为供体荧光分子,在一定的作用距离下可将供体荧光分子发射光能量(A)能量转移至邻近的受体荧光分子,而此受体荧光分子即会受到激发产生特定波长的发射荧光信号(B)((B/A)比值即本发明所述的“TR-FRET信号”)供实验者检测。"TR-FRET" in the present invention is the abbreviation of time-resolved fluorescence resonance energy transfer, time-resolved fluorescence resonance energy transfer analysis (Time-Resolved Fluorescence Resonance Energy Transfer assay, TR-FRET analysis), the main principle of action is that time-resolved fluorescent molecules are used as donor fluorescent molecules, which can transfer energy to adjacent acceptor fluorescent molecules at a certain distance, and the acceptor fluorescent molecules will be excited to generate fluorescence signals of specific wavelengths (that is, the "TR-FRET signal" described in the present invention) for the experimenter to test. Specifically, the lanthanide element with a longer half-life of the emitted light is used as the donor fluorescent molecule, and the light energy (A) emitted by the donor fluorescent molecule can be transferred to the adjacent acceptor fluorescent molecule at a certain working distance, and the acceptor fluorescent molecule will be excited to generate an emitted fluorescent signal (B) of a specific wavelength (the (B/A) ratio is the "TR-FRET signal" described in the present invention) for the experimenter to detect.

本发明所述“供体荧光分子”和“受体荧光分子”可以通过直接标记表位识别分子(例如:抗原),而后分别结合在蛋白(例如:抗体)的两个表位(例如:抗原结合位点);也可以通过间接标记表位识别分子达到同样效果,或者通过直接或者间接标记其它可以结合表位的分子达到同样的效果。The "donor fluorescent molecule" and "acceptor fluorescent molecule" of the present invention can be directly labeled with epitope recognition molecules (such as antigens), and then respectively bind to two epitopes (such as: antigen binding sites) of proteins (such as antibodies); the same effect can also be achieved by indirect labeling of epitope recognition molecules, or by direct or indirect labeling of other molecules that can bind to epitopes.

本发明TR-FRET分析所采用的供体荧光分子和配体荧光分子可以按如下方式来选择配对:The donor fluorescent molecules and ligand fluorescent molecules used in the TR-FRET analysis of the present invention can be selected and paired in the following manner:

1)当供体荧光分子为Eu时,与之配对的受体荧光分子可以选自于APC,D2,XL665,Fluorescein,GFP,Rhodamine6G,Tetramethylrhodamine,Sulforhodamine 101,Merocyanine 540,Atto565,Cy3,Atto550Cy3.5,Dy547,Dy548,Dy549,Dy554,Dy555,Dy556,Dy560,mCherry,mStrawberry,Alexa680,Alexa700,Alexa750,Alexa647,Cy5,Cy5.5,Cy7,Dy647,Dy648,Atto590中的任意一种;1) When the donor fluorescent molecule is Eu, the paired acceptor fluorescent molecule can be selected from APC, D2, XL665, Fluorescein, GFP, Rhodamine6G, Tetramethylrhodamine, Sulforhodamine 101, Merocyanine 540, Atto565, Cy3, Atto550Cy3.5, Dy547, Dy548, Dy549 , any one of Dy554, Dy555, Dy556, Dy560, mCherry, mStrawberry, Alexa680, Alexa700, Alexa750, Alexa647, Cy5, Cy5.5, Cy7, Dy647, Dy648, Atto590;

或者,or,

2)当供体荧光分子为Tb时,与之配对的受体荧光分子可以选自于:D2,XL665,Fluorescein,GFP,Lucifer yellow,Acridine yellow,Proflavine,Atto465,Nitrobenzoxadiazole,Courmarin 6,Alexa750,Cy7,Nile red,Alexa488,Dy495,Dy490,Dy648,Dy647,Oregon green,Atto488,Atto495,Alexa514,Atto520,Cy2,Rhodamine6G,Alexa700,Alexa680,Atto532,Alexa532,APC,EGFP,YFP,mPlum,Atto425,Alexa430,Coumarin 343,Acridine Orange,Tetramethylrhodamine,Sulforhodamine 101,Merocyanine 540,Atto565,Cy3,Cy5,Att0590,Atto550,Cy3.5,Cy5.5,Dy547,Dy548,Dy549,Dy554,Dy555,Dy556,Dy560,Alexa647,mCherry,mStrawberry中的任意一种。2) When the donor fluorescent molecule is Tb, the paired acceptor fluorescent molecule can be selected from: D2, XL665, Fluorescein, GFP, Lucifer yellow, Acridine yellow, Proflavine, Atto465, Nitrobenzoxadiazole, Courmarin 6, Alexa750, Cy7, Nile red, Alexa488, Dy495, Dy490, Dy 648, Dy647, Oregon green, Atto488, Atto495, Alexa514, Atto520, Cy2, Rhodamine6G, Alexa700, Alexa680, Atto532, Alexa532, APC, EGFP, YFP, mPlum, Atto425, Alexa430, Coumarin 343, Acridine Orange, Tetramethylr Hodamine, Sulforhodamine 101, Merocyanine 540, Atto565, Cy3, Cy5, Att0590, Atto550, Cy3.5, Cy5.5, Dy547, Dy548, Dy549, Dy554, Dy555, Dy556, Dy560, Alexa647, mCherry, mStrawberry .

本发明包含如下实施方案:The present invention includes following embodiments:

项目1、一种提高激动型抗体的激动活性的方法,其特点在于,对所述激动型抗体的重链恒定区进行修饰,以降低所述激动型抗体的柔性。优选地,所述修饰选自以下一种或多种,(1)在上部铰链结构域中插入1、2、5或至少6个位阻较小的氨基酸,(2)从上部和/或中部铰链结构域中删除位阻较大的氨基酸,(3)将上部和/或中部铰链结构域中位阻较大氨基酸突变为位阻更小的氨基酸。更优选地,(1)是在上部铰链结构域的N端至少第1个、至少第2个、至少第3个、至少第4个或至少第5个氨基酸后、或上部铰链结构域和中间铰链结构域之间插入1、2、5或至少6个位阻较小的氨基酸,优选地,所述至少6个是6、12或18个,(2)是从上部和/或中部铰链结构域的C端至少第1个、至少第2个、至少第3个、至少第4个或至少第5个氨基酸开始删除位阻较大的氨基酸,(3)包括将上部和/或中部铰链结构域突变为IgG3或mIgG2a的相应区域,或将铰链区突变为IgG3或mIgG2a的铰链区,或将CH1-铰链区突变为IgG3或mIgG2a的CH1-铰链区。更加优选的是,(1)中的插入是插入1、2、5或至少6个选自G和S的氨基酸,或者(1)是在上部铰链结构域和中间铰链结构域之间插入G、GS、SG、GSGSG、SGSGS、GGGGS、GGGSG、GGSGG、GSGGG、SGGGG、GSGSG、GSSGG、GGSSG、GSGGS、GGSGS、GGGSS、SGGSG、SGSGG、SSGGG、SGGGS、SGSGS、SGGSS、SSGGS、SGSSG、SSGSG、SSSGG、GSSGS、GSGSS、GGSSS、GSSSG、GSSSS、SGSSS、SSGSS、SSSGS、SSSSG或(GSGSGS)n,其中n为1、2或3。Item 1. A method for increasing the agonistic activity of an agonistic antibody, which is characterized in that the heavy chain constant region of the agonistic antibody is modified to reduce the flexibility of the agonistic antibody. Preferably, the modification is selected from one or more of the following, (1) inserting 1, 2, 5 or at least 6 amino acids with less hindrance in the upper hinge domain, (2) deleting amino acids with greater hindrance from the upper and/or middle hinge domain, (3) mutating amino acids with greater hindrance in the upper and/or middle hinge domains to amino acids with less hindrance. More preferably, (1) inserts 1, 2, 5 or at least 6 less hindered amino acids after at least the first, at least the second, at least the third, at least the fourth or at least the fifth amino acid at the N-terminal of the upper hinge domain, or between the upper hinge domain and the middle hinge domain, preferably, the at least 6 are 6, 12 or 18, (2) at least the first, at least the second, At least the 3rd, at least the 4th or at least the 5th amino acid begins to delete the amino acid with greater steric hindrance, (3) including mutation of the upper and/or middle hinge domain to the corresponding region of IgG3 or mIgG2a, or mutation of the hinge region to the hinge region of IgG3 or mIgG2a, or mutation of the CH1-hinge region to the CH1-hinge region of IgG3 or mIgG2a.更加优选的是,(1)中的插入是插入1、2、5或至少6个选自G和S的氨基酸,或者(1)是在上部铰链结构域和中间铰链结构域之间插入G、GS、SG、GSGSG、SGSGS、GGGGS、GGGSG、GGSGG、GSGGG、SGGGG、GSGSG、GSSGG、GGSSG、GSGGS、GGSGS、GGGSS、SGGSG、SGSGG、SSGGG、SGGGS、SGSGS、SGGSS、SSGGS、SGSSG、SSGSG、SSSGG、GSSGS、GSGSS、GGSSS、GSSSG、GSSSS、SGSSS、SSGSS、SSSGS、SSSSG或(GSGSGS) n ,其中n为1、2或3。

项目2、如项目1所述的方法,其特点在于,修饰之后所述激动型抗体的柔性不超过人IgG1。Item 2. The method according to Item 1, wherein the flexibility of the agonistic antibody after modification is no more than that of human IgG1.

项目3、如项目1所述的方法,其特点在于,对所述重链恒定区中的CH1-铰链区进行修饰。Item 3. The method according to Item 1, characterized in that the CH1-hinge region in the heavy chain constant region is modified.

项目4、如项目1所述的方法,其特点在于,将所述重链恒定区中的铰链区被柔性更弱的序列替换,优选地所述序列为人IgA2的铰链区序列。Item 4. The method according to Item 1, characterized in that the hinge region in the heavy chain constant region is replaced by a less flexible sequence, preferably the sequence is the hinge region sequence of human IgA2.

项目5、如项目1-4任一所述的方法,其特点在于,对所述抗体的修饰不显著降低所述抗体对其特异性靶向的抗原的亲和力。Item 5. The method according to any one of Items 1-4, wherein the modification of the antibody does not significantly reduce the affinity of the antibody to the antigen it specifically targets.

项目6、如项目1-4所述的方法,其特点在于,进一步对所述重链恒定区中Fc段进行修饰,以提高所述激动型抗体和FcγRIIB的亲和力或者所述激动型抗体的I/A比值。Item 6. The method according to Item 1-4, characterized in that the Fc segment in the constant region of the heavy chain is further modified to increase the affinity between the agonistic antibody and FcγRIIB or the I/A ratio of the agonistic antibody.

项目7、如项目1-4所述的方法,其特点在于,修饰后的所述激动型抗体的回转半径(Rg)为优选地为/>或者小于人IgG1的Rg。Item 7. The method as described in Item 1-4, characterized in that the radius of gyration (Rg) of the modified agonistic antibody is preferably /> Or less than the Rg of human IgG1.

项目8、如项目1-4任一所述的方法,其特点在于,所述抗体特异性识别TNF受体超家族中受体。Item 8. The method according to any one of Items 1-4, wherein the antibody specifically recognizes a receptor in the TNF receptor superfamily.

项目9、如项目1-4任一所述的方法,其特点在于,所述抗体为抗CD40抗体或者抗DR5抗体。Item 9. The method according to any one of items 1-4, wherein the antibody is an anti-CD40 antibody or an anti-DR5 antibody.

项目10、一种降低抗体的激动活性的方法,其特点在于,对所述激动型抗体的重链恒定区进行修饰,提高所述抗体的柔性。优选地,所述修饰选自以下一种或多种,(1)在上部铰链结构域中插入3或4个位阻较小的氨基酸(2)从上部和/或中部铰链结构域中删除位阻较小的氨基酸,(3)将上部和/或中部铰链结构域中位阻较小氨基酸突变为位阻更大的氨基酸,(4)在上部和/或中部铰链结构域中插入位阻较大的氨基酸;更优选地,(1)是在上部铰链结构域的N端至少第1个、至少第2个、至少第3个、至少第4个或至少第5个氨基酸后、或上部铰链结构域和中间铰链结构域之间插入3或4个位阻较小的氨基酸,(2)是从上部和/或中部铰链结构域的C端至少第1个、至少第2个、至少第3个、至少第4个或至少第5个氨基酸开始删除位阻较小的氨基酸,(3)包括将上部和/或中部铰链结构域突变为IgG1、IgG2或IgA2的相应区域,或将铰链区突变为IgG1、IgG2或IgA2的铰链区,或将CH1-铰链区突变为IgG1、IgG2或IgA2的CH1-铰链区,(4)是在上部铰链结构域的N端至少第1个、至少第2个、至少第3个、至少第4个或至少第5个氨基酸后、或上部铰链结构域和中间铰链结构域之间插入至少1个、至少2个、至少3个、例如1-20个、1-15个或1-10个位阻较大的氨基酸。更加优选的是,(1)中的插入是插入3或4个选自G和S的氨基酸,或者,(1)是在上部铰链结构域和中间铰链结构域之间插入GSG、GGS、SGG、GSS、SGS、SGG、GGGS、GGSG、GSGG、SGGG、GGSS、GSGS、SGGS、GSSG、SSGG、SGSG、SSSG、SSGS、SGSS或GSSS。Item 10. A method for reducing the agonistic activity of an antibody, which is characterized in that the heavy chain constant region of the agonistic antibody is modified to increase the flexibility of the antibody. Preferably, the modification is selected from one or more of the following, (1) inserting 3 or 4 amino acids with less hindrance in the upper hinge domain (2) deleting amino acids with less hindrance from the upper and/or middle hinge domain, (3) mutating amino acids with less hindrance in the upper and/or middle hinge domains to amino acids with greater hindrance, (4) inserting amino acids with greater hindrance in the upper and/or middle hinge domain; more preferably, (1) is in the upper hinge domain At least the 1st, at least the 2nd, at least the 3rd, at least the 4th or at least the 5th amino acid at the N-terminal of the N-terminus, or after inserting 3 or 4 amino acids with less steric hindrance, or between the upper hinge domain and the middle hinge domain, (2) from the C-terminal of the upper and/or middle hinge domain. Mutation to the corresponding region of IgG1, IgG2, or IgA2, or mutation of the hinge region to the hinge region of IgG1, IgG2, or IgA2, or mutation of the CH1-hinge region to the CH1-hinge region of IgG1, IgG2, or IgA2, (4) after at least the 1st, at least the 2nd, at least the 3rd, at least the 4th, or at least the 5th amino acid at the N-terminus of the upper hinge domain, or after the upper hinge At least 1, at least 2, at least 3, such as 1-20, 1-15 or 1-10 amino acids with relatively large steric hindrance are inserted between the chain domain and the middle hinge domain. More preferably, the insertion in (1) is the insertion of 3 or 4 amino acids selected from G and S, or (1) is the insertion of GSG, GGS, SGG, GSS, SGS, SGG, GGGS, GGSG, GSGG, SGGG, GGSS, GSGS, SGGS, GSSG, SSGG, SGSG, SSSG, SSGS, SGSS or GSSS between the upper hinge domain and the middle hinge domain.

项目11、如项目10所述的方法,其特点在于,修饰之后所述激动型抗体的柔性大于或相当于IgG3。Item 11. The method according to Item 10, wherein the flexibility of the agonistic antibody after modification is greater than or equivalent to IgG3.

项目12、如项目10所述的方法,其特点在于,对所述重链恒定区中的CH1-铰链区进行修饰,以提高所述激动型抗体的柔性。Item 12. The method according to Item 10, wherein the CH1-hinge region in the heavy chain constant region is modified to increase the flexibility of the agonistic antibody.

项目13、如项目12所述的方法,其特点在于,在所述CH1-铰链区中插入柔性连接序列,优选地所述柔性连接序列为包含G、S的柔性连接序列,更优地所述柔性连接序列为GSGSGS,或者将所述CH1-铰链区替换为人IgG3的CH1-铰链区。Item 13. The method according to item 12, characterized in that a flexible linking sequence is inserted into the CH1-hinge region, preferably the flexible linking sequence is a flexible linking sequence comprising G and S, more preferably the flexible linking sequence is GSGSGS, or the CH1-hinge region is replaced with a CH1-hinge region of human IgG3.

项目14、如项目10-13任一所述的方法,其特点在于,对所述抗体的修饰不显著降低所述抗体对其特异性靶向的抗原的亲和力。Item 14. The method according to any one of Items 10-13, characterized in that the modification of the antibody does not significantly reduce the affinity of the antibody to the antigen it specifically targets.

项目15、如项目10-13所述的方法,其特点在于,修饰后的所述激动型抗体的回转半径(Rg)大于 Item 15. The method according to Item 10-13, characterized in that the radius of gyration (Rg) of the modified agonistic antibody is greater than

项目16、如项目10-13所述的方法,其特点在于,进一步对所述重链恒定区中Fc段进行修饰,以降低所述激动型抗体和FcγRIIB的亲和力或者所述激动型抗体的I/A比值。Item 16. The method according to Items 10-13, characterized in that the Fc segment in the constant region of the heavy chain is further modified to reduce the affinity between the agonistic antibody and FcγRIIB or the I/A ratio of the agonistic antibody.

项目17、如项目1-16任一所述的方法,其特点在于,所述抗体为人抗体、嵌合抗体或者人源化抗体。Item 17. The method according to any one of Items 1-16, wherein the antibody is a human antibody, a chimeric antibody or a humanized antibody.

项目18、一种抗体的激动活性的筛选方法,其特征在于,包括以下步骤:Item 18. A method for screening the agonistic activity of an antibody, comprising the following steps:

1)提供一种激动型抗体作为母本,并提供在母本基础上CH1-铰链区经过修饰的所述母本的变体,其中将母本的CH1-铰链区替换为人IgG1的CH1-铰链区的抗体被称为人IgG1变体;1) providing an agonistic antibody as a parent, and providing a variant of the parent whose CH1-hinge region has been modified on the basis of the parent, wherein the antibody in which the CH1-hinge region of the parent is replaced by the CH1-hinge region of human IgG1 is called a human IgG1 variant;

2)对母本以及变体的柔性进行检测;2) Detect the flexibility of the female parent and the variant;

3)根据柔性检测结果,从所有激动型抗体中筛选出柔性不高于人IgG1变体的抗体,这些抗体具有较好的激动活性。3) According to the results of flexibility detection, antibodies with flexibility not higher than human IgG1 variants were selected from all agonistic antibodies, and these antibodies had better agonistic activity.

项目19、如项目18所述的筛选方法,其特点在于,还包括对所述母本以及变体和FcγRIIB的亲和力和/或所述激动型抗体的I/A比值进行检测,比较检测结果,筛选出FcγRIIB的亲和力以及I/A比值不低于人IgG1变体的抗体,这些抗体具有较好的激动活性。Item 19. The screening method as described in Item 18, which is characterized in that it also includes detecting the affinity of the parent and variants to FcγRIIB and/or the I/A ratio of the agonistic antibody, comparing the detection results, and screening out antibodies whose affinity to FcγRIIB and I/A ratio are not lower than those of human IgG1 variants, and these antibodies have better agonistic activity.

项目20、如项目18所述的筛选方法,其特点在于,所述步骤2)包括:Item 20. The screening method as described in item 18, characterized in that said step 2) includes:

1)提供一种能够与所述激动型抗体的抗原结合部分特异性结合的抗原;1) providing an antigen capable of specifically binding to the antigen-binding portion of the agonistic antibody;

2)将抗原分别标记能够实现荧光共振能量转移的一对供体荧光分子和受体荧光分子,获得供体荧光标记抗原以及受体荧光标记抗原;2) The antigens are respectively labeled with a pair of donor fluorescent molecules and acceptor fluorescent molecules capable of realizing fluorescence resonance energy transfer to obtain donor fluorescently labeled antigens and acceptor fluorescently labeled antigens;

3)在所述激动型抗体中分别加入所述供体荧光标记抗原以及受体荧光标记抗原;3) adding the donor fluorescently-labeled antigen and acceptor fluorescently-labeled antigen to the agonistic antibody;

4)对供体荧光分子进行激发,检测受体荧光分子发射出的荧光信号,所述荧光信号的强度与所述激动型抗体的柔性程度呈正相关性。4) Exciting the donor fluorescent molecule and detecting the fluorescent signal emitted by the acceptor fluorescent molecule, the intensity of the fluorescent signal is positively correlated with the flexibility of the agonistic antibody.

项目21、如项目18所述的筛选方法,其特点在于,所述步骤2)包括:Item 21. The screening method as described in item 18, characterized in that said step 2) includes:

1)运用小角X射线散射的方法检测所述抗体母本以及变体的以下参数中的任意一种或者多种:回转半径(Rg)、Dimensionless Kratky plots(或Kratky plots)特征、P(R)/I(0)(或P(R))分布、P(R)/I(0)(或P(R))大尺寸分布、EOM方法计算的回转半径(Rg)、EOM方法计算的最大原子间距离(Dmax)分布、EOM方法计算的Rflex或Rσ数值;1) Using the method of small-angle X-ray scattering to detect any one or more of the following parameters of the antibody parent and variant: radius of gyration (Rg), Dimensionless Kratky plots (or Kratky plots) feature, P(R)/I(0) (or P(R)) distribution, P(R)/I(0) (or P(R)) large size distribution, radius of gyration (Rg) calculated by EOM method, and maximum interatomic distance calculated by EOM method (Dmax) distribution, Rflex or Rσ value calculated by EOM method;

2)所述回转半径(Rg)越大、Dimensionless Kratky plots(或Kratky plots)曲线上扬程度越高、EOM方法计算的回转半径(Rg)和最大原子间距离(Dmax)分布越宽、Rflex和Rσ数值越大,抗体柔性越强;反之,抗体柔性越弱。2) The larger the radius of gyration (Rg), the higher the upward degree of the Dimensionless Kratky plots (or Kratky plots) curve, the wider the distribution of the radius of gyration (Rg) and the maximum interatomic distance (Dmax) calculated by the EOM method, and the larger the values of Rflex and Rσ, the stronger the antibody flexibility; conversely, the weaker the antibody flexibility.

项目22、一种生物大分子的柔性的检测方法,其特征在于,包括以下步骤:Item 22. A flexible detection method for biomacromolecules, comprising the following steps:

1)提供所述生物大分子;1) providing the biomacromolecule;

2)提供能够与所述生物大分子的两个单独的表位分别进行特异性结合的两种表位识别分子;2) providing two epitope recognition molecules capable of specifically binding to two separate epitopes of the biomacromolecule;

3)将两种表位识别分子分别标记供体荧光分子和受体荧光分子,所述供体荧光分子和所述受体荧光分子互相匹配,并能够实现荧光共振能量转移;3) The two epitope recognition molecules are respectively labeled with a donor fluorescent molecule and an acceptor fluorescent molecule, and the donor fluorescent molecule and the acceptor fluorescent molecule match each other and can realize fluorescence resonance energy transfer;

4)将标记后的两种表位识别分子与所述生物大分子混合;4) mixing the two labeled epitope recognition molecules with the biomacromolecule;

5)对供体荧光分子进行激发,检测受体荧光分子发射出的荧光信号,所述荧光信号的强度与所述抗体的柔性程度呈正相关性。5) Exciting the donor fluorescent molecule and detecting the fluorescent signal emitted by the acceptor fluorescent molecule, the intensity of the fluorescent signal is positively correlated with the flexibility of the antibody.

项目23、如项目22所述的检测方法,其特征在于,所述生物大分子为蛋白、核酸、脂类分子、糖类分子或者他们相互结合的形成的复合体。Item 23. The detection method as described in Item 22, wherein the biomacromolecule is protein, nucleic acid, lipid molecule, sugar molecule or a complex formed by their mutual combination.

项目24、如项目22所述的检测方法,其特征在于,所述生物大分子存在所述两个单独的表位之间的距离介于所述供体荧光分子和配体荧光分子的R0和2R0之间的构象。Item 24. The detection method according to Item 22, wherein the biomacromolecule has a conformation in which the distance between the two individual epitopes is between R0 and 2R0 of the donor fluorescent molecule and the ligand fluorescent molecule.

项目25、如项目22所述的检测方法,其特征在于,所述生物大分子为抗体,所述表位为抗体的抗原结合位点,所述表位识别分子为抗原。Item 25. The detection method according to item 22, wherein the biomacromolecule is an antibody, the epitope is an antigen binding site of an antibody, and the epitope recognition molecule is an antigen.

项目26.如项目22所述的检测方法,其特征在于,所述供体荧光分子为Tb,与之配对的所述受体荧光分子选自于D2,XL665,Fluorescein,GFP,Lucifer yellow,Acridineyellow,Proflavine,Atto465,Nitrobenzoxadiazole,Courmarin 6,Alexa750,Cy7,Nilered,Alexa488,Dy495,Dy490,Dy648,Dy647,Oregon green,Atto488,Atto495,Alexa514,Atto520,Cy2,Rhodamine6G,Alexa700,Alexa680,Atto532,Alexa532,APC,EGFP,YFP,mPlum,Atto425,Alexa430,Coumarin 343,Acridine Orange,Tetramethylrhodamine,Sulforhodamine 101,Merocyanine 540,Atto565,Cy3,Cy5,Att0590,Atto550,Cy3.5,Cy5.5,Dy547,Dy548,Dy549,Dy554,Dy555,Dy556,Dy560,Alexa647,mCherry,mStrawberry中的任意一种;或者,所述供体荧光分子为Eu,与之配对的所述受体荧光分子选自于APC,D2,XL665,Fluorescein,GFP,Rhodamine6G,Tetramethylrhodamine,Sulforhodamine 101,Merocyanine 540,Atto565,Cy3,Atto550Cy3.5,Dy547,Dy548,Dy549,Dy554,Dy555,Dy556,Dy560,mCherry,mStrawberry,Alexa680,Alexa700,Alexa750,Alexa647,Cy5,Cy5.5,Cy7,Dy647,Dy648,Atto590中的任意一种。Item 26. The detection method as described in Item 22, wherein the donor fluorescent molecule is Tb, and the acceptor fluorescent molecule paired with it is selected from D2, XL665, Fluorescein, GFP, Lucifer yellow, Acridineyellow, Proflavine, Atto465, Nitrobenzoxadiazole, Courmarin 6, Alexa750, Cy7, Nilered, Alexa488, Dy4 95, Dy490, Dy648, Dy647, Oregon green, Atto488, Atto495, Alexa514, Atto520, Cy2, Rhodamine6G, Alexa700, Alexa680, Atto532, Alexa532, APC, EGFP, YFP, mPlum, Atto425, Alexa430, Coumarin 343, Acrid Ine Orange, Tetramethylrhodamine, Sulforhodamine 101, Merocyanine 540, Atto565, Cy3, Cy5, Att0590, Atto550, Cy3.5, Cy5.5, Dy547, Dy548, Dy549, Dy554, Dy555, Dy556, Dy560, Alexa647, mCh erry, any one of mStrawberry; or, the donor fluorescent molecule is Eu, and the acceptor fluorescent molecule paired with it is selected from APC, D2, XL665, Fluorescein, GFP, Rhodamine6G, Tetramethylrhodamine, Sulforhodamine 101, Merocyanine 540, Atto565, Cy3, Atto550Cy3.5, Dy547, Dy Any one of 548, Dy549, Dy554, Dy555, Dy556, Dy560, mCherry, mStrawberry, Alexa680, Alexa700, Alexa750, Alexa647, Cy5, Cy5.5, Cy7, Dy647, Dy648, Atto590.

下面结合附图对本发明的较佳实施例进行详细阐述,以使本发明的优点和特征能更易于被本领域技术人员理解,从而对本发明的保护范围做出更为清楚明确的界定。The preferred embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings, so that the advantages and features of the present invention can be more easily understood by those skilled in the art, so as to define the protection scope of the present invention more clearly.

实施例Example

材料与方法Materials and Methods

1.小鼠1. Mice

FcγR缺陷(FcγRα-/-)和FcγR人源化(FcγRα-/-/hFcγRI+/hFcγRIIAR131+/hFcγRIIB+/hFcγRIIIAF158+/hFcγRIIIB+,或“hFCGRTg”)小鼠(Mouse modelrecapitulating human Fcgamma receptor structural and functional diversity,Proc Natl Acad Sci U S A,vol.109,no.16,pp.6181-6186,2012)以及OT1小鼠(Inhibitory Fcgamma receptor is required for the maintenance of tolerancethrough distinct mechanisms,J Immunol,vol.192,no.7,pp.3021-3028,2014)由Jeffrey Ravetch博士(洛克菲勒大学)友情提供。对于FcγR人源化小鼠,使用繁殖小鼠和过继传输其骨髓细胞的嵌合体小鼠并确认能给出相同的结果。为了产生骨髓嵌合体小鼠,使用RS2000pro X射线生物辐照器(Rad Source Technologies,Inc,美国)对8-10周龄的野生型C57BL/6小鼠(SLAC,中国上海)进行8Gy的致死照射,并通过尾静脉注射转移2×106供体骨髓细胞。移植2个月后,收集骨髓重建小鼠的外周血,通过流式细胞术分析确认B细胞和CD11b+细胞中人FcγRIIA/B表达水平的重建超过95%。所有小鼠在上海交通大学医学院动物科学部的无特定病原体动物设施中饲养和维持。所有动物护理和研究均按照机构和NIH指南进行,并已获得SJTUSM机构动物护理和使用委员会(Protocol Registry Number:A-2015-014)的批准。FcγR-deficient (FcγRα -/- ) and FcγR humanized (FcγRα -/- /hFcγRI + /hFcγRIIAR131 + /hFcγRIIB + /hFcγRIIIAF158 + /hFcγRIIIB + , or “hFCGRTg”) mice (Mouse model recapitulating human Fcgamma receptor structural and functional diversity, Proc Natl Acad Sci USA, vol.109, no.16, pp.6181-6186, 2012) and OT1 mice (Inhibitory Fcgamma receptor is required for the maintenance of tolerance through distinct mechanisms, J Immunol, vol.192, no.7, pp.3021 -3028, 2014) was kindly provided by Dr. Jeffrey Ravetch (Rockefeller University). For FcγR humanized mice, breeding mice and chimeric mice whose bone marrow cells were adoptively transferred were used and confirmed to give the same results. To generate bone marrow chimeric mice, 8–10 week-old wild-type C57BL/6 mice (SLAC, Shanghai, China) were lethally irradiated with 8 Gy using an RS2000pro X-ray bioirradiator (Rad Source Technologies, Inc, USA), and 2 × 10 donor bone marrow cells were transferred by tail vein injection. Two months after transplantation, the peripheral blood of the bone marrow-reconstituted mice was collected, and the reconstitution of human FcγRIIA/B expression levels in B cells and CD11b + cells was confirmed to be more than 95% by flow cytometry analysis. All mice were housed and maintained in the Specific Pathogen Free Animal Facility of the Department of Animal Science, Shanghai Jiaotong University School of Medicine. All animal care and research were performed in accordance with institutional and NIH guidelines and have been approved by the SJTUSM Institutional Animal Care and Use Committee (Protocol Registry Number: A-2015-014).

2.抗体2. Antibodies

不同重链恒定区的抗小鼠CD40抗体(1C10克隆),抗人CD40抗体(专利号:US7,338,660的克隆21.4.1和3.1.1)和抗小鼠DR5抗体(MD5-1克隆)根据已经发表的方法生产(Inhibitory Fcgamma receptor engagement drives adjuvant and anti-tumoractivities of agonistic CD40 antibodies,Science(New York,NY),vol.333,no.6045,pp.1030-1034,2011;Apoptotic and antitumor activity of death receptorantibodies require inhibitory Fcγreceptor engagement,Proceedings of theNational Academy of Sciences of the United States of America,vol.109,no.pp.10966-10971,2012)。简而言之,抗CD40和抗DR5抗体的重链表达构建体通过将人IgG恒定区序列亚克隆到具有1C10和DR5重链基因可变结构域的哺乳动物表达载体中,即,抗CD40抗体的重链表达构建体通过将人IgG或者鼠IgG恒定区序列亚克隆到具有1C10重链基因可变结构域的哺乳动物表达载体中,或者,抗DR5抗体的重链表达构建体通过将人IgG恒定区序列亚克隆到具有DR5重链基因可变结构域的哺乳动物表达载体中(InhibitoryFcgamma receptor engagement drives adjuvant and anti-tumor activities ofagonistic CD40 antibodies,Science(New York,NY),vol.333,no.6045,pp.1030-1034,2011;Apoptotic and antitumor activity of death receptor antibodies requireinhibitory Fcγreceptor engagement,Proceedings of the National Academy ofSciences of the United States of America,vol.109,no.pp.10966-10971,2012),或者直接通过定点诱变(Inhibitory Fcgamma receptor engagement drives adjuvant andanti-tumor activities of agonistic CD40 antibodies,Science(New York,NY),vol.333,no.6045,pp.1030-1034,2011)产生。基于IMGT数据库http://www.imgt.org/中的人IgG序列,通过基因合成(Biosune,上海,中国)获得人IgG2、3、4恒定区序列(CD序列)。嵌合恒定区的序列G3(H2)和G2(H3)也是基于IMGT序列合成的,其中“G1-G3”分别为IgG1-3重链恒定区的CH2-CH3区域,“H1-H3”分别指IgG1-3重链恒定区的CH1-铰链区。V11(H1)是先前描述的携带G237D/P238D/H268D/P271G/A330R突变的人IgG1重链恒定区变体(Engineeredantibody Fc variant with selectively enhanced FcgammaRIIb binding over bothFcgammaRIIa(R131)and FcgammaRIIa(H131),Protein Eng Des Sel,vol.26,no.10,pp.589-598,2013)。V11(H2)和V11(H3)分别使用人IgG2和IgG3重链恒定区的CH1-铰链区以及V11变体的CH2-CH3区域。V11(H1)-V11(H3)根据序列合成。基于IMGT数据库http://www.imgt.org/中的鼠IgG序列,通过基因合成(Biosune,上海,中国)获得鼠IgG1、2a恒定区序列(CD序列)。嵌合恒定区的序列G1(H2a)是根据IgG1和IgG2序列通过融合分子克隆方法获得。抗CD40和抗DR5抗体轻链表达构建体已经在本发明先前发表的文章和专利中描述了(Inhibitory Fcgamma receptor engagement drives adjuvant and anti-tumoractivities of agonistic CD40 antibodies,Science(New York,NY),vol.333,no.6045,pp.1030-1034,2011;Apoptotic and antitumor activity of death receptorantibodies require inhibitory Fcgamma receptor engagement,Proc Natl Acad SciU S A,vol.109,no.27,pp.10966-10971,2012)。为了产生抗体,将抗体重链和轻链表达载体瞬时转染到293T细胞中,使用蛋白G Sepharose 4Fast Flow(GE Healthcare)纯化分泌到上清液中的抗体,透析到磷酸盐缓冲液(PBS)中。通过内毒素鲎试剂测定法(ThermoScientific)分析LPS(内毒素)水平,并确认其<0.1EUμg-1。对抗体产物进行SEC分析以评估多聚体聚集物的水平,并且使用不存在可辨别多聚体的抗体。Anti-mouse CD40 antibody (clone 1C10) with different heavy chain constant regions, anti-human CD40 antibody (patent number: clones 21.4.1 and 3.1.1 of US7,338,660) and anti-mouse DR5 antibody (clone MD5-1) were produced according to published methods (Inhibitory Fcgamma receptor engagement drives adjuvant and anti-tumoractivities of agonistic CD 40 antibodies, Science (New York, NY), vol.333, no.6045, pp.1030-1034, 2011; Apoptotic and antitumor activity of death receptor antibodies require inhibitory Fcγreceptor engagement, Proceedings of the National Academy of Sciences of the United States of America, vol.109, no.pp.10966-10971, 2012). In brief, heavy chain expression constructs for anti-CD40 and anti-DR5 antibodies were obtained by subcloning human IgG constant region sequences into mammalian expression vectors with 1C10 and DR5 heavy chain gene variable domains, i.e., heavy chain expression constructs for anti-CD40 antibodies were obtained by subcloning human IgG or murine IgG constant region sequences into mammalian expression vectors with 1C10 heavy chain gene variable domains, or anti-DR5 antibody heavy chain expression constructs were obtained by subcloning human IgG constant region sequences Into a mammalian expression vector with the variable domain of the DR5 heavy chain gene (InhibitoryFcgamma receptor engagement drives adjuvant and anti-tumor activities of agonistic CD40 antibodies, Science (New York, NY), vol.333, no.6045, pp.1030-1034, 2011; Apoptotic and antitum or activity of death receptor antibodies require inhibitory Fcγreceptor engagement, Proceedings of the National Academy of Sciences of the United States of America, vol.109, no.pp.10966-10971, 2012), or directly through site-directed mutagenesis (Inhibitory Fcgamma receptor engagement drives adjuvant and anti-tumor activities of agonistic CD40 antibodies, Science (New York, NY), vol.333, no.6045, pp.1030-1034, 2011). Human IgG2, 3, 4 constant region sequences (CD sequences) were obtained by gene synthesis (Biosune, Shanghai, China) based on the human IgG sequences in the IMGT database http://www.imgt.org/. The sequences G3(H2) and G2(H3) of the chimeric constant region were also synthesized based on the IMGT sequence, wherein "G1-G3" respectively refers to the CH2-CH3 region of the IgG1-3 heavy chain constant region, and "H1-H3" respectively refers to the CH1-hinge region of the IgG1-3 heavy chain constant region. V11(H1) is a previously described human IgG1 heavy chain constant region variant carrying G237D/P238D/H268D/P271G/A330R mutations (Engineered antibody Fc variant with selectively enhanced FcgammaRIIb binding over both FcgammaRIIa(R131) and FcgammaRIIa(H1 31), Protein Eng Des Sel, vol.26, no.10, pp.589-598, 2013). V11(H2) and V11(H3) used the CH1-hinge region of the human IgG2 and IgG3 heavy chain constant regions and the CH2-CH3 region of the V11 variant, respectively. V11(H1)-V11(H3) were synthesized according to the sequence. Based on the mouse IgG sequence in the IMGT database http://www.imgt.org/, the mouse IgG1 and 2a constant region sequences (CD sequences) were obtained by gene synthesis (Biosune, Shanghai, China). The sequence G1 (H2a) of the chimeric constant region is obtained by fusion molecular cloning method according to IgG1 and IgG2 sequences. Anti-CD40 and anti-DR5 antibody light chain expression constructs have been described in previously published articles and patents of the present invention (Inhibitory Fcgamma receptor engagement drives adjuvant and anti-tumor activities of agonistic CD40 antibodies, Science (New York, NY), vol.333, no.6045, pp.1030-1034, 2 011; Apoptotic and antitumor activity of death receptor antibodies require inhibitory Fcgamma receptor engagement, Proc Natl Acad SciU SA, vol.109, no.27, pp.10966-10971, 2012). For antibody production, antibody heavy and light chain expression vectors were transiently transfected into 293T cells, and antibodies secreted into the supernatant were purified using Protein G Sepharose 4 Fast Flow (GE Healthcare) and dialyzed into phosphate buffered saline (PBS). LPS (endotoxin) levels were analyzed by endotoxin limulus assay (Thermo Scientific) and confirmed to be <0.1 EU μg −1 . SEC analysis was performed on the antibody product to assess the level of multimeric aggregates, and antibodies were used in the absence of discernible multimers.

用于诱变产生IgG2(GS)3重链的正向引物(IgG2(GS)3f)和反向引物(IgG2(GS)3r)分别是:The forward primer (IgG2(GS)3f) and reverse primer (IgG2(GS)3r) used for mutagenesis to produce IgG2(GS)3 heavy chain were:

IgG2(GS)3f:5'ggtagcggaagcggtagttgttgtgtcgagtgcccaccg3'(SEQ ID NO:1);IgG2(GS)3f: 5'ggtagcggaagcggtagttgttgtgtcgagtgcccaccg3' (SEQ ID NO: 1);

igg2(gs)3r:5'actaccgcttccgctacctttgcgctcaactgtcttgtc3'(SEQ ID NO:2)。IgG2(gs)3r: 5'actaccgcttccgctacctttgcgctcaactgtcttgtc3' (SEQ ID NO: 2).

用于诱变产生igg2v1或者v11h2v1重链的正向引物(igg2v1f)和反向引物(igg2v1r)分别是:The forward primer (igg2v1f) and reverse primer (igg2v1r) used for mutagenesis to produce IgG2v1 or v11h2v1 heavy chain are:

igg2v1f:igg2v1f:

5'acagttgagcgcaaaggttgttgtgtcgagtgcccaccgtgccca3'(SEQ ID NO:3);5'acagttgagcgcaaaggttgttgtgtcgagtgcccaccgtgccca3' (SEQ ID NO: 3);

igg2v1r:igg2v1r:

5'gcactcgacacaacaacctttgcgctcaactgtcttgtccacctt3'(SEQ ID NO:4)。5' gcactcgacacaacaacctttgcgctcaactgtcttgtccacctt3' (SEQ ID NO: 4).

用于诱变产生igg2v2或者v11h2v2重链的正向引物(igg2v2f)和反向引物(igg2v2r)分别是:The forward primer (igg2v2f) and reverse primer (igg2v2r) used for mutagenesis to produce IgG2v2 or v11h2v2 heavy chain are:

igg2v2f:igg2v2f:

5'aagacagttgagcgcaaaggtagctgttgtgtcgagtgcccaccgtgccca3'(SEQ ID NO:5);5'aagacagttgagcgcaaaggtagctgttgtgtcgagtgcccaccgtgccca3' (SEQ ID NO: 5);

igg2v2r:igg2v2r:

5'gcactcgacacaacagctacctttgcgctcaactgtcttgtccacctt3'(SEQ ID NO:6)。5'gcactcgacacaacagctacctttgcgctcaactgtcttgtccacctt3' (SEQ ID NO: 6).

用于诱变产生igg2v3或者v11h2v3重链的正向引物(igg2v3f)和反向引物(igg2v3r)分别是:Forward primer (igg2v3f) and reverse primer (igg2v3r) used for mutagenesis to produce IgG2v3 or v11h2v3 heavy chain are:

igg2v3f:igg2v3f:

5'aagacagttgagcgcaaaggtagcggatgttgtgtcgagtgcccaccgtgccca3'(SEQ ID NO:7);5'aagacagttgagcgcaaaggtagcggatgttgtgtcgagtgcccaccgtgccca3' (SEQ ID NO: 7);

igg2v3r:igg2v3r:

5'tgggcactcgacacaacatccgctacctttgcgctcaactgtcttgtccacctt3'(SEQ ID NO:8)。5'tgggcactcgacacaacatccgctacctttgcgctcaactgtcttgtccacctt3' (SEQ ID NO: 8).

用于诱变产生igg2v4或者v11h2v4重链的正向引物(igg2v4f)和反向引物(igg2v4r)分别是:Forward primer (igg2v4f) and reverse primer (igg2v4r) used for mutagenesis to produce IgG2v4 or v11h2v4 heavy chain are:

igg2v4f:igg2v4f:

5'aagacagttgagcgcaaaggtagcggaagctgttgtgtcgagtgcccaccgtgc3'(SEQ ID NO:9);5'aagacagttgagcgcaaaggtagcggaagctgttgtgtcgagtgcccaccgtgc3' (SEQ ID NO: 9);

igg2v4r:igg2v4r:

5'tgggcactcgacacaacagcttccgctacctttgcgctcaactgtcttgtccacctt3'(SEQ IDNO:10)。5'tgggcactcgacacaacagcttccgctacctttgcgctcaactgtcttgtccacctt3' (SEQ ID NO: 10).

用于诱变产生igg2v5或者v11h2v5重链的正向引物(igg2v5f)和反向引物(igg2v5r)分别是:The forward primer (igg2v5f) and reverse primer (igg2v5r) used for mutagenesis to produce IgG2v5 or v11h2v5 heavy chain are respectively:

igg2v5f:igg2v5f:

5'gagcgcaaaggtagcggaagcggttgttgtgtcgagtgccca3'(SEQ ID NO:11);5'gagcgcaaaggtagcggaagcggttgttgtgtcgagtgccca3' (SEQ ID NO: 11);

igg2v5r:igg2v5r:

5'gacacaacaaccgcttccgctacctttgcgctcaactgtctt3'(SEQ ID NO:12)。5'gacacaacaaccgcttccgctacctttgcgctcaactgtctt3' (SEQ ID NO: 12).

3.ova特异性cd8+t细胞反应3. ova-specific CD8 + T cell responses

在第1天通过尾静脉注射,将CD45.1+OT-1脾细胞(每只小鼠2×106个细胞,悬于200μl PBS中)过继转移给小鼠,并在第2天通过腹膜内注射2μg DEC-OVA(Differentialantigen processing by dendritic cell subsets in vivo,Science(New York,NY),vol.315,no.5808,pp.107-111,2007)以及对照或抗CD40抗体(每只小鼠3.16-100μg,如图例中所述)进行免疫。在第7天,收获脾细胞,并且在裂解红细胞后,用抗CD4(克隆RM4-5),抗CD8(克隆53-6.7),抗CD45.1(A20)抗体染色单细胞悬浮液,抗TCR-Vα2(B20.1)进而定量OVA特异性OT-1CD8+T细胞。OT-1CD8+T细胞定义为CD45.1+CD8+TCR-Vα2+细胞。对于细胞内IFN-γ染色,将脾细胞在含有1μg ml-1CD28抗体和1μgml-1OVA肽(SIINFEKL)的培养基(含有10%胎牛血清,1%Pen-Strep,10mM HEPES,50μM2-巯基乙醇的RPMI)37℃,5%CO2中培养1小时,然后加入布雷菲德菌素A(BFA)至终浓度为10μgml-1,并将脾细胞再培养5小时。根据制造商的说明书(BD Biosciences)对培养的脾细胞表面染色CD4(克隆RM4-5)和CD8(克隆53-6.7),然后细胞内染色IFN-γ(克隆XMG1.2)并在BD FACSCanto II(BD Biosciences)上进行流式细胞术分析。CD45.1 + OT-1 splenocytes (2×10 6 cells per mouse, suspended in 200 μl PBS) were adoptively transferred to mice by tail vein injection on day 1, and 2 μg DEC-OVA (Differential antigen processing by dendritic cell subsets in vivo, Science (New York, NY), vol.315, no.580 by intraperitoneal injection on day 2 8, pp.107-111, 2007) and control or anti-CD40 antibody (3.16-100 μg per mouse, as described in the legend). On day 7, splenocytes were harvested, and after lysing erythrocytes, single cell suspensions were stained with anti-CD4 (clone RM4-5), anti-CD8 (clone 53-6.7), anti-CD45.1 (A20) antibodies, anti-TCR-Vα2 (B20.1) to quantify OVA-specific OT-1CD8 + T cells. OT-1CD8 + T cells were defined as CD45.1 + CD8 + TCR-Vα2 + cells. For intracellular IFN-γ staining, splenocytes were cultured in medium (RPMI containing 10% fetal bovine serum, 1% Pen-Strep, 10 mM HEPES, 50 μM 2-mercaptoethanol) containing 1 μg ml -1 CD28 antibody and 1 μg ml -1 OVA peptide (SIINFEKL) at 37°C, 5% CO for 1 hour, then added brefeldin A (BFA) to a final concentration of 10 μg ml -1 , and Splenocytes were cultured for an additional 5 hours. Cultured splenocytes were surface stained for CD4 (clone RM4-5) and CD8 (clone 53-6.7) and intracellularly stained for IFN-γ (clone XMG1.2) according to the manufacturer's instructions (BD Biosciences) and analyzed by flow cytometry on a BD FACSCanto II (BD Biosciences).

4.流式细胞术4. Flow Cytometry

收获脾脏,制备单细胞悬浮液并裂解红细胞,将约1~4×106个脾细胞重悬在含有染色抗体的50μl FACS缓冲液(含有0.5%FBS,2mM EDTA和0.1%NaN3的1xPBS)中,并在冰上孵育15分钟,然后通过FACS缓冲液洗涤细胞两次,重悬于含有DAPI或7AAD的200μl FACS缓冲液中,并通过流式细胞术分析。对于细胞内IFN-γ染色,使用Cytofix/Cytoperm TM固定/透化溶液试剂盒(BD Biosciences),根据制造商的说明书进行另外的染色步骤。对于hFCGRTg嵌合体小鼠的重建水平分析,从小鼠眼眶收集肝素化血液并用抗CD19(克隆1D3),抗CD11b(克隆M1/70),抗人CD32(克隆FLI8.26)染色;此外用抗人CD40(克隆5C3)染色分析人FcγR和人CD40的重建水平。Harvest spleen, prepare single cell suspension and lyse red blood cells, resuspend about 1~4× 106 splenocytes in 50 μl FACS buffer (1xPBS containing 0.5% FBS, 2mM EDTA and 0.1% NaN3) containing staining antibody, and incubate on ice for 15 minutes, then wash cells twice by FACS buffer, resuspend in 200 μl FACS buffer containing DAPI or 7AAD, and flow through Cytometry analysis. For intracellular IFN-γ staining, an additional staining step was performed using the Cytofix/Cytoperm™ Fixation/Permeabilization Solution Kit (BD Biosciences) according to the manufacturer's instructions. For analysis of reconstitution levels in hFCGR Tg chimeric mice, heparinized blood was collected from mouse orbits and stained with anti-CD19 (clone 1D3), anti-CD11b (clone M1/70), anti-human CD32 (clone FLI8.26); additionally stained with anti-human CD40 (clone 5C3) to analyze reconstitution levels of human FcγR and human CD40.

5.小角度X射线散射(SAXS)5. Small angle X-ray scattering (SAXS)

SAXS数据是在上海同步辐射装置(SSRF)的国家蛋白质科学中心(NCPSS)配备有Pilatus 1M检测器(DECTRIS Ltd)的光束线BL19U2上收集的(The new NCPSS BL19U2beamline at the SSRF for small-angle X-ray scattering from biologicalmacromolecules in solution,J Appl Crystallogr,vol.49,no.Pt 5,pp.1428-1432,2016)。纯化的单体抗CD40抗体通过尺寸排阻色谱法(SEC)验证。收集一系列稀释的抗体样品(0.4-2.8mg ml-1),所有样品均在HBS缓冲液(150mM氯化钠,10mM HEPES PH7.4)中,每个浓度样品60ul,将样品暴露于240×80μm X射线束的毛细管。使用由Cornel High EnergySynchrotron Source(CHESS)开发的BioXTAS RAW软件(版本1.2.1)进行数据减少,束线强度归一化和缓冲减法处理。使用来自ATSAS程序套件(版本2.8.4(r10553))的软件进行SAXS数据分析(ATSAS 2.8:a comprehensive data analysis suite for small-anglescattering from macromolecular solutions,J Appl Crystallogr,vol.50,no.Pt 4,pp.1212-1225,2017)。将从最高浓度的样品获得的SAXS数据用于Guinier分析,P(R)分析和Kratky图,而将从最高和最低浓度的样品获得的数据用于EOM(Advanced ensemblemodelling of flexible macromolecules using X-ray solution scattering,IUCrJ,vol.2,no.Pt 2,pp.207-217,2015)分析。回转半径(Rg)和I(0)由来自ATSAS程序套件(版本2.8.4)(PRIMUS:a Windows PC-based system for small-angle scattering dataanalysis,Journal of Applied Crystallography,vol.36,no.5,pp.1277-1282,2003)的程序PRIMUSQT的“Autorg”(“回转半径”)函数计算(Analysis of X-ray and neutronscattering from biomacromolecular solutions,Curr Opin Struct Biol,vol.17,no.5,pp.562-571,2007),使用GNOM(Determination of the regularization parameterin indirect-transform methods using perceptual criteria,Journal of AppliedCrystallography,vol.25,no.4,pp.495-503,1992)(程序PRIMUSQT的“距离分布”函数(PRIMUS:a Windows PC-based system for small-angle scattering data analysis,Journal of Applied Crystallography,vol.36,no.5,pp.1277-1282,2003))确定配对分布函数P(R)和最大原子间距离(Dmax),还使用程序PRIMUSQT的“距离分布”函数估计Porod体积(VP)值,使用贝叶斯推断方法(Consensus Bayesian assessment of proteinmolecular mass from solution X-ray scattering data,Sci Rep,vol.8,no.1,pp.7204,2018)(程序PRIMUSQT的“分子量”模块)计算分子量(Mr)值。SAXS data were collected at the National Center for Protein Science (NCPSS) at the Shanghai Synchrotron Radiation Facility (SSRF) on beamline BL19U2 equipped with a Pilatus 1M detector (DECTRIS Ltd) (The new NCPSS BL19U2 beamline at the SSRF for small-angle X-ray scattering from biological macromolecules in solution, J Appl Crystallogr, vol.4 9, no. Pt 5, pp. 1428-1432, 2016). Purified monomeric anti-CD40 antibodies were verified by size exclusion chromatography (SEC). A series of diluted antibody samples (0.4-2.8mg ml -1 ) were collected, all samples were in HBS buffer (150mM sodium chloride, 10mM HEPES pH7.4), 60ul of each concentration sample, and the samples were exposed to a capillary tube of 240×80μm X-ray beam. Data reduction, beamline intensity normalization and buffer subtraction were performed using BioXTAS RAW software (version 1.2.1) developed by Cornel High Energy Synchrotron Source (CHESS). SAXS data analysis was performed using software from the ATSAS program suite (version 2.8.4 (r10553)) (ATSAS 2.8: a comprehensive data analysis suite for small-anglescattering from macromolecular solutions, J Appl Crystallogr, vol. 50, no. Pt 4, pp. 1212-1225, 2017). The SAXS data obtained from the highest concentration sample were used for Guinier analysis, P(R) analysis and Kratky plot, while the data obtained from the highest and lowest concentration samples were used for EOM (Advanced ensemble modeling of flexible macromolecules using X-ray solution scattering, IUCrJ, vol.2, no.Pt 2, pp.207-217, 2015) analysis. The radius of gyration (Rg) and I(0) were determined by the "Autorg"("radius of gyration" of the program PRIMUSQT from the ATSAS program suite (version 2.8. ") function calculation (Analysis of X-ray and neutronscattering from biomacromolecular solutions, Curr Opin Struct Biol, vol.17, no.5, pp.562-571, 2007), using GNOM (Determination of the regularization parameter in indirect-transform methods using perceptual criteria, Journal of Applied Crystallography, vol.25, no.4, pp.495-503, 1992) ("distance distribution" function of program PRIMUSQT (PRIMUS: a Windows PC-based system for small-angle scattering data analysis, Journal of Applied Crystallography, vol.36, no.5, pp.1277-1282, 20 03)) Determine the pairing distribution function P(R) and the maximum interatomic distance (Dmax), and also estimate the Porod volume (VP) value using the "distance distribution" function of the program PRIMUSQT, using the Bayesian inference method (Consensus Bayesian assessment of protein molecular mass from solution X-ray scattering data, Sci Rep, vol.8, no.1, pp.7204, 2018) (program PRIM The "Molecular Weight" module of USQT) calculates molecular weight (Mr) values.

为了将EOM(EOM 2.1)(Advanced ensemble modelling of flexiblemacromolecules using X-ray solution scattering,IUCrJ,vol.2,no.Pt 2,pp.207-217,2015)应用于人IgG抗体的SAXS数据,使用了公开的方法(In-depth analysis ofsubclass-specific conformational preferences of IgG antibodies,IUCrJ,vol.2,no.Pt 1,pp.9-18,2015)。简而言之,每种抗体被认为是通过柔性接头连接的5个刚性体:从PDB 1HZH(Crystal structure of a neutralizing human IGG against HIV-1:atemplate for vaccine design,Science(New York,NY),vol.293,no.5532,pp.1155-1159,2001)的铰链中提取的2个固定的CPPC片段模拟二硫键,2个Fab和1个Fc结构域。提取的CPPC片段也用作IgG3铰链区中第二“CPRC”的模型,用于Fab和Fc结构域的PDB文件或者从晶体结构(用于IgG1 Fc的PDB 1HZH(Crystal structure of a neutralizing human IGGagainst HIV-1:a template for vaccine design,Science(New York,NY),vol.293,no.5532,pp.1155-1159,2001);用于IgG2 Fc的PDB 4HAG(IgG2 Fc structure and thedynamic features of the IgG CH2-CH3 interface,Mol Immunol,vol.56,no.1-2,pp.131-139,2013))提取,或者通过使用SWISS-MODEL Workspace(The SWISS-MODELworkspace:a web-based environment for protein structure homology modelling,Bioinformatics,vol.22,no.2,pp.195-201,2006)的同源建模产生。对于同源性建模,选择PDB 5W38(Structural characterization of the Man5 glycoform of human IgG3 Fc,Mol Immunol,vol.92,no.pp.28-37,2017)作为IgG3和V11 Fc的模板,并选择PDB 6AMM(Structure-based engineering to restore high affinity binding of an isoform-selective anti-TGFbeta1 antibody,MAbs,vol.10,no.3,pp.444-452,2018)用于所有IgGFab结构域。使用默认设置执行EOM。To apply EOM (EOM 2.1) (Advanced ensemble modeling of flexible macromolecules using X-ray solution scattering, IUCrJ, vol.2, no.Pt 2, pp.207-217, 2015) to SAXS data of human IgG antibodies, a published method (In-depth analysis of subclass-specific conformation al preferences of IgG antibodies, IUCrJ, vol.2, no.Pt 1, pp.9-18, 2015). In brief, each antibody was considered as five rigid bodies connected by flexible linkers: 2 extracted from the hinge of PDB 1HZH (Crystal structure of a neutralizing human IgG against HIV-1: template for vaccine design, Science (New York, NY), vol.293, no.5532, pp.1155-1159, 2001). An immobilized CPPC fragment mimics a disulfide bond, 2 Fabs and 1 Fc domain. The extracted CPPC fragment was also used as a model for the second "CPRC" in the IgG3 hinge region, for the PDB files of the Fab and Fc domains or from the crystal structure (PDB 1HZH for IgG1 Fc (Crystal structure of a neutralizing human IG against HIV-1: a template for vaccine design, Science (New York, NY), vol.293, no.5 532, pp.1155-1159, 2001); PDB 4HAG (IgG2 Fc structure and the dynamic features of the IgG CH2-CH3 interface, Mol Immunol, vol.56, no.1-2, pp.131-139, 2013)) extraction for IgG2 Fc, or by using SWISS-MODEL Workspace (The SWISS-MODELworkspace: a web-based environment for protein structure homology modeling, Bioinformatics, vol.22, no.2, pp.195-201, 2006) generated by homology modeling. For homology modeling, choose PDB 5W38 (Structural characterization of the Man5 glycoform of human IgG3 Fc, Mol Immunol, vol.92, no.pp.28-37, 2017) as the template for IgG3 and V11 Fc, and choose PDB 6AMM (Structure-based engineering to restore high affinity binding of an isoform-selective anti-TGFbeta1 antibody, MAbs, vol.10, no.3, pp.444-452, 2018) was used for all IgG Ab domains. Perform EOM with default settings.

6.时间分辨FRET(TR-FRET)6. Time-resolved FRET (TR-FRET)

小鼠CD40细胞外结构域(His标记,Novoprotein,中国)分别用铽(Tb)和D2(化学,Cisbio Bioassays,中国)标记,以获得CD40-Tb(1.5Tb/CD40)和CD40-D2(0.3D2/CD40)。将CD40-Tb,CD40-D2和对照或抗CD40抗体在TPBS-BSA(5x PBS+0.2%BSA+0.05%Tween-20)中稀释至最佳浓度,并在Proxi PlateTM-384F Plus 384-Well板(PerkinElmer,货号:6008260)中混合至终体积20μl。小鼠CD40-Tb的终浓度为2.6nM,小鼠CD40-D2的终浓度为41.6nM(浓度比,CD40-Tb:CD40-D2=1:16)。将对照和抗小鼠CD40单克隆抗体从512nM至4nM 2倍连续稀释,将板在室温下孵育1小时,然后使用Synergy neo酶标仪(Biotech Instruments,Inc.,美国)读取TR-FRET信号,其设置如下:在330nm激发,记录前延迟50μs,荧光计数400μs通过620nm(对于Tb)和665nm(对于D2)发射滤光片的信号,分析“Em 665nm/Em 620nm”强度比作为TR-FRET信号。The extracellular domain of mouse CD40 (His-tagged, Novoprotein, China) was stained with terbium (Tb) and D2 ( Chemistry, Cisbio Bioassays, China) labeling to obtain CD40-Tb (1.5Tb/CD40) and CD40-D2 (0.3D2/CD40). CD40-Tb, CD40-D2 and control or anti-CD40 antibodies were diluted to optimal concentrations in TPBS-BSA (5x PBS+0.2% BSA+0.05% Tween-20) and mixed in a Proxi Plate™-384F Plus 384-Well plate (PerkinElmer, Cat. No.: 6008260) to a final volume of 20 μl. The final concentration of mouse CD40-Tb was 2.6nM, and the final concentration of mouse CD40-D2 was 41.6nM (concentration ratio, CD40-Tb:CD40-D2=1:16). The control and anti-mouse CD40 monoclonal antibodies were serially diluted 2-fold from 512 nM to 4 nM, the plate was incubated at room temperature for 1 hour, and then the TR-FRET signal was read using a Synergy neo microplate reader (Biotech Instruments, Inc., USA) with the following settings: excitation at 330 nm, delay 50 μs before recording, fluorescence counting 400 μs through 620 nm (for Tb) and 665 nm (for D2) emission filters The signal of "Em 665nm/Em 620nm" was analyzed as the TR-FRET signal.

7.抗DR5抗体的体外促凋亡活性7. In vitro pro-apoptotic activity of anti-DR5 antibody

将MC38细胞(密度~80%)铺在平底96孔组织培养板(Thermo,货号167008)中,密度为每孔8×104个细胞,200μl完全培养基(DMEM+10%胎牛血清+1%Pen/Strep),培养过夜。轻轻吸出培养基后,加入重悬于100μl完全培养基的4×105个裂解红细胞的FcγRα-/-或hFCGRTg B6小鼠脾细胞,然后加入100μl含有1μgml-1对照IgG,αDR5:hIgG1,αDR5:hIgG2,αDR5:hIgG3,αDR5:hIgG4,αDR5:hIgG V11(H1),hIgG V11(H2),hIgG V11(H2)V1,hIgG V11(H2)V2,hIgG V11(H2)V3,hIgG V11(H2)V4,hIgG V11(H2)V5,hIgG V11(H2)V6或αDR5:hIgGV11(H3)伴随加入或不加1μgml-1的2B6的培养基(Jackson Immuno Research,货号009-000-003)。4个小时后,收获细胞并用抗小鼠CD45.2抗体(BD,货号560691)染色,然后根据制造商的说明使用Annexin V FITC凋亡检测试剂盒I(BD Biosciences,货号556547)进行AnnexinV/PI染色,以及细胞内活化caspase-3染色(克隆C92-605;BD Biosciences)。用BD FACSCaliburTM或LSRFortessaTM X-20流式细胞仪分析样品。基于正向,侧向散射和CD45.2阴性圈出MC38细胞,并分析AnnexinV+PI-或者活化caspase-3+凋亡细胞的百分比。MC38 cells (density ~80%) were plated in a flat-bottomed 96-well tissue culture plate (Thermo, Cat. No. 167008), with a density of 8×10 cells per well , 200 μl of complete medium (DMEM+10% fetal bovine serum+1% Pen/Strep), and cultured overnight.轻轻吸出培养基后,加入重悬于100μl完全培养基的4×10 5个裂解红细胞的FcγRα -/-或hFCGR Tg B6小鼠脾细胞,然后加入100μl含有1μgml -1对照IgG,αDR5:hIgG1,αDR5:hIgG2,αDR5:hIgG3,αDR5:hIgG4,αDR5:hIgG V11(H1),hIgG V11(H2),hIgG V11(H2)V1,hIgG V11(H2)V2,hIgG V11(H2)V3,hIgG V11(H2)V4,hIgG V11(H2)V5,hIgG V11(H2)V6或αDR5:hIgGV11(H3)伴随加入或不加1μgml -1的2B6的培养基(Jackson Immuno Research,货号009-000-003)。 After 4 hours, cells were harvested and stained with anti-mouse CD45.2 antibody (BD, Cat. No. 560691), followed by Annexin V/PI staining and intracellular activated caspase-3 staining (clone C92-605; BD Biosciences) using Annexin V FITC Apoptosis Detection Kit I (BD Biosciences, Cat. No. 556547) according to the manufacturer's instructions. Samples were analyzed with a BD FACSCalibur™ or LSRFortessa™ X-20 flow cytometer. MC38 cells were circled based on forward, side scatter and CD45.2 negative, and the percentage of AnnexinV + PI - or activated caspase-3 + apoptotic cells was analyzed.

8.肝毒性8. Hepatotoxicity

为了研究抗DR5抗体的肝毒性作用,给小鼠静脉注射100μg抗DR5抗体治疗并监测1个月的存活率。在治疗后6天,使用MaxDiscovery Assay Kit(Bioo Scientific)天冬氨酸转氨酶酶法,根据制造商的说明分析小鼠血清中天冬氨酸氨基转移酶水平。To study the hepatotoxic effect of anti-DR5 antibody, mice were treated with 100 μg anti-DR5 antibody intravenously and the survival rate was monitored for 1 month. Six days after treatment, mouse serum was analyzed for aspartate aminotransferase levels using the MaxDiscovery Assay Kit (Bioo Scientific) aspartate aminotransferase enzymatic method according to the manufacturer's instructions.

9.统计分析9. Statistical Analysis

用GraphPad Prism(版本6.01,用于windows)进行统计学分析,并且p值小于0.05被认为在统计学上是显着的。星号表示与对照组的统计学比较,除非在图中另有说明(*p≤0.05,**p≤0.01,***p≤0.001,***p≤0.0001)。Statistical analyzes were performed with GraphPad Prism (version 6.01 for windows), and p values less than 0.05 were considered statistically significant. Asterisks indicate statistical comparisons with the control group unless otherwise stated in the figure (*p≤0.05, **p≤0.01, ***p≤0.001, ***p≤0.0001).

实施例1 TR-FRET能够分析抗体柔性原理Example 1 TR-FRET can analyze the principle of antibody flexibility

前期工作表明,人类IgG1、2、3抗体的激动型活性之间的关系是IgG2>IgG1>IgG3(中国专利申请号:201710429281.6,PCT/CN2017/087620)为了研究抗体的柔性或活性之间的关系,TR-FRET方法被用来分析抗体的柔性。以抗鼠CD40抗体为例,鼠CD40分别由TR-FRET激发(Tb)和接受(D2)荧光基团标记后与抗鼠CD40抗体混合(图2a),部分抗体的双臂能够分别结合CD40-Tb和CD40-D2。根据TR-FRET的原理,如果Tb和D2之间的距离小于两倍半径(2R0),激发Tb能够产生TR-FRET信号,而信号的强度由Tb和D2之间的距离的分布决定。对于Tb和D2荧光基团来说,2R0的距离是11.6纳米(Reference(Terbium-based time-gatedForster resonance energy transfer imaging for evaluating protein-proteininteractions on cell membranes,Dalton transactions(Cambridge,England:2003),vol.44,no.11,pp.4994-5003,2015)(Resonance energy transfer:methods andapplications,Analytical biochemistry,vol.218,no.1,pp.1-13,1994)andCisbio.com)。根据目前有完整晶体结构的两个抗体来看,它们的抗原结合位点之间的距离是12~17纳米(Reference(Crystal structure of a neutralizing human IGG againstHIV-1:a template for vaccine design,Science(New York,NY),vol.293,no.5532,pp.1155-1159,2001;Structure of full-length human anti-PD1 therapeutic IgG4antibody pembrolizumab,Nature structural&molecular biology,vol.22,no.12,pp.953-958,2015)和图3),超过了能够产生TR-FRET信号的最小距离(图2b)。在这种条件下,抗体铰链区的柔性使得抗体的双臂和抗原能够在溶液中摆动,从而使得CD40-Tb和CD40-D2之间的距离有可能减小到2R0(11.6纳米)以内(图2b)。重要的是,当Tb和D2之间的距离从2R0开始减小时,TR-FRET的信号会呈六次方指数增长(Reference(Resonanceenergy transfer:methods and applications,Analytical biochemistry,vol.218,no.1,pp.1-13,1994)),极大的增强TR-FRET信号。因此,柔性更强的抗体中存在更多的分子有着更小的Tb-D2距离,从而能够产生更强的TR-FRET信号;反之,僵硬的抗体铰链区则会限制抗体双臂的摆动,使得Tb-D2更多时候的距离都比较大,从而降低TR-FRET的信号(图2b)。Previous work has shown that the relationship between the agonistic activities of human IgG1, 2, and 3 antibodies is IgG2>IgG1>IgG3 (Chinese patent application number: 201710429281.6, PCT/CN2017/087620). In order to study the relationship between the flexibility or activity of antibodies, the TR-FRET method was used to analyze the flexibility of antibodies. Taking the anti-mouse CD40 antibody as an example, the mouse CD40 is excited (Tb) and accepted (D2) by TR-FRET respectively, and then labeled with a fluorophore and then mixed with the anti-mouse CD40 antibody (Figure 2a). The arms of some antibodies can bind to CD40-Tb and CD40-D2 respectively. According to the principle of TR-FRET, if the distance between Tb and D2 is less than twice Radius (2R0), exciting Tb can generate TR-FRET signal, and the intensity of the signal is determined by the distribution of the distance between Tb and D2. For Tb and D2 fluorophores, the distance of 2R0 is 11.6 nm (Reference (Terbium-based time-gatedForster resonance energy transfer imaging for evaluating protein-protein interactions on cell membranes, Dalton transactions (Cambridge, England: 2003), vol.44, no.11, pp.4994 -5003, 2015) (Resonance energy transfer: methods and applications, Analytical biochemistry, vol. 218, no. 1, pp. 1-13, 1994) and Cisbio.com). According to the two antibodies with complete crystal structures, the distance between their antigen-binding sites is 12-17 nanometers (Reference (Crystal structure of a neutralizing human IgG against HIV-1: a template for vaccine design, Science (New York, NY), vol.293, no.5532, pp.1155-1159, 2001; Structure of full-length human anti-PD1 therapeutic IgG4 antibody pembrolizumab, Nature structural&molecular biology, vol.22, no.12, pp.953-958, 2015) and Figure 3), exceeding the minimum distance capable of generating a TR-FRET signal (Figure 2b). Under this condition, the flexibility of the antibody hinge region allows the antibody arms and antigen to swing in solution, making it possible to reduce the distance between CD40-Tb and CD40-D2 to within 2R0 (11.6 nm) (Fig. 2b). Importantly, when the distance between Tb and D2 decreases from 2R0, the signal of TR-FRET increases exponentially (Reference (Resonance energy transfer: methods and applications, Analytical biochemistry, vol.218, no.1, pp.1-13, 1994)), which greatly enhances the signal of TR-FRET. Therefore, there are more molecules in a more flexible antibody with a smaller Tb-D2 distance, which can generate a stronger TR-FRET signal; conversely, a stiff antibody hinge region will limit the swing of the antibody's arms, making Tb-D2 more often The distance is relatively large, thereby reducing the TR-FRET signal (Figure 2b).

实施例2 TR-FRET分析显示具有柔性最强铰链区的IgG3抗体的TR-FRET信号最高,而具有柔性最弱铰链区的IgG2抗体的TR-FRET信号最低(图4)。为了分析不同人类天然IgG抗体的柔性,我们用上述TR-FRET方法平行比较了IgG1、IgG2和IgG3抗体。将抗鼠CD40抗体分别表达为IgG1、IgG2和IgG3形式后,按照上述方法(图2a)与CD40-Tb和CD40-D2混合后测量TR-FRET信号。结果显示,在这三种天然IgG抗体中,IgG3抗体的TR-FRET信号最强,而IgG2抗体的TR-FRET信号最弱(图4a),提示IgG3抗体最灵活,而IgG2抗体僵硬到足够限制其双臂摆动触发TR-FRET信号。为进一步分析影响IgG抗体柔性的因素是否为铰链区,我们表达了可变区和Fc区相同、铰链区分别来自IgG1、IgG2和IgG3的V11(H1)、V11(H2)和V11(H3)抗体。平行比较结果显示,这三种抗体的TR-FRET信号特征与对应的IgG抗体具有一致的特征(图4b),提示这些IgG抗体的柔性主要受到抗体铰链区的影响。进一步分析IgG2和IgG3交换铰链区产生的嵌合抗体(G2(H3)和G3(H2)抗体)显示,移植抗体铰链区序列能够移植对应的柔性特征(图4c)。这些结果表明TR-FRET分析能否却分不同IgG抗体因铰链区不同而导致的不同灵活属性,其中柔性最强的IgG3铰链区对应最高的TR-FRET信号最高,而柔性最低的IgG2铰链区对应最低的TR-FRET信号。Example 2 TR-FRET analysis showed that the IgG3 antibody with the most flexible hinge region had the highest TR-FRET signal, while the IgG2 antibody with the least flexible hinge region had the lowest TR-FRET signal ( FIG. 4 ). To analyze the flexibility of different human native IgG antibodies, we compared IgG1, IgG2, and IgG3 antibodies in parallel using the TR-FRET method described above. After anti-mouse CD40 antibodies were expressed in IgG1, IgG2 and IgG3 formats, respectively, TR-FRET signals were measured after mixing with CD40-Tb and CD40-D2 as described above (Fig. 2a). The results showed that among the three natural IgG antibodies, the TR-FRET signal of the IgG3 antibody was the strongest, while the TR-FRET signal of the IgG2 antibody was the weakest (Fig. 4a), suggesting that the IgG3 antibody was the most flexible, while the IgG2 antibody was stiff enough to limit the swinging of its arms to trigger the TR-FRET signal. To further analyze whether the factor affecting the flexibility of IgG antibodies is the hinge region, we expressed V11(H1), V11(H2) and V11(H3) antibodies with the same variable region and Fc region and hinge regions from IgG1, IgG2 and IgG3, respectively. Parallel comparison results showed that the TR-FRET signal characteristics of these three antibodies were consistent with those of the corresponding IgG antibodies (Figure 4b), suggesting that the flexibility of these IgG antibodies was mainly affected by the antibody hinge region. Further analysis of the chimeric antibodies (G2(H3) and G3(H2) antibodies) generated by IgG2 and IgG3 swapping the hinge region showed that the grafted antibody hinge region sequence could graft the corresponding flexible features (Fig. 4c). These results suggest that TR-FRET analysis can distinguish the different flexible properties of different IgG antibodies due to different hinge regions, in which the most flexible IgG3 hinge region corresponds to the highest TR-FRET signal, while the least flexible IgG2 hinge region corresponds to the lowest TR-FRET signal.

实施例3小角度X-射线散射(small-angle X-ray scattering,SAXS)分析确认IgG3抗体柔性更强而IgG2抗体柔性更弱(图5-6)。Example 3 Small-angle X-ray scattering (small-angle X-ray scattering, SAXS) analysis confirmed that IgG3 antibodies are more flexible and IgG2 antibodies are less flexible (Figures 5-6).

小角度X-射线散射技术是一种被广泛接受的但对硬件设施要求较高的生物大分子研究方法,能够分析溶液中的生物大分子的柔性特征(How Random are IntrinsicallyDisordered Proteins?A Small Angle Scattering Perspective,Curr Protein PeptSc,vol.13,no.1,pp.55-75,2012)。经分子筛纯化得到的抗CD40抗体单体分子经梯度稀释后进行小角散射分析(图5)。Dimensionless Kratky plots结果表明在IgG1、IgG2和IgG3抗体中,IgG1和IgG2的曲线的顶点都非常接近Guinier–Kratky点(1.103)(图5a),表明IgG1和IgG2抗体都具有球形蛋白的特征(NADPH oxidase activator P67(phox)behavesin solution as a multidomain protein with semi-flexible linkers,J StructBiol,vol.169,no.1,pp.45-53,2010;How Random are Intrinsically DisorderedProteins?A Small Angle Scattering Perspective,Curr Protein Pept Sc,vol.13,no.1,pp.55-75,2012);同时,IgG3抗体的Dimensionless Kratky plots的顶点明显的向右上方移动,表明IgG3是一个由灵活的连接序列链接的多功能域蛋白(How Random areIntrinsically Disordered Proteins?A Small Angle Scattering Perspective,CurrProtein Pept Sc,vol.13,no.1,pp.55-75,2012),证实了TR-FRET对IgG3抗体的分析结果;同时,能反应分子大小的P(R)/I(0)、Rg、Dmax等结果也支持IgG3抗体分子尺寸更大(图5b、图6),具有更加松散的结构。进一步分析V11(H1)、V11(H2)和V11(H3)抗体表明它们的小角散射特征和天然IgG1、IgG2和IgG3抗体的小角散射特征一致(图5c、图5d),提示这些IgG抗体的柔性主要受到抗体铰链区的影响。进一步分析IgG2和IgG3交换铰链区产生的嵌合抗体(G2(H3)和G3(H2)抗体)显示,移植抗体铰链区序列能够移植对应的小角散射柔性特征(图5e、图5f、图6)。这些结果进一步支持TR-FRET分析是分析抗体分子柔性的有效手段。需要指出的是,IgG1和IgG2抗体的Dimensionless Kratky plots特征比较接近,以此为依据清楚的判断两者的柔性差别比较困难。Small-angle X-ray scattering technique is a widely accepted method for researching biomacromolecules but requires high hardware facilities. It can analyze the flexible characteristics of biomacromolecules in solution (How Random are Intrinsically Disordered Proteins? A Small Angle Scattering Perspective, Curr Protein PeptSc, vol.13, no.1, pp.55-75, 2012). The anti-CD40 antibody monomer molecules purified by molecular sieves were serially diluted and then analyzed by small angle scattering ( FIG. 5 ). The results of Dimensionless Kratky plots show that in IgG1, IgG2 and IgG3 antibodies, the apexes of the curves of IgG1 and IgG2 are very close to the Guinier–Kratky point ( 1.103) (Figure 5a), indicating that both IgG1 and IgG2 antibodies have the characteristics of globular proteins (NADPH oxidase activator P67(phox) behavesin solution as a multidomain protein with semi-flexible linkers, J StructBiol, vol.169, no.1, pp.45-53, 2010; How Random are In Trinsically Disordered Proteins? A Small Angle Scattering Perspective, Curr Protein Pept Sc, vol.13, no.1, pp.55-75, 2012); at the same time, the vertex of the Dimensionless Kratky plots of the IgG3 antibody moved to the upper right obviously, indicating that IgG3 is a multifunctional domain protein linked by a flexible linker sequence (How Random are Intrinsically Disordered Proteins? A Small Angle Scattering Perspective, CurrProtein Pept Sc, vol.13, no.1, pp.55-75, 2012), confirmed the analysis results of TR-FRET on IgG3 antibodies; at the same time, the results of P(R)/I(0), Rg, Dmax, etc., which can reflect the molecular size, also support the larger molecular size of IgG3 antibodies (Figure 5b, Figure 6), which has a more loose structure. Further analysis of V11(H1), V11(H2) and V11(H3) antibodies showed that their small-angle scattering characteristics were consistent with those of natural IgG1, IgG2 and IgG3 antibodies (Figure 5c, Figure 5d), suggesting that the flexibility of these IgG antibodies is mainly affected by the antibody hinge region. Further analysis of the chimeric antibodies (G2(H3) and G3(H2) antibodies) produced by IgG2 and IgG3 swapping the hinge region showed that the transplanted antibody hinge region sequence could transplant the corresponding small-angle scattering flexibility characteristics (Figure 5e, Figure 5f, Figure 6). These results further support that TR-FRET analysis is an effective means to analyze the flexibility of antibody molecules. It should be pointed out that the Dimensionless Kratky plots of IgG1 and IgG2 antibodies are relatively similar, and it is difficult to clearly judge the difference in flexibility between them based on this.

进一步使用为小角散射数据分析开发的Ensemble optimization method(EOM)方法能够定量的评估样本的柔性(In-depth analysis of subclass-specificconformational preferences of IgG antibodies,IUCrJ,vol.2,no.Pt 1,pp.9-18,2015;Advanced ensemble modelling of flexible macromolecules using X-raysolution scattering,IUCrJ,vol.2,no.Pt2,pp.207-217,2015)。EOM分析结果显示,在分析的IgG1、IgG2和IgG3三种天然抗体中,IgG2抗体的回转半径(Rg)和最大原子间距(Dmax)的分布都是最窄的(图5g、图5h),和以前的研究结果一致(In-depth analysis ofsubclass-specific conformational preferences of IgG antibodies,IUCrJ,vol.2,no.Pt 1,pp.9-18,2015),而IgG3抗体的Rg和Dmax分布则是最宽的,提示IgG2和IgG3抗体分别是三种抗体中最不灵活和最灵活的。此外,EOM分析得到的、能够定量反应柔性的Rflex和Rσ数值进一步支持三种抗体的柔性关系是IgG3>IgG1>IgG2(图6)。最后,进一步分析V11(H1)、V11(H2)和V11(H3)抗体表明它们的Rg和Dmax分布,以及Rflex和Rσ相对关系都和对应的天然IgG1、IgG2和IgG3抗体一致(图5i、图5j、图6),而交换IgG2和IgG3抗体的铰链区同时也交换了这些特征(图5k、图5l、图6)。Further use of the Ensemble optimization method (EOM) method developed for small-angle scattering data analysis can quantitatively evaluate the flexibility of the sample (In-depth analysis of subclass-specific conformational preferences of IgG antibodies, IUCrJ, vol.2, no.Pt 1, pp.9-18, 2015; Advanced ensemble modeling of flexible macromolecules using X-raysolution scattering, IUCrJ, vol.2, no.Pt2, pp.207-217, 2015). The results of EOM analysis showed that among the analyzed IgG1, IgG2 and IgG3 natural antibodies, the distribution of the radius of gyration (Rg) and the maximum interatomic distance (Dmax) of the IgG2 antibody was the narrowest (Figure 5g, Figure 5h), which was consistent with previous research results (In-depth analysis of subclass-specific conformational preferences of IgG antibodies, IUCrJ, vol.2, no.Pt 1, pp.9-18, 2015), while the Rg and Dmax distributions of IgG3 antibodies are the broadest, suggesting that IgG2 and IgG3 antibodies are the least flexible and the most flexible of the three antibodies, respectively. In addition, the Rflex and Rσ values obtained by EOM analysis, which can quantify the reaction flexibility, further support the flexibility relationship of the three antibodies as IgG3>IgG1>IgG2 (Figure 6). Finally, further analysis of the V11(H1), V11(H2) and V11(H3) antibodies showed that their distributions of Rg and Dmax, as well as the relative relationship of Rflex and Rσ were consistent with those of the corresponding natural IgG1, IgG2 and IgG3 antibodies (Figure 5i, Figure 5j, Figure 6), and swapping the hinge regions of IgG2 and IgG3 antibodies also exchanged these features (Figure 5k, Figure 5l, Figure 6).

一方面,上述结果进一步支持三种天然IgG抗体的柔性相对关系为IgG3>IgG1>IgG2且主要由它们的铰链区决定;另一方面这些结果也进一步验证了TR-FRET对抗体柔性的分析结果,说明TR-FRET是一种非常灵敏的分析方法,不需要进行复杂的模拟分析就能够区分IgG1和IgG2的柔性。On the one hand, the above results further support that the relative flexibility of the three natural IgG antibodies is IgG3>IgG1>IgG2 and is mainly determined by their hinge regions; on the other hand, these results further verify the analysis results of TR-FRET on antibody flexibility, indicating that TR-FRET is a very sensitive analysis method that can distinguish the flexibility of IgG1 and IgG2 without complex simulation analysis.

实施例4鼠IgG灵活性影响鼠源IgG激动性(图7)Example 4 Mouse IgG flexibility affects mouse IgG agonism (Figure 7)

通过SAXS方法检测鼠源IgG抗体柔性,Dimensionless Kratky plots分析显示,mIgG2a显示出上扬的特征,说明mIgG2a具有比mIgG1更强的柔性,而通过铰链区更换,铰链区柔性也随之转移(图7a)。The flexibility of the murine IgG antibody was detected by the SAXS method, and the Dimensionless Kratky plots analysis showed that mIgG2a showed an upward characteristic, indicating that mIgG2a has stronger flexibility than mIgG1, and the flexibility of the hinge region is also transferred through the replacement of the hinge region (Figure 7a).

为了分析鼠源激动型抗体的激动活性和铰链区柔性的关系,抗CD40鼠源IgG抗体(克隆1C10)不同天然IgG(IgG1,IgG2a)和铰链区互换的变体(IgG1(H2a))的免疫激活活性进行了比较。结果显示,柔性弱(刚性强)的IgG1抗体的激动活性最强,而柔性强的IgG2a抗体的激动活性最弱(图7b,图7c)。同时,铰链区更换,IgG2a的柔性铰链区能提供给变体IgG1(H2a)低于母体IgG1的激动性。这些结果表明,在1C10抗CD40鼠源IgG抗体中,柔性最弱的IgG1铰链区能够提供最佳激动活性,而柔性最强的IgG2a铰链区支持的激动活性最弱。In order to analyze the relationship between the agonistic activity of murine agonist antibodies and the hinge region flexibility, the immune activation activities of anti-CD40 murine IgG antibody (clone 1C10) with different natural IgGs (IgG1, IgG2a) and hinge region swapped variants (IgG1(H2a)) were compared. The results showed that IgG1 antibodies with weak flexibility (strong rigidity) had the strongest agonistic activity, while IgG2a antibodies with strong flexibility had the weakest agonistic activity (Fig. 7b, Fig. 7c). At the same time, the hinge region is replaced, and the flexible hinge region of IgG2a can provide the variant IgG1 (H2a) with lower agonism than the parent IgG1. These results suggest that in the 1C10 anti-CD40 murine IgG antibody, the least flexible IgG1 hinge region can provide the best agonistic activity, whereas the most flexible IgG2a hinge region supports the least agonistic activity.

实施例5 TR-FRET分析增强柔性的IgG2铰链区突变体,并由SAXS确认(图8-9)Example 5 TR-FRET analysis of IgG2 hinge region mutants with enhanced flexibility, and confirmation by SAXS (Fig. 8-9)

为了进一步验证TR-FRET分析抗体柔性的方法,1~3个“GSGSGS”链接序列被插入到IgG2抗体的铰链区中产生了三种的IgG2变体:IgG2(GS)3、IgG2(GS)6、和IgG2(GS)9(图15),预期插入序列的长度越长,越能增加抗体的柔性。TR-FRET分析结果显示,随着插入序列的增长,抗体的TR-FRET信号明显增加(图8),说明柔性增加,和预期一致。小角散射分析IgG2抗体和这几种变体显示,插入的“GSGSGS”链接序列越长,抗体的DimensionlessKratky plots越表现出上扬的特征(图9),说明具有更高的柔性。因此,对IgG2和IgG2(GS)3、IgG2(GS)6、IgG2(GS)9等IgG2变体的TR-FRET和小角度X-射线散射的分析,进一步验证了TR-FRET是一种灵敏的定量的柔性分析方法。同时,这些结果也表明,改变IgG抗体铰链区的长度或氨基酸序列能够改变抗体的柔性,增长铰链区的长度能够增强抗体的柔性。In order to further verify the TR-FRET method for analyzing antibody flexibility, 1 to 3 "GSGSGS" linking sequences were inserted into the hinge region of the IgG2 antibody to generate three IgG2 variants: IgG2(GS)3, IgG2(GS)6, and IgG2(GS)9 (Figure 15). It is expected that the longer the length of the inserted sequence, the more flexible the antibody will be. The results of TR-FRET analysis showed that with the increase of the inserted sequence, the TR-FRET signal of the antibody increased significantly (Figure 8), indicating that the flexibility increased, which was consistent with expectations. Small-angle scattering analysis of the IgG2 antibody and these variants showed that the longer the inserted "GSGSGS" link sequence, the more upward the DimensionlessKratky plots of the antibody (Figure 9), indicating higher flexibility. Therefore, the analysis of TR-FRET and small-angle X-ray scattering of IgG2 and IgG2 variants such as IgG2(GS)3, IgG2(GS)6, and IgG2(GS)9 further validated that TR-FRET is a sensitive and quantitative flexible analysis method. At the same time, these results also show that changing the length or amino acid sequence of the IgG antibody hinge region can change the flexibility of the antibody, and increasing the length of the hinge region can enhance the flexibility of the antibody.

实施例6增强IgG2铰链区的柔性能够降低IgG2抗体的激动型活性(图10)。Example 6 Enhancing the flexibility of the IgG2 hinge region can reduce the agonistic activity of IgG2 antibodies ( FIG. 10 ).

进一步分析IgG2和IgG2(GS)3、IgG2(GS)6、IgG2(GS)9等IgG2变体抗CD40抗体的免疫激活活性结果表明,具有更强柔性的IgG2变体抗CD40抗体的免疫激活活性明显低于IgG2抗体,表现为更少的抗原特异CD8阳性T细胞数量和比例(图10)。这些结果说明增强IgG抗体的柔性能够影响IgG抗体的激动活性。当IgG2抗体的柔性增加到一定程度之后,抗体就失去了的激动活性。Further analysis of the immune activation activity of IgG2 and IgG2 (GS) 3, IgG2 (GS) 6, IgG2 (GS) 9 and other IgG2 variant anti-CD40 antibodies showed that the immune activation activity of the more flexible IgG2 variant anti-CD40 antibodies was significantly lower than that of IgG2 antibodies, manifested in fewer antigen-specific CD8 positive T cells and the proportion (Figure 10). These results suggest that enhancing the flexibility of IgG antibodies can affect the agonistic activity of IgG antibodies. When the flexibility of the IgG2 antibody increases to a certain extent, the antibody loses its agonistic activity.

实施例7改变铰链区氨基酸序列能够增强IgG抗体灵活性(IgG1 vs IgG1-A2,以及其它增强灵活性的例子)(图11)Example 7 Changing the amino acid sequence of the hinge region can enhance the flexibility of IgG antibodies (IgG1 vs IgG1-A2, and other examples of enhancing flexibility) (Figure 11)

通过TR-FRET分析可以从天然铰链区及突变体中筛选具有不同柔性特征的铰链区序列。其中,移植了IgA2铰链区序列的IgG1抗体(IgG1A2)表现出比IgG1抗体柔性更低的TR-FRET信号,反应了它的柔性更低的特征(图11a)。进一步通过SAXS方法分析验证IgG1A2灵活性,Dimensionless Kratky plots分析显示,IgG1A2曲线相较母本IgG1下降的特征,显示IgG1A2具有比IgG1更低的柔性(刚性更强)(图11b)。Hinge region sequences with different flexibility characteristics can be screened from natural hinge regions and mutants by TR-FRET analysis. Among them, the IgG1 antibody grafted with the IgA2 hinge region sequence (IgG1A2) exhibited a lower TR-FRET signal than the IgG1 antibody, reflecting its lower flexibility (Fig. 11a). The flexibility of IgG1A2 was further verified by SAXS method analysis. Dimensionless Kratky plots analysis showed that the IgG1A2 curve was lower than that of the maternal IgG1, showing that IgG1A2 was less flexible (more rigid) than IgG1 (Figure 11b).

实施例8改变铰链区氨基酸序列降低IgG抗体柔性能够影响抗体激动活性(图12)Example 8 Changing the amino acid sequence of the hinge region to reduce the flexibility of the IgG antibody can affect the agonistic activity of the antibody (Figure 12)

进一步分析G1A2抗CD40抗体的免疫激活活性结果表明,G1A2较IgG1具有更强的免疫激活活性(图12)。这些结果说明减弱IgG抗体的柔性也能够影响IgG抗体的激动活性。当IgG1抗体的柔性降低之后,抗体能够获得更强的激动活性特征。Further analysis of the immune activation activity of the G1A2 anti-CD40 antibody showed that G1A2 had a stronger immune activation activity than IgG1 ( FIG. 12 ). These results suggest that weakening the flexibility of IgG antibodies can also affect the agonistic activity of IgG antibodies. When the flexibility of IgG1 antibody is reduced, the antibody can acquire stronger agonistic activity characteristics.

实施例9 1C10克隆人IgG抗体的最佳天然铰链区是IgG2铰链区(V11H2>V11H1>V11H3)Example 9 The best natural hinge region of 1C10 clone human IgG antibody is IgG2 hinge region (V11H2>V11H1>V11H3)

为了分析激动型抗体的激动活性和铰链区柔性的关系,抗CD40抗体(克隆1C10)具有相同可变区和Fc区、不同天然IgG铰链区的三种形式(V11(H1)、V11(H2)和V11(H3))的免疫激活活性进行了平行比较。结果显示,柔性最弱(刚性最强)的V11(H2)抗体的激动活性最强,而柔性最强的V11(H3)抗体的激动活性最弱(图13a)。这些结果表明,在1C10抗体中,柔性最弱的IgG2铰链区能够提供最佳激动活性,而柔性最强的IgG3铰链区支持的激动活性最弱。In order to analyze the relationship between the agonistic activity of agonistic antibodies and the flexibility of the hinge region, the immune activation activities of three forms (V11(H1), V11(H2) and V11(H3)) of anti-CD40 antibody (clone 1C10) with the same variable region and Fc region and different native IgG hinge regions were compared in parallel. The results showed that the least flexible (most rigid) V11(H2) antibody had the strongest agonistic activity, while the most flexible V11(H3) antibody had the weakest agonistic activity (Fig. 13a). These results suggest that in the 1C10 antibody, the least flexible IgG2 hinge region was able to provide the best agonistic activity, whereas the most flexible IgG3 hinge region supported the least agonistic activity.

实施例10 MD5-1克隆人IgG抗体的最佳天然铰链区是IgG1铰链区(V11H1>V11H2>V11H3)Example 10 The best natural hinge region of MD5-1 clone human IgG antibody is the IgG1 hinge region (V11H1>V11H2>V11H3)

为了进一步分析激动型抗体的激动活性和铰链区柔性的关系,抗DR5抗体(克隆MD5-1)具有相同可变区和Fc区、不同天然IgG铰链区的三种形式(V11(H1)、V11(H2)和V11(H3))的激动活性进行了平行比较(抗DR5抗体的激动活性表现为诱导细胞凋亡的能力)。结果显示,柔性居中的V11(H1)抗体的激动活性最强,而柔性最强的V11(H3)抗体的激动活性最弱(图13b)。这些结果表明,在MD5-1抗体中,柔性居中的IgG1铰链区能够提供最佳激动活性,而柔性最强的IgG3铰链区支持的激动活性最弱。In order to further analyze the relationship between the agonistic activity of the agonistic antibody and the flexibility of the hinge region, the agonistic activity of three forms (V11(H1), V11(H2) and V11(H3)) of the anti-DR5 antibody (clone MD5-1) with the same variable region and Fc region and different native IgG hinge regions were compared in parallel (the agonistic activity of the anti-DR5 antibody was expressed as the ability to induce apoptosis). The results showed that the V11(H1) antibody with the middle flexibility had the strongest agonistic activity, while the V11(H3) antibody with the most flexible had the weakest agonistic activity (Fig. 13b). These results suggest that in the MD5-1 antibody, the flexible centered IgG1 hinge region is able to provide the best agonistic activity, whereas the most flexible IgG3 hinge region supports the weakest agonistic activity.

实施例11在铰链区插入不是3-4的倍数个氨基酸会破坏人IgG2激动活性Example 11 Insertion of amino acids that are not multiples of 3-4 in the hinge region will destroy human IgG2 agonistic activity

结构上,铰链区作为Fab和Fc的连接序列,是灵活性很强的片段,由于该区富含脯氨酸,易发生伸展及一定程度扭曲,有利于抗体的抗原结合部位与抗原表位间的互补性结合。插入氨基酸的个数很有可能改变扭转的角度,影响二级结构的细微变化。Structurally, the hinge region, as the connection sequence between Fab and Fc, is a highly flexible fragment. Since this region is rich in proline, it is prone to stretching and distortion to a certain extent, which is conducive to the complementary binding between the antigen binding site of the antibody and the antigen epitope. The number of inserted amino acids is likely to change the angle of torsion and affect subtle changes in the secondary structure.

为研究铰链区长度变化对激动性的影响,我们在1C10抗CD40人IgG2抗体的上段铰链和中段铰链间依次增加甘氨酸G(Glycine,Gly)和丝氨酸S(Serine,Ser),产生6种IgG2变体:IgG2V1、IgG2V2、IgG2V3、IgG2V4、IgG2V5和IgG2V6(即之前体及的G2(GS)3)。为进一步分析IgG2和IgG2V1-6 IgG2变体抗CD40抗体的免疫激活活性,采用体外刺激人源化FcγRs脾脏细胞模型,分离hFCGRTg小鼠脾脏细胞,加入30ug/ml对照抗体或1C10克隆抗CD40铰链区变体共孵育,48小时后,流式检测抗原递呈细胞活化水平。结果显示,基于IgG2铰链区,添加非3或者4个氨基酸时会明显破坏抗体对抗原递程细胞活化的激动型效应(图14a)。为验证添加非3-4个氨基酸时会明显破坏铰链区刚性在其他激动型抗体中是否适用,我们将“GSGSGS”链接序列中的1-6个氨基酸依次分别被插入到MD5-1抗DR5IgGV11(H2)抗体的铰链区中,产生了6种V11H2变体:IgGV11(H2)V1、IgGV11(H2)V2、IgGV11(H2)V3、IgGV11(H2)V4、IgGV11(H2)V5和IgGV11(H2)V6。我们运用体外促凋亡模型,将MC38细胞与FcγR人源化C57B6/L或Fcgrα-/-C57B6/L小鼠脾脏细胞共培养,分别用对照IgG或MD5-1抗鼠DR5抗体刺激2小时,流式检测Annexin V+PI-凋亡MC38细胞百分比量化。显示,基于V11H2铰链区,添加非3或者4个氨基酸时会明显破坏抗体活性(图14b),与1C10克隆抗mCD40抗体种一致。综上,这些结果说明改造抗体铰链区时,增加3-4个氨基酸可能提供比增加不是3-4倍数个氨基酸时更高的激动性活性。In order to study the effect of hinge region length change on agonism, we sequentially added glycine G (Glycine, Gly) and serine S (Serine, Ser) between the upper and middle hinges of the 1C10 anti-CD40 human IgG2 antibody to generate six IgG2 variants: IgG2V1, IgG2V2, IgG2V3, IgG2V4, IgG2V5 and IgG2V6 (that is, before Body and G2(GS)3). In order to further analyze the immune activation activity of IgG2 and IgG2V1-6 IgG2 variant anti-CD40 antibodies, the humanized FcγRs spleen cell model was stimulated in vitro, the spleen cells of hFCGRTg mice were isolated, and 30ug/ml control antibody or 1C10 clone anti-CD40 hinge region variants were added for incubation. After 48 hours, the activation level of antigen-presenting cells was detected by flow cytometry. The results showed that, based on the IgG2 hinge region, the addition of non-3 or 4 amino acids would significantly destroy the agonistic effect of the antibody on the activation of antigen-transmitting cells ( FIG. 14 a ). In order to verify that the addition of non-3-4 amino acids will significantly destroy the rigidity of the hinge region and whether it is applicable to other agonistic antibodies, we inserted 1-6 amino acids in the "GSGSGS" link sequence into the hinge region of the MD5-1 anti-DR5 IgGV11(H2) antibody in turn, and generated 6 V11H2 variants: IgGV11(H2)V1, IgGV11(H2)V2, IgGV11(H2)V 3. IgGV11(H2)V4, IgGV11(H2)V5 and IgGV11(H2)V6. Using an in vitro pro-apoptotic model, we co-cultured MC38 cells with FcγR humanized C57B6/L or Fcgrα-/-C57B6/L mouse spleen cells, stimulated them with control IgG or MD5-1 anti-mouse DR5 antibody for 2 hours, and quantified the percentage of Annexin V+PI-apoptotic MC38 cells by flow cytometry. It was shown that, based on the V11H2 hinge region, adding non-3 or 4 amino acids would significantly destroy the antibody activity ( FIG. 14 b ), which was consistent with the 1C10 clone anti-mCD40 antibody species. Taken together, these results indicate that when modifying the antibody hinge region, adding 3-4 amino acids may provide higher agonistic activity than adding amino acids that are not a multiple of 3-4.

综合1C10抗体和MD5-1抗体的研究结果,说明支持不同抗体获得最佳激动活性的抗体铰链区不一定相同,但是这些最佳铰链区的柔性都处于较弱的一端,而使用三个天然铰链区中柔性最强的IgG3铰链区的抗体的激动活性都是最差的。这些结果提示,一方面,为了破坏抗体的激动活性,可以通过增强抗体的柔性到一定程度实现;另一方面,为了增强抗体的激动活性,则需要针对不同抗体克隆,在具有不同柔性的铰链区序列中,筛选最佳铰链区序列。Combining the research results of 1C10 antibody and MD5-1 antibody, it shows that the antibody hinge regions that support different antibodies to obtain the best agonistic activity are not necessarily the same, but the flexibility of these optimal hinge regions is at the weaker end, and the agonistic activity of antibodies using the most flexible IgG3 hinge region among the three natural hinge regions is the worst. These results suggest that, on the one hand, in order to destroy the agonistic activity of the antibody, it can be achieved by enhancing the flexibility of the antibody to a certain extent; on the other hand, in order to enhance the agonistic activity of the antibody, it is necessary to screen the optimal hinge region sequence among hinge region sequences with different flexibility for different antibody clones.

尽管上文出于举例说明的目的已经描述了本发明的具体实施方案,然而本领域技术人员将领会,可以对细节进行许多改变而不背离如权利要求所描述的本发明。Although specific embodiments of the invention have been described above for purposes of illustration, those skilled in the art will appreciate that many changes may be made in the details without departing from the invention as described in the claims.

序列表sequence listing

<110> 上海交通大学医学院<110> Shanghai Jiao Tong University School of Medicine

<120> 抗体活性改造及其筛选方法<120> Antibody Activity Modification and Screening Method

<130> 207634<130> 207634

<141> 2020-09-21<141> 2020-09-21

<160> 39<160> 39

<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0

<210> 1<210> 1

<211> 39<211> 39

<212> DNA<212>DNA

<213> Artificial Sequence<213> Artificial Sequence

<400> 1<400> 1

ggtagcggaa gcggtagttg ttgtgtcgag tgcccaccg 39ggtagcggaa gcggtagttg ttgtgtcgag tgcccaccg 39

<210> 2<210> 2

<211> 39<211> 39

<212> DNA<212>DNA

<213> Artificial Sequence<213> Artificial Sequence

<400> 2<400> 2

actaccgctt ccgctacctt tgcgctcaac tgtcttgtc 39actaccgctt ccgctacctt tgcgctcaac tgtcttgtc 39

<210> 3<210> 3

<211> 45<211> 45

<212> DNA<212>DNA

<213> Artificial Sequence<213> Artificial Sequence

<400> 3<400> 3

acagttgagc gcaaaggttg ttgtgtcgag tgcccaccgt gccca 45acagttgagc gcaaaggttg ttgtgtcgag tgcccaccgt gccca 45

<210> 4<210> 4

<211> 45<211> 45

<212> DNA<212>DNA

<213> Artificial Sequence<213> Artificial Sequence

<400> 4<400> 4

gcactcgaca caacaacctt tgcgctcaac tgtcttgtcc acctt 45gcactcgaca caacaacctt tgcgctcaac tgtcttgtcc acctt 45

<210> 5<210> 5

<211> 51<211> 51

<212> DNA<212>DNA

<213> Artificial Sequence<213> Artificial Sequence

<400> 5<400> 5

aagacagttg agcgcaaagg tagctgttgt gtcgagtgcc caccgtgccc a 51aagacagttg agcgcaaagg tagctgttgt gtcgagtgcc caccgtgccc a 51

<210> 6<210> 6

<211> 48<211> 48

<212> DNA<212>DNA

<213> Artificial Sequence<213> Artificial Sequence

<400> 6<400> 6

gcactcgaca caacagctac ctttgcgctc aactgtcttg tccacctt 48gcactcgaca caacagctac ctttgcgctc aactgtcttg tccacctt 48

<210> 7<210> 7

<211> 54<211> 54

<212> DNA<212>DNA

<213> Artificial Sequence<213> Artificial Sequence

<400> 7<400> 7

aagacagttg agcgcaaagg tagcggatgt tgtgtcgagt gcccaccgtg ccca 54aagacagttg agcgcaaagg tagcggatgt tgtgtcgagt gcccaccgtg ccca 54

<210> 8<210> 8

<211> 54<211> 54

<212> DNA<212>DNA

<213> Artificial Sequence<213> Artificial Sequence

<400> 8<400> 8

tgggcactcg acacaacatc cgctaccttt gcgctcaact gtcttgtcca cctt 54tgggcactcg acacaacatc cgctaccttt gcgctcaact gtcttgtcca cctt 54

<210> 9<210> 9

<211> 54<211> 54

<212> DNA<212>DNA

<213> Artificial Sequence<213> Artificial Sequence

<400> 9<400> 9

aagacagttg agcgcaaagg tagcggaagc tgttgtgtcg agtgcccacc gtgc 54aagacagttg agcgcaaagg tagcggaagc tgttgtgtcg agtgcccacc gtgc 54

<210> 10<210> 10

<211> 57<211> 57

<212> DNA<212>DNA

<213> Artificial Sequence<213> Artificial Sequence

<400> 10<400> 10

tgggcactcg acacaacagc ttccgctacc tttgcgctca actgtcttgt ccacctt 57tgggcactcg acacaacagc ttccgctacc tttgcgctca actgtcttgt ccacctt 57

<210> 11<210> 11

<211> 42<211> 42

<212> DNA<212>DNA

<213> Artificial Sequence<213> Artificial Sequence

<400> 11<400> 11

gagcgcaaag gtagcggaag cggttgttgt gtcgagtgcc ca 42gagcgcaaag gtagcggaag cggttgttgt gtcgagtgcc ca 42

<210> 12<210> 12

<211> 42<211> 42

<212> DNA<212>DNA

<213> Artificial Sequence<213> Artificial Sequence

<400> 12<400> 12

gacacaacaa ccgcttccgc tacctttgcg ctcaactgtc tt 42gacacaacaa ccgcttccgc tacctttgcg ctcaactgtc tt 42

<210> 13<210> 13

<211> 5<211> 5

<212> PRT<212> PRT

<213> Artificial Sequence<213> Artificial Sequence

<400> 13<400> 13

Val Asp Lys Arg ValVal Asp Lys Arg Val

1 51 5

<210> 14<210> 14

<211> 10<211> 10

<212> PRT<212> PRT

<213> Artificial Sequence<213> Artificial Sequence

<400> 14<400> 14

Glu Pro Lys Ser Cys Asp Lys Thr His ThrGlu Pro Lys Ser Cys Asp Lys Thr His Thr

1 5 101 5 10

<210> 15<210> 15

<211> 5<211> 5

<212> PRT<212> PRT

<213> Artificial Sequence<213> Artificial Sequence

<400> 15<400> 15

Cys Pro Pro Cys ProCys Pro Pro Cys Pro

1 51 5

<210> 16<210> 16

<211> 8<211> 8

<212> PRT<212> PRT

<213> Artificial Sequence<213> Artificial Sequence

<400> 16<400> 16

Ala Pro Glu Leu Leu Gly Gly ProAla Pro Glu Leu Leu Gly Gly Pro

1 51 5

<210> 17<210> 17

<211> 10<211> 10

<212> PRT<212> PRT

<213> Artificial Sequence<213> Artificial Sequence

<400> 17<400> 17

Cys Pro Val Pro Pro Pro Pro Pro Cys CysCys Pro Val Pro Pro Pro Pro Pro Pro Cys Cys

1 5 101 5 10

<210> 18<210> 18

<211> 5<211> 5

<212> PRT<212> PRT

<213> Artificial Sequence<213> Artificial Sequence

<400> 18<400> 18

Val Asp Lys Thr ValVal Asp Lys Thr Val

1 51 5

<210> 19<210> 19

<211> 3<211> 3

<212> PRT<212> PRT

<213> Artificial Sequence<213> Artificial Sequence

<400> 19<400> 19

Glu Arg LysGlu Arg Lys

11

<210> 20<210> 20

<211> 9<211> 9

<212> PRT<212> PRT

<213> Artificial Sequence<213> Artificial Sequence

<400> 20<400> 20

Cys Cys Val Glu Cys Pro Pro Cys ProCys Cys Val Glu Cys Pro Pro Cys Pro

1 51 5

<210> 21<210> 21

<211> 7<211> 7

<212> PRT<212> PRT

<213> Artificial Sequence<213> Artificial Sequence

<400> 21<400> 21

Ala Pro Pro Val Ala Gly ProAla Pro Pro Val Ala Gly Pro

1 51 5

<210> 22<210> 22

<211> 12<211> 12

<212> PRT<212> PRT

<213> Artificial Sequence<213> Artificial Sequence

<400> 22<400> 22

Glu Leu Lys Thr Pro Leu Gly Asp Thr Thr His ThrGlu Leu Lys Thr Pro Leu Gly Asp Thr Thr His Thr

1 5 101 5 10

<210> 23<210> 23

<211> 50<211> 50

<212> PRT<212> PRT

<213> Artificial Sequence<213> Artificial Sequence

<400> 23<400> 23

Cys Pro Arg Cys Pro Glu Pro Lys Ser Cys Asp Thr Pro Pro Pro CysCys Pro Arg Cys Pro Glu Pro Lys Ser Cys Asp Thr Pro Pro Pro Cys

1 5 10 151 5 10 15

Pro Arg Cys Pro Glu Pro Lys Ser Cys Asp Thr Pro Pro Pro Cys ProPro Arg Cys Pro Glu Pro Lys Ser Cys Asp Thr Pro Pro Pro Cys Pro

20 25 30 20 25 30

Arg Cys Pro Glu Pro Lys Ser Cys Asp Thr Pro Pro Pro Cys Pro ArgArg Cys Pro Glu Pro Lys Ser Cys Asp Thr Pro Pro Pro Cys Pro Arg

35 40 45 35 40 45

Cys ProCysPro

50 50

<210> 24<210> 24

<211> 7<211> 7

<212> PRT<212> PRT

<213> Artificial Sequence<213> Artificial Sequence

<400> 24<400> 24

Glu Ser Lys Tyr Gly Pro ProGlu Ser Lys Tyr Gly Pro Pro

1 51 5

<210> 25<210> 25

<211> 5<211> 5

<212> PRT<212> PRT

<213> Artificial Sequence<213> Artificial Sequence

<400> 25<400> 25

Cys Pro Ser Cys ProCys Pro Ser Cys Pro

1 51 5

<210> 26<210> 26

<211> 4<211> 4

<212> PRT<212> PRT

<213> Artificial Sequence<213> Artificial Sequence

<400> 26<400> 26

Asp Val Thr ValAsp Val Thr Val

11

<210> 27<210> 27

<211> 9<211> 9

<212> PRT<212> PRT

<213> Artificial Sequence<213> Artificial Sequence

<400> 27<400> 27

Glu Arg Lys Gly Ser Gly Ser Gly SerGlu Arg Lys Gly Ser Gly Ser Gly Ser

1 51 5

<210> 28<210> 28

<211> 15<211> 15

<212> PRT<212> PRT

<213> Artificial Sequence<213> Artificial Sequence

<400> 28<400> 28

Glu Arg Lys Gly Ser Gly Ser Gly Ser Gly Ser Gly Ser Gly SerGlu Arg Lys Gly Ser Gly Ser Gly Ser Gly Ser Gly Ser Gly Ser

1 5 10 151 5 10 15

<210> 29<210> 29

<211> 21<211> 21

<212> PRT<212> PRT

<213> Artificial Sequence<213> Artificial Sequence

<400> 29<400> 29

Glu Arg Lys Gly Ser Gly Ser Gly Ser Gly Ser Gly Ser Gly Ser GlyGlu Arg Lys Gly Ser Gly Ser Gly Ser Gly Ser Gly Ser Gly Ser Gly

1 5 10 151 5 10 15

Ser Gly Ser Gly SerSer Gly Ser Gly Ser

20 20

<210> 30<210> 30

<211> 4<211> 4

<212> PRT<212> PRT

<213> Artificial Sequence<213> Artificial Sequence

<400> 30<400> 30

Glu Arg Lys GlyGlu Arg Lys Gly

11

<210> 31<210> 31

<211> 5<211> 5

<212> PRT<212> PRT

<213> Artificial Sequence<213> Artificial Sequence

<400> 31<400> 31

Glu Arg Lys Gly SerGlu Arg Lys Gly Ser

1 51 5

<210> 32<210> 32

<211> 6<211> 6

<212> PRT<212> PRT

<213> Artificial Sequence<213> Artificial Sequence

<400> 32<400> 32

Glu Arg Lys Gly Ser GlyGlu Arg Lys Gly Ser Gly

1 51 5

<210> 33<210> 33

<211> 7<211> 7

<212> PRT<212> PRT

<213> Artificial Sequence<213> Artificial Sequence

<400> 33<400> 33

Glu Arg Lys Gly Ser Gly SerGlu Arg Lys Gly Ser Gly Ser

1 51 5

<210> 34<210> 34

<211> 8<211> 8

<212> PRT<212> PRT

<213> Artificial Sequence<213> Artificial Sequence

<400> 34<400> 34

Glu Arg Lys Gly Ser Gly Ser GlyGlu Arg Lys Gly Ser Gly Ser Gly

1 51 5

<210> 35<210> 35

<211> 5<211> 5

<212> PRT<212> PRT

<213> Artificial Sequence<213> Artificial Sequence

<400> 35<400> 35

Val Asp Lys Lys IleVal Asp Lys Lys Ile

1 51 5

<210> 36<210> 36

<211> 4<211> 4

<212> PRT<212> PRT

<213> Artificial Sequence<213> Artificial Sequence

<400> 36<400> 36

Val Pro Arg AspVal Pro Arg Asp

11

<210> 37<210> 37

<211> 9<211> 9

<212> PRT<212> PRT

<213> Artificial Sequence<213> Artificial Sequence

<400> 37<400> 37

Cys Gly Cys Lys Pro Cys Ile Cys ThrCys Gly Cys Lys Pro Cys Ile Cys Thr

1 51 5

<210> 38<210> 38

<211> 10<211> 10

<212> PRT<212> PRT

<213> Artificial Sequence<213> Artificial Sequence

<400> 38<400> 38

Glu Pro Arg Val Pro Ile Thr Gln Asn ProGlu Pro Arg Val Pro Ile Thr Gln Asn Pro

1 5 101 5 10

<210> 39<210> 39

<211> 11<211> 11

<212> PRT<212> PRT

<213> Artificial Sequence<213> Artificial Sequence

<400> 39<400> 39

Cys Pro Pro Leu Lys Glu Cys Pro Pro Cys AlaCys Pro Pro Leu Lys Glu Cys Pro Pro Cys Ala

1 5 101 5 10

Claims (8)

1.一种上调抗体柔性或下调抗体的Fc受体依赖性激动活性的方法,包括突变CH1铰链区的上部和/或中部铰链结构域,所述突变选自以下一种或多种:1. A method for up-regulating antibody flexibility or down-regulating the Fc receptor-dependent agonistic activity of an antibody, comprising mutating the upper and/or middle hinge domains of the CH1 hinge region, wherein the mutation is selected from one or more of the following: (a)在上部铰链结构域ERK的C端插入G、GS、GSGSG、GSGSGS、(GSGSGS)2、(GSGSGS)3(a) Insert G, GS, GSGSG, GSGSGS, (GSGSGS) 2 , (GSGSGS) 3 at the C-terminus of the upper hinge domain ERK, (b)将上部铰链结构域VPRD变为EPRVPITQNP、中部铰链结构域CGCKPCICT变为CPPLKECPPCA,(b) Change the upper hinge domain VPRD to EPRVPITQNP, and the middle hinge domain CGCKPCICT to CPPLKECPPCA, (c)将上部和/或中部铰链结构域突变为IgG3或mIgG2a的相应区域,或将铰链区突变为IgG3或mIgG2a的铰链区,或将CH1-铰链区突变为IgG3或mIgG2a的CH1-铰链区,其中,上部铰链结构域的突变前序列选自以下一种或多种:EPKSCDKTHT、P、ERK、ESKYGPP、VPRD,中部铰链结构域的突变前序列选自以下一种或多种:CPPCP、CPVPPPPPCC、CCVECPPCP、CPSCP、CPVPPPPPCC、CGCKPCICT,并且,IgG3的上部铰链结构域为ELKTPLGDTTHT、中部铰链结构域为CPRCP(EPKSCDTPPPCPRCP)3,mIgG2a的上部铰链结构域为EPRVPITQNP、中部铰链结构域为CPPLKECPPCA。(c) Mutate the upper and/or middle hinge domain to the corresponding region of IgG3 or mIgG2a, or mutate the hinge region to the hinge region of IgG3 or mIgG2a, or mutate the CH1-hinge region to the CH1-hinge region of IgG3 or mIgG2a, wherein the pre-mutation sequence of the upper hinge domain is selected from one or more of the following: EPKSCDKTHT, P, ERK, ESKYGPP, V PRD, the pre-mutation sequence of the middle hinge domain is selected from one or more of the following: CPPCP, CPVPPPPCC, CCVECPPCP, CPSCP, CPVPPPPCC, CGCKPCICT, and the upper hinge domain of IgG3 is ELKTPLGDTTHT, and the middle hinge domain is CPRCP (EPKSCDTPPPCPRCP)3, the upper hinge domain of mIgG2a is EPRVPITQNP, and the middle hinge domain is CPPLKECPPCA. 2.如权利要求1所述的方法,其特征在于,2. The method of claim 1, wherein 所述抗体是激动型抗体,和/或the antibody is an agonistic antibody, and/or 突变之后所述抗体的柔性大于或相当于IgG3,和/或The flexibility of the antibody after mutation is greater than or equivalent to IgG3, and/or 对所述抗体的突变不显著降低所述抗体对其特异性靶向的抗原的亲和力,和/或Mutations to the antibody do not significantly reduce the affinity of the antibody for the antigen it specifically targets, and/or 突变后的所述抗体的回转半径(Rg)大于和/或The radius of gyration (Rg) of the antibody after mutation is greater than and / or 所述抗体为人抗体、嵌合抗体或者人源化抗体。The antibody is a human antibody, a chimeric antibody or a humanized antibody. 3.一种下调抗体柔性或上调抗体的Fc受体依赖性激动活性的方法,包括突变CH1铰链区的上部和/或中部铰链结构域,所述突变选自以下一种或多种:3. A method for down-regulating antibody flexibility or up-regulating the Fc receptor-dependent agonistic activity of an antibody, comprising mutating the upper and/or middle hinge domains of the CH1 hinge region, the mutation being selected from one or more of the following: (a)在上部铰链结构域ERK的C端插入GSG或GSGS,(a) inserting GSG or GSGS at the C-terminus of the upper hinge domain ERK, (b)将上部铰链结构域EPKSCDKTHT变为P、中部铰链结构域CPPCP变为CPVPPPPPCC。(b) Change the upper hinge domain EPKSCDKTHT to P and the middle hinge domain CPPCP to CPVPPPPCC. (c)将上部和/或中部铰链结构域突变为IgG1、IgG2或IgA2的相应区域,或将铰链区突变为IgG1、IgG2或IgA2的铰链区,或将CH1-铰链区突变为IgG1、IgG2或IgA2的CH1-铰链区,其中,上部铰链结构域的突变前序列选自以下一种或多种:ELKTPLGDTTHT、ESKYGPP、VPRD、EPRVPITQNP,中部铰链结构域的突变前序列选自以下一种或多种:CPRCP(EPKSCDTPPPCPRCP)3、CPSCP、CGCKPCICT、CPPLKECPPCA,并且所述IgG1的上部铰链结构域为EPKSCDKTHT、中部铰链结构域为CPPCP,IgG2的上部铰链结构域为ERK、中部铰链结构域为CCVECPPCP,IgA2的上部铰链结构域为P、中部铰链结构域为CPVPPPPPCC。(c) Mutating the upper and/or middle hinge domain to the corresponding region of IgG1, IgG2 or IgA2, or mutating the hinge region to the hinge region of IgG1, IgG2 or IgA2, or mutating the CH1-hinge region to the CH1-hinge region of IgG1, IgG2 or IgA2, wherein the pre-mutation sequence of the upper hinge domain is selected from one or more of the following: ELKTPLGDTTHT, ESKY GPP, VPRD, EPRVPITQNP, the pre-mutation sequence of the middle hinge domain is selected from one or more of the following: CPRCP (EPKSCDTPPPCPRCP) 3, CPSCP, CGCKPCICT, CPPLKECPPCA, and the upper hinge domain of IgG1 is EPKSCDKTHT, the middle hinge domain is CPPCP, the upper hinge domain of IgG2 is ERK, and the middle hinge domain is CCVECPPC P, the upper hinge domain of IgA2 is P, and the middle hinge domain is CPVPPPPCC. 4.如权利要求3所述的方法,其特征在于,4. The method of claim 3, wherein, 所述抗体是激动型抗体,和/或the antibody is an agonistic antibody, and/or 突变之后所述抗体的柔性不超过人IgG1,和/或After mutation, the antibody is no more flexible than human IgG1, and/or 对所述抗体的突变不显著降低所述抗体对其特异性靶向的抗原的亲和力,和/或Mutations to the antibody do not significantly reduce the affinity of the antibody for the antigen it specifically targets, and/or 突变后的所述抗体的回转半径(Rg)为或者小于人IgG1的Rg,和/或The radius of gyration (Rg) of the antibody after mutation is or less than the Rg of human IgG1, and/or 所述抗体为人抗体、嵌合抗体或者人源化抗体,和/或The antibody is a human antibody, a chimeric antibody or a humanized antibody, and/or 所述抗体特异性识别TNF受体超家族中受体,和/或The antibody specifically recognizes a receptor in the TNF receptor superfamily, and/or 所述抗体为抗CD40抗体或者抗DR5抗体。The antibody is an anti-CD40 antibody or an anti-DR5 antibody. 5.如权利要求4所述的方法,其特征在于,突变后的所述抗体的回转半径(Rg)为 5. The method of claim 4, wherein the radius of gyration (Rg) of the antibody after mutation is 6.如权利要求1-5中任一项所述的方法,其特征在于,还对所述重链恒定区中Fc段进行修饰,以提高所述激动型抗体和FcγRIIB的亲和力或者所述激动型抗体的I/A比值。6. The method according to any one of claims 1-5, wherein the Fc segment in the heavy chain constant region is further modified to increase the affinity between the agonistic antibody and FcγRIIB or the I/A ratio of the agonistic antibody. 7.如权利要求1-5中任一项所述的方法,其特征在于,所述方法在免疫系统表达人Fc受体的条件下调节抗体柔性或调节抗体的Fc受体依赖性激动活性。7. The method according to any one of claims 1-5, characterized in that the method regulates the flexibility of the antibody or regulates the Fc receptor-dependent agonistic activity of the antibody under the condition that the immune system expresses human Fc receptors. 8.如权利要求1-5中任一项所述的方法,其特征在于,所述Fc受体是人Fc受体。8. The method of any one of claims 1-5, wherein the Fc receptor is a human Fc receptor.
CN202010997819.5A 2019-09-20 2020-09-21 Antibody Activity Modification and Screening Method Active CN112592404B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2019108950151 2019-09-20
CN201910895015 2019-09-20

Publications (2)

Publication Number Publication Date
CN112592404A CN112592404A (en) 2021-04-02
CN112592404B true CN112592404B (en) 2023-07-25

Family

ID=75180283

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010997819.5A Active CN112592404B (en) 2019-09-20 2020-09-21 Antibody Activity Modification and Screening Method

Country Status (1)

Country Link
CN (1) CN112592404B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117594114B (en) * 2023-10-30 2024-12-03 康复大学(筹) Method for predicting antibody-like body combined with biomacromolecule modification based on protein structural domain

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107172880A (en) * 2014-03-24 2017-09-15 癌症研究技术有限公司 Modified antibodies for causing excitement or antagonistic properties containing modification IgG2 domains and application thereof
CN107474136A (en) * 2016-06-08 2017-12-15 上海交通大学医学院 Strengthen the heavy chain constant region sequence of agonistic antibody activity
CN109069573A (en) * 2016-03-07 2018-12-21 弗拉芒区生物技术研究所 In conjunction with the single domain antibody of CD20
CN109195994A (en) * 2016-04-22 2019-01-11 鳄鱼生物科学公司 For the novel bispecific polypeptide of CD137

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HUE052526T2 (en) * 2014-11-21 2021-05-28 Bristol Myers Squibb Co Antibodies comprising modified heavy constant regions
EP3856790A4 (en) * 2018-09-28 2022-09-28 Lyvgen Biopharma Holdings Limited Anti-cd40 binding molecules having engineered fc domains and therapeutic uses thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107172880A (en) * 2014-03-24 2017-09-15 癌症研究技术有限公司 Modified antibodies for causing excitement or antagonistic properties containing modification IgG2 domains and application thereof
CN109069573A (en) * 2016-03-07 2018-12-21 弗拉芒区生物技术研究所 In conjunction with the single domain antibody of CD20
CN109195994A (en) * 2016-04-22 2019-01-11 鳄鱼生物科学公司 For the novel bispecific polypeptide of CD137
CN107474136A (en) * 2016-06-08 2017-12-15 上海交通大学医学院 Strengthen the heavy chain constant region sequence of agonistic antibody activity

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Conformation of the Human Immunoglobulin G2 Hinge Imparts Superagonistic Properties to Immunostimulatory Anticancer Antibodies;Ann L.White等;《Cancer Cell》;20150112;第27卷(第12期);138-148 *
Therapeutic Activity of Agonistic, Human Anti-CD40 Monoclonal Antibodies Requires Selective Fc gamma R Engagement;Dahan, Rony等;《Cancer cell》;20160613;第29卷(第6期);820-831 *

Also Published As

Publication number Publication date
CN112592404A (en) 2021-04-02

Similar Documents

Publication Publication Date Title
US11945879B2 (en) Multispecific antigens binding fragments and multispecific antibodies
US20220153837A1 (en) Anti-tigit antibodies and their use as therapeutics and diagnostics
US11332532B2 (en) Bispecific antibodies which bind PD-L1 and GITR
KR102269650B1 (en) Methods and means for the production of Ig-like molecules
EP3242891B1 (en) Monomeric fc domains
JP2023106405A (en) Bispecific heterodimeric fusion proteins containing il-15/il-15r alpha fc-fusion proteins and pd-1 antibody fragments
KR20210016448A (en) Anti-PVRIG/anti-TIGIT bispecific antibodies and methods of use
US20220235115A1 (en) Soluble Universal ADCC-Enhancing Synthetic Fusion Gene and Peptide Technology and Its Use Thereof
JP2022552183A (en) PD-1 targeting IL-15/IL-15RαFC fusion proteins with improved properties
JP2024109884A (en) Methods for Producing Controlled Mixtures of Two or More Different Antibodies
CN114127112A (en) Multifunctional molecules that bind to T cells and their use to treat autoimmune disorders
WO2021110110A1 (en) ANTIBODY FC REGION HAVING ENHANCED FCγRIIB AFFINITY
WO2023006082A1 (en) Antigen targeting, anti-cd16a, and immune effector cell activating trifunctional fusion protein, and application thereof
CN112592404B (en) Antibody Activity Modification and Screening Method
JP2024510291A (en) Bifunctional molecules for treating immune diseases
JP2023540888A (en) Non-naturally modified Fc region of human IgG that specifically binds to a non-naturally modified Fc receptor
Kuplich Barcellos The effects of allelic hinge variation in IgG3 antibodies on protein dynamics and effector functions
WO2023036270A1 (en) Antigen-targeting, anti-cd16a and immune effector cell-activating trifunctional fusion protein, and use thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant