[go: up one dir, main page]

CN112578672B - Unmanned vehicle trajectory control system and trajectory control method based on chassis nonlinearity - Google Patents

Unmanned vehicle trajectory control system and trajectory control method based on chassis nonlinearity Download PDF

Info

Publication number
CN112578672B
CN112578672B CN202011482824.9A CN202011482824A CN112578672B CN 112578672 B CN112578672 B CN 112578672B CN 202011482824 A CN202011482824 A CN 202011482824A CN 112578672 B CN112578672 B CN 112578672B
Authority
CN
China
Prior art keywords
vehicle
model
tire
chassis
module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011482824.9A
Other languages
Chinese (zh)
Other versions
CN112578672A (en
Inventor
王锦坤
吕吉冬
张羽翔
王玉海
丛岩峰
高炳钊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Automotive Research Institute Jilin University
Jilin University
Original Assignee
Qingdao Automotive Research Institute Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao Automotive Research Institute Jilin University filed Critical Qingdao Automotive Research Institute Jilin University
Priority to CN202011482824.9A priority Critical patent/CN112578672B/en
Publication of CN112578672A publication Critical patent/CN112578672A/en
Application granted granted Critical
Publication of CN112578672B publication Critical patent/CN112578672B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

The invention discloses a chassis nonlinearity-based unmanned vehicle trajectory control system and a trajectory control method thereof, wherein the trajectory control system comprises: the sensing signal collection module is used for obtaining the running state information of the current vehicle and the environmental vehicle and carrying out signal processing; the driving decision module is used for learning appropriate decision parameter values; the track planning module is used for obtaining a feasible track after optimized planning; the method comprises the following steps of designing a nonlinear vehicle model based on a bicycle model, adapting to the model, using a polynomial model improved by a magic formula, and reducing the number of solution variables by using different discrete time steps of the model and control time steps of control variables in order to reduce the calculation time; the method is suitable for high-level automatic driving vehicles, and aims to effectively improve the self-adaptive capacity of a vehicle system under different driving conditions through an optimization model so as to ensure the safety of the system under the condition of obtaining better driving performance.

Description

基于底盘非线性的无人驾驶汽车轨迹控制系统及其轨迹控制 方法Trajectory control system and trajectory control of unmanned vehicle based on chassis nonlinearity method

技术领域technical field

本发明涉及无人驾驶技术领域,尤其涉及基于底盘非线性的无人驾驶汽车轨迹控制系统及其轨迹控制方法。The invention relates to the field of unmanned driving technology, in particular to a chassis-based non-linear unmanned vehicle trajectory control system and a trajectory control method thereof.

背景技术Background technique

在过去的数十年中,交通事故造成的伤亡人数每年都在增加。自动驾驶汽车由于操作快速且感知准确,可以大大减少驾驶员分心和疲劳引起的事故。除了提高安全性外,自动驾驶汽车还可以大大提高驾驶舒适性,交通效率和能源经济性。目前,轨迹规划的四种主要方法为基于图搜索的方法,增量搜索法,曲线插值法和数值优化法。图搜索通过遍历所有环境网格找到最短路径。但是,所得路径并不连续,因此不适用于自动驾驶汽车。增量搜索方法允许节点在连续空间中随机地向目标延伸。但是,生成的轨迹是生涩的,通常不是最佳轨迹。曲线插值法可以生成平滑的路径,但是轨迹规划的结果取决于全局航路点,并且该方法在多变的环境中非常耗时。现有技术中,通常使用数值优化法来考虑道路和主车辆的约束。轨迹则是由约束和目标函数生成的。但是,优化过程需要在每个时间步执行,这很耗时间并且需要较高级别的硬件。因此,在路劲规划过程中,在保证模型精确性的前提下也需要考虑效率及计算时间的问题。The number of casualties caused by traffic accidents has increased every year for the past few decades. Due to the fast operation and accurate perception of self-driving cars, accidents caused by driver distraction and fatigue can be greatly reduced. In addition to improving safety, autonomous vehicles can greatly improve driving comfort, traffic efficiency, and energy economy. At present, the four main methods of trajectory planning are graph search-based method, incremental search method, curve interpolation method and numerical optimization method. Graph search finds the shortest path by traversing all environment grids. However, the resulting paths are not continuous and thus not suitable for self-driving cars. Incremental search methods allow nodes to randomly extend toward a target in a continuous space. However, the generated trajectories are jerky and usually not optimal. Curve interpolation can generate smooth paths, but the result of trajectory planning depends on global waypoints, and this method is very time-consuming in changing environments. In the prior art, numerical optimization methods are usually used to consider the constraints of the road and the host vehicle. Trajectories are generated from constraints and objective functions. However, the optimization process needs to be performed at each time step, which is time-consuming and requires high-level hardware. Therefore, in the road strength planning process, the efficiency and calculation time must also be considered under the premise of ensuring the accuracy of the model.

发明内容Contents of the invention

本发明提出基于底盘非线性的无人驾驶汽车轨迹控制系统及其轨迹控制方法,其包含基于自行车模型设计的非线性车辆模型,适配于该模型的经由魔术公式改进后的多项式模型,以及为了减少计算时间,使用模型的不同离散时间步长和控制变量的控制时间步长来减少求解变量的数量。该基于底盘非线性的无人驾驶汽车轨迹控制方法适用于高级别自动驾驶车辆,目标是通过优化模型有效提高车辆系统在不同行驶工况下的自适应能力,进而使系统获得更优驾驶性能的条件下亦保证安全,解决现有高级辅助驾驶及无人驾驶存在的上述问题。The present invention proposes a chassis-based non-linear unmanned vehicle trajectory control system and its trajectory control method, which includes a nonlinear vehicle model designed based on a bicycle model, a polynomial model adapted to the model through a magic formula improved, and for To reduce computation time, use different discrete time steps for the model and control time steps for the control variables to reduce the number of solution variables. The trajectory control method of unmanned vehicles based on chassis nonlinearity is suitable for high-level automatic driving vehicles. The goal is to effectively improve the adaptive ability of the vehicle system under different driving conditions through the optimization model, so that the system can obtain better driving performance. It also guarantees safety under certain conditions, and solves the above-mentioned problems existing in existing advanced assisted driving and unmanned driving.

本发明一方面提供基于底盘非线性的无人驾驶汽车轨迹控制系统,包括感知信号收集模块、驾驶决策模块和轨迹规划模块,所述感知信号收集模块、所述驾驶决策模块和所述轨迹规划模块共同构成一个基于参数化决策框架;One aspect of the present invention provides an unmanned vehicle trajectory control system based on chassis nonlinearity, including a sensing signal collection module, a driving decision-making module and a trajectory planning module, the sensing signal collection module, the driving decision-making module and the trajectory planning module Together they form a parameterized decision-making framework;

所述感知信号收集模块,用于获得当前车辆以及环境车辆行驶状态信息,并进行信号处理;The perception signal collection module is used to obtain the driving state information of the current vehicle and the surrounding vehicle, and perform signal processing;

所述驾驶决策模块,用于学习合适的决策参数值;The driving decision-making module is used to learn appropriate decision-making parameter values;

所述轨迹规划模块,用于得到优化规划后的可行轨迹。The trajectory planning module is used to obtain a feasible trajectory after optimized planning.

本发明的基于底盘非线性的无人驾驶汽车轨迹控制系统,进一步的,所述感知信号收集模块,用于借助车载智能感知模块中雷达环境感知元件、车载摄像头得到的周围车辆的车道、速度、加速度、本车的车道、速度以及以本车车道为基准的相对距离,并通过环境车辆与其车道中心线的偏移或转向灯信息得到环境车的驾驶意图,收集数据用于后续驾驶决策的学习训练。In the non-linear chassis-based unmanned vehicle trajectory control system of the present invention, further, the sensing signal collection module is used to obtain the lanes, speeds, Acceleration, the vehicle's lane, speed, and the relative distance based on the vehicle's lane, and the driving intention of the surrounding vehicle is obtained through the offset between the surrounding vehicle and its lane centerline or the turn signal information, and the data is collected for subsequent learning of driving decisions train.

本发明的基于底盘非线性的无人驾驶汽车轨迹控制系统,进一步的,所述驾驶决策模块,用于通过分析类人驾驶行为与交通环境的关系、及不同驾驶决策建立。In the non-linear chassis-based unmanned vehicle trajectory control system of the present invention, further, the driving decision-making module is used to analyze the relationship between human-like driving behavior and traffic environment, and establish different driving decisions.

本发明的基于底盘非线性的无人驾驶汽车轨迹控制系统,进一步的,所述驾驶决策模块,用于根据场景建立场景优化,实现对当前场景下的决策参数值进行求解。In the chassis nonlinear-based unmanned vehicle trajectory control system of the present invention, further, the driving decision-making module is used to establish scene optimization according to the scene, so as to solve the value of decision-making parameters in the current scene.

本发明的基于底盘非线性的无人驾驶汽车轨迹控制系统,进一步的,所述驾驶决策模块,对于城市工况,或高速公路工况,决策参数值包括换道及车道保持行为。In the chassis nonlinear-based unmanned vehicle trajectory control system of the present invention, further, the driving decision-making module, for urban working conditions or highway working conditions, the decision parameter values include lane changing and lane keeping behaviors.

本发明的基于底盘非线性的无人驾驶汽车轨迹控制系统,进一步的,所述轨迹规划模块,用于在模块中包含建立非线性模型及非线性模型预测方法的使用。In the chassis-based nonlinear driverless vehicle trajectory control system of the present invention, further, the trajectory planning module is used to include the establishment of a nonlinear model and the use of a nonlinear model prediction method in the module.

本发明的基于底盘非线性的无人驾驶汽车轨迹控制系统,进一步的,所述非线性模型的建立基于车辆动力学及运动学模型并基于横、纵向运动控制。In the chassis-based non-linear driverless vehicle trajectory control system of the present invention, further, the establishment of the non-linear model is based on vehicle dynamics and kinematics models and based on lateral and longitudinal motion control.

本发明的基于底盘非线性的无人驾驶汽车轨迹控制系统,进一步的,非线性模型预测方法,根据决策层关键决策参数,调整优化的目标并得到不同终端约束条件;并且在不基于固定轨迹形式的情况下,通过对优化问题在线求解并滚动优化进行轨迹规划。The trajectory control system of the unmanned vehicle based on the chassis nonlinearity of the present invention, further, the nonlinear model prediction method, according to the key decision-making parameters of the decision-making layer, adjusts the optimization target and obtains different terminal constraints; and is not based on the fixed trajectory form In the case of , the trajectory planning is carried out by solving the optimization problem online and performing rolling optimization.

本发明另一方面提供基于底盘非线性的无人驾驶汽车轨迹规划规划方法,其通过如本发明一个方面所述的基于底盘非线性的无人驾驶汽车轨迹控制系统实现,包括以下步骤,Another aspect of the present invention provides a non-linear driverless vehicle trajectory planning method based on the chassis, which is realized by the non-linear driverless vehicle trajectory control system based on the chassis as described in one aspect of the present invention, including the following steps,

步骤一,控制器模型的建立:Step 1, the establishment of the controller model:

所述控制器模型的建立包括车辆动力学模型的建立与轮胎模型的建立;The establishment of the controller model includes the establishment of the vehicle dynamics model and the establishment of the tire model;

步骤二,优化问题的建立:Step 2, the establishment of the optimization problem:

基于各个约束条件求解,具体求解过程如下:Based on various constraints, the specific solution process is as follows:

首先,将主车辆状况、交通信息和路线规划信息基于规则的所述驾驶决策模块的输入;根据设置的规则,根据障碍物的存在确定是否采取避障操作;确定后,将障碍物位置和目标车道将传递到所述轨迹规划模块;所述轨迹规划模块基于传递的信息规划最佳轨迹,并生成(x,y,δ,a)的序列;将该序列转换为执行器,并使得自动驾驶汽车遵循生成最佳轨迹;First, the input of the driving decision-making module based on the rules of the main vehicle condition, traffic information and route planning information; according to the set rules, it is determined whether to take an obstacle avoidance operation according to the existence of obstacles; after determination, the obstacle position and target The lane will be passed to the trajectory planning module; the trajectory planning module plans the optimal trajectory based on the passed information, and generates a sequence of (x, y, δ, a); converts the sequence into an actuator, and enables automatic driving The car follows the generated optimal trajectory;

其次,基于上级模块的决策形成轨迹规划,轨迹规划算法负责规划轨迹,使得车辆执行车道变换或车道保持动作;将轨迹规划实施表示为方程中的最优控制问题,以在预测范围[t,t+T]中找到控制变量U=[δ,a]T的最有控制序列,从而得到式(6a)和(6b),Secondly, trajectory planning is formed based on the decision of the upper module, and the trajectory planning algorithm is responsible for planning the trajectory, so that the vehicle performs lane change or lane keeping action; the implementation of trajectory planning is expressed as an optimal control problem in the equation, in order to predict the range [t, t +T] to find the most control sequence of the control variable U=[δ,a] T , so as to obtain formulas (6a) and (6b),

Figure GDA0003909375770000031
Figure GDA0003909375770000031

Figure GDA0003909375770000032
Figure GDA0003909375770000032

然后,如方程式(11a)与(11b)所示,将加速度和方向盘角度控制在预设范围内,以使得最佳控制结果在车辆的执行范围内;当出现障碍物时,将车辆避开障碍物。在优化过程中,使得每个优化步骤的障碍物坐标都落在主车辆周围的预设范围之外,以使得计划轨迹避免与障碍物碰撞;因车辆的纵向速度远大于横向速度,因此在避开障碍物时,在纵向上比横向留出更大的安全距离;则等式(11c)用来设置避开障碍物。Then, as shown in equations (11a) and (11b), the acceleration and steering wheel angle are controlled within the preset range, so that the optimal control result is within the execution range of the vehicle; when an obstacle appears, the vehicle is avoided things. In the optimization process, the obstacle coordinates of each optimization step fall outside the preset range around the host vehicle, so that the planned trajectory avoids collision with obstacles; because the longitudinal velocity of the vehicle is much greater than the lateral velocity, the When driving through obstacles, a larger safety distance is left in the vertical direction than in the horizontal direction; then equation (11c) is used to set the obstacle avoidance.

amin≤a(t)≤amax (11a)a min ≤ a(t) ≤ a max (11a)

δf,min≤δ(t)≤δf,max (11b)δ f,min ≤ δ(t) ≤ δ f,max (11b)

Figure GDA0003909375770000033
Figure GDA0003909375770000033

步骤三,快速求解:Step 3, quick solution:

通过优化直接获得轨迹,通过简化仿真过程加快计算速度,通过延长控制时间步长减少要解决的变量数量。Obtain the trajectory directly by optimization, speed up the calculation by simplifying the simulation process, and reduce the number of variables to be solved by extending the control time step.

本发明的基于底盘非线性的无人驾驶汽车轨迹规划规划方法,进一步的,步骤一的控制器模型的建立包括以下步骤,In the non-linear chassis-based unmanned vehicle trajectory planning method of the present invention, further, the establishment of the controller model in step 1 includes the following steps,

第一步,车辆模型的建立,The first step is the establishment of the vehicle model,

非线性模型基于纵向和横向动力学,车辆坐标系的原点固定在车辆质量的中心;x轴平行于地面,y轴指向驾驶员的左侧。z轴垂直于由x轴和y轴形成的平面;根据牛顿第二定律可得式(1)和式(2),The nonlinear model is based on longitudinal and lateral dynamics, with the origin of the vehicle coordinate system fixed at the center of vehicle mass; the x-axis is parallel to the ground and the y-axis points to the left of the driver. The z-axis is perpendicular to the plane formed by the x-axis and the y-axis; according to Newton's second law, formulas (1) and (2) can be obtained,

2·(Fyf+Fyr)=m·ay (1)2·(F yf +F yr )=m·a y (1)

Figure GDA0003909375770000034
Figure GDA0003909375770000034

其中,m是车辆的质量,Iz是绕z轴的惯性矩;Fyf和Fyr分别是单个前轮胎和后轮胎的横向力。ay表示横向加速度,ω表示车身的横摆率;lf和lr分别表示从质心到前后轴的距离;侧偏角可计算为β=vy/vx,其中vy和vx分别是车辆重心的横向和纵向速度。where m is the mass of the vehicle, I z is the moment of inertia about the z-axis; F yf and F yr are the lateral forces of a single front and rear tire, respectively. a y represents the lateral acceleration, ω represents the yaw rate of the vehicle body; l f and l r represent the distances from the center of mass to the front and rear axles respectively; the side slip angle can be calculated as β=v y /v x , where v y and v x are respectively are the lateral and longitudinal velocities of the vehicle's center of gravity.

则侧滑率可以计算为

Figure GDA0003909375770000035
根据坐标系,前轮和后轮侧滑角表示为式(3)和式(4),Then the sideslip rate can be calculated as
Figure GDA0003909375770000035
According to the coordinate system, the sideslip angles of the front and rear wheels are expressed as formula (3) and formula (4),

Figure GDA0003909375770000041
Figure GDA0003909375770000041

Figure GDA0003909375770000042
Figure GDA0003909375770000042

结合以上动力学和运动学关系,非线性控制模型表示为式(5a)和(5b),Combining the above dynamics and kinematics relations, the nonlinear control model is expressed as equations (5a) and (5b),

Figure GDA0003909375770000043
Figure GDA0003909375770000043

Figure GDA0003909375770000044
Figure GDA0003909375770000044

其中,

Figure GDA0003909375770000045
是车辆的状态矢量;
Figure GDA0003909375770000046
是车辆的航向角;U=[a,δ]是控制变量的向量;a是纵向加速度,δ是前轮的转向角;in,
Figure GDA0003909375770000045
is the state vector of the vehicle;
Figure GDA0003909375770000046
is the heading angle of the vehicle; U=[a,δ] is the vector of control variables; a is the longitudinal acceleration, and δ is the steering angle of the front wheels;

第二步,轮胎模型的建立,The second step is the establishment of the tire model,

当横向加速度较小时,轮胎的横向力与侧偏角成线性关系,表示为Fy=kαy,其中k是轮胎的转弯刚度值;通过三角函数的组合来拟合轮胎测试数据;根据x的不同含义,使用相同的公式来表示纵向力,横向力或对齐扭矩;该公式如式(7),When the lateral acceleration is small, the lateral force of the tire has a linear relationship with the slip angle, expressed as F y = kα y , where k is the value of the tire's cornering stiffness; the tire test data is fitted by a combination of trigonometric functions; according to the Different meanings, use the same formula to express longitudinal force, lateral force or alignment torque; the formula is as in formula (7),

Figure GDA0003909375770000047
Figure GDA0003909375770000047

在该模型中,横向力是侧偏角,轮胎的垂直载荷和轮胎外倾角的函数;通过侧偏角的三次多项式来拟合式(7),在侧偏角相反时计算相同的侧向力绝对值,Fy(α)为奇函数,则在构造多项式拟合公式时,采用侧偏角的奇次幂,得式(8),In this model, the lateral force is a function of the slip angle, the vertical load of the tire and the camber angle of the tire; fitting equation (7) by a cubic polynomial of the slip angle calculates the same lateral force when the slip angle is opposite absolute value, F y (α) is an odd function, then when constructing the polynomial fitting formula, the odd power of the slip angle is used, and the formula (8),

Fy=k1α+k2α3+k3α5 (8)F y =k 1 α+k 2 α 3 +k 3 α 5 (8)

其中,k1,k2,k3是通过数值拟合方法计算的系数,α为轮胎侧偏角。Among them, k 1 , k 2 , k 3 are coefficients calculated by numerical fitting method, and α is tire slip angle.

当车身滚动时,轮胎上的垂直载荷改变;车辆转弯时,转向系统中的柔性部件变形,且轮胎的侧向力会使悬架系统变形,则底盘的非线性会导致车辆模型变化,或在高速行驶时,则在车轮非线性侧向力前添加一个系数,以抵消底盘非线性对车辆模型的影响,得式(9)。When the body rolls, the vertical load on the tires changes; when the vehicle turns, the flexible components in the steering system deform, and the lateral force of the tires deforms the suspension system, the nonlinearity of the chassis will cause the vehicle model to change, or in When driving at high speed, a coefficient is added before the nonlinear lateral force of the wheel to offset the influence of the chassis nonlinearity on the vehicle model, and formula (9) is obtained.

Fy,non=e·(k1α+k2α3+k3α5) (9)F y,non =e·(k 1 α+k 2 α 3 +k 3 α 5 ) (9)

本发明的基于底盘非线性的无人驾驶汽车轨迹规划规划方法,进一步的,第二步中轮胎模型的建立时,前后轮胎的侧向力使用多项式轮胎模型表示为式(10a)和(10b)。In the unmanned vehicle trajectory planning method based on chassis nonlinearity of the present invention, further, when the tire model is established in the second step, the lateral force of the front and rear tires is expressed as formula (10a) and (10b) using a polynomial tire model .

Figure GDA0003909375770000051
Figure GDA0003909375770000051

Figure GDA0003909375770000052
Figure GDA0003909375770000052

本发明的基于底盘非线性的无人驾驶汽车轨迹规划规划方法,进一步的,步骤二中优化问题的建立时,减小车辆加速度的绝对值和转向角,同时减少换档和转向的次数;通过使用评估函数限制加速度,转向角和相应的导数来限制控制量及其导数,如式(12)。In the unmanned vehicle trajectory planning method based on chassis nonlinearity of the present invention, further, when the optimization problem is established in step 2, the absolute value of the vehicle acceleration and the steering angle are reduced, and the number of times of shifting and steering is reduced at the same time; Use the evaluation function to limit the acceleration, steering angle and corresponding derivatives to limit the control quantity and its derivatives, such as formula (12).

Figure GDA0003909375770000053
Figure GDA0003909375770000053

本发明的基于底盘非线性的无人驾驶汽车轨迹规划规划方法,进一步的,将a和期望加速度之间的差以及y和目标坐标之间的差也添加到目标函数中,其中,目标坐标由车道改变或车道保持决定来确定,并由决策层生成,如式(13)和(14),In the non-linear chassis-based unmanned vehicle trajectory planning method of the present invention, further, the difference between a and the expected acceleration and the difference between y and the target coordinate are also added to the objective function, wherein the target coordinate is given by Lane change or lane keeping decisions are determined and generated by the decision layer, as in equations (13) and (14),

Pa(X,U,t)=[a(t)-atar]2 (13)P a (X,U,t)=[a(t)-a tar ] 2 (13)

Py(X,U,t)=[y(t)-ytar]2 (14)P y (X,U,t)=[y(t)-y tar ] 2 (14)

则成本函数L可表示为式(15)。Then the cost function L can be expressed as formula (15).

Figure GDA0003909375770000054
Figure GDA0003909375770000054

本发明的基于底盘非线性的无人驾驶汽车轨迹规划规划方法,进一步的,步骤三中快速求解时,将不同的控制变量具有不同的控制时间步长。In the non-linear chassis-based unmanned vehicle trajectory planning method of the present invention, further, when solving quickly in step 3, different control variables have different control time steps.

本发明的基于底盘非线性的无人驾驶汽车轨迹规划规划方法,进一步的,步骤三中快速求解时,选取较短的离散时间步长和较小的控制时间步长,同时避免模型离散时间步长和控制时间步长相等,以提高计算速度,且获得合理的轨迹。In the non-linear chassis-based unmanned vehicle trajectory planning method of the present invention, further, when solving quickly in step 3, a shorter discrete time step and a smaller control time step are selected, while avoiding the discrete time step of the model. The length and control time step are equal to improve the calculation speed and obtain a reasonable trajectory.

本发明的基于底盘非线性的无人驾驶汽车轨迹控制系统及其轨迹控制方法能够达到以下有益效果:The unmanned vehicle trajectory control system and its trajectory control method based on chassis nonlinearity of the present invention can achieve the following beneficial effects:

本发明的基于底盘非线性的无人驾驶汽车轨迹控制系统及其轨迹控制方法,具有如下优势,(1)其使用比传统自行车模型更精确的,同时考虑了纵向和横向动力学的非线性模型。使用转向和制动系统来实现对紧急避障的控制;(2)其推出的多项式模型不仅能够良好地适配于所提出的非线性车辆模型,并且兼具计算速度与准确性的优点;(3)其通过使用模型的不同离散时间步长和控制变量的控制时间步长,成功减少所用的求解过程的时间;(4)其通过更精确的模型,控制序列可以用作前馈控制,并伴有精细的反馈控制。这使得车辆即使在高速情况下也能获得良好的运动控制性能。The unmanned vehicle trajectory control system and its trajectory control method based on the chassis nonlinearity of the present invention have the following advantages, (1) it uses a nonlinear model that is more accurate than the traditional bicycle model and considers both longitudinal and lateral dynamics . Use the steering and braking system to realize the control of emergency obstacle avoidance; (2) The polynomial model introduced by it can not only be well adapted to the proposed nonlinear vehicle model, but also has the advantages of calculation speed and accuracy; ( 3) It successfully reduces the time of the solution process used by using different discrete time steps of the model and control time steps of the control variables; (4) Its more accurate model, the control sequence can be used as a feed-forward control, and With fine feedback control. This enables the vehicle to achieve good motion control even at high speeds.

附图说明Description of drawings

此处所说明的附图用来提供对本发明的进一步理解,构成本发明的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:The accompanying drawings described here are used to provide a further understanding of the present invention, and constitute a part of the present invention. The schematic embodiments of the present invention and their descriptions are used to explain the present invention, and do not constitute improper limitations to the present invention. In the attached picture:

图1为控制系统结构框图。Figure 1 is a block diagram of the control system.

图2为简化的车辆模型示意图。Figure 2 is a schematic diagram of a simplified vehicle model.

图3为线性轮胎模型,魔术公式轮胎模型和多项式轮胎模型的比较。Figure 3 is a comparison of the linear tire model, the magic formula tire model and the polynomial tire model.

图4为最优轨迹规划层次。Figure 4 shows the optimal trajectory planning hierarchy.

图5为主车辆的安全距离范围。Figure 5 shows the safe distance range of the main vehicle.

具体实施方式detailed description

为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明具体实施例及相应的附图对本发明技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purpose, technical solution and advantages of the present invention clearer, the technical solution of the present invention will be clearly and completely described below in conjunction with specific embodiments of the present invention and corresponding drawings. Apparently, the described embodiments are only some of the embodiments of the present invention, but not all of them. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.

以下结合附图,详细说明本发明各实施例提供的技术方案。The technical solutions provided by various embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings.

实施例1Example 1

基于底盘非线性的无人驾驶汽车轨迹控制系统,包含多个子模块,其结构框图如图1所示,主要包括:感知信号收集模块、驾驶决策模块和轨迹规划模块,共同构成一个基于参数化决策框架,适用于该轨迹控制系统。使用关键参数替代类人化的驾驶决策,可以更好的适应不同驾驶决策及多种驾驶场景下的复杂决策。The trajectory control system for unmanned vehicles based on chassis nonlinearity includes multiple sub-modules, and its structural block diagram is shown in Figure 1. Framework, suitable for this trajectory control system. Using key parameters instead of human-like driving decisions can better adapt to complex decisions in different driving decisions and various driving scenarios.

其中感知信号收集模块,用于获得当前车辆以及环境车辆行驶状态信息,并进行信号处理,包括:借助车载智能感知模块中雷达环境感知元件、车载摄像头得到的周围车辆的车道,速度,加速度,本车的车道,速度以及以本车车道为基准的相对距离,并通过环境车辆与其车道中心线的偏移或转向灯信息得到环境车的驾驶意图,收集数据用于后续驾驶决策的学习训练。Among them, the sensory signal collection module is used to obtain the driving state information of the current vehicle and the surrounding vehicle, and perform signal processing, including: the lane, speed, acceleration, and local The car's lane, speed and relative distance based on the car's lane, and the driving intention of the surrounding car can be obtained through the offset of the surrounding vehicle and its lane centerline or the turn signal information, and the collected data is used for subsequent learning and training of driving decisions.

其中驾驶决策模块,学习合适的决策参数值。驾驶决策的关键参数集是通过分析类人驾驶行为与交通环境的关系,及不同驾驶决策的特点建立的。不同的决策场景的优化问题是根据场景的特点,建立的相应优化问题,最终对当前场景下的关键决策参数值进行求解。对于城市工况,或高速公路工况,最常见的是换道及车道保持行为。其决策参数特征关系简单且具有一致性。Among them, the driving decision module learns appropriate decision parameter values. The key parameter set of driving decision is established by analyzing the relationship between human-like driving behavior and traffic environment, and the characteristics of different driving decisions. The optimization problem of different decision-making scenarios is to establish the corresponding optimization problem according to the characteristics of the scenario, and finally solve the key decision-making parameter values in the current scenario. For urban conditions, or highway conditions, the most common behaviors are lane changing and lane keeping. The characteristic relationship of its decision parameters is simple and consistent.

其中轨迹规划模块,用于得到优化规划后的可行轨迹。在模块中包含建立非线性模型及非线性模型预测方法的使用。其中非线性模型的建立基于车辆动力学及运动学模型并考虑横,纵向运动控制。非线性模型预测方法的使用,根据决策层关键决策参数,调整优化的目标并得到不同终端约束条件;并且在不基于固定轨迹形式的情况下,通过对优化问题在线求解并滚动优化进行轨迹规划。The trajectory planning module is used to obtain the feasible trajectory after optimized planning. Included in the module is the establishment of nonlinear models and the use of nonlinear model forecasting methods. Among them, the nonlinear model is established based on the vehicle dynamics and kinematics model and considers the lateral and longitudinal motion control. The use of nonlinear model prediction method, according to the key decision-making parameters of the decision-making layer, adjusts the optimization goal and obtains different terminal constraints; and without being based on a fixed trajectory form, the trajectory planning is carried out by solving the optimization problem online and rolling optimization.

实施例2Example 2

基于底盘非线性的无人驾驶汽车轨迹规划规划方法,其通过如实施例1所述的基于底盘非线性的无人驾驶汽车轨迹控制系统实现,包括以下步骤,The unmanned vehicle trajectory planning method based on chassis nonlinearity, it is realized by the unmanned vehicle trajectory control system based on chassis nonlinearity as described in embodiment 1, comprises the following steps,

步骤一,控制器模型的建立:Step 1, the establishment of the controller model:

本文控制器模型的建立包括车辆动力学模型的建立与轮胎模型的建立。在轨迹规划的相关研究中,自行车模型被广泛用作简化的车辆动力学模型。使用该模型时,应遵循以下假设:The establishment of the controller model in this paper includes the establishment of the vehicle dynamics model and the establishment of the tire model. In the related research of trajectory planning, bicycle model is widely used as a simplified vehicle dynamics model. When using this model, the following assumptions should be followed:

1.忽略转向系统的影响,转向角用作系统的输入。1. Neglecting the influence of the steering system, the steering angle is used as an input to the system.

2.车厢平行于地面运动。2. The carriage moves parallel to the ground.

3.车辆的前进速度保持不变。3. The forward speed of the vehicle remains constant.

4.忽略侧向风的影响。4. Ignore the influence of side wind.

5.轮胎与道路的附着系数为1。5. The coefficient of adhesion between the tire and the road is 1.

但是,在规划过程中,还需要考虑汽车的速度变化。因此,现有的自行车模型需要修改。在本文提出的控制器模型中,自行车模型被改为非线性模型。非线性模型同时考虑了纵向和横向动力学。相比传统的自行车模型,可以更精确地描述车辆的运动状态。However, during the planning process, the speed variation of the car also needs to be considered. Therefore, existing bicycle models need to be modified. In the controller model proposed in this paper, the bicycle model is changed to a nonlinear model. The nonlinear model takes into account both longitudinal and transverse dynamics. Compared with the traditional bicycle model, the motion state of the vehicle can be described more accurately.

对任何车辆动力学模型来说,轮胎动力学模型是最为重要的基础,它直接影响整车动力学建模精度。在大多数研究中,轮胎所受的侧向力通常都表示为线性形式。但是,当横向加速度变大时,这种线性关系不再存在。倘若上述非线性车辆模型继续使用线性轮胎模型输出的侧向力,则会造成较大的误差,因此有必要使用更精确的轮胎模型。For any vehicle dynamics model, the tire dynamics model is the most important foundation, which directly affects the accuracy of vehicle dynamics modeling. In most studies, the lateral force on the tire is usually expressed in a linear form. However, this linear relationship no longer exists when the lateral acceleration becomes large. If the above-mentioned nonlinear vehicle model continues to use the lateral force output by the linear tire model, it will cause large errors, so it is necessary to use a more accurate tire model.

1.车辆模型的建立1. Establishment of vehicle model

非线性模型同时考虑了纵向和横向动力学。车辆坐标系如图2所示。整个坐标系是右手的,而其原点固定在车辆质量的中心。x轴平行于地面,y轴指向驾驶员的左侧。z轴垂直于由x轴和y轴形成的平面。根据牛顿第二定律,得到式(1)和(2)The nonlinear model takes into account both longitudinal and transverse dynamics. The vehicle coordinate system is shown in Figure 2. The entire coordinate system is right-handed, while its origin is fixed at the center of the vehicle mass. The x-axis is parallel to the ground and the y-axis points to the left of the driver. The z axis is perpendicular to the plane formed by the x and y axes. According to Newton's second law, formulas (1) and (2) are obtained

2·(Fyf+Fyr)=m·ay (1)2·(F yf +F yr )=m·a y (1)

Figure GDA0003909375770000081
Figure GDA0003909375770000081

其中m是车辆的质量,Iz是绕z轴的惯性矩。Fyf和Fyr分别是单个前轮胎和后轮胎的横向力。ay表示横向加速度,ω表示车身的横摆率。lf和lr分别表示从质心到前后轴的距离。侧偏角可计算为β=vy/vx,其中vy和vx分别是车辆重心的横向和纵向速度。where m is the mass of the vehicle and Iz is the moment of inertia about the z -axis. F yf and F yr are the individual front and rear tire lateral forces, respectively. a y represents the lateral acceleration, and ω represents the yaw rate of the vehicle body. l f and l r represent the distance from the center of mass to the front and rear axes, respectively. The slip angle can be calculated as β=v y /v x , where v y and v x are the lateral and longitudinal velocities of the vehicle's center of gravity, respectively.

因此,侧滑率可以计算为

Figure GDA0003909375770000082
根据坐标系,前轮和后轮侧滑角可以表示为式(3)和(4),Therefore, the sideslip rate can be calculated as
Figure GDA0003909375770000082
According to the coordinate system, the sideslip angles of the front and rear wheels can be expressed as equations (3) and (4),

Figure GDA0003909375770000083
Figure GDA0003909375770000083

Figure GDA0003909375770000084
Figure GDA0003909375770000084

结合以上动力学和运动学关系,非线性控制模型可以表示为式(5a)和(5b),Combining the above dynamics and kinematics relations, the nonlinear control model can be expressed as equations (5a) and (5b),

Figure GDA0003909375770000085
Figure GDA0003909375770000085

Figure GDA0003909375770000086
Figure GDA0003909375770000086

在此,

Figure GDA0003909375770000087
是车辆的状态矢量。
Figure GDA0003909375770000088
是车辆的航向角。U=[a,δ]是控制变量的向量。a是纵向加速度,δ是前轮的转向角。here,
Figure GDA0003909375770000087
is the state vector of the vehicle.
Figure GDA0003909375770000088
is the heading angle of the vehicle. U=[a,δ] is a vector of control variables. a is the longitudinal acceleration and δ is the steering angle of the front wheels.

上面的模型相对简单,计算方便,但是该模型没有考虑底盘非线性。当车速增加时,车辆逐渐进入非线性区域,传统的车辆模型误差非常严重。底盘非线性主要包括轮胎非线性,车辆侧倾,转向系统变形和悬架系统变形。当车身滚动时,轮胎上的垂直载荷将发生变化。车辆转弯时,转向系统中的柔性部件会变形。另外,轮胎的侧向力会使悬架系统变形。上述底盘的非线性会导致车辆模型发生重大变化,尤其是在高速行驶时。将底盘非线性因素引入车辆模型非常重要,这样既可以提高精度而又不会使计算过于复杂。与自行车模型相比,考虑底盘非线性的车辆模型形式发生了很大变化。The above model is relatively simple and easy to calculate, but the model does not consider the nonlinearity of the chassis. When the vehicle speed increases, the vehicle gradually enters the nonlinear region, and the error of the traditional vehicle model is very serious. Chassis nonlinearity mainly includes tire nonlinearity, vehicle roll, steering system deformation and suspension system deformation. As the body rolls, the vertical load on the tires will change. When a vehicle corners, the flexible components in the steering system deform. In addition, the lateral forces of the tires can deform the suspension system. The aforementioned chassis nonlinearities can cause significant changes to the vehicle model, especially at high speeds. It is important to incorporate chassis nonlinearities into the vehicle model to improve accuracy without overcomplicating the calculations. Compared with the bicycle model, the form of the vehicle model considering the nonlinearity of the chassis has changed greatly.

2.轮胎模型的建立2. Establishment of tire model

当横向加速度较小时,轮胎的横向力与侧偏角成线性关系,可以表示为Fy=kαy,其中k是轮胎的转弯刚度值。在大多数研究中,侧向力表示为线性形式。但是,当横向加速度变大时,这种线性关系不再存在。有必要使用更精确的轮胎模型。由HB Pacejka引入的魔术公式是一种以其高精度而著称的轮胎模型,已在汽车工业中得到广泛使用。该公式使用三角函数的组合来拟合轮胎测试数据。根据x的不同含义,可以使用相同的公式来表示纵向力,横向力或对齐扭矩。该公式通常表示为式(7),When the lateral acceleration is small, the lateral force of the tire has a linear relationship with the slip angle, which can be expressed as F y = kα y , where k is the value of the tire's cornering stiffness. In most studies, lateral forces are expressed in linear form. However, this linear relationship no longer exists when the lateral acceleration becomes large. It is necessary to use a more accurate tire model. The Magic Formula, introduced by HB Pacejka, is a tire model known for its high precision and widely used in the automotive industry. This formula uses a combination of trigonometric functions to fit tire test data. Depending on what x means, the same formula can be used for longitudinal force, lateral force, or alignment torque. This formula is usually expressed as equation (7),

Figure GDA0003909375770000091
Figure GDA0003909375770000091

在该模型中,横向力是侧偏角,轮胎的垂直载荷和轮胎外倾角的函数。该曲线表明,当侧偏角增加时,侧向力与侧偏角没有线性关系。在这种情况下继续使用线性模型将产生无法忽略的错误。当汽车急转弯时,横向加速度很大,并且车轮可以轻松超过线性区域。因此,在这种情况下使用线性模型会产生很大的误差。为了考虑非线性,本文采用的车辆模型中的轮胎侧向力拟合了魔术公式,并在下文使用上述所有三个模型进行了模拟,以通过使用非线性模型验证非线性模型的优越性。但是,魔术公式的形式过于复杂,无法直接使用。通过使用侧偏角的三次多项式来拟合魔术公式,从而确保了准确性并大大减少了计算量。为了在侧偏角相反时计算相同的侧向力绝对值,Fy(α)必须为奇函数。因此,在构造多项式拟合公式时,采用侧偏角的奇次幂,得到式(8)。In this model, the lateral force is a function of the slip angle, the vertical load of the tire and the camber angle of the tire. This curve shows that the lateral force does not have a linear relationship with the slip angle as the slip angle increases. Continuing to use a linear model in this case will produce errors that cannot be ignored. When the car is cornering sharply, there is a lot of lateral acceleration, and the wheels can easily go beyond the linear zone. Therefore, using a linear model in this case produces a large error. To account for the nonlinearity, the tire lateral force in the vehicle model adopted in this paper is fitted with the magic formula, and simulations are carried out below using all three models mentioned above to verify the superiority of the nonlinear model by using the nonlinear model. However, the form of the magic formula is too complex to be used directly. By fitting the magic formula with a cubic polynomial of the slip angle, accuracy is ensured and calculations are greatly reduced. In order to calculate the same absolute value of lateral force at opposite slip angles, F y (α) must be an odd function. Therefore, when constructing the polynomial fitting formula, the odd power of the slip angle is used to obtain formula (8).

Fy=k1α+k2α3+k3α5 (8)F y =k 1 α+k 2 α 3 +k 3 α 5 (8)

这里,k1,k2,k3是通过数值拟合方法计算的系数,α为轮胎侧偏角。Here, k 1 , k 2 , and k 3 are coefficients calculated by a numerical fitting method, and α is the tire slip angle.

当车身滚动时,轮胎上的垂直载荷将改变。车辆转弯时,转向系统中的柔性部件会变形。另外,轮胎的侧向力会使悬架系统变形。上述底盘的非线性会导致车辆模型发生重大变化,尤其是在高速行驶时。将底盘非线性因素引入车辆模型以提高精度而又不会使计算过于复杂非常重要。根据之前的工作,在车轮非线性侧向力前面添加一个系数可以抵消底盘非线性对车辆模型的影响,如式(9)。As the body rolls, the vertical load on the tires will change. When a vehicle corners, the flexible components in the steering system deform. In addition, the lateral forces of the tires can deform the suspension system. The aforementioned chassis nonlinearities can cause significant changes to the vehicle model, especially at high speeds. It is important to introduce chassis nonlinearities into the vehicle model to improve accuracy without overcomplicating the calculations. According to the previous work, adding a coefficient in front of the nonlinear lateral force of the wheel can offset the influence of the chassis nonlinearity on the vehicle model, as shown in equation (9).

Fy,non=e·(k1α+k2α3+k3α5) (9)F y,non =e·(k 1 α+k 2 α 3 +k 3 α 5 ) (9)

上面介绍了带有非线性模型的非线性最优控制器。而前后轮胎的侧向力使用多项式轮胎模型可以表示为式(10a)和(10b),A nonlinear optimal controller with a nonlinear model was introduced above. The lateral force of the front and rear tires can be expressed as equations (10a) and (10b) using the polynomial tire model,

Figure GDA0003909375770000101
Figure GDA0003909375770000101

Figure GDA0003909375770000102
Figure GDA0003909375770000102

图3显示了线性轮胎模型,魔术公式轮胎模型和多项式轮胎模型的比较。当侧偏角大于

Figure GDA0003909375770000105
度时,线性轮胎模型是完全不合适的,而多项式轮胎模型仍然非常接近魔术公式。在装有
Figure GDA0003909375770000103
CoreTMi7-6700HQ 2.60GHz CPU的笔记本电脑上进行仿真,并使用MATLABR2018a计算1000组横向力。使用多项式轮胎模型的计算比使用魔术公式轮胎模型的计算快74.18%。Figure 3 shows the comparison of linear tire model, magic formula tire model and polynomial tire model. When the side slip angle is greater than
Figure GDA0003909375770000105
, the linear tire model is completely inappropriate, while the polynomial tire model is still very close to the magic formula. equipped with
Figure GDA0003909375770000103
The simulation is performed on a laptop with a Core TM i7-6700HQ 2.60GHz CPU, and 1000 sets of lateral forces are calculated using MATLABR2018a. The calculation using the polynomial tire model is 74.18% faster than the calculation using the magic formula tire model.

步骤二,优化问题的建立:Step 2, the establishment of the optimization problem:

在提出合适的控制器模型之后,本文的重点在于通过该模型去优化无人驾驶汽车的路径规划问题,期望能获得一条集安全,平滑,舒适于一体的轨迹。为此,需要基于各个约束条件去求解。具体求解过程如下:After proposing a suitable controller model, the focus of this paper is to optimize the path planning problem of unmanned vehicles through this model, hoping to obtain a safe, smooth and comfortable trajectory. Therefore, it needs to be solved based on various constraints. The specific solution process is as follows:

最优轨迹规划层次结构如图4所示。主车辆状况,交通信息和路线规划信息是基于规则的决策模块的输入。根据设置的规则,它会根据障碍物的存在来确定是否采取避障操作。确定后,障碍物位置和目标车道将传递到轨迹规划模块。轨迹规划模块能够基于传递的信息来规划最佳轨迹。将生成(x,y,δ,a)的序列。该序列将转换为执行器,并且自动驾驶汽车可以遵循生成的最佳轨迹。The optimal trajectory planning hierarchy is shown in Fig. 4. The host vehicle status, traffic information and route planning information are the inputs of the rule-based decision module. According to the set rules, it will determine whether to take obstacle avoidance operation according to the existence of obstacles. Once determined, obstacle locations and target lanes will be passed to the trajectory planning module. The trajectory planning module is able to plan the optimal trajectory based on the passed information. A sequence of (x, y, δ, a) will be generated. This sequence is translated into actuators, and the self-driving car can follow the generated optimal trajectory.

轨迹规划问题的形成基于上级模块的决策,轨迹规划算法负责规划轨迹,以便车辆可以平稳地执行车道变换或车道保持动作。轨迹规划的实施可以将问题表示为方程中的最优控制问题,以在预测范围[t,t+T]中找到控制变量U=[δ,a]T的最优控制序列,从而得到式(6a)和(6b),The formulation of the trajectory planning problem is based on the decisions of the upper modules, and the trajectory planning algorithm is responsible for planning the trajectory so that the vehicle can perform lane changing or lane keeping maneuvers smoothly. The implementation of trajectory planning can express the problem as the optimal control problem in the equation to find the optimal control sequence of the control variable U=[δ,a] T in the prediction range [t, t+T], so that the formula ( 6a) and (6b),

Figure GDA0003909375770000104
Figure GDA0003909375770000104

Figure GDA0003909375770000111
Figure GDA0003909375770000111

这是一个既有约束又有目标函数的优化问题。为了确保安全性和平滑性,一些硬约束是必要的。如方程式(11a)与(11b)所示,需要将加速度和方向盘角度控制在一定范围内,以确保最佳控制结果在车辆的可执行范围内。超过此范围可能会不利于驾驶安全,影响舒适性,同时也为了避免例如车轮打滑的情况。另外,当出现障碍物时,车辆也必须能够避开障碍物。在优化过程中,必须确保每个优化步骤的障碍物坐标都落在主车辆周围的某个范围之外,以确保计划轨迹不会与障碍物碰撞。由于车辆的纵向速度远大于横向速度,因此在避开障碍物时,必须在纵向上比横向留出更大的安全距离。因此,等式(11c)用来设置避开障碍物,图4显示了在执行变道与车道保持时的安全距离,图5显示了本车的安全距离范围。This is an optimization problem with both constraints and an objective function. To ensure safety and smoothness, some hard constraints are necessary. As shown in equations (11a) and (11b), the acceleration and steering wheel angle need to be controlled within a certain range to ensure that the best control results are within the vehicle's executable range. Exceeding this range may be detrimental to driving safety and affect comfort, and it is also necessary to avoid such as wheel slippage. In addition, the vehicle must also be able to avoid obstacles when they appear. During optimization, it must be ensured that the coordinates of obstacles at each optimization step fall outside a certain range around the host vehicle to ensure that the planned trajectory does not collide with obstacles. Since the longitudinal speed of the vehicle is much greater than the lateral speed, when avoiding obstacles, a larger safety distance must be left longitudinally than laterally. Therefore, equation (11c) is used to set the obstacle avoidance, Fig. 4 shows the safe distance when performing lane change and lane keeping, and Fig. 5 shows the safe distance range of the ego vehicle.

amin≤a(t)≤amax (11a)a min ≤ a(t) ≤ a max (11a)

δf,min≤δ(t)≤δf,max (11b)δ f,min ≤ δ(t) ≤ δ f,max (11b)

Figure GDA0003909375770000112
Figure GDA0003909375770000112

此外,计划的轨迹还需要确保高效和良好的舒适性,因此需要将这些因素添加到评估功能中。为了尽可能地确保舒适性,有必要减小车辆加速度的绝对值和转向角,同时减少换档和转向的次数也能够大大提高舒适度。因此,有必要通过使用评估函数限制加速度,转向角和相应的导数来限制控制量及其导数,如式(12)。In addition, the planned trajectory also needs to ensure high efficiency and good comfort, so these factors need to be added to the evaluation function. In order to ensure comfort as much as possible, it is necessary to reduce the absolute value of vehicle acceleration and steering angle, while reducing the number of shifts and steering can greatly improve comfort. Therefore, it is necessary to limit the control quantity and its derivatives by using the evaluation function to limit the acceleration, steering angle and corresponding derivatives, as shown in Equation (12).

Figure GDA0003909375770000113
Figure GDA0003909375770000113

为了提高效率,将a和期望加速度之间的差以及y和目标坐标之间的差也添加到目标函数,其中,目标坐标由车道改变或车道保持决定来确定。由决策层生成,如式(13)、(14)和(15)。For efficiency, the difference between a and the desired acceleration and the difference between y and the target coordinate, where the target coordinate is determined by the lane change or lane keeping decision, is also added to the objective function. Generated by the decision-making layer, such as formula (13), (14) and (15).

Pa(X,U,t)=[a(t)-atar]2 (13)P a (X,U,t)=[a(t)-a tar ] 2 (13)

Py(X,U,t)=[y(t)-ytar]2 (14)P y (X,U,t)=[y(t)-y tar ] 2 (14)

因此,成本函数L可表示为:Therefore, the cost function L can be expressed as:

Figure GDA0003909375770000114
Figure GDA0003909375770000114

步骤三,快速求解:Step 3, quick solution:

在此工作中,通过优化直接获得轨迹,因此应考虑计算时间。为了加快计算速度,在仿真中做了一些简化。首先,模型需要很小的离散时间步长以确保收敛,而当控制时间步长与离散步长一样长时,很小的控制变量步长将大大增加计算时间。在控制方面,控制变量实际上不需要像模型离散化那样快地进行更改。延长控制时间步长可以大大减少要解决的变量数量。此外,考虑到控制变量的不同特性,不同的控制变量也可以具有不同的控制时间步长。In this work, trajectories are obtained directly through optimization, so the computation time should be considered. In order to speed up the calculation, some simplifications are made in the simulation. First, the model requires small discrete time steps to ensure convergence, and small control variable steps will greatly increase computation time when the control time steps are as long as the discrete steps. On the control side, the control variables don't actually need to change as fast as the model discretization. Extending the control time step can greatly reduce the number of variables to be resolved. In addition, different control variables can also have different control time steps, taking into account the different characteristics of the control variables.

因此,通过比较模型的离散时间步长td和控制变量u1和u2的控制时间步长tc1和tc2的影响,从总体上看,较短的时间步长具有更稳定的计算时间,但是模型的离散时间步长和控制时间步长相等,会明显增加计算时间。选取较短的离散时间步长,较小的控制时间步长的同时避免模型离散时间步长和控制时间步长相等,可以大大提高计算速度,并且仍能获得合理的轨迹。Therefore, by comparing the effect of the discrete time step t d of the model and the control time steps t c1 and t c2 of the control variables u1 and u2 , in general, shorter time steps have more stable computation times, but The discrete time step size of the model is equal to the control time step size, which can significantly increase the calculation time. Choosing a shorter discrete time step and a smaller control time step while avoiding the model discrete time step being equal to the control time step can greatly increase the calculation speed and still obtain a reasonable trajectory.

以上所述仅为本发明的实施例而已,并不用于限制本发明。对于本领域技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本发明的权利要求范围之内。The above descriptions are only examples of the present invention, and are not intended to limit the present invention. Various modifications and variations of the present invention will occur to those skilled in the art. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included within the scope of the claims of the present invention.

Claims (6)

1. A locus planning method of an unmanned vehicle based on chassis nonlinearity adopts a locus control system, and is characterized in that the locus control system comprises a sensing signal collection module, a driving decision module and a locus planning module, and the sensing signal collection module, the driving decision module and the locus planning module jointly form a parameterization decision-making frame;
the sensing signal collection module is used for obtaining the running state information of the current vehicle and the environmental vehicle and carrying out signal processing;
the driving decision module is used for learning a proper decision parameter value;
the track planning module is used for obtaining a feasible track after optimized planning;
the perception signal collection module is used for obtaining the driving intention of the environmental vehicle through the deviation of the environmental vehicle and the lane central line of the environmental vehicle or the steering lamp information by means of the lane, the speed and the acceleration of the surrounding vehicle, the lane and the speed of the vehicle and the relative distance taking the lane of the vehicle as the reference, which are obtained by a radar environment perception element and a vehicle-mounted camera in the vehicle-mounted intelligent perception module, and collecting data for the learning and training of the subsequent driving decision;
the driving decision module is used for analyzing the relation between the human-like driving behaviors and the traffic environment and establishing different driving decisions;
the trajectory planning method comprises the following steps,
step one, establishing a controller model:
the establishment of the controller model comprises the establishment of a vehicle dynamic model and the establishment of a tire model;
step two, establishing an optimization problem:
solving based on each constraint condition, wherein the concrete solving process is as follows:
first, a host vehicle condition, traffic information, and route planning information are input to the driving decision module based on rules; determining whether to adopt obstacle avoidance operation according to the existence of the obstacle according to a set rule; after the determination, transmitting the position of the obstacle and the target lane to the trajectory planning module; the track planning module plans an optimal track based on the transmitted information and generates a sequence of (x (t), y (t), delta (t) and a (t)), wherein x (t) is a vehicle abscissa at the moment t, y (t) is a vehicle ordinate at the moment t, delta (t) is a front wheel rotation angle at the moment t, and a (t) is a vehicle longitudinal acceleration at the moment t; converting the sequence into an actuator and enabling the automatic driving automobile to follow the generated optimal track;
secondly, a track planning is formed based on the decision of the superior module, and a track planning algorithm is responsible for planning the track, so that the vehicle performs lane change or lane keeping action; the trajectory planning implementation is expressed as an optimal control problem in equations to predict the range [ T, T + T [ ]]Find the control variable U (t) = [ delta (t), a (t)] T Thereby obtaining equations (6 a) and (6 b),
minJ=∫ t t+T L(X(t),U(t),t)dt (6a)
Figure FDA0003901644770000021
Figure FDA0003901644770000022
where m is the mass of the vehicle, I z Is the moment of inertia about the z-axis; f yf And F yr Lateral forces of a single front tire and rear tire, respectively; ω represents the yaw rate of the vehicle body; l. the f And l r Respectively representing the distance from the centroid to the front-rear axis; the centroid slip angle can be calculated as β = v y /v x Wherein v is y And v x Transverse and longitudinal respectively of the centre of gravity of the vehicleA speed;
Figure FDA0003901644770000023
is the heading angle of the vehicle at time t;
then, as shown in equations (11 a) and (11 b), the acceleration and the steering wheel angle are controlled within the preset ranges so that the optimum control result is within the execution range of the vehicle; when an obstacle appears, the vehicle avoids the obstacle; during the optimization, the coordinates of the obstacles of each optimization step are made to fall outside a preset range around the host vehicle, so that the planned trajectory avoids colliding with the obstacles; because the longitudinal speed of the vehicle is far greater than the transverse speed, when the vehicle avoids an obstacle, a larger safety distance is reserved in the longitudinal direction than in the transverse direction; equation (11 c) is used to set the avoidance of the obstacle;
a min ≤a(t)≤a max (11a)
δ f,min ≤δ(t)≤δ f,max (11b)
Figure FDA0003901644770000024
wherein, a min ,a max Respectively, the minimum value and the maximum value of the longitudinal acceleration of the vehicle, a (t) is the longitudinal acceleration of the vehicle at the moment t, delta f,min ,δ f,max The minimum and maximum values of the control quantity front wheel rotation angle are respectively, delta (t) is the control quantity front wheel rotation angle at the moment t, x (t), x ob (t),x safe Respectively, the abscissa position of the vehicle at the time t, the abscissa position of the obstacle vehicle, and the safety distance, y (t), left by the abscissas in the case of no collision ob (t),y safe Respectively representing the vertical coordinate position of the vehicle at the moment t, the vertical coordinate position of the obstacle vehicle and the safety distance reserved by the vertical coordinate under the condition of no collision;
step three, fast solving:
the trajectory is directly obtained by optimization, the calculation speed is increased by simplifying the simulation process, and the number of variables to be solved is reduced by prolonging the control time step length.
2. The chassis nonlinearity-based unmanned vehicle trajectory planning method of claim 1, wherein the controller model of step one is created comprising the steps of,
the first step, the building of the vehicle model,
the nonlinear model is based on longitudinal and transverse dynamics, and the origin of a vehicle coordinate system is fixed at the center of the vehicle mass; the x-axis is parallel to the ground, and the y-axis points to the left of the driver; the z-axis is perpendicular to the plane formed by the x-axis and the y-axis; the equations (1) and (2) can be obtained according to Newton's second law,
2·(F yf +F yr )=m·a y (1)
Figure FDA0003901644770000031
where m is the mass of the vehicle, I z Is the moment of inertia about the z-axis; f yf And F yr Lateral forces of a single front tire and rear tire, respectively; a is y Represents the lateral acceleration, ω represents the yaw rate of the vehicle body; l f And l r Respectively representing the distance from the centroid to the anterior-posterior axis; the centroid slip angle can be calculated as β = v y /v x Wherein v is y And v x Lateral and longitudinal velocities of the vehicle's center of gravity, respectively;
the side slip rate can be calculated as
Figure FDA0003901644770000032
The front and rear wheel slip angles are expressed as equations (3) and (4) according to a coordinate system,
Figure FDA0003901644770000033
Figure FDA0003901644770000034
in combination with the above kinetic and kinematic relationships, the nonlinear control model is represented by equations (5 a) and (5 b),
Figure FDA0003901644770000035
Figure FDA0003901644770000036
wherein,
Figure FDA0003901644770000037
is the heading angle of the vehicle at time t;
the second step, the building of the tire model,
when the lateral acceleration is small, the lateral force of the tire is linear with the lateral slip angle, denoted as F y =kα y Wherein k is the cornering stiffness value of the tyre;
Figure FDA0003901644770000038
wherein X denotes a tangent of a tire side slip, Y (α) denotes a tire side force, α denotes a tire side slip angle, and S h Is a horizontal shift of the curve, S v The vertical direction drift of the curve, C is the shape factor of the curve, D is the peak factor of the curve, B is the rigidity factor, and E is the curvature factor of the curve;
in this model, the tire side force is a function of the tire slip angle, the vertical load of the tire and the tire camber angle, equation (7) is fitted by a cubic polynomial of the tire slip angle, and the same absolute value of the side force, F, is calculated when the tire slip angles are opposite y For an odd function, when a polynomial fitting formula is constructed, the odd power of the tire slip angle is adopted to obtain a formula (8),
F y =k 1 α+k 2 α 3 +k 3 α 5 (8)
wherein k is 1 ,k 2 ,k 3 Is a coefficient calculated by a numerical fitting method, and alpha is a tire slip angle;
as the vehicle body rolls, the vertical load on the tires changes; when the vehicle turns, a flexible part in a steering system deforms, and a suspension system deforms due to the lateral force of tires, so that the non-linearity of a chassis can cause the change of a vehicle model, or when the vehicle runs at a high speed, a coefficient e is added in front of the non-linear lateral force of wheels to counteract the influence of the non-linearity of the chassis on the vehicle model, and an equation (9) is obtained;
F y,non =e·(k 1 α+k 2 α 3 +k 3 α 5 ) (9)
wherein, F y,non Is the nonlinear lateral force of the wheel.
3. The method of chassis nonlinearity based unmanned vehicle trajectory planning according to claim 2,
in the second step of building the tire model, the lateral forces of the front and rear tires are expressed as equations (10 a) and (10 b) using a polynomial tire model;
Figure FDA0003901644770000041
Figure FDA0003901644770000042
wherein k is f1 ,k f2 ,k f3 Is the lateral force fit coefficient for the front wheel obtained as described in equation (8);
k r1 ,k r2 ,k r3 is the lateral force fit coefficient for the rear wheel obtained as described in equation (8).
4. The method of chassis nonlinearity based unmanned vehicle trajectory planning according to claim 1,
when the optimization problem is established in the second step, the absolute value of the acceleration of the vehicle and the steering angle are reduced, and meanwhile, the times of gear shifting and steering are reduced; the control quantity and its derivatives are limited by limiting the acceleration, steering angle and corresponding derivatives using an evaluation function, as in equation (12):
Figure FDA0003901644770000043
wherein, P loss (X (t), U (t), t) are evaluation functions,
Figure FDA0003901644770000044
the derivative of the longitudinal acceleration of the vehicle corresponding to the angle of rotation of the front wheels.
5. The chassis nonlinearity based unmanned-vehicle trajectory planning method of claim 4,
a (t) and a desired acceleration a tar The difference between and y (t) and the target coordinate y tar The difference between them is also added to the objective function, where the target coordinates are determined by the lane change or lane keeping decision and generated by the decision layer, as equations (13) and (14),
P a (X(t),U(t),t)=[a(t)-a tar ] 2 (13)
P y (X(t),U(t),t)=[y(t)-y tar ] 2 (14)
the cost function L can be expressed as equation (15),
Figure FDA0003901644770000051
6. the chassis-nonlinearity-based unmanned-vehicle trajectory planning method of claim 1, wherein different control variables have different control-time steps when solved for fast in step three.
CN202011482824.9A 2020-12-16 2020-12-16 Unmanned vehicle trajectory control system and trajectory control method based on chassis nonlinearity Active CN112578672B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011482824.9A CN112578672B (en) 2020-12-16 2020-12-16 Unmanned vehicle trajectory control system and trajectory control method based on chassis nonlinearity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011482824.9A CN112578672B (en) 2020-12-16 2020-12-16 Unmanned vehicle trajectory control system and trajectory control method based on chassis nonlinearity

Publications (2)

Publication Number Publication Date
CN112578672A CN112578672A (en) 2021-03-30
CN112578672B true CN112578672B (en) 2022-12-09

Family

ID=75136235

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011482824.9A Active CN112578672B (en) 2020-12-16 2020-12-16 Unmanned vehicle trajectory control system and trajectory control method based on chassis nonlinearity

Country Status (1)

Country Link
CN (1) CN112578672B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112937608B (en) * 2021-03-31 2022-06-21 吉林大学 An integrated rolling decision-making method, device and storage medium for an unmanned vehicle in ice and snow environment based on trajectory prediction
CN113619604B (en) * 2021-08-26 2023-08-15 清华大学 Integrated control method, device and storage medium for automatic driving automobile
CN114021840A (en) * 2021-11-12 2022-02-08 京东鲲鹏(江苏)科技有限公司 Channel switching strategy generation method and device, computer storage medium and electronic equipment
CN114237198A (en) * 2021-11-29 2022-03-25 理工雷科智途(泰安)汽车科技有限公司 Chassis control method for automatic driving vehicle based on SocketCAN communication
CN114942642B (en) * 2022-06-13 2024-11-26 吉林大学 A trajectory planning method for unmanned vehicles
CN119472696A (en) * 2025-01-09 2025-02-18 北京理工大学前沿技术研究院 Obstacle avoidance control method and system for unmanned road sweeper at high speed

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109032131A (en) * 2018-07-05 2018-12-18 东南大学 A kind of dynamic applied to pilotless automobile is overtaken other vehicles barrier-avoiding method
CN109476310A (en) * 2016-12-30 2019-03-15 同济大学 A kind of automatic Pilot method for controlling driving speed based on comfort level
CN110187639A (en) * 2019-06-27 2019-08-30 吉林大学 A Control Method for Trajectory Planning Based on Parameter Decision Framework
CN110297494A (en) * 2019-07-15 2019-10-01 吉林大学 A kind of automatic driving vehicle lane-change decision-making technique and system based on rolling game
CN110568760A (en) * 2019-10-08 2019-12-13 吉林大学 Parametric learning decision-making control system and method suitable for lane changing and lane keeping
CN110989568A (en) * 2019-11-15 2020-04-10 吉林大学 A method and system for safe passage of autonomous vehicles based on fuzzy controller
CN111258323A (en) * 2020-03-30 2020-06-09 华南理工大学 Intelligent vehicle trajectory planning and tracking combined control method
CN111890951A (en) * 2020-08-07 2020-11-06 吉林大学 Intelligent electric vehicle trajectory tracking and motion control method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10146224B2 (en) * 2016-11-09 2018-12-04 GM Global Technology Operations LLC Processor-implemented systems and methods for automated driving

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109476310A (en) * 2016-12-30 2019-03-15 同济大学 A kind of automatic Pilot method for controlling driving speed based on comfort level
CN109032131A (en) * 2018-07-05 2018-12-18 东南大学 A kind of dynamic applied to pilotless automobile is overtaken other vehicles barrier-avoiding method
CN110187639A (en) * 2019-06-27 2019-08-30 吉林大学 A Control Method for Trajectory Planning Based on Parameter Decision Framework
CN110297494A (en) * 2019-07-15 2019-10-01 吉林大学 A kind of automatic driving vehicle lane-change decision-making technique and system based on rolling game
CN110568760A (en) * 2019-10-08 2019-12-13 吉林大学 Parametric learning decision-making control system and method suitable for lane changing and lane keeping
CN110989568A (en) * 2019-11-15 2020-04-10 吉林大学 A method and system for safe passage of autonomous vehicles based on fuzzy controller
CN111258323A (en) * 2020-03-30 2020-06-09 华南理工大学 Intelligent vehicle trajectory planning and tracking combined control method
CN111890951A (en) * 2020-08-07 2020-11-06 吉林大学 Intelligent electric vehicle trajectory tracking and motion control method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
A Novel Trajectory Planning Method for Automated Vehicles Under Parameter Decision Framework;Zhang, Yuxiang等;《IEEE ACCESS》;20190719;第7卷;第88264-88274页 *
Optimal Energy Management for HEVs in Eco-Driving Applications Using Bi-Level MPC;Guo, Lulu等;《IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS》;20170831;第18卷(第8期);第2153-2162页 *
基于滚动优化原理的类车机器人路径跟踪控制;丛岩峰等;《吉林大学学报(工学版)》;20120131;第42卷(第1期);第182-187页 *

Also Published As

Publication number Publication date
CN112578672A (en) 2021-03-30

Similar Documents

Publication Publication Date Title
CN112578672B (en) Unmanned vehicle trajectory control system and trajectory control method based on chassis nonlinearity
CN113320542B (en) A tracking control method for an autonomous vehicle
CN107015477B (en) Vehicle Path Tracking H∞ Control Method Based on State Feedback
CN106649983B (en) Modeling method of vehicle dynamics model for high-speed motion planning of unmanned vehicles
Chen et al. Trajectory and velocity planning method of emergency rescue vehicle based on segmented three-dimensional quartic Bezier curve
CN110377039A (en) A kind of vehicle obstacle-avoidance trajectory planning and tracking and controlling method
CN108227491A (en) A kind of intelligent vehicle Trajectory Tracking Control method based on sliding formwork neural network
CN107161207A (en) A kind of intelligent automobile Trajectory Tracking Control System and control method based on active safety
CN114379583B (en) Automatic driving vehicle track tracking system and method based on neural network dynamics model
CN110716562A (en) Decision-making method for multi-lane driving of driverless cars based on reinforcement learning
CN113581201B (en) Potential field model-based collision avoidance control method and system for unmanned vehicle
Singh et al. Trajectory tracking and integrated chassis control for obstacle avoidance with minimum jerk
CN111750866A (en) Horizontal and vertical coupling path planning method of intelligent vehicle based on regional virtual force field
CN104881030A (en) Unmanned vehicle-side longitudinal coupling tracking control method based on rapid terminal sliding mode principle
CN113911106B (en) Method for cooperatively controlling transverse track following and stability of commercial vehicle based on game theory
CN106371439A (en) Unified automatic driving transverse planning method and system
CN108860149A (en) A kind of Its Track Design method for the most short free lane change of intelligent vehicle time
Zhang et al. Structured road-oriented motion planning and tracking framework for active collision avoidance of autonomous vehicles
Wang et al. Adaptive dynamic path planning method for autonomous vehicle under various road friction and speeds
CN117141507A (en) Automatic driving vehicle path tracking method and experimental device based on feedforward and predictive LQR
CN116639182A (en) Active steering control method and system for four-wheel steering passenger car
CN115963836A (en) Path tracking and vehicle body posture cooperative control method
CN114925461A (en) Emergency steering control strategy network model, training method, modeling method and simulation method for automatic driving commercial vehicle
CN107992039B (en) A flow field-based trajectory planning method in dynamic environment
CN114179818A (en) Intelligent automobile transverse control method based on adaptive preview time and sliding mode control

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240331

Address after: 266000 No.1 Loushan Road, Licang District, Qingdao City, Shandong Province

Patentee after: QINGDAO AUTOMOTIVE RESEARCH INSTITUTE, JILIN University

Country or region after: China

Patentee after: Jilin University

Address before: 266000 No.1 Loushan Road, Licang District, Qingdao City, Shandong Province

Patentee before: QINGDAO AUTOMOTIVE RESEARCH INSTITUTE, JILIN University

Country or region before: China

TR01 Transfer of patent right