CN112580167A - Stewart parallel mechanism construction method, system and computer storage medium - Google Patents
Stewart parallel mechanism construction method, system and computer storage medium Download PDFInfo
- Publication number
- CN112580167A CN112580167A CN202011541252.7A CN202011541252A CN112580167A CN 112580167 A CN112580167 A CN 112580167A CN 202011541252 A CN202011541252 A CN 202011541252A CN 112580167 A CN112580167 A CN 112580167A
- Authority
- CN
- China
- Prior art keywords
- cylinder
- length
- electric cylinder
- module
- push rod
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000007246 mechanism Effects 0.000 title claims abstract description 44
- 238000010276 construction Methods 0.000 title claims abstract description 12
- 238000000034 method Methods 0.000 claims abstract description 28
- 230000009466 transformation Effects 0.000 claims description 19
- 238000006073 displacement reaction Methods 0.000 claims description 18
- 230000008859 change Effects 0.000 claims description 10
- 238000004088 simulation Methods 0.000 abstract description 18
- 230000008569 process Effects 0.000 abstract description 7
- 230000002452 interceptive effect Effects 0.000 abstract description 4
- 239000011159 matrix material Substances 0.000 description 10
- 238000010586 diagram Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 238000005096 rolling process Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 2
- 238000013519 translation Methods 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005094 computer simulation Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/10—Geometric CAD
- G06F30/17—Mechanical parametric or variational design
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T17/00—Three dimensional [3D] modelling, e.g. data description of 3D objects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2119/00—Details relating to the type or aim of the analysis or the optimisation
- G06F2119/14—Force analysis or force optimisation, e.g. static or dynamic forces
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Geometry (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Software Systems (AREA)
- Computer Graphics (AREA)
- Computational Mathematics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
技术领域technical field
本发明属于数字仿真领域,特别涉及一种Stewart并联机构构建方法、系统及计算机存储介质。The invention belongs to the field of digital simulation, and in particular relates to a Stewart parallel mechanism construction method, system and computer storage medium.
背景技术Background technique
Stewart平台是一种六自由度并联机构,与串联机构相比具有精度高、刚度大、结构稳定、负载能力强等特点,在航空航天、汽车工程、生物医学等领域有着广泛的应用,特别适合工作范围不大但负载较大的工作场合。在Stewart并联机构研究中,动力学分析是非常重要的方面,它是整个系统设计和控制的基础。与串联机构相比,Stewart平台为空间多环闭式运动系统,存在被动关节,且在运动过程中需要满足相应的运动学约束条件,因此其动力学分析过程比串联机构要困难的多。Stewart platform is a six-degree-of-freedom parallel mechanism. Compared with the series mechanism, it has the characteristics of high precision, high rigidity, stable structure and strong load capacity. It has a wide range of applications in aerospace, automotive engineering, biomedicine and other fields. Works where the working range is not large but the load is large. In the study of Stewart parallel mechanism, dynamic analysis is a very important aspect, which is the basis of the whole system design and control. Compared with the tandem mechanism, the Stewart platform is a spatial multi-loop closed motion system with passive joints, and the corresponding kinematic constraints need to be met during the motion process, so its dynamic analysis process is much more difficult than that of the tandem mechanism.
虚拟样机技术以运动学、动力学以及控制方法为核心,通过虚拟样机技术可以快速完成实际物理模型难以完成的仿真试验,并输出相应的仿真结果,可大大降低开发成本、缩短开发周期,将虚拟样机技术运用在Stewart并联机构的动力学分析上具有重要的意义。Virtual prototyping technology is based on kinematics, dynamics and control methods. Through virtual prototyping technology, simulation experiments that are difficult to complete with actual physical models can be quickly completed, and corresponding simulation results can be output, which can greatly reduce development costs and shorten development cycles. The application of prototype technology in the dynamic analysis of Stewart parallel mechanism is of great significance.
目前的主要方法是在Adams/View模块中导入Stewart平台的三维模型,根据实际情况在各零件间添加运动副。根据不同工况的运动指标采用点驱动的方式驱动上平台,并反解出各电缸伸缩量-间的变化曲线,再通过Adams自带函数将数据拟合,并作为驱动条件重新将导入动力学模型计算出各电缸出力及电机功率。该方法建模依据零件的三维模型,形状与实际结构吻合;仿真过程中具有动画演示功能,能实时掌握机构的运动状态;能分析零件间的干涉、间隙等。The main method at present is to import the 3D model of the Stewart platform in the Adams/View module, and add kinematic pairs between the parts according to the actual situation. According to the motion indicators of different working conditions, the upper platform is driven by point driving, and the change curve between the telescopic amount of each electric cylinder is reversely solved, and then the data is fitted by the function of Adams, and the power is imported again as the driving condition. The output of each electric cylinder and the power of the motor are calculated by the scientific model. The modeling of this method is based on the three-dimensional model of the part, and the shape is consistent with the actual structure; the simulation process has the function of animation demonstration, which can grasp the motion state of the mechanism in real time; it can analyze the interference and gap between the parts.
在仿真过程中,由于平台运动工况较多,需对每个工况进行反解,之后再重新搭建动力学模型,无法通过上平台运动指标输入直接获得电缸或电机的参数,建模过程较为繁琐,需要耗费大量时间。In the simulation process, due to the large number of motion conditions of the platform, it is necessary to inversely solve each condition, and then rebuild the dynamic model. The parameters of the electric cylinder or motor cannot be directly obtained through the input of the motion index of the upper platform. The modeling process It is cumbersome and takes a lot of time.
发明内容SUMMARY OF THE INVENTION
发明目的:本发明针对现有技术中存在的问题,提出了一种能够根据工况的运动情况直接给出电缸选择参数的Stewart并联机构构建方法。Purpose of the invention: Aiming at the problems existing in the prior art, the present invention proposes a Stewart parallel mechanism construction method that can directly give the electric cylinder selection parameters according to the motion of the working conditions.
技术方案:为实现上述目的,提供了一种Stewart并联机构构建方法,包括以下步骤:Technical solution: In order to achieve the above purpose, a method for constructing a Stewart parallel mechanism is provided, which includes the following steps:
建立Stewart并联机构的动力学三维模型;Establish the dynamic 3D model of Stewart parallel mechanism;
搭建运动学反解模型;所述运动学反解模型中包括坐标变换模块和电缸伸缩速度获取模块;所述坐标变换模块通过输入的上平台的位移或者角度变量得到变换后上平台每个铰接点的新坐标;所述电缸伸缩速度获取模块根据坐标变化模块得到的上平台每个铰接点的新坐标计算得到Stewart并联机构的动力学三维模型中每条电缸的实时长度,将每条电缸的实时长度与电缸初始长度相减得到每条电缸的伸缩量,根据每条电缸的伸缩量计算获得每条电缸的伸缩速度;Build a kinematic inverse solution model; the kinematic inverse solution model includes a coordinate transformation module and an electric cylinder telescopic speed acquisition module; the coordinate transformation module obtains each hinge of the upper platform after transformation through the input displacement or angle variable of the upper platform The new coordinates of the point; the electric cylinder telescopic speed acquisition module calculates the real-time length of each electric cylinder in the dynamic three-dimensional model of the Stewart parallel mechanism according to the new coordinates of each hinge point of the upper platform obtained by the coordinate change module, and each The real-time length of the electric cylinder is subtracted from the initial length of the electric cylinder to obtain the telescopic amount of each electric cylinder, and the telescopic speed of each electric cylinder is calculated according to the telescopic amount of each electric cylinder;
将运动学反解模型获得每条电缸的伸缩速度输入到建立的Stewart并联机构动力学模型中,得到每条电缸的输出力;The telescopic speed of each electric cylinder obtained by the inverse kinematics model is input into the established Stewart parallel mechanism dynamics model, and the output force of each electric cylinder is obtained;
将每条电缸的输出力与对应的伸缩速度相乘,得到每个电缸的功率值。Multiply the output force of each electric cylinder with the corresponding telescopic speed to obtain the power value of each electric cylinder.
其中,所述建立Stewart并联机构的动力学三维模型的方法为:Wherein, the method for establishing the dynamic three-dimensional model of the Stewart parallel mechanism is:
步骤101:依次建立上铰接点硬点(p1,p2,p3,p4,p5,p6),下铰接点硬点(b1,b2,b3,b4,b5,b6);Step 101: Establish upper hinge point hard points (p1, p2, p3, p4, p5, p6) and lower hinge point hard points (b1, b2, b3, b4, b5, b6) in sequence;
步骤102:以p1为起点,沿着p1到b1两点直线所在方向,使用圆柱几何体模块,根据推杆一的长度建立推杆一的几何模型;以p2为起点,沿着p2到b2两点直线所在方向,使用圆柱几何体模块,根据推杆二的长度建立推杆二的几何模型;以p3为起点,沿着p3到b3两点直线所在方向,使用圆柱几何体模块,根据推杆三的长度建立推杆三的几何模型;以p4为起点,沿着p4到b4两点直线所在方向,使用圆柱几何体模块,根据推杆四的长度建立推杆四的几何模型;以p5为起点,沿着p5到b5两点直线所在方向,使用圆柱几何体模块,根据推杆五的长度建立推杆五的几何模型;以p6为起点,沿着p6到b6两点直线所在方向,使用圆柱几何体模块,根据推杆六的长度建立推杆六的几何模型;Step 102: Using p1 as the starting point, along the direction of the straight line from p1 to b1, use the cylindrical geometry module to establish the geometric model of the
步骤103:以b1为起点,沿着b1到p1两点直线所在方向,使用圆柱几何体模块,根据缸筒一的长度建立缸筒一的几何模型;以b2为起点,沿着b2到p2两点直线所在方向,使用圆柱几何体模块,根据缸筒二的长度建立缸筒二的几何模型;以b3为起点,沿着b3到p3两点直线所在方向,使用圆柱几何体模块,根据缸筒三的长度建立缸筒三的几何模型;以b4为起点,沿着b4到p4两点直线所在方向,使用圆柱几何体模块,根据缸筒四的长度建立缸筒四的几何模型;以b5为起点,沿着b5到p5两点直线所在方向,使用圆柱几何体模块,根据缸筒五的长度建立缸筒五的几何模型;以b6为起点,沿着b6到p6两点直线所在方向,使用圆柱几何体模块,根据缸筒六的长度建立缸筒六的几何模型;Step 103: Using b1 as the starting point, along the direction of the straight line from b1 to p1, use the cylindrical geometry module to establish the geometric model of
步骤104:以p1,p2,p3,p4,p5,p6为顶点,使用平板几何体模块建立上平台几何模型;以b1,b2,b3,b4,b5,b6为顶点,使用平板几何体模块建立底座几何模型;Step 104: Taking p1, p2, p3, p4, p5, and p6 as vertices, use the slab geometry module to build the upper platform geometric model; taking b1, b2, b3, b4, b5, b6 as the vertices, use the slab geometry module to build the base geometry Model;
步骤105:分别设置上平台与每个推杆之间的运动副;每个推杆与其对应的缸筒之间的运动副,每个缸筒与底座之间的运动副;并设置每个零件的重量。Step 105: respectively set the motion pair between the upper platform and each push rod; the motion pair between each push rod and its corresponding cylinder, the motion pair between each cylinder and the base; and set each part the weight of.
进一步,上平台与每个推杆之间的运动副采用虎克铰副。Further, the motion pair between the upper platform and each push rod adopts a Hooke hinge pair.
进一步,每个推杆与其对应的缸筒之间采用的移动副。Further, the moving pair used between each push rod and its corresponding cylinder.
进一步,每个缸筒与底座之间的运动副采用球副。Further, the motion pair between each cylinder and the base adopts a ball pair.
本发明还提供了一种Stewart并联机构构建系统,包括三维模型建立单元、动力学反解单元和电缸信号选择单元;其中,The invention also provides a Stewart parallel mechanism construction system, including a three-dimensional model establishment unit, a dynamic inverse solution unit and an electric cylinder signal selection unit; wherein,
所述三维模型建立单元用于建立Stewart并联机构的动力学三维模型;The three-dimensional model building unit is used to build a dynamic three-dimensional model of the Stewart parallel mechanism;
所述运动学反解单元包括坐标变换模块和电缸伸缩速度获取模块;其中,所述坐标变换模块通过输入的上平台的位移或者角度变量得到变换后上平台每个铰接点的新坐标;所述电缸伸缩速度获取模块根据坐标变化模块得到的上平台每个铰接点的新坐标计算得到Stewart并联机构的动力学三维模型中每条电缸的实时长度,将每条电缸的实时长度与电缸初始长度相减得到每条电缸的伸缩量,根据每条电缸的伸缩量计算获得每条电缸的伸缩速度;并将得到的每条电缸的伸缩速度输入到三维模型建立单元中,得到每条电缸的输出力;The kinematic inverse solution unit includes a coordinate transformation module and an electric cylinder telescopic speed acquisition module; wherein, the coordinate transformation module obtains the new coordinates of each hinge point of the upper platform after the transformation through the input displacement or angle variable of the upper platform; The electric cylinder telescopic speed acquisition module calculates the real-time length of each electric cylinder in the dynamic three-dimensional model of the Stewart parallel mechanism according to the new coordinates of each hinge point of the upper platform obtained by the coordinate change module, and compares the real-time length of each electric cylinder with the real-time length of each electric cylinder. The telescopic amount of each electric cylinder is obtained by subtracting the initial length of the electric cylinder, and the telescopic speed of each electric cylinder is calculated according to the telescopic amount of each electric cylinder; and the obtained telescopic speed of each electric cylinder is input into the 3D model establishment unit , the output force of each electric cylinder is obtained;
电缸信号选择单元根据每条电缸的输出力与对应的伸缩速度相乘,得到每个电缸的功率值,并输出。The electric cylinder signal selection unit multiplies the output force of each electric cylinder and the corresponding telescopic speed to obtain the power value of each electric cylinder and outputs it.
其中,所述三维模型建立单元建立Stewart并联机构的动力学三维模型的方法为:Wherein, the method for establishing the dynamic three-dimensional model of the Stewart parallel mechanism by the three-dimensional model establishment unit is:
步骤101:依次建立上铰接点硬点(p1,p2,p3,p4,p5,p6),下铰接点硬点(b1,b2,b3,b4,b5,b6);Step 101: Establish upper hinge point hard points (p1, p2, p3, p4, p5, p6) and lower hinge point hard points (b1, b2, b3, b4, b5, b6) in sequence;
步骤102:以p1为起点,沿着p1到b1两点直线所在方向,使用圆柱几何体模块,根据推杆一的长度建立推杆一的几何模型;以p2为起点,沿着p2到b2两点直线所在方向,使用圆柱几何体模块,根据推杆二的长度建立推杆二的几何模型;以p3为起点,沿着p3到b3两点直线所在方向,使用圆柱几何体模块,根据推杆三的长度建立推杆三的几何模型;以p4为起点,沿着p4到b4两点直线所在方向,使用圆柱几何体模块,根据推杆四的长度建立推杆四的几何模型;以p5为起点,沿着p5到b5两点直线所在方向,使用圆柱几何体模块,根据推杆五的长度建立推杆五的几何模型;以p6为起点,沿着p6到b6两点直线所在方向,使用圆柱几何体模块,根据推杆六的长度建立推杆六的几何模型;Step 102: Using p1 as the starting point, along the direction of the straight line from p1 to b1, use the cylindrical geometry module to establish the geometric model of the
步骤103:以b1为起点,沿着b1到p1两点直线所在方向,使用圆柱几何体模块,根据缸筒一的长度建立缸筒一的几何模型;以b2为起点,沿着b2到p2两点直线所在方向,使用圆柱几何体模块,根据缸筒二的长度建立缸筒二的几何模型;以b3为起点,沿着b3到p3两点直线所在方向,使用圆柱几何体模块,根据缸筒三的长度建立缸筒三的几何模型;以b4为起点,沿着b4到p4两点直线所在方向,使用圆柱几何体模块,根据缸筒四的长度建立缸筒四的几何模型;以b5为起点,沿着b5到p5两点直线所在方向,使用圆柱几何体模块,根据缸筒五的长度建立缸筒五的几何模型;以b6为起点,沿着b6到p6两点直线所在方向,使用圆柱几何体模块,根据缸筒六的长度建立缸筒六的几何模型;;Step 103: Using b1 as the starting point, along the direction of the straight line from b1 to p1, use the cylindrical geometry module to establish the geometric model of
步骤104:以p1,p2,p3,p4,p5,p6为顶点,使用平板几何体模块建立上平台几何模型;以b1,b2,b3,b4,b5,b6为顶点,使用平板几何体模块建立底座几何模型;Step 104: Taking p1, p2, p3, p4, p5, and p6 as vertices, use the slab geometry module to build the upper platform geometric model; taking b1, b2, b3, b4, b5, b6 as the vertices, use the slab geometry module to build the base geometry Model;
步骤105:分别设置上平台与每个推杆之间的运动副;每个推杆与其对应的缸筒之间的运动副,每个缸筒与底座之间的运动副;并设置每个零件的重量。Step 105: respectively set the motion pair between the upper platform and each push rod; the motion pair between each push rod and its corresponding cylinder, the motion pair between each cylinder and the base; and set each part the weight of.
本发明还提供了一种存储软件的计算机可读介质,所述软件包括能通过一个或多个计算机执行的指令,所述指令通过这样的执行使得所述一个或多个计算机执行操作,所述操作包括如权利要求1-5中任意一项所述的Stewart并联机构构建方法的流程。The present invention also provides a computer-readable medium storing software comprising instructions executable by one or more computers, the instructions, by such execution, cause the one or more computers to perform operations, the The operation includes the flow of the Stewart parallel mechanism construction method according to any one of claims 1-5.
工作原理:本发明通过Simulink建立Stewart平台的运动学模型,反解出各电缸速度并直接输入Adams中导出的动力学模块进行交互仿真。该方法可通过输入上平台运动指标,直接将反解结果输入至动力学模型中,输出电缸或电机参数,避免了反复建模过程。Working principle: The present invention establishes the kinematic model of the Stewart platform through Simulink, inversely solves the speed of each electric cylinder, and directly inputs the dynamic module derived from Adams for interactive simulation. This method can directly input the inverse solution results into the dynamic model by inputting the motion index of the upper platform, and output the electric cylinder or motor parameters, avoiding the repeated modeling process.
有益效果:与现有技术相比,本发明可以在输入上平台运动指标的情况下直接输出电缸出力或电机功率等动力学参数,同时具有动画演示功能、可以分析零件间的干涉等优点。Beneficial effects: Compared with the prior art, the present invention can directly output dynamic parameters such as electric cylinder output or motor power under the condition of inputting the motion index of the upper platform, and has the advantages of animation demonstration function and analysis of interference between parts.
附图说明Description of drawings
图1为Stewart并联机构示意图;Fig. 1 is the schematic diagram of Stewart parallel mechanism;
图2为本发明提供的方法对俯仰工况仿真后电缸推力示意图;Fig. 2 is the schematic diagram of electric cylinder thrust after the method provided by the present invention simulates the pitching condition;
图3为本发明提供的方法对俯仰工况仿真后电缸功率示意图;3 is a schematic diagram of electric cylinder power after the method provided by the present invention simulates pitching conditions;
图4为本发明提供的方法对滚转工况仿真后电缸推力示意图;4 is a schematic diagram of the thrust of the electric cylinder after the method provided by the present invention simulates the rolling condition;
图5为本发明提供的方法对滚转工况仿真后电缸功率示意图;5 is a schematic diagram of the electric cylinder power after the method provided by the present invention simulates the rolling condition;
图6为本发明提供的方法对侧移工况仿真后电缸推力示意图;6 is a schematic diagram of the thrust of the electric cylinder after the method provided by the present invention simulates the side-shifting condition;
图7为本发明提供的方法对侧移工况仿真后电缸功率示意图。FIG. 7 is a schematic diagram of the power of the electric cylinder after simulating the side-shifting working condition by the method provided by the present invention.
具体实施方式Detailed ways
下面将结合本发明实例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the examples of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, but not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
本实施例提供了一种Stewart并联机构构建系统,主要包括三维模型建立单元、动力学反解单元和电缸信号选择单元;其中,三维模型建立单元和电缸信号选择单元通过Adams软件中的模块完成,动力学反解单元通过Matlab/Simulink模块进行搭建,具体包括以下步骤:This embodiment provides a Stewart parallel mechanism construction system, which mainly includes a three-dimensional model establishment unit, a dynamic inverse solution unit, and an electric cylinder signal selection unit; wherein, the three-dimensional model establishment unit and the electric cylinder signal selection unit pass through the modules in the Adams software. Completed, the kinetic inverse solution unit is built through the Matlab/Simulink module, which includes the following steps:
步骤1:建立Stewart并联机构的动力学三维模型:Step 1: Build the dynamic 3D model of the Stewart parallel mechanism:
步骤101:在Adams/view模块中依次建立上铰接点硬点(p1,p2,p3,p4,p5,p6),下铰接点硬点(b1,b2,b3,b4,b5,b6)。Step 101: In the Adams/view module, create upper hinge point hard points (p1, p2, p3, p4, p5, p6) and lower hinge point hard points (b1, b2, b3, b4, b5, b6).
步骤102:以p1为起点,沿着p1到b1两点直线所在方向,使用Adams软件中的Geometry-Cylinder模块(圆柱几何体模块,下文简称Geometry-Cylinder模块),根据采用的电缸一的推杆的实际长度建立推杆一的几何模型,将推杆一起点的参考点的位置设置为(LOC_RELATIVE_TO({0,0,0},p1)),该设置使用Adams软件中的Location选项,即表示参考点与p1点之间x、y、z方向的相对距离均为0。这样能够让所建立的推杆一起点随着硬点p1位置的修改而一起变化,再将其参考点方向设置为(ORI_ALONG_AXIS(p1,b1,"Z")),该设置使用Adams软件中的Orientation选项,表示推杆一起点的参考点Z向与p1到b1所在直线的方向相同,这样能够让所建立的推杆一方向始终沿着p1到b1所在直线的方向。依此类推分别建立推杆二、推杆三、推杆四、推杆五及推杆六模型。Step 102: Using p1 as the starting point, along the direction of the straight line from p1 to b1, use the Geometry-Cylinder module (cylindrical geometry module, hereinafter referred to as the Geometry-Cylinder module) in the Adams software, according to the push rod of the electric cylinder one used The actual length of the
步骤103:以b1为起点,沿着b1到p1两点直线所在方向,使用Adams软件中的Geometry-Cylinder模块,根据实际采用的电缸一缸筒的实际长度建立缸筒一的几何模型,将缸筒一起点的参考点的位置设置为(LOC_RELATIVE_TO({0,0,0},b1)),该设置使用Adams软件中的Location选项,即表示参考点与b1点之间x、y、z方向的相对距离均为0,这样能够让所建立的缸筒一的起点可以随着硬点b1位置的修改而一起变化,再将其参考点方向设置为(ORI_ALONG_AXIS(b1,p1,"Z")),该设置使用Adams软件中的Orientation选项,表示缸筒一起点的参考点Z向与b1到p1所在直线的方向相同,这样能够让所建立的缸筒一的方向可以始终沿着b1到p1所在直线的方向。依此类推建立缸筒二、缸筒三、缸筒四、缸筒五及缸筒六。Step 103: Using b1 as the starting point, along the direction of the straight line from b1 to p1, use the Geometry-Cylinder module in the Adams software to establish the geometric model of the
步骤104:以p1,p2,p3,p4,p5,p6为顶点,使用Adams软件中的Geometry-plate模块(平板几何体模块,下文简称Geometry-plate模块)建立上平台几何模型;上平台有6个建模参考点分别将其位置设置为(LOC_RELATIVE_TO({0,0,0},p1))、(LOC_RELATIVE_TO({0,0,0},p2))、(LOC_RELATIVE_TO({0,0,0},p3))、(LOC_RELATIVE_TO({0,0,0},p4))、(LOC_RELATIVE_TO({0,0,0},p5))、(LOC_RELATIVE_TO({0,0,0},p6)),该设置使用Adams软件中的Location选项,这样能够让所建立的上平台始终随着上平台铰接点位置的修改而一起变化。并以相同的方法建立底座几何模型。以负载实际重心高度添加负载位置,在此可以忽略负载形状,以球来代替,需注意负载重心位置、质量以及转动惯量,根据实际情况修改球体参考坐标位置的方式来调整质心高度,并采用手动输入方式输入负载质量和负载的转动惯量。Step 104: Using p1, p2, p3, p4, p5, and p6 as vertices, use the Geometry-plate module (plate geometry module, hereinafter referred to as Geometry-plate module) in the Adams software to establish a geometric model of the upper platform; there are 6 upper platforms The modeling reference points are set to their positions as (LOC_RELATIVE_TO({0,0,0},p1)), (LOC_RELATIVE_TO({0,0,0},p2)), (LOC_RELATIVE_TO({0,0,0}) ,p3)), (LOC_RELATIVE_TO({0,0,0},p4)), (LOC_RELATIVE_TO({0,0,0},p5)), (LOC_RELATIVE_TO({0,0,0},p6)), This setting uses the Location option in the Adams software, which allows the established upper platform to always change with the modification of the upper platform hinge point location. And build the base geometry model in the same way. The load position is added with the height of the actual center of gravity of the load. Here, the shape of the load can be ignored and replaced by a sphere. Pay attention to the position of the center of gravity, mass and moment of inertia of the load, and adjust the height of the center of mass by modifying the reference coordinate position of the sphere according to the actual situation, and manually Input method Input the load mass and the moment of inertia of the load.
步骤105:分别设置上平台与每个推杆之间的运动副;每个推杆与其对应的缸筒之间的运动副,每个缸筒与底座之间的运动副;并设置每个零件的重量。Step 105: respectively set the motion pair between the upper platform and each push rod; the motion pair between each push rod and its corresponding cylinder, the motion pair between each cylinder and the base; and set each part the weight of.
其中,依据实际情况给各零部件添加材料,主要用到的材料为钢,为了保证零部件的质量与实际一致,可以直接输入材料的密度从而保证零部件质量与实际相符。Among them, materials are added to each part according to the actual situation. The main material used is steel. In order to ensure that the quality of the parts is consistent with the actual situation, the density of the material can be directly input to ensure that the quality of the parts is consistent with the actual situation.
零件间建立约束:Create constraints between parts:
(1)上平台1和推杆一2之间采用虎克铰副连接,虎克铰副连接点参考位置设置为(LOC_RELATIVE_TO({0,0,0},p1)),这样能够让所建立的虎克铰副始终随着硬点p1位置的修改而一起变化。以同样的方法建立上平台2与推杆二3、推杆三4、推杆四5、推杆五6、推杆六7之间设置虎克铰副。(1) The connection between the
(2)推杆一2与缸筒一8之间设置移动副,移动副的连接点参考位置设置为(LOC_RELATIVE_TO({0,0,0},link1.cm)),其中,link.cm为推杆一2的质心坐标,其在推杆几何模型建完及材料设置之后自动产生,方向设置为(ORI_ALONG_AXIS(b1,p1,"Z")),表示移动副的连接点参考Z向与b1到p1所在直线的方向相同,这样能够让所建立的移动副始终位于推杆中心,且移动副方向始终与推杆一致。以同样的方法在推杆二3与缸筒二9、推杆三4与缸筒三10、推杆四5与缸筒四11、推杆五6与缸筒五12、推杆六7与缸筒六13之间设置移动副。(2) A moving pair is set between the push rod one 2 and the cylinder one 8, and the reference position of the connection point of the moving pair is set as (LOC_RELATIVE_TO({0,0,0}, link1.cm)), where link.cm is The coordinates of the center of mass of the push rod-2, which are automatically generated after the push rod geometric model is built and the material is set. The direction is set to (ORI_ALONG_AXIS(b1,p1,"Z")), which means that the connection point of the moving pair refers to the Z direction and b1 The direction to the straight line where p1 is located is the same, so that the established moving pair is always located in the center of the putter, and the moving pair direction is always consistent with the putter. In the same way, push rod two 3 and cylinder two 9, push rod three 4 and cylinder three 10, push rod four 5 and cylinder four 11, push rod five 6 and cylinder five 12, push rod six 7 and A moving pair is arranged between the six
(3)底座14与缸筒一8之间设置球副,球副连接点参考位置设置为(LOC_RELATIVE_TO({0,0,0},b1)),这样能够让所建立的球副可以始终随着硬点b1位置的修改而一起变化。以同样的方法在底座15与缸筒二10、缸筒三11、缸筒四12、缸筒五13、缸筒六14之间设置球副。(3) A ball pair is set between the base 14 and the
(4)负载15与上平台1之间设置固定副,固定副位置设置为(LOC_RELATIVE_TO({0,0,0},platform.cm)),其中,platform_base.cm为上平台1的质心坐标,其会在上平台1几何模型建立完成及材料设置完成后自动产生,从而使固定副随上平台质心位置的变化而变化。(4) A fixed pair is set between the load 15 and the
(5)底座14与大地(ground)之间设置固定副,固定副位置设置为(LOC_RELATIVE_TO({0,0,0},base.cm)),其中,base.cm为底座质心坐标,其会在底座几何模型建立完成及材料设置完成后自动产生,从而使固定副随底座质心位置的变化而变化。(5) A fixed pair is set between the base 14 and the ground, and the position of the fixed pair is set to (LOC_RELATIVE_TO({0,0,0}, base.cm)), where base.cm is the coordinate of the center of mass of the base, which will It is automatically generated after the foundation geometric model is established and the material setting is completed, so that the fixed pair changes with the change of the position of the center of mass of the foundation.
在各推杆与缸筒之间的移动副上添加位移驱动,共六个位移驱动,分别为驱动一(Motion_1)、驱动二(Motion_2)、驱动三(Motion_3)、驱动四(Motion_4)、驱动五(Motion_5)、驱动六(Motion_6)。A displacement drive is added to the moving pair between each push rod and the cylinder. There are six displacement drives in total, namely, drive one (Motion_1), drive two (Motion_2), drive three (Motion_3), drive four (Motion_4), drive Five (Motion_5), drive six (Motion_6).
步骤2:搭建运动学反解模型Step 2: Build the kinematic inverse solution model
运动学反解模型在Matlab/Simulink模块搭建,运动学反解模型主要包括坐标变换模块和电缸伸缩速度获取模块。The inverse kinematics model is built in the Matlab/Simulink module. The inverse kinematics model mainly includes a coordinate transformation module and an electric cylinder telescopic speed acquisition module.
其中,坐标变换模块通过输入的上平台的位移变量或者角度变量得到变换后上平台每个铰接点的新坐标,其主要通过Fcn模块添加旋转矩阵各元素对应的变换公式形成包含9个元素的旋转数组,再通过Reshape模块将9个元素的旋转数组转化为3×3的旋转矩阵。其中,旋转矩阵R为:Among them, the coordinate transformation module obtains the new coordinates of each hinge point of the upper platform after the transformation through the input displacement variable or angle variable of the upper platform, and the Fcn module mainly adds the transformation formula corresponding to each element of the rotation matrix to form a rotation containing 9 elements. array, and then convert the 9-element rotation array into a 3×3 rotation matrix through the Reshape module. Among them, the rotation matrix R is:
其中,ψ表示上平台1相对于底座14在z轴方向上的旋转角度,θ表示上平台1相对于底座14在y轴方向上的旋转角度,表示上平台1相对于底座14在x轴方向上的旋转角度。然后,旋转矩阵R与上铰接点的初始坐标相乘,得到旋转变换后的坐标矩阵,其中上铰接点的初始坐标即为步骤1中在Adams/view模块中依次建立上铰接点硬点时生成的坐标。再将输入的位移变量通过Matrix Concatenate模块转换为每行上元素相同的3×6移动矩阵,并与旋转变换后的坐标矩阵相加得到上平台每个铰接点的新坐标矩阵;其中移动矩阵中每一行的六个元素相同,其中第一行的每个元素值为位移变量在x轴方向上的位移目标量,第二行的每个元素值为位移变量在y轴方向上的位移目标量,第三行的每个元素值为位移变量在y轴方向上的位移目标量。Among them, ψ represents the rotation angle of the
再次,电缸伸缩速度获取模块以各电缸初始化后下铰接点坐标作为起点,变换后上铰接点的新坐标作为终点,分别建立每条电缸的向量,主要通过Selector模块从矩阵中选择元素,提取出各电缸所在的向量。对每条电缸所在的向量进行取模,获得每条电缸的实时长度。将电缸实时长度与电缸初始长度相减,获得各电缸伸缩量,进而对电缸伸缩量求导,获得各电缸伸缩速度。Thirdly, the electric cylinder telescopic speed acquisition module takes the coordinates of the lower hinge point after initialization of each electric cylinder as the starting point, and the new coordinates of the upper hinge point after transformation as the end point, respectively establishes the vector of each electric cylinder, and selects elements from the matrix mainly through the Selector module. , extract the vector where each electric cylinder is located. Take the modulo of the vector where each electric cylinder is located to obtain the real-time length of each electric cylinder. Subtract the real-time length of the electric cylinder from the initial length of the electric cylinder to obtain the telescopic amount of each electric cylinder, and then derive the telescopic amount of the electric cylinder to obtain the telescopic speed of each electric cylinder.
步骤3:将动力学反解模型获得每条电缸的伸缩速度输入到建立的Stewart并联机构的动力学三维模型中,得到每条电缸的输出力;将每条电缸的输出力与对应的伸缩速度相乘,得到每个电缸的功率值。Step 3: Input the telescopic speed of each electric cylinder obtained from the dynamic inverse solution model into the established dynamic three-dimensional model of the Stewart parallel mechanism to obtain the output force of each electric cylinder; Multiply the telescopic speed to get the power value of each electric cylinder.
首先,在Adams软件中创建各驱动力的测量。具体做法为右击Motion_1,选择Adams软件中Measure功能来测量驱动一的合力,并重命名为Measure_M_1,以此类推,创建其他5个驱动的合力。在Adams中创建输入/输出变量,通过单击“Element-System Element-Create State Variable”实现输入/输出变量的创建,需要创建的输入变量包括驱动一的速度(V_motion_1)、驱动二的速度(V_motion_2)、驱动三的速度(V_motion_3)、驱动四的速度(V_motion_4)、驱动五的速度(V_motion_5)、驱动六的速度(V_motion_6);需要创建的输出变量包括驱动一的力(F_motion_1)、驱动二的力(F_motion_2)、驱动三的力(F_motion_3)、驱动四的力(F_motion_4)、驱动五的力(F_motion_5)、驱动六的力(F_motion_6)。First, the measurements of each driving force are created in Adams software. The specific method is to right-click Motion_1, select the Measure function in the Adams software to measure the resultant force of drive one, and rename it to Measure_M_1, and so on to create the resultant force of the other five drives. Create input/output variables in Adams, and click "Element-System Element-Create State Variable" to create input/output variables. The input variables that need to be created include the speed of drive one (V_motion_1) and the speed of drive two (V_motion_2 ), the speed of drive three (V_motion_3), the speed of drive four (V_motion_4), the speed of drive five (V_motion_5), the speed of drive six (V_motion_6); the output variables to be created include the force of drive one (F_motion_1), the speed of drive two Force (F_motion_2), Force Three (F_motion_3), Force Four (F_motion_4), Force Five (F_motion_5), Force Six (F_motion_6).
然后,将输入变量通过VARVAL()函数关联到位移驱动中,将驱动一的驱动函数设置为VARVAL(V_motion_1),以此类推完成其他5个驱动函数与速度变量的关联。本实施例中驱动类型要选择Velocity,即采用速度驱动,如采用Displacement类型(位移驱动)最后的仿真结果将会出错。另外,还需将每一个驱动的合力关联到对应的输出变量中,将输出变量F_motion_1的函数设置为Measure_M_1,即驱动一合力的名称。以此类推,完成其他5个驱动的合力与输出变量的关联。加载Adams/Control模块导出交互文件。通过Adams中的“Plugins-Controls-Plant Export”选择对应的输入/输出变量,Target Software选择Matlab,导出动力学交互文件。Then, associate the input variable with the displacement drive through the VARVAL() function, set the drive function of
其次,在matlab命令窗口输入Adams中生成的交互文件的名称,显示所有动力学模型的输入/输出变量名称,再输入adams_sys命令,即可在Simulink模块中生成adams_sub模块。打开运动学反解模型,复制adams_sub模块到运动学反解模型中,并与其相连接。Next, enter the name of the interaction file generated in Adams in the matlab command window to display the input/output variable names of all dynamic models, and then enter the adams_sys command to generate the adams_sub module in the Simulink module. Open the inverse kinematics model, copy the adams_sub module to the inverse kinematics model, and connect it.
最后,将各电缸各输出力与对应的驱动速度相乘,获得各电缸对应的驱动功率值。Finally, multiply each output force of each electric cylinder by the corresponding driving speed to obtain the corresponding driving power value of each electric cylinder.
本发明还提供了一种存储软件的计算机可读介质,所述软件包括能通过一个或多个计算机执行的指令,所述指令通过这样的执行使得所述一个或多个计算机执行操作,所述操作包括如前述Stewart并联机构构建方法的流程。The present invention also provides a computer-readable medium storing software comprising instructions executable by one or more computers, the instructions, by such execution, cause the one or more computers to perform operations, the Operations include the flow of the Stewart Parallel Mechanism Construction Method as previously described.
下面以具体实例来说明本发明的效果。The effects of the present invention will be described below with specific examples.
以某六自由度平台为例,该平台负载为一个质量为2t的球状物体,负载各方向的转动惯量均为1.805E+08kg·mm2。负载质心距离上平台0.5m。根据上平台运动指标计算各工况电缸出力及电机功率,方便后续电机选型。上平台运动指标:(1)俯仰工况(绕x轴旋转运动),平台以22.5°为幅值,1s为运动周期做正弦俯仰运动;(2)滚转工况(绕y轴旋转运动),平台以22.5°为幅值,1s为运动周期做正弦滚转运动;(3)侧移工况(沿着x轴移动),平台以15mm为幅值,1s为运动周期做正弦侧移运动。Taking a six-degree-of-freedom platform as an example, the platform is loaded with a spherical object with a mass of 2t, and the moment of inertia in all directions of the load is 1.805E+08kg·mm 2 . The center of mass of the load is 0.5m away from the upper platform. According to the motion index of the upper platform, the output of the electric cylinder and the power of the motor under each working condition are calculated, which is convenient for the subsequent selection of the motor. Motion indicators of the upper platform: (1) Pitch condition (rotational motion around the x-axis), the platform performs sinusoidal pitching motion with 22.5° as the amplitude and 1s as the motion period; (2) Rolling condition (rotational motion around the y-axis) , the platform takes 22.5° as the amplitude, and 1s is the motion period to do a sinusoidal rolling motion; (3) in the lateral movement condition (moving along the x-axis), the platform takes 15mm as the amplitude, and 1s is the motion period to do a sinusoidal lateral motion. .
第一步,在Adams中输入上下铰接点坐标,完成刚体三维模型的创建。The first step is to enter the coordinates of the upper and lower hinge points in Adams to complete the creation of the rigid body 3D model.
第二步,添加约束、驱动以及重力完成动力学模型的建立。The second step is to add constraints, drives and gravity to complete the establishment of the dynamic model.
第三步,将电缸位移驱动的速度设置为输入变量,电缸推力设置为输出变量,导出交互文件。The third step is to set the speed of the electric cylinder displacement drive as the input variable, the electric cylinder thrust as the output variable, and export the interactive file.
第四步,在Matlab中打开第三步生成的交互文件,并生成adams_sub模块。The fourth step is to open the interactive file generated in the third step in Matlab, and generate the adams_sub module.
第五步,打开反解模块,并将第四步中的adams_sub模块与之连接。The fifth step, open the inverse solution module and connect the adams_sub module in the fourth step with it.
第六步,在x旋转角度模块添加sine wave模块作为输入,幅值为pi/8,频率为2*pi。The sixth step, add the sine wave module as input to the x rotation angle module, the amplitude is pi/8, and the frequency is 2*pi.
第七步,设置仿真时间及步长,进行仿真。The seventh step is to set the simulation time and step size to simulate.
第八步,仿真结束后,输出仿真结果,获得完成俯仰工况运动各电缸输出力的大小及功率,如图2和图3所示。The eighth step, after the simulation is over, output the simulation results to obtain the magnitude and power of the output force and power of each electric cylinder that completes the motion in the pitching condition, as shown in Figures 2 and 3.
第九步,将第六步中的sine wave模块修改为Constant常数模块并将数值修改为0,在y旋转角度模块添加sine wave模块作为输入,幅值为pi/8,频率为2*pi。The ninth step, modify the sine wave module in the sixth step to Constant constant module and modify the value to 0, add the sine wave module as input to the y rotation angle module, the amplitude is pi/8, and the frequency is 2*pi.
第十步,设置仿真时间及步长,进行仿真。The tenth step is to set the simulation time and step size to simulate.
第十一步,仿真结束后,输出仿真结果,获得完成滚转工况运动各电缸输出力的大小及功率,如图4和图5所示。The eleventh step, after the simulation is over, output the simulation results to obtain the magnitude and power of the output force and power of each electric cylinder that completes the motion under the rolling condition, as shown in Figure 4 and Figure 5.
第十二步,将第九步中的sine wave模块修改为Constant常数模块并将数值修改为0,在x移动模块添加sine wave模块作为输入,幅值为15,频率为2*pi。The twelfth step, modify the sine wave module in the ninth step to Constant constant module and modify the value to 0, add the sine wave module as input in the x movement module, the amplitude is 15, and the frequency is 2*pi.
第十三步,设置仿真时间及步长,进行仿真。The thirteenth step is to set the simulation time and step size to simulate.
第十四步,仿真结束后,输出仿真结果,获得完成侧移工况运动各电缸输出力的大小及功率,如图6和图7所示。The fourteenth step, after the simulation is over, output the simulation results to obtain the magnitude and power of the output force of each electric cylinder that completes the movement under the sideshift condition, as shown in Figure 6 and Figure 7.
表1:平台上下铰接点坐标。Table 1: Coordinates of the upper and lower hinge points of the platform.
如仅使用Adams进行仿真,需要首先建立三维模型、添加约束、添加材料、添加点驱动来反解俯仰姿态各电缸随时间的伸缩量,并在后处理界面中通过AKISPL函数将电缸伸缩量-时间的变化曲线导回Adams/View模块的Data Elements中,再删除运动学模型中的点驱动模块,并在各移动副上添加平移驱动,将Data Elements中的各SPLINE线条导入对应的平移驱动中,通过动力学仿真计算出俯仰姿态各电缸出力及电机功率。由于上平台运动工况较多(9个常见工况),需对每个工况按运动指标进行运动学反解,之后再将反解结果重新导入驱动中重新搭建动力学模型,无法通过上平台运动指标的输入直接获得电缸参数,反复建模,需耗费大量时间。If only Adams is used for simulation, it is necessary to first establish a 3D model, add constraints, add materials, and add point drives to inversely solve the telescopic amount of each electric cylinder in pitch attitude over time, and use the AKISPL function in the post-processing interface to calculate the telescopic amount of the electric cylinder. - The time change curve is imported back to the Data Elements of the Adams/View module, and then the point driver module in the kinematic model is deleted, and a translation driver is added to each moving pair, and each SPLINE line in the Data Elements is imported into the corresponding translation driver , the output of each electric cylinder and the motor power of the pitch attitude are calculated through dynamic simulation. Due to the large number of motion conditions of the upper platform (9 common conditions), it is necessary to perform the kinematic inverse solution for each condition according to the motion index, and then re-import the inverse solution results into the drive to rebuild the dynamic model. The input of the platform motion index directly obtains the parameters of the electric cylinder, and it takes a lot of time to model repeatedly.
而本发明仅需针对不同的运动指标修改输入参数即可快速求解多个工况电缸出力及电机功率,不需再反复建模。In the present invention, the output of the electric cylinder and the power of the motor can be quickly solved for multiple working conditions only by modifying the input parameters for different motion indexes, and no repeated modeling is required.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011541252.7A CN112580167B (en) | 2020-12-23 | 2020-12-23 | Stewart parallel mechanism construction method, system and computer storage medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011541252.7A CN112580167B (en) | 2020-12-23 | 2020-12-23 | Stewart parallel mechanism construction method, system and computer storage medium |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112580167A true CN112580167A (en) | 2021-03-30 |
CN112580167B CN112580167B (en) | 2024-11-15 |
Family
ID=75139130
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011541252.7A Active CN112580167B (en) | 2020-12-23 | 2020-12-23 | Stewart parallel mechanism construction method, system and computer storage medium |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112580167B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1951642A (en) * | 2005-10-17 | 2007-04-25 | 新日本工机株式会社 | Parallel kinematic machine, calibration method of parallel kinematic machine, and calibration program product |
CN102692201A (en) * | 2012-06-19 | 2012-09-26 | 重庆大学 | Device for measuring spatial motion with six degrees of freedom and dynamic measuring method |
CN105760576A (en) * | 2016-01-27 | 2016-07-13 | 首都师范大学 | Formalized analyzing method and system for mechanical arm motion planning on basis of conformal geometric algebra |
CN111227943A (en) * | 2020-01-23 | 2020-06-05 | 诺创智能医疗科技(杭州)有限公司 | Control method of surgical mechanical arm, computer equipment and surgical mechanical arm |
-
2020
- 2020-12-23 CN CN202011541252.7A patent/CN112580167B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1951642A (en) * | 2005-10-17 | 2007-04-25 | 新日本工机株式会社 | Parallel kinematic machine, calibration method of parallel kinematic machine, and calibration program product |
US20070138374A1 (en) * | 2005-10-17 | 2007-06-21 | Shin Nippon Koki Co., Ltd. | Parallel kinematic machine, calibration method of parallel kinematic machine, and calibration program product |
CN102692201A (en) * | 2012-06-19 | 2012-09-26 | 重庆大学 | Device for measuring spatial motion with six degrees of freedom and dynamic measuring method |
CN105760576A (en) * | 2016-01-27 | 2016-07-13 | 首都师范大学 | Formalized analyzing method and system for mechanical arm motion planning on basis of conformal geometric algebra |
CN111227943A (en) * | 2020-01-23 | 2020-06-05 | 诺创智能医疗科技(杭州)有限公司 | Control method of surgical mechanical arm, computer equipment and surgical mechanical arm |
Non-Patent Citations (2)
Title |
---|
刘菊根: "复杂曲面软性磨粒流抛光装置设计与研究", 工程科技Ⅰ辑, 31 July 2019 (2019-07-31), pages 40 - 61 * |
沈晨;胡磊;: "Stewart机构的虚拟样机设计与研究", 机械工程与自动化, no. 02, 30 April 2016 (2016-04-30), pages 86 - 88 * |
Also Published As
Publication number | Publication date |
---|---|
CN112580167B (en) | 2024-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105404744B (en) | A kind of space manipulator total state dynamics semi-physical system | |
CN104200052B (en) | System and method for simulating hydraulic-drive hexapod robot | |
CN108038286A (en) | A kind of dynamic modeling method of two degrees of freedom redundantly driven parallel device people | |
CN103538067A (en) | Kinematics positive solution method of fast-solving Stewart parallel mechanism based on quaternion | |
CN106142083A (en) | The method of the three-dimensional motion emulation of high-altitude curtain wall mounting robot | |
CN102184304A (en) | Co-simulation method of levelling system of hydraulic supporting platform based on virtual prototype | |
CN112549017A (en) | Double-arm robot cooperative space solving method for avoiding joint limit | |
He et al. | Kinematics analysis and numerical simulation of a manipulator based on virtual prototyping | |
CN112001087B (en) | Nonlinear dynamics modeling analysis method for rotary joint type industrial robot | |
Yin et al. | Workspace description and simulation of a backhoe device for hydraulic excavators | |
CN112580167A (en) | Stewart parallel mechanism construction method, system and computer storage medium | |
Wan et al. | Dynamic performance optimization of a novel 8-SPU parallel walking mechanism | |
CN104915481A (en) | Spherical motor cooperative control based on virtual prototype modeling and periodic planning | |
CN115618574B (en) | An Adams/Matlab joint simulation method for underwater robot-manipulator system | |
CN113849993B (en) | Industrial robot dynamics modeling method based on flexible deformation of mechanical arm | |
Wang et al. | Simulation and analysis of mechanical characteristics of a 6-dof spray-painting robot | |
CN108121849A (en) | A kind of virtual display methods of crane combination arm support three-dimensional high-precision | |
CN115327951A (en) | Three-degree-of-freedom control method for vehicle driving simulator and electronic equipment | |
CN105783806A (en) | Virtual-prototype-based sampling simulation method for articulated coordinate measuring machine | |
CN101554989A (en) | Angle parameterization macro modeling method of micro electromechanical system (MEMS) | |
CN116561993B (en) | A kinematic solution method for virtual spherical joint | |
An et al. | Dynamic simulation for ball screw transmission Stewart platform based on ADAMS | |
Tian et al. | Dynamic Analysis of Cable-Driven Robot in the Framework of Absolute Node Coordinate Formulation | |
Gao et al. | The solution of the volume of collaborative space of 6R two-arm robot based on the body-elemental algorithm | |
Jianjun et al. | Research on motion control of wheeled self-balancing robot based on ODE virtual reality technology |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |