[go: up one dir, main page]

CN112574972B - Bacillus belgii AiiA-homologous lactonase, gene and application thereof - Google Patents

Bacillus belgii AiiA-homologous lactonase, gene and application thereof Download PDF

Info

Publication number
CN112574972B
CN112574972B CN202011499365.5A CN202011499365A CN112574972B CN 112574972 B CN112574972 B CN 112574972B CN 202011499365 A CN202011499365 A CN 202011499365A CN 112574972 B CN112574972 B CN 112574972B
Authority
CN
China
Prior art keywords
aiia
lactonase
homologous
bacillus
gene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011499365.5A
Other languages
Chinese (zh)
Other versions
CN112574972A (en
Inventor
孙晓晖
刘嘉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Beaked Whale Biotechnology Co.,Ltd.
Huaqiao University
Original Assignee
Fujian Huisheng Biotechnology Co ltd
Huaqiao University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Huisheng Biotechnology Co ltd, Huaqiao University filed Critical Fujian Huisheng Biotechnology Co ltd
Priority to CN202011499365.5A priority Critical patent/CN112574972B/en
Publication of CN112574972A publication Critical patent/CN112574972A/en
Application granted granted Critical
Publication of CN112574972B publication Critical patent/CN112574972B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/18Carboxylic ester hydrolases (3.1.1)
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • C02F3/342Biological treatment of water, waste water, or sewage characterised by the microorganisms used characterised by the enzymes used
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention discloses a Bacillus beiLeisi AiiA-homologous lactonase, a gene and an application thereof. The invention firstly discloses a Bacillus belgii AiiA-homologous lactonase, the amino acid sequence of which is shown in SEQ ID NO. 1. The invention further discloses application of the Bacillus belgii AiiA-homologous lactonase in treatment of domestic water. The Bacillus belgii AiiA-homologous lactonase can obviously inhibit the early proliferation, biofilm formation and virulence factor release of pseudomonas aeruginosa, and can effectively prevent and treat microbial pollution of domestic water.

Description

一种贝莱斯芽孢杆菌AiiA-同源内酯酶及其基因与应用A kind of Velez bacillus AiiA-homologous lactonase and its gene and application

技术领域technical field

本发明涉及基因工程领域,具体地说涉及一种贝莱斯芽孢杆菌AiiA-同源内酯酶及其基因与应用。The invention relates to the field of genetic engineering, in particular to a Bacillus velei AiiA-homologous lactonase and its gene and application.

背景技术Background technique

随着饮水机和桶装饮用水的广泛使用,饮水机和自来水管道中的细菌生物膜引起细菌污染,直接影响饮用水的质量,并对公众健康构成威胁,通常会引起继发性细菌感染。铜绿假单胞菌是一种典型的条件致病菌,在水体中形成生物膜,是净化水系统中监测到的最重要的关键因素之一。目前,除了对仪器和供水进行彻底消毒外,防治生物膜上铜绿假单胞菌的常用方法是使用防腐剂或抗生素等化学药物,过量和不规范使用,可能影响食品质量,引起耐药性问题。因此,利用具有生物活性、无污染、无抗性、无毒的酶作为替代物,阻断细菌生物膜的形成成为解决这一问题的一种可行性策略。With the widespread use of water dispensers and bottled drinking water, bacterial biofilms in water dispensers and tap water pipes cause bacterial contamination, directly affect the quality of drinking water, and pose a threat to public health, often causing secondary bacterial infections. Pseudomonas aeruginosa is a typical opportunistic pathogen that forms biofilms in water bodies and is one of the most important key factors monitored in water purification systems. At present, in addition to thorough disinfection of instruments and water supply, the common method to prevent and control Pseudomonas aeruginosa on biofilms is to use chemical drugs such as preservatives or antibiotics. Excessive and irregular use may affect food quality and cause drug resistance problems . Therefore, using bioactive, non-polluting, non-resistance, and non-toxic enzymes as substitutes to block bacterial biofilm formation has become a feasible strategy to solve this problem.

群体感应(Quorum Sensing,以下简称QS)是一种通过感知自身诱导物浓度来调节种群行为的现象,包括孢子形成、生物膜和毒力表达。QS受信号起始的阈值性质、信号受体的相对特异性和调控过程的级联性质来调节。铜绿假单胞菌具有典型的等级QS系统,其中LasI-LasR系统感测自身诱导物高丝氨酸内酯(以下简称AHL),通过影响相关基因的转录和翻译来调节下游RhlI-RhlR和PqsABCDE-PqsR通路。因此,干扰AHLs水平会导致群体猝灭(quorum-quenching,以下简称QQ),并影响铜绿假单胞菌的生物膜形成和毒力表达等QS反应。到目前为止,关于QQ酶的研究主要集中在降解AHL信号分子的酶上,包括AHL内酯酶、AHL酰基转移酶和AHL氧化还原酶三类,其中AHL降解酶主要是从芽孢杆菌属中分离得到的。QQ酶来自于不同的细菌种类,其中AHL内酯酶来自于不同的芽孢杆菌。但由于QQ酶对温度和pH的敏感性,MBR中复杂的环境可能使酶失活,QQ酶的应用受到限制。Quorum Sensing (hereinafter referred to as QS) is a phenomenon that regulates population behavior by sensing the concentration of its own inducers, including sporulation, biofilm and virulence expression. QS is regulated by the threshold properties of signal initiation, the relative specificity of signal receptors, and the cascade nature of regulatory processes. Pseudomonas aeruginosa has a typical hierarchical QS system, in which the LasI-LasR system senses the self-inducer homoserine lactone (hereinafter referred to as AHL), and regulates the downstream RhlI-RhlR and PqsABCDE-PqsR by affecting the transcription and translation of related genes path. Therefore, interfering with AHLs levels will lead to quorum-quenching (hereinafter referred to as QQ), and affect QS responses such as biofilm formation and virulence expression of Pseudomonas aeruginosa. So far, the research on QQ enzymes has mainly focused on enzymes that degrade AHL signal molecules, including AHL lactonase, AHL acyltransferase and AHL oxidoreductase, among which AHL degrading enzymes are mainly isolated from Bacillus owned. QQ enzymes come from different bacterial species, and AHL lactonases come from different Bacillus. However, due to the sensitivity of QQ enzyme to temperature and pH, the complex environment in MBR may inactivate the enzyme, and the application of QQ enzyme is limited.

因此,提供一种能有效降解AHL,显著抑制铜绿假单胞菌的早期增殖、生物膜形成和毒力因子释放,防治生活用水微生物污染的QQ酶具有重要的应用价值。Therefore, providing a QQ enzyme that can effectively degrade AHL, significantly inhibit the early proliferation, biofilm formation and virulence factor release of Pseudomonas aeruginosa, and prevent and control microbial pollution of domestic water has important application value.

发明内容Contents of the invention

本发明的第一目的是提供一种贝莱斯芽孢杆菌AiiA-同源内酯酶。The first object of the present invention is to provide a Bacillus Velez AiiA-homologous lactonase.

本发明的第二目的是提供一种贝莱斯芽孢杆菌AiiA-同源内酯酶基因。The second object of the present invention is to provide a Bacillus Velez AiiA-homologous lactonase gene.

本发明的第三目的是提供一种贝莱斯芽孢杆菌AiiA-同源内酯酶基因的重组表达载体、细胞系、工程菌或宿主菌。The third object of the present invention is to provide a recombinant expression vector, cell line, engineering bacterium or host bacterium of the Bacillus velaisi AiiA-homologous lactonase gene.

本发明的第四目的是提供一种贝莱斯芽孢杆菌AiiA-同源内酯酶基因的重组菌株。The fourth object of the present invention is to provide a recombinant strain of Bacillus velaisi AiiA-homologous lactonase gene.

本发明的第五目的是提供一种制备贝莱斯芽孢杆菌AiiA-同源内酯酶的方法。The fifth object of the present invention is to provide a method for preparing Bacillus velaisi AiiA-homologous lactonase.

本发明的第六目的是提供上述贝莱斯芽孢杆菌AiiA-同源内酯酶在生活用水处理中的应用。The sixth object of the present invention is to provide the application of the above-mentioned Bacillus Velez AiiA-homologous lactonase in domestic water treatment.

为了达到上述目的,本发明采用如下技术方案:In order to achieve the above object, the present invention adopts following technical scheme:

本发明提供一种贝莱斯芽孢杆菌AiiA-同源内酯酶,被命名为AiiADH82,来源于贝莱斯芽孢杆菌DH82菌株,所述贝莱斯芽孢杆菌AiiA-同源内酯酶是由序列表SEQ ID NO.1所示的氨基酸序列组成的蛋白质。The present invention provides a kind of Bacillus Velez AiiA-homologous lactonase, named after AiiA DH82 , derived from Bacillus Velez DH82 bacterial strain, said Bacillus Velez AiiA-homologous lactonase is produced by A protein composed of the amino acid sequence shown in the sequence listing SEQ ID NO.1.

该酶由250个氨基酸组成,约28.10kDa,等势点位于pH5.34,最适温度为18℃,最适pH值为7。该酶没有没有跨膜信号肽,属于细胞质酶,一种亲水性蛋白。含有两个锌离子结合结构域(LactonaseB,Metallo-beta-Lactonase超家族),具有内酰胺酶活性。The enzyme is composed of 250 amino acids, about 28.10kDa, the isopotential point is at pH5.34, the optimum temperature is 18°C, and the optimum pH value is 7. The enzyme has no transmembrane signal peptide, belongs to cytoplasmic enzyme, and is a kind of hydrophilic protein. Contains two zinc ion binding domains (LactonaseB, Metallo-beta-Lactonase superfamily), with lactamase activity.

本发明还提供了编码上述内酯酶的基因。本发明通过PCR的方法克隆了编码上述内酯酶的基因,全长为753bp,其核苷酸序列如SEQ ID NO.2所示。The present invention also provides the gene encoding the above-mentioned lactonase. The present invention clones the gene encoding the above-mentioned lactonase by PCR method, the full length is 753bp, and its nucleotide sequence is shown in SEQ ID NO.2.

本发明还提供了包含上述内酯酶基因的重组载体,优选为pET28a载体。将本发明的内酯酶基因插入到表达载体合适的限制性酶切位点之间,使其核苷酸序列可操作的与表达调控序列相连接。作为本发明的一个最优选的实施方案,优选为将蛋白酶基因插入到质粒pET28a载体上的NdeI和XhoI限制性酶切位点之间,使该核苷酸序列位于T7启动子的下游并受其调控,得到重组质粒pET28a-AiiADH82The present invention also provides a recombinant vector comprising the above-mentioned lactonase gene, preferably a pET28a vector. The lactonase gene of the present invention is inserted between suitable restriction sites of the expression vector, so that its nucleotide sequence is operably linked with the expression control sequence. As a most preferred embodiment of the present invention, it is preferred that the protease gene is inserted between the NdeI and XhoI restriction enzyme sites on the plasmid pET28a carrier, so that the nucleotide sequence is located downstream of the T7 promoter and is protected by it. Regulated, the recombinant plasmid pET28a-AiiA DH82 was obtained.

本发明还提供了包含上述内酯酶基因的重组菌体,优选为大肠杆菌BL21-AiiADH82The present invention also provides a recombinant bacterium comprising the above-mentioned lactonase gene, preferably Escherichia coli BL21-AiiA DH82 .

本发明还提供了一种制备上述内酯酶的方法,包括以下步骤:The present invention also provides a method for preparing the above-mentioned lactonase, comprising the following steps:

S1.以上述重组表达载体转化工程菌,得重组菌株;S1. Transform engineering bacteria with the above-mentioned recombinant expression vector to obtain recombinant strains;

S2.培养重组菌株,诱导重组蛋白酶的表达;以及S2. Cultivate the recombinant strain and induce the expression of the recombinant protease; and

S3.回收并纯化所表达的贝莱斯芽孢杆菌AiiA-同源内酯酶。S3. Recovering and purifying the expressed Bacillus velei AiiA-homologous lactonase.

本发明还提供了上述内酯酶在生活用水处理中的应用。The present invention also provides the application of the above-mentioned lactonase in domestic water treatment.

本发明与现有技术相比,具有以下突出优点:Compared with the prior art, the present invention has the following outstanding advantages:

本发明从贝莱斯芽孢杆菌DH82菌株中克隆得到AiiA-同源内酯酶基因,其编码的AiiA-同源内酯酶具有如下优点:AiiADH82能有效降解AHL,显著抑制铜绿假单胞菌的早期增殖、生物膜形成和毒力因子释放,能够防治生活用水微生物污染。微滤工艺中,使用这种具有生物活性、无污染、非抗性、无毒的酶作为替代品,是考虑食品安全和质量控制的生活用水处理更为合理的策略。The present invention clones the AiiA-homologous lactonase gene from the Bacillus velei DH82 strain, and the AiiA-homologous lactonase gene encoded by it has the following advantages: AiiA DH82 can effectively degrade AHL and significantly inhibit Pseudomonas aeruginosa The early proliferation, biofilm formation and release of virulence factors can prevent and control microbial pollution of domestic water. Using this bioactive, non-polluting, non-resistant, non-toxic enzyme as a substitute in the microfiltration process is a more reasonable strategy for domestic water treatment considering food safety and quality control.

附图说明Description of drawings

下面结合附图表和具体实施例对本发明作进一步的说明。The present invention will be further described below in conjunction with the accompanying drawings and specific embodiments.

图1为贝莱斯芽孢杆菌AiiA-同源内酯酶的最适温度Figure 1 is the optimal temperature of Bacillus velei AiiA-homologous lactonase

图2为贝莱斯芽孢杆菌AiiA-同源内酯酶的最适PH值Figure 2 is the optimal pH value of Bacillus velei AiiA-homologous lactonase

图3为贝莱斯芽孢杆菌AiiA-同源内酯酶生物信息学分析与蛋白质纯化。其中:A组:AiiADH82的预测3D结构。Fig. 3 is the bioinformatics analysis and protein purification of Bacillus velaisi AiiA-homologous lactonase. Among them: Panel A: predicted 3D structure of AiiA DH82 .

B组:AiiADH82酶制剂的SDS-PAGE分析。Panel B: SDS-PAGE analysis of AiiA DH82 enzyme preparation.

第一道:蛋白质标记;The first line: protein labeling;

第二道:非负载pET28a载体的提取;The second road: extraction of non-loaded pET28a vector;

第三道:粗的AiiADH82酶提取;The third way: crude AiiA DH82 enzyme extraction;

第四道:纯化的AiiADH82酶提取。The fourth track: extraction of purified AiiA DH82 enzyme.

凝胶中的靶蛋白条带用红色框标记。Target protein bands in the gel are marked with red boxes.

图4为贝莱斯芽孢杆菌AiiA-同源内酯酶对AHLS降解的活性。Figure 4 shows the activity of Bacillus veleisi AiiA-homologous lactonase on the degradation of AHLS.

其中:通过报告操纵子(LuxR-PluxI-lacO-RFP)的相对荧光强度测定AiiADH82的降解活性。实验组加入分别用AiiADH82处理的AHLs(黄色的C6-HSL和青色的3-O-C12-HSL),与AIIA3DHB作为阳性对照相比,未处理的AHLs的对照检查(CK。统计学分析结果以标记为*的显着性差异(p值显著差异<0.01标记为***,0.01<p值显著差异为0.05标记为**)。Wherein: the degradation activity of AiiA DH82 is determined by the relative fluorescence intensity of the reporter operon (LuxR-P luxI-lacO -RFP). AHLs (yellow C6-HSL and cyan 3-O-C12-HSL) treated with AiiA DH82 were added to the experimental group, compared with AIIA3DHB as a positive control, the control check of untreated AHLs (CK. Results of statistical analysis Significant differences marked with * (significant difference of p-value<0.01 is marked as ***, significant difference of 0.01<p-value of 0.05 is marked as **).

图5为贝莱斯芽孢杆菌AiiA-同源内酯酶对铜绿假单胞菌的细菌阻断作用。Figure 5 shows the bacterial blocking effect of Bacillus velei AiiA-homologous lactonase on Pseudomonas aeruginosa.

将1.5mg/mL的AiiADH82接种于细菌培养液中进行处理,分别在600nm、580nm、520nm和620nm处用微板测定细菌密度、生长曲线、生物膜积累、绿脓素和鼠李糖脂的释放量。1.5mg/mL AiiA DH82 was inoculated in the bacterial culture solution for treatment, and the bacterial density, growth curve, biofilm accumulation, pyocyanin and rhamnolipid were measured by microplate at 600nm, 580nm, 520nm and 620nm, respectively. amount released.

(A)铜绿假单胞菌生长曲线(红色为酶处理菌培养,黑色为阴性对照);(A) Growth curve of Pseudomonas aeruginosa (red is enzyme-treated bacteria culture, black is negative control);

(B)铜绿假单胞菌形成的生物膜(浅黄色为酶处理生物膜,黄色为未处理生物膜,橙色为添加AHLs生物膜);(B) Biofilm formed by Pseudomonas aeruginosa (light yellow is enzyme-treated biofilm, yellow is untreated biofilm, orange is biofilm added with AHLs);

(C)释放的花青素和(D)释放的鼠李糖脂(酶处理轻青色细菌培养,未处理青色细菌培养,海军中添加AHLs细菌培养)。(C) Released anthocyanins and (D) released rhamnolipids (enzyme-treated light cyan bacterial culture, untreated cyan bacterial culture, navy supplemented with AHLs bacterial culture).

误差条用于来确定标准偏差。统计分析结果以显著性差异(用*表示)(p<0.01的显著性差异标记为***,0.01<p<0.05的显著差异标记为**)。Error bars are used to determine standard deviation. Statistical analysis results are marked with significant difference (indicated by *) (significant difference of p<0.01 is marked as ***, significant difference of 0.01<p<0.05 is marked as **).

图6为贝莱斯芽孢杆菌AiiA-同源内酯酶对铜绿假单胞菌的防污性能。Fig. 6 shows the antifouling performance of Bacillus velaisi AiiA-homologous lactonase on Pseudomonas aeruginosa.

1.5mg/mL AiiADH82与细菌培养液混合,连续泵送0.22μm PVDF滤膜3天。1.5mg/mL AiiA DH82 was mixed with bacterial culture solution and pumped continuously through 0.22μm PVDF filter membrane for 3 days.

A组:滤膜图片。Panel A: Pictures of filter membranes.

B组:处理后生物膜和渗透性。Panel B: Biofilm and permeability after treatment.

通过每分钟流经处理过的PVDF滤膜的无菌水流量(g/min)来确定渗透性。在600nm处用紫外吸光度法测定生物膜生物量。误差棒表示标准差。Permeability was determined by the flow rate (g/min) of sterile water through the treated PVDF membrane per minute. Biofilm biomass was measured by UV absorbance at 600 nm. Error bars represent standard deviation.

C组:PVDF膜过滤3天后生物量积累的扫描电镜图像。Panel C: SEM images of biomass accumulation after PVDF membrane filtration for 3 days.

(a)放大1千倍下的新PVDF膜;(a) New PVDF membrane under 1000X magnification;

(b)放大1千倍下的AiiADH82处理的膜;(b) AiiA DH82- treated membrane at 1 kilofold magnification;

(c)放大1千倍下的未处理膜;(c) Untreated membrane under 1000X magnification;

(d)放大1.5万倍下的新PVDF膜;(d) The new PVDF membrane at 15,000 times magnification;

(e)放大1.5万倍下的AiiADH82处理的膜;(e) AiiA DH82- treated membrane at 15,000X magnification;

(f)放大1.5万倍下的未处理膜。(f) Untreated membrane at 15,000X magnification.

具体实施方式Detailed ways

试验材料和试剂Test materials and reagents

1、菌株及载体1. Strains and vectors

贝莱斯芽孢杆菌DH82菌株(GenBank:MK203035)是从西太平洋雅浦海沟6000米深处的海水样品中分离到的,由中国厦门第三海洋研究所提供。Bacillus Velez DH82 strain (GenBank: MK203035) was isolated from seawater samples at a depth of 6,000 meters in the Yap Trench in the Western Pacific Ocean, provided by the Third Institute of Oceanography, Xiamen, China.

铜绿假单胞菌PAO1由厦门大学(厦门)提供。Pseudomonas aeruginosa PAO1 was provided by Xiamen University (Xiamen).

大肠杆菌DH5α和BL21(DE3)活性细胞购自Transgen(中国北京)。Escherichia coli DH5α and BL21(DE3) viable cells were purchased from Transgen (Beijing, China).

2、酶类和其他试剂2. Enzymes and other reagents

异丙基-β-D-硫代半乳糖苷(IPTG)和卡那霉素的活性细胞购自Transgen(中国北京)Active cells with isopropyl-β-D-thiogalactoside (IPTG) and kanamycin were purchased from Transgen (Beijing, China)

限制性内切酶和连接酶购自大连高川生物技术有限公司。Restriction enzymes and ligases were purchased from Dalian Gaochuan Biotechnology Co., Ltd.

质粒提取小型试剂盒(Cat.GMK5999)和凝胶提取试剂盒(Cat.D2500-02)购自Promega。Plasmid Extraction Mini Kit (Cat.GMK5999) and Gel Extraction Kit (Cat.D2500-02) were purchased from Promega.

N-(β-酮己基)-DL高丝氨酸内酯(C6-(L)-HSL,Cat.K3255)和(3-氧代癸酰基)-L-高丝氨酸内酯(3-氧代-C12-(L)-HSL,Cat.09139)购自美国Sigma Aldrich公司。N-(β-ketohexyl)-DL homoserine lactone (C6-(L)-HSL, Cat.K3255) and (3-oxodecanoyl)-L-homoserine lactone (3-oxo-C12 -(L)-HSL, Cat.09139) was purchased from Sigma Aldrich, USA.

苏云金芽孢杆菌(GenBank:AY943832)的N-酰基高丝氨酸内酯水解酶(PDB:3DHB)由厦门大学(厦门)提供。N-acyl homoserine lactone hydrolase (PDB: 3DHB) of Bacillus thuringiensis (GenBank: AY943832) was provided by Xiamen University (Xiamen).

LuxR-PluxI-lacO-RFP的AHL报告操纵子由厦门大学(厦门)提供。The AHL reporter operon of LuxR-P luxI-lacO -RFP was provided by Xiamen University (Xiamen).

所有菌株均在Luria Bertani(LB)培养基中培养。All strains were cultured in Luria Bertani (LB) medium.

下面结合实施方式对本发明进一步说明,应理解的是,这些实施例仅用于例证的目的,并不限制本发明的保护范围。The present invention will be further described below in conjunction with the embodiments. It should be understood that these examples are only for the purpose of illustration, and do not limit the protection scope of the present invention.

说明:以下实施例中未作具体说明的分子生物学实验方法,均参照《分子克隆实验指南》(第三版)J.萨姆布鲁克一书中所列的具体方法进行,或者按照试剂盒和产品说明书进行。Explanation: For the molecular biology experimental methods not specifically described in the following examples, all refer to the specific methods listed in the book "Molecular Cloning Experiment Guide" (Third Edition) J. Sambrook, or follow the kit and product manual.

所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。The reagents or instruments used were not indicated by the manufacturer, and they were all conventional products that could be purchased from the market.

实施例1贝莱斯芽孢杆菌AiiA-同源内酯酶基因的克隆Cloning of Example 1 Bacillus Veles AiiA-Homologous Lactonase Gene

(1)贝莱斯芽孢杆菌基因组DNA的提取(1) Extraction of Bacillus Velez genome DNA

贝莱斯芽孢杆菌培养物在37℃下孵育,180rpm摇动12小时,8000rpm离心10min,得到细菌颗粒。用CTAB法从颗粒中提取DH82菌株基因组DNA 100ng。The culture of Bacillus Velez was incubated at 37°C, shaken at 180rpm for 12 hours, and centrifuged at 8000rpm for 10min to obtain bacterial pellets. 100ng of genomic DNA of DH82 strain was extracted from the particles by CTAB method.

(2)贝莱斯芽孢杆菌AiiA-同源内酯酶基因的克隆(2) Cloning of Bacillus Velez AiiA-homologous lactonase gene

用PCR方法从基因组DNA中扩增出aiiADH82的序列The sequence of aiiA DH82 was amplified from genomic DNA by PCR method

PCR引物由Sangon生物技术(上海)有限公司合成合成。PCR primers were synthesized by Sangon Biotechnology (Shanghai) Co., Ltd.

引物序列为:The primer sequences are:

正向引物aiiA-F:5′-ATGACAGTAAAGAAGCTTTATTTCGTCC-3′;Forward primer aiiA-F: 5′-ATGACAGTAAAGAAAGCTTTATTTCGTCC-3′;

反向引物aiiA-R:5′-TTATATATATTCGAACACTTTACATCCCC-3′。Reverse primer aiiA-R: 5'-TTATATATATTCGAACACTTTTACATCCCC-3'.

按照Takara PrimeSTAR试剂盒操作说明,以贝莱斯特芽孢杆菌DH82基因组DNA(100ng)为模板。According to the Takara PrimeSTAR kit operating instructions, the Bacillus beilesi DH82 genomic DNA (100ng) was used as a template.

PCR扩增程序:98℃预变性10s;98℃变性10s,58℃退火5s,72℃延伸5s,进行32个循环;最后72℃延伸10s。PCR产物利用1%琼脂糖凝胶电泳检测,回收纯化片段长度约750bp的阳性产物。PCR amplification program: pre-denaturation at 98°C for 10s; denaturation at 98°C for 10s, annealing at 58°C for 5s, extension at 72°C for 5s, and 32 cycles; final extension at 72°C for 10s. The PCR product was detected by 1% agarose gel electrophoresis, and a positive product with a purified fragment length of about 750 bp was recovered.

3)序列测定3) Sequence determination

PCR产物纯化后,送厦门铂瑞生物科技有限公司进行序列测定,其序列如下(如SEQID NO:2所示):After the PCR product was purified, it was sent to Xiamen Platinum Biotechnology Co., Ltd. for sequence determination. The sequence is as follows (as shown in SEQID NO: 2):

ATGACAGTAAAGAAGCTTTATTTCATCCCAGCAGGTCGTTGTATGTTAGATCAATCTTCTGTTAATAGTACACTCACAGCGGGGAATTTATTGAACTTACCTGTATGGTGTTATCTTTTGGAGACAGAAGAGGGGCCTATTTTAGTAGATACAGGTATGCCAGAAAGTGCGGTTCATAATGAAAATTTATTTGAAGGGACATTTGCAGAGGGACAGATTTTGCC GAAAATGACTGAAGAAGATAGAATCGTAACTATTTTAAAACGTGTAGGATATAAGCCGGAAGACCTTCTATATATTATTAGTTCTCACTTGCATTTTGATCATGCAGGAGGAAATGGTGCTTTTTCGAATACGCCAATCATTATACAGCGTGCTGAATATGAGGCGGCACAATATAGGGAGGAATATTTGAAAGAGTGTATACTGCCGAATTTAAACTATAAAATTATTGAAGGTGATTATGAAGTGGTACCTGGTGTTCAGTTATTGTATACACCAGGACATTCCCCAGGGCATCAGTCATTACTAATTGAGACGGAAAAATCTGGTCTTGTATTATTAACGATTGATGCATCTTATACGAAAGAGAATTTTGAAGGTGAAGTGCCGTTTGCGGGGTTTGATTCGGAATTAGCCTTATCTTCAATTAAACGTTTAAAAGAAGTTGTGATGAAAGAGAAACCGATTGTTTTCTTTGGACATGATATAGAACAGGAAAAGGGATGTAAAGTGTTCCCTGAATATATATAAATGACAGTAAAGAAAGCTTTATTTCATCCCAGCAGGTCGTTGTATGTTAGATCAATCTTCTGTTAATAGTACACTCACAGCGGGGAATTTATTGAACTTACCTGTATGGTGTTATCTTTTGGAGACAGAAGAGGGGCCTATTTTAGTAGATACAGGTATGCCAGAAAGTGCGGTTCATAATGAAAATTTATTTGAAGGGACATTTGCAGAGGGACAGATTTTGCCGAAAGTGA GTAGGATATAAGCCGGAAGACCTTCTATATATTATTAGTTCTCACTTGCATTTTGATCATGCAGGAGGAAATGGTGCTTTTTCGAATACGCCAATCATTATACAGCGTGCTGAATATGAGGCGGCACAATAGGGAGGAATATTTGAAAGAGTGTATACTGCCGAATTTAAACTATAAAATTATTGAAGGTGATTATGAAGTGGTACCTGGATACCCATTGA GACGGAAAAAATCTGGTCTTGTATTATTAACGATTGATGCATCTTATACGAAAGAGAATTTTGAAGGTGAAGTGCCGTTTGCGGGGTTTGATTCGGAATTAGCCTTATCTTCAATTAAACGTTTAAAAAGAAGTTGTGATGAAAGAGAAACCGATTGTTTTCTTTGGACATGATATAGAACAGGAAAAGGGATGTAAAGTGTTCCCTGAATATATAA

实施例2贝莱斯芽孢杆菌AiiA-同源内酯酶工程菌的构建Example 2 Construction of Bacillus Velez AiiA-Homologous Lactonase Engineering Bacteria

分别用限制性内切酶NdeI和XhoI消化PCR产物,然后用Takara连接试剂盒(T4连接酶)在pET28a载体上的多个克隆位点之间连接。表达克隆分别由T7启动子驱动,质粒上的His标记编码序列将组氨酸编码到靶蛋白的N端。阳性克隆在大肠杆菌DH5α中扩增,转移到大肠杆菌BL21中进行蛋白表达。The PCR products were digested with restriction endonucleases NdeI and XhoI, respectively, and then ligated between multiple cloning sites on the pET28a vector with Takara ligation kit (T4 ligase). Expression cloning is driven by T7 promoter respectively, and the His tag coding sequence on the plasmid encodes histidine to the N-terminus of the target protein. Positive clones were amplified in Escherichia coli DH5α and transferred to Escherichia coli BL21 for protein expression.

实施例3贝莱斯芽孢杆菌AiiA-同源内酯酶的制备The preparation of embodiment 3 Veles bacillus AiiA-homologous lactonase

3小时后将0.4mM IPTG接种到细菌培养物中诱导AiiADH82的表达,培养20小时后收获细菌集团颗粒,用溶解缓冲液[300mM NaCl,50mM NaH2PO4(pH 7.4)]重悬,然后用咪唑洗脱缓冲液[300mM NaCl,200mM咪唑,50mM NaH2PO4(pH 7.4)]洗涤。采用高亲和力NI-NTA层析纯化目的蛋白。纯化后的蛋白经SDS-PAGE进一步分析。After 3 hours, 0.4mM IPTG was inoculated into the bacterial culture to induce the expression of AiiA DH82 . After 20 hours of cultivation, the bacterial population particles were harvested, resuspended with lysis buffer [300mM NaCl, 50mM NaH 2 PO4 (pH 7.4)], and then used Wash with imidazole elution buffer [300 mM NaCl, 200 mM imidazole, 50 mM NaH 2 PO4 (pH 7.4)]. The target protein was purified by high-affinity NI-NTA chromatography. The purified protein was further analyzed by SDS-PAGE.

实施例4贝莱斯芽孢杆菌AiiA-同源内酯酶部分性质分析Example 4 Partial Property Analysis of Bacillus Velez AiiA-Homologous Lactonase

(1)AiiADH82的生物信息学分析与表达(1) Bioinformatics analysis and expression of AiiA DH82

利用NCBI-BLAST软件对得到的序列进行分析,并利用MEGA7.0软件采用泊松校正法计算最大似然树。采用瑞士模型模拟酶的三维结构(https://swissmodel.expasy.org/).利用TMHMM2.0(https://services.healthtech.dtu.dk/service.php?Tmhmm-2.0).分析了包括智能域(http://smart.embl-heidelberg.de/)在内的生物信息学信息。The obtained sequences were analyzed by NCBI-BLAST software, and the maximum likelihood tree was calculated by Poisson correction method by MEGA7.0 software. The three-dimensional structure of the enzyme was simulated using the Swiss model (https://swissmodel.expasy.org/). Using TMHMM2.0 (https://services.healthtech.dtu.dk/service.php?Tmhmm-2.0), the analysis included Bioinformatics information including Smart Domain (http://smart.embl-heidelberg.de/).

在PH值为7.5的测酶活力体系中,在温度分别为18℃、25℃、37℃、45℃、55℃、65℃中保温45min,加入适量的酶液,以AHL为底物。以反应的温度对酶活力作图(图1),求得该酶催化反应的最适温度为18℃。In the enzyme activity measurement system with a pH value of 7.5, the temperature was 18°C, 25°C, 37°C, 45°C, 55°C, and 65°C for 45 minutes, and an appropriate amount of enzyme solution was added, with AHL as the substrate. The temperature of the reaction was plotted against the enzyme activity (Figure 1), and the optimum temperature for the enzyme-catalyzed reaction was found to be 18°C.

在28℃的测活体系中,改变磷酸盐缓冲液的PH值分别为2、4、6、7、8,测定PH对蛋白酶催化的酶活力的影响,以酶活力降解能力作图(图2)。由图可知该酶催化反应的最适PH值为7。In the activity measurement system at 28°C, the pH values of the phosphate buffer were changed to 2, 4, 6, 7, and 8 respectively, and the influence of pH on the enzyme activity catalyzed by protease was measured, and the degradation ability of the enzyme activity was plotted (Figure 2 ). It can be seen from the figure that the optimum pH value of the enzyme-catalyzed reaction is 7.

AiiADH82由250个氨基酸组成,大小约为28.10kDa,其等势点位于pH5.34。在氨基酸残基中,谷氨酸(Glu)、甘氨酸(Gly)和亮氨酸(Leu)的含量较高,超过总组分的8%。亲水性(GRAVY)的平均值为-0.209,表明AIIADH82是一种亲水性蛋白。预测结果还显示AiiADH82上没有跨膜信号肽,表明AIIADH82属于细胞质酶。与其他已知的AHL-Lactonase一样,AiiADH82含有两个锌结合结构域(LactonaseB,Metallo-beta-Lactonase超家族),具有内酰胺酶活性。对酶结构的三维建模进行了模拟,如图1所示。在0.1mMIPT G诱导下,在18℃孵育20h,用Ni2亲和层析从细菌萃取中提取工程AiiADH82的靶蛋白,如图3B组所示。浓度为15mg/mL。AiiADH82氨基酸序列如下(如SEQ ID NO:1所示):AiiA DH82 consists of 250 amino acids, its size is about 28.10kDa, and its isopotential point is at pH5.34. Among amino acid residues, the contents of glutamic acid (Glu), glycine (Gly) and leucine (Leu) are relatively high, exceeding 8% of the total composition. The average value of hydrophilicity (GRAVY) was -0.209, indicating that AIIA DH82 is a hydrophilic protein. The prediction results also showed that there was no transmembrane signal peptide on AiiA DH82 , indicating that AIIA DH82 was a cytoplasmic enzyme. Like other known AHL-Lactonases, AiiA DH82 contains two zinc-binding domains (LactonaseB, Metallo-beta-Lactonase superfamily) with lactamase activity. Three-dimensional modeling of the enzyme structure was simulated, as shown in Figure 1. Induced by 0.1 mMIPT G and incubated at 18°C for 20 h, the target protein of engineered AiiA DH82 was extracted from bacterial extracts by Ni2 affinity chromatography, as shown in Figure 3B panel. The concentration is 15mg/mL. The amino acid sequence of AiiA DH82 is as follows (as shown in SEQ ID NO: 1):

MTVKKLYFIPAGRCMLDQSSVNSTLTAGNLLNLPVWCYLLETEEGPILVDTGMPESAVHNENLFEGTFAEGQILPKMTEEDRIVTILKRVGYKPEDLLYIISSHLHFDHAGGNGAFSNTPIIIQRAEYEAAQYREEYLKECILPNLNYKIIEGDYEVVPGVQLLYTPGHSPGHQSLLIETEKSGLVLLTIDASYTKENFEGEVPFAGFDSELALSSIKRLKEVVMKEKPIVFFGHDIEQEKGCKVFPEYIMTVKKLYFIPAGRCMLDQSSVNSTLTAGNLLNLPVWCYLLETEEGPILVDTGMPESAVHNENLFEGTFAEGQILPKMTEEDRIVTILKRVGYKPEDLLYIISSHLHFDHAGGNGAFSNTPIIIQRAEYASAAQYREEYLKECILPNLNYKIIEGDYEVVPGVQLLYTPGHSPGHSPALVFETIDGFYKSGL SSIKRLKEVVMKEKPIVFFGHDIEQEKGCKVFPEYI

实施例5贝莱斯芽孢杆菌AiiA-同源内酯酶的效果评价Example 5 Evaluation of the effect of Bacillus Velez AiiA-homologous lactonase

(1)AHLs降解能力的体外评价(1) In vitro evaluation of AHLs degradation ability

报告基因operon,LuxR-PluxI-lacO-RFP,用于体外评估游离状态下AHLs的水平。如图4所示,以绿脓杆菌的两个典型QS信号C6-HSL或C12-HSL作为底物,以苏云金芽孢杆菌的AiiA为阳性对照,评估工程化AiiADH82的降解能力。对照组未经处理的AHL作为阴性对照,标记为CK1和CK2。根据比较结果,工程化AiiADH82在对C6-HSL(P=0.00065)和C12-HSL(P=0.021)的降解率与阳性对照有相似的活性,与CKs组差异显著,说明AiiADH82通过影响AHLs水平影响铜绿假单胞菌的QQ能力。The reporter gene operon, LuxR-P luxI-lacO -RFP, was used to assess the level of AHLs in the free state in vitro. As shown in Figure 4, two typical QS signals C6-HSL or C12-HSL of Pseudomonas aeruginosa were used as substrates, and AiiA of Bacillus thuringiensis was used as a positive control to evaluate the degradation ability of engineered AiiA DH82 . Control untreated AHLs served as negative controls, labeled CK1 and CK2. According to the comparison results, the engineered AiiA DH82 had similar activity to the positive control in the degradation rate of C6-HSL (P=0.00065) and C12-HSL (P=0.021), which was significantly different from the CKs group, indicating that AiiA DH82 affected AHLs by Levels affect the QQ ability of Pseudomonas aeruginosa.

(2)对铜绿假单胞菌细菌中断的影响(2) The effect on the interruption of Pseudomonas aeruginosa bacteria

如图5A所示,铜绿假单胞菌PAO1的生长曲线在添加或不添加AiiADH82时没有明显差异,但在延迟期的前2小时,观察到的细菌生长曲线斜率低于没有贝莱斯芽孢杆菌AiiA-同源内酯酶的情况下,说明贝莱斯芽孢杆菌AiiA-同源内酯酶在低细胞密度下抑制了细菌生物量的增加,当细胞密度达到对数期后,贝莱斯芽孢杆菌AiiA-同源内酯酶对细菌没有影响。As shown in Figure 5A, the growth curve of Pseudomonas aeruginosa PAO1 was not significantly different with or without the addition of AiiA DH82 , but during the first 2 h of the lag phase, the observed slope of the bacterial growth curve was lower than that without B. In the case of the Bacillus AiiA-homologous lactonase, it was shown that the Bacillus Velez AiiA-homologous lactonase inhibited the increase in bacterial biomass at low cell densities, and when the cell density reached the logarithmic phase, Velez Bacillus AiiA-homolactonase has no effect on bacteria.

如图5B所示,AiiADH82的存在显著抑制了铜绿假单胞菌PAO1生物膜的形成(P=0.0013),而外源C6-HSL和C12-HSL对细菌生物膜生物量的增加没有显著差异,这表明AiiADH82通过降解细菌培养中的AHLs来阻断铜绿假单胞菌PAO1生物膜的形成,验证了外源AHLs一旦在阈值水平上产生内源性AHLs,不会影响生物量的增加。As shown in Figure 5B, the presence of AiiA DH82 significantly inhibited P. aeruginosa PAO1 biofilm formation (P=0.0013), while exogenous C6-HSL and C12-HSL had no significant difference in the increase of bacterial biofilm biomass , which indicated that AiiA DH82 blocked P. aeruginosa PAO1 biofilm formation by degrading AHLs in bacterial culture, verifying that exogenous AHLs did not affect the biomass increase once endogenous AHLs were produced at a threshold level.

添加AiiADH82后,绿脓杆菌素PAO1和鼠李糖脂的毒力因子表达均显著下调,如图5C和图5D所示,其P值分别为0.0000095和0.015。结果表明,AiiADH82的QQ介导AHLs水平,抑制绿脓杆菌和鼠李糖脂的释放,降低铜绿假单胞菌的致病性和潜在危险性。After adding AiiA DH82 , the expressions of virulence factors of pyocyanin PAO1 and rhamnolipid were both significantly down-regulated, as shown in Figure 5C and Figure 5D, with P values of 0.0000095 and 0.015, respectively. The results showed that the QQ of AiiA DH82 mediated the level of AHLs, inhibited the release of Pseudomonas aeruginosa and rhamnolipids, and reduced the pathogenicity and potential danger of Pseudomonas aeruginosa.

(3)饮水机过滤器上AiiADH82的试验(3) Test of AiiA DH82 on water dispenser filter

用AiiADH82处理铜绿假单胞菌PAO1,测定细菌生物膜的形成和膜的通透性。如图6所示,AiiADH82处理显著抑制了铜绿假单胞菌PAO1在PVDF膜上的污染,实验组用游离AiiADH82溶液处理后仍保持较高的膜透性,而不含AiiADH82的膜在3天后已被铜绿假单胞菌PAO1形成的生物膜阻隔,A板的结晶紫染色和膜通量测定结果以及C板污垢层的SEM图像也证明了AiiADH82的防污能力。结果表明,AiiADH82处理可作为饮水机净水器防污的有效策略。Pseudomonas aeruginosa PAO1 was treated with AiiA DH82 to measure bacterial biofilm formation and membrane permeability. As shown in Figure 6, AiiA DH82 treatment significantly inhibited Pseudomonas aeruginosa PAO1 contamination on PVDF membranes , and the experimental group still maintained high membrane permeability after treatment with free AiiA DH82 solution, while the membranes without The antifouling ability of AiiA DH82 was also demonstrated by the crystal violet staining and membrane flux assay results of panel A and the SEM image of the fouling layer of panel C after 3 days had been blocked by the biofilm formed by Pseudomonas aeruginosa PAO1. The results showed that AiiA DH82 treatment could be used as an effective strategy for antifouling of drinking fountain water purifiers.

综上所述,本研究从西太平洋雅浦海沟6000米深处分离的一株潜在的益生菌贝莱斯特芽孢杆菌DH82株中克隆了AiiA同源内酯酶,并对其进行了异源表达,考察了其QQ降解AHL的能力,水污染的细菌中断与滤膜防污。通过降解AHLs介导病原菌的QS,观察到AiiADH82同源内酯酶对铜绿假单胞菌的早期增殖、生物膜形成和毒力因子释放具有显著的抑制作用,从而抑制了铜绿假单胞菌对饮水机滤器的污染。结果表明,AiiADH82同源内酯酶可作为防治生活用水微生物污染、降低机会致病菌铜绿假单胞菌感染的有效途径。In summary, in this study, the AiiA homologous lactonase was cloned from a potential probiotic strain Bacillus beileici DH82 isolated at a depth of 6,000 m in the Yap Trench in the western Pacific Ocean, and its heterologous Expression, the ability of its QQ to degrade AHL, the bacterial interruption of water pollution and the antifouling of filter membrane were investigated. AiiA DH82 homologous lactonase was observed to inhibit the early proliferation, biofilm formation and virulence factor release of Pseudomonas aeruginosa by degrading AHLs-mediated QS Contamination of water dispenser filters. The results show that AiiA DH82 homologous lactonase can be used as an effective way to prevent and control microbial pollution of domestic water and reduce the infection of opportunistic pathogen Pseudomonas aeruginosa.

虽然以上描述了本发明的具体实施方式,但是熟悉本技术领域的技术人员应当理解,我们所描述的具体的实施例只是说明性的,而不是用于对本发明的范围的限定,熟悉本领域的技术人员在依照本发明的精神所作的等效的修饰以及变化,都应当涵盖在本发明的权利要求所保护的范围内。Although the specific embodiments of the present invention have been described above, those skilled in the art should understand that the specific embodiments we have described are only illustrative, rather than used to limit the scope of the present invention. Equivalent modifications and changes made by skilled personnel in accordance with the spirit of the present invention shall fall within the protection scope of the claims of the present invention.

                         序列表Sequence Listing

<110>  华侨大学<110> Huaqiao University

       福建汇盛生物科技有限公司  Fujian Huisheng Biotechnology Co., Ltd.

<120>  一种贝莱斯芽孢杆菌AiiA-同源内酯酶及其基因与应用<120> A Bacillus Velez AiiA-Homologous Lactonase and Its Gene and Application

<160>  2<160> 2

<170>  SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0

<210>  1<210> 1

<211>  250<211> 250

<212>  PRT<212> PRT

<213>  贝莱斯特芽孢杆菌(Bacillus velezensis)<213> Bacillus velezensis

<400>  1<400> 1

Met Thr Val Lys Lys Leu Tyr Phe Ile Pro Ala Gly Arg Cys Met LeuMet Thr Val Lys Lys Leu Tyr Phe Ile Pro Ala Gly Arg Cys Met Leu

1               5                   10                  151 5 10 15

Asp Gln Ser Ser Val Asn Ser Thr Leu Thr Ala Gly Asn Leu Leu AsnAsp Gln Ser Ser Val Asn Ser Thr Leu Thr Ala Gly Asn Leu Leu Asn

            20                  25                  3020 25 30

Leu Pro Val Trp Cys Tyr Leu Leu Glu Thr Glu Glu Gly Pro Ile LeuLeu Pro Val Trp Cys Tyr Leu Leu Glu Thr Glu Glu Gly Pro Ile Leu

        35                  40                  4535 40 45

Val Asp Thr Gly Met Pro Glu Ser Ala Val His Asn Glu Asn Leu PheVal Asp Thr Gly Met Pro Glu Ser Ala Val His Asn Glu Asn Leu Phe

    50                  55                  6050 55 60

Glu Gly Thr Phe Ala Glu Gly Gln Ile Leu Pro Lys Met Thr Glu GluGlu Gly Thr Phe Ala Glu Gly Gln Ile Leu Pro Lys Met Thr Glu Glu

65                  70                  75                  8065 70 75 80

Asp Arg Ile Val Thr Ile Leu Lys Arg Val Gly Tyr Lys Pro Glu AspAsp Arg Ile Val Thr Ile Leu Lys Arg Val Gly Tyr Lys Pro Glu Asp

                85                  90                  9585 90 95

Leu Leu Tyr Ile Ile Ser Ser His Leu His Phe Asp His Ala Gly GlyLeu Leu Tyr Ile Ile Ser Ser His Leu His Phe Asp His Ala Gly Gly

            100                 105                 110100 105 110

Asn Gly Ala Phe Ser Asn Thr Pro Ile Ile Ile Gln Arg Ala Glu TyrAsn Gly Ala Phe Ser Asn Thr Pro Ile Ile Ile Gln Arg Ala Glu Tyr

        115                 120                 125115 120 125

Glu Ala Ala Gln Tyr Arg Glu Glu Tyr Leu Lys Glu Cys Ile Leu ProGlu Ala Ala Gln Tyr Arg Glu Glu Tyr Leu Lys Glu Cys Ile Leu Pro

    130                 135                 140130 135 140

Asn Leu Asn Tyr Lys Ile Ile Glu Gly Asp Tyr Glu Val Val Pro GlyAsn Leu Asn Tyr Lys Ile Ile Glu Gly Asp Tyr Glu Val Val Pro Gly

145                 150                 155                 160145 150 155 160

Val Gln Leu Leu Tyr Thr Pro Gly His Ser Pro Gly His Gln Ser LeuVal Gln Leu Leu Tyr Thr Pro Gly His Ser Pro Gly His Gln Ser Leu

                165                 170                 175165 170 175

Leu Ile Glu Thr Glu Lys Ser Gly Leu Val Leu Leu Thr Ile Asp AlaLeu Ile Glu Thr Glu Lys Ser Gly Leu Val Leu Leu Thr Ile Asp Ala

            180                 185                 190180 185 190

Ser Tyr Thr Lys Glu Asn Phe Glu Gly Glu Val Pro Phe Ala Gly PheSer Tyr Thr Lys Glu Asn Phe Glu Gly Glu Val Pro Phe Ala Gly Phe

        195                 200                 205195 200 205

Asp Ser Glu Leu Ala Leu Ser Ser Ile Lys Arg Leu Lys Glu Val ValAsp Ser Glu Leu Ala Leu Ser Ser Ile Lys Arg Leu Lys Glu Val Val

    210                 215                 220210 215 220

Met Lys Glu Lys Pro Ile Val Phe Phe Gly His Asp Ile Glu Gln GluMet Lys Glu Lys Pro Ile Val Phe Phe Gly His Asp Ile Glu Gln Glu

225                 230                 235                 240225 230 235 240

Lys Gly Cys Lys Val Phe Pro Glu Tyr IleLys Gly Cys Lys Val Phe Pro Glu Tyr Ile

                245                 250245 250

<210>  2<210> 2

<211>  753<211> 753

<212>  DNA<212> DNA

<213>  贝莱斯特芽孢杆菌(Bacillus velezensis)<213> Bacillus velezensis

<400>  2<400> 2

atgacagtaa agaagcttta tttcatccca gcaggtcgtt gtatgttaga tcaatcttct  60atgacagtaa agaagcttta tttcatccca gcaggtcgtt gtatgttaga tcaatcttct 60

gttaatagta cactcacagc ggggaattta ttgaacttac ctgtatggtg ttatcttttg 120gttaatagta cactcacagc ggggaattta ttgaacttac ctgtatggtg ttatcttttg 120

gagacagaag aggggcctat tttagtagat acaggtatgc cagaaagtgc ggttcataat 180gagacagaag aggggcctat tttagtagat acaggtatgc cagaaagtgc ggttcataat 180

gaaaatttat ttgaagggac atttgcagag ggacagattt tgccgaaaat gactgaagaa 240gaaaatttt ttgaagggac atttgcagag ggacagattt tgccgaaaat gactgaagaa 240

gatagaatcg taactatttt aaaacgtgta ggatataagc cggaagacct tctatatatt 300gatagaatcg taactatttt aaaacgtgta ggatataagc cggaagacct tctatatatt 300

attagttctc acttgcattt tgatcatgca ggaggaaatg gtgctttttc gaatacgcca 360attagttctc acttgcattt tgatcatgca ggaggaaatg gtgctttttc gaatacgcca 360

atcattatac agcgtgctga atatgaggcg gcacaatata gggaggaata tttgaaagag 420atcattatac agcgtgctga atatgaggcg gcacaatata gggaggaata tttgaaagag 420

tgtatactgc cgaatttaaa ctataaaatt attgaaggtg attatgaagt ggtacctggt 480tgtatactgc cgaatttaaa ctataaaatt attgaaggtg attatgaagt ggtacctggt 480

gttcagttat tgtatacacc aggacattcc ccagggcatc agtcattact aattgagacg 540gttcagttat tgtatacacc aggacattcc ccagggcatc agtcattact aattgagacg 540

gaaaaatctg gtcttgtatt attaacgatt gatgcatctt atacgaaaga gaattttgaa 600gaaaaatctg gtcttgtatt attaacgatt gatgcatctt atacgaaaga gaattttgaa 600

ggtgaagtgc cgtttgcggg gtttgattcg gaattagcct tatcttcaat taaacgttta 660ggtgaagtgc cgtttgcggg gtttgattcg gaattagcct tatcttcaat taaacgttta 660

aaagaagttg tgatgaaaga gaaaccgatt gttttctttg gacatgatat agaacaggaa 720aaagaagttg tgatgaaaga gaaaccgatt gttttctttg gacatgatat agaacaggaa 720

aagggatgta aagtgttccc tgaatatata taa                              753aagggatgta aagtgttccc tgaatatata taa 753

Claims (1)

1. The application of the Bacillus belgii AiiA-homologous lactonase in preventing and treating microbial pollution of living water is characterized in that the amino acid sequence of the Bacillus belgii AiiA-homologous lactonase is shown in SEQ ID No. 1.
CN202011499365.5A 2020-12-18 2020-12-18 Bacillus belgii AiiA-homologous lactonase, gene and application thereof Active CN112574972B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011499365.5A CN112574972B (en) 2020-12-18 2020-12-18 Bacillus belgii AiiA-homologous lactonase, gene and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011499365.5A CN112574972B (en) 2020-12-18 2020-12-18 Bacillus belgii AiiA-homologous lactonase, gene and application thereof

Publications (2)

Publication Number Publication Date
CN112574972A CN112574972A (en) 2021-03-30
CN112574972B true CN112574972B (en) 2023-04-07

Family

ID=75136040

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011499365.5A Active CN112574972B (en) 2020-12-18 2020-12-18 Bacillus belgii AiiA-homologous lactonase, gene and application thereof

Country Status (1)

Country Link
CN (1) CN112574972B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112961847B (en) * 2021-04-09 2023-03-31 华侨大学 Application of Bacillus belgii YtnP-homologous lactonase in oral cavity department hygiene disinfection

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101705212A (en) * 2009-12-03 2010-05-12 中国农业科学院饲料研究所 N-acylhomoserine lactonas, production method thereof and special recombinant bacterium
CN101935640A (en) * 2009-07-03 2011-01-05 中国农业大学 Bacterial Quorum Sensing Signal Degrading Enzymes and Their Encoding Genes and Applications
CN102031236A (en) * 2010-11-11 2011-04-27 中国农业科学院饲料研究所 Heat resistant N-acyl-homoserine lactonase AiiA-AI96 as well as coding gene and application thereof
CN111718917A (en) * 2019-03-20 2020-09-29 中国农业大学 A thermostable bacterial quorum sensing signal degradation enzyme and its application

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101935640A (en) * 2009-07-03 2011-01-05 中国农业大学 Bacterial Quorum Sensing Signal Degrading Enzymes and Their Encoding Genes and Applications
CN101705212A (en) * 2009-12-03 2010-05-12 中国农业科学院饲料研究所 N-acylhomoserine lactonas, production method thereof and special recombinant bacterium
CN102031236A (en) * 2010-11-11 2011-04-27 中国农业科学院饲料研究所 Heat resistant N-acyl-homoserine lactonase AiiA-AI96 as well as coding gene and application thereof
CN111718917A (en) * 2019-03-20 2020-09-29 中国农业大学 A thermostable bacterial quorum sensing signal degradation enzyme and its application

Also Published As

Publication number Publication date
CN112574972A (en) 2021-03-30

Similar Documents

Publication Publication Date Title
Jakava-Viljanen et al. Isolation of three new surface layer protein genes (slp) from Lactobacillus brevis ATCC 14869 and characterization of the change in their expression under aerated and anaerobic conditions
CN111647579B (en) Thermolabile exoinulase mutant MutQ23 delta 9 and preparation and application thereof
CN108504644A (en) A kind of low temperature exoinulinase mutant Mut8S of thermal stability improvement
CN106350531A (en) Alginate lyase gene and application thereof
CN105200028A (en) Endolysin derived from Vibrio parahaemolyticus phage and its application
CN103436514A (en) Heat-resistant lyase TSPpgh and polynucleotide coding same
CN112301021B (en) A kind of endolysozyme and perforin composition against the expression of Escherichia coli phage and its preparation method and application
CN102212508A (en) Heat-resisting N-acyl homoserine lactonase AiiA-AIO6 with high specific activity as well as coding gene and application thereof
CN112574972B (en) Bacillus belgii AiiA-homologous lactonase, gene and application thereof
CN107828769B (en) Heat-resistant lyase MMPpgh and polynucleotide for encoding same
CN109207459A (en) A kind of agar-agar enzyme mutant that Fixedpoint mutation modified thermal stability improves
CN110643622A (en) Alginate lyase gene and application thereof
CN107164346B (en) An alkaline salt-tolerant pullulanase PulA and its gene and application
CN111876400B (en) Normal temperature lyase Sly and polynucleotide for coding same
CN106399334B (en) A kind of thermostable mutant aryl sulfatase, gene and application thereof
Wu et al. Constitutive and secretory expression of the AiiA in Pichia pastoris inhibits Amorphophallus konjac soft rot disease
CN105950596A (en) Difunctional acid urease gene and expression and application thereof
KR100844358B1 (en) Mutant DNA polymerases and their genes
CN112481278B (en) Biosensor based on AIP induction and application thereof
CN111676200B (en) A salt-tolerant bacterial laccase, recombinant vector, recombinant bacteria, enzyme preparation and preparation method and application thereof
CN111621489B (en) A heat labile exoinulinase mutant MutQ23Δ6 and its preparation and application
CN112961847B (en) Application of Bacillus belgii YtnP-homologous lactonase in oral cavity department hygiene disinfection
CN112680429B (en) A kind of dehalogenase HadD14 and its encoding gene and application
CN102965357A (en) N-acylhomoserine lactonase QsdA-RH5 with substrate specificity and coding gene and application thereof
CN104402979B (en) A kind of albumen for destroying bacteria cell wall and preparation method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address

Address after: Huaqiao University, 269 Chenghua North Road, Quanzhou, Fujian, 362000

Patentee after: HUAQIAO University

Country or region after: China

Patentee after: Fujian Beaked Whale Biotechnology Co.,Ltd.

Address before: Huaqiao University, 269 Chenghua North Road, Quanzhou, Fujian, 362000

Patentee before: HUAQIAO University

Country or region before: China

Patentee before: Fujian Huisheng Biotechnology Co.,Ltd.

CP03 Change of name, title or address