[go: up one dir, main page]

CN112553123B - 高产甲壳素脱乙酰酶的菌剂组合及其应用 - Google Patents

高产甲壳素脱乙酰酶的菌剂组合及其应用 Download PDF

Info

Publication number
CN112553123B
CN112553123B CN202011574278.1A CN202011574278A CN112553123B CN 112553123 B CN112553123 B CN 112553123B CN 202011574278 A CN202011574278 A CN 202011574278A CN 112553123 B CN112553123 B CN 112553123B
Authority
CN
China
Prior art keywords
fermentation
chitin
chitin deacetylase
rhodococcus
deacetylase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011574278.1A
Other languages
English (en)
Other versions
CN112553123A (zh
Inventor
蔡俊
郭依依
王常高
杜馨
赵泽鑫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hubei University of Technology
Original Assignee
Hubei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hubei University of Technology filed Critical Hubei University of Technology
Priority to CN202011574278.1A priority Critical patent/CN112553123B/zh
Publication of CN112553123A publication Critical patent/CN112553123A/zh
Application granted granted Critical
Publication of CN112553123B publication Critical patent/CN112553123B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/78Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
    • C12N9/80Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5) acting on amide bonds in linear amides (3.5.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y305/00Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5)
    • C12Y305/01Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5) in linear amides (3.5.1)
    • C12Y305/01041Chitin deacetylase (3.5.1.41)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开了一种高产甲壳素脱乙酰酶的菌剂组合,包括红球菌HQcdag(Rhodococcus sp.),保藏编号CCTCC NO:M 2020336,以及蜡状芽孢杆菌CJPE209(Bacillus cereus),保藏编号CCTCC NO:M 2015734。相比红球菌单独发酵,这两株菌通过协同发酵将甲壳素脱乙酰酶的酶活提升了约14倍,且显著缩短了发酵时间。

Description

高产甲壳素脱乙酰酶的菌剂组合及其应用
技术领域
本发明属于微生物发酵技术领域,具体涉及一种高产甲壳素脱乙酰酶的菌剂组合及其应用。
背景技术
甲壳素(C8H13O5N)n,又称几丁质,是存在于各类甲壳动物的外壳及真菌细胞壁中的一种难溶的N-乙酰-D-葡萄糖胺聚合物。甲壳素脱乙酰率达到55%及以上即为壳聚糖,壳聚糖广泛应用于工业(布料、衣物、染料、纸张和水处理等),农业(杀虫剂、植物抗病毒剂),渔业(养鱼饲料、化妆品美容剂、毛发保护、保湿剂等),医疗产业(隐形眼镜、人工皮肤、缝合线、人工透析膜和人工血管等)等领域,尤其在生物医学领域,由于其良好的生物相容性,在组织工程、创伤愈合、生物传感器方面有很好的应用前景。
壳聚糖的制备方法主要有化学法、物理法、发酵法和酶法等。应用最广泛的是化学法,在高温条件下,用强碱溶液浸泡甲壳素脱去乙酰基来制备壳聚糖。化学法制备壳聚糖耗碱量大、污染环境、得到的产品特性不稳定(乙酰度不均匀,分子量变化大,乙酰基所在位置不固定);发酵法即利用发酵工厂的废菌丝体来提取壳聚糖,此方法可综合利用工业废渣,但是所得产物杂质较多,分离纯化步骤较为复杂;物理法主要有微波法和超声波法,耗能高、脱乙酰效果差。酶法制备壳聚糖有望解决上述方法所存在的问题,具有良好的应用前景。
在甲壳素酶法脱乙酰制备壳聚糖的过程中,常用的酶有甲壳素酶、壳聚糖酶、甲壳素脱乙酰酶、几丁二糖酶等。从作用机制来看,甲壳素酶、壳聚糖酶和几丁二糖酶都具有切断糖链分子的作用,只有甲壳素脱乙酰酶是专一性的用于甲壳素脱去乙酰基的酶,它在脱乙酰的过程中,不会切断壳聚糖分子的的糖链。同属甲壳素酶系的其他酶对于甲壳素脱乙酰酶的协同作用尚未报道,但存在可能。
甲壳素脱乙酰酶(chitin deacetylase,E.C.3.5.41,以下简称CDA)可作用于甲壳素及甲壳素的相关衍生物,如甲壳寡糖、羧甲基甲壳素、甲壳素的脂肪族二元醇等,此外甲壳素脱乙酰酶还可作用于不同状态的甲壳素,如胶状甲壳素、粉状甲壳素、无定型甲壳素和晶态甲壳素等。研究发现,甲壳素脱乙酰酶的水解过程大致如下:首先,甲壳素脱乙酰酶随机结合到底物分子链的任一序列上,然后以结合部位的非还原端为起点,沿着该链脱去乙酰基,水解完毕后,与底物解离,然后结合到另一条底物分子链上,开始新一轮的水解。研究发现,作用的底物(分子链长度)对CDA脱乙酰的效果影响很大。Martinou等研究来源于Mucor rouxii的甲壳素脱乙酰酶作用于全水溶性部分N乙酰化壳聚糖时发现,底物为水溶性壳多聚糖(30单位聚体)时,底物的脱乙酰作用位点在三个或三个以上时才能被该酶水解。当作用底物为甲壳寡糖(2~7单位聚体)时,甲壳素脱乙酰酶只对三个及以上的甲壳寡糖底物具有活性。
产甲壳素脱乙酰酶菌株大多为真菌,已在毛霉、根霉、被孢霉、犁头霉、酵母等十几个真菌中检测到,最早由Araki和Ito于1974年在鲁氏毛霉中发现;已知产该酶的细菌不多,有短杆菌、红平红球菌、炭疽菌、枯草芽孢杆菌等。如Kauss等发现的Colletotrichumlindemuthianum菌株可将甲壳素脱乙酰酶分泌到细胞外,从培养液中直接提取,纯蛋白的比活最高达72U/ml;放线菌作为产甲壳素脱乙酰酶菌株,其自身产的抗生素可减少染菌机率,但也可能抑制酶活。王瑶等筛选出的放线菌桔橙小单孢菌可产庆大霉素、罗沙米星等多种抗菌抗生素,具有良好的脱乙酰效果。
产甲壳素脱乙酰酶菌株的选育主要有三种途径:1.人工筛选,SUN等从连云港土样中分离得到一株酶活高达238.89U/ml的红球菌;蔡俊等从实验室保藏的几十株真菌中确定了构巢曲霉和蓝色犁头霉两种产酶能力最强的真菌。2.诱变育种,秦汪艳等以一株海洋来源的丝状真菌(Penicilium janthinellum)1-5-2为出发菌株,经紫外诱变后获得一株高产CDA菌株UV-210S,酶活最高可达16.76U/ml。3.构建基因工程菌,Carole Gauthier等将来源于Rhizopus circinans的三种几丁质脱乙酰酶基因(RC,D2,和13/2)导入到毕赤酵母中表达,发现只有一种重组酶(RC)具有活性,推测可能是由于三种酶蛋白的分泌信号裂解位点不同(RC和I3/2处于较上游),而该位点的错误选择导致后两种重组酶的错误折叠。
目前已报道的文献中,尚未见到协同发酵产甲壳素脱乙酰酶的相关文献。现有的关于甲壳素脱乙酰酶的专利文献主要集中在三个方面:1.使用酶法或微生物发酵法从虾蟹壳或昆虫皮壳等原材料中提取壳聚糖,如CN107653294A公开了一种从虾蟹废料中同时制取虾蟹青素、壳聚糖的方法,是利用枯草芽孢杆菌和氧化葡糖杆菌协同作用加以葡萄糖来发酵虾蟹皮和虾蟹头进行脱盐和脱蛋白质,然后利用嗜热链球菌、嗜酸乳杆菌、保加利亚乳杆菌共生体系发酵一周进行脱钙和脱色,利用甲壳素脱乙酰酶处理甲壳素,用革兰氏阴性菌类志贺邻单胞菌处理得氨基葡萄糖。此法在发酵的过程中无需大量的酸碱加入,减少了环境污染,且实现了对废弃原料的再利用,经济可行。CN101078023B公开了一种从蚕蛹、蝇蛆的皮壳中制取甲壳素/壳聚糖的方法,包括以下步骤:将蚕蛹、蝇蛆的皮壳通过干法或湿法破碎细粉化处理;将得到的细粉体经来自微生物的脂肪酶粗酶液和蛋白酶粗酶液进行共酶解反应,充分脱除蛹皮/蛆皮原料中的脂肪和蛋白质;用两步法脱色;收集脱色后物料,洗涤、干燥后制成甲壳素产品;通过米根霉全细胞固定化生物反应器进行循环脱乙酰反应,得到壳聚糖;用产酸细菌进行液体深层发酵壳聚糖获得高度水溶性的甲壳寡糖。该法利用固定化细胞循环脱乙酰,大幅提高了产品质量和生产效率。2.甲壳素脱乙酰酶菌株的筛选及应用,CN101608177A以虾壳培养土为筛选原材料,用抗真菌药抑制真菌的生长,依次采用平板涂布、平板划线等方法进行纯化,同时用N-对硝基乙酰苯胺(PN)-酪蛋白平板进行CDA活性验证,分离得到能分泌CDA的蜡样芽胞杆菌,并通过液体发酵制备CDA,发酵液上清的CDA活力为0.598-0.912U/ml,该菌株适合于大规模工业发酵,无需加工改造即可应用。此外,产甲壳素脱乙酰酶的其他真菌及细菌的专利文献也有报道。3.甲壳素脱乙酰酶的制备,CN102676485A公开了一种制备甲壳素脱乙酰酶的方法,该方法用短柄梨孢帚霉(Scopulariopsisbrevicaulis)作甲壳素脱乙酰酶产生菌,经活化后将其接入到含有发酵培养基的发酵容器中,使其在pH值为6.5-7.0之间,温度在27-29℃、转速200-240rpm的摇床上发酵90-100小时,发酵液经分离、盐析、纯化得甲壳素脱乙酰酶产品,此方法制备的甲壳素脱乙酰酶每ml发酵液的活力单位最高可达36U。CN101659960A则公开了一种总状毛霉来源甲壳素脱乙酰酶的生物制备方法,包括下列步骤:(a)制备含基因序列如SEQ ID NO.1所述甲壳素脱乙酰酶的重组表达载体;(b)制备含有步骤(a)所述重组表达载体的转化体;(c)表达和纯化甲壳素脱乙酰酶。此发明设计基因特异性简并引物,采用逆转录-聚合酶链式反应和快速扩增cDNA片段末端技术,结合重组DNA的方法,利用已有的原核表达载体,得到了能够产生甲壳素脱乙酰酶的大肠杆菌菌株,为生物法制备甲壳素脱乙酰酶提供了可靠的来源,且大大缩短了生产周期,降低了提取成本,得到高产和高质量的产品酶。
发明内容
由于自然选育的产甲壳素脱乙酰酶菌株产酶量低,多为胞内酶,不易分离纯化,且不易作用于天然甲壳素,因此本发明一方面筛选出一株产甲壳素脱乙酰酶的红球菌HQcdag(Rhodococcus sp.),另一方面发现该菌株与蜡状芽孢杆菌CJPE209(Bacillus cereus)协同发酵可显著提高甲壳素脱乙酰酶的酶活,通过协同发酵方法不仅能高产甲壳素脱乙酰酶,且大大缩短了发酵时间。
为了实现上述目的,本发明采用以下技术方案:
高产甲壳素脱乙酰酶的菌剂组合,包括红球菌HQcdag(Rhodococcus sp.),保藏编号CCTCC NO:M 2020336,以及蜡状芽孢杆菌CJPE209(Bacillus cereus),保藏编号CCTCCNO:M 2015734。
进一步地,为了提高甲壳素脱乙酰酶的酶活,蜡状芽胞杆菌CJPE209和红球菌HQcdag的活菌数比为1~2:1~4;最优的,蜡状芽胞杆菌CJPE209和红球菌HQcdag的活菌数比为1:4。
上述菌剂组合在生产甲壳素脱乙酰酶或降解甲壳素中的应用。在本发明的具体实施例中,优化了红球菌HQcdag和蜡状芽孢杆菌CJPE209协同发酵的最优条件(摇瓶培养),具体为:发酵时间24h,温度35℃,总接种量3%,转速160r/min,装液量50ml(摇瓶为250ml),培养基成分为:酵母浸粉2.5g/L、蛋白胨2.5g/L、胶体甲壳素5g/L、NaCl 5g/L、K2HPO4 1g/L、KH2PO4 1g/L、MgSO4 0.5g/L,该条件下甲壳素脱乙酰酶的酶活为421.4U/ml。
与现有技术相比,本发明具有以下优点及有益效果:
自然选育的产甲壳素脱乙酰酶菌株所产酶多为胞内酶,酶活不高,且对具有致密晶体结构的天然甲壳素降解慢,发酵周期长。本发明采用双菌株协同发酵产甲壳素脱乙酰酶的方法,使酶活由红球菌HQcdag单独发酵的16.37U/mL增加到226.27U/mL,且发酵时间从大多数文献中报道的72h缩短到24h。
附图说明
图1为红球菌HQcdag(Rhodococcus sp.)的生长曲线。
图2为蜡状芽孢杆菌CJPE209(Bacillus cereus)的生长曲线。
图3为蜡状芽孢杆菌CJPE209和红球菌HQcdag种子液配比优化结果。
图4为发酵周期对甲壳素脱乙酰酶酶活的影响。
图5为总接种量对甲壳素脱乙酰酶酶活的影响。
图6为发酵转速对甲壳素脱乙酰酶酶活的影响。
图7为装液量对甲壳素脱乙酰酶酶活的影响。
图8为发酵温度对甲壳素脱乙酰酶酶活的影响。
图9为寡糖标样的HPLC图。
图10为甲壳素粗酶液降解产物的HPLC图。
具体实施方式
以下通过实施例形式对本发明的上述内容再作进一步的详细说明,但不应将此理解为本发明上述主题的范围仅限于以下的实施例,凡基于本发明上述内容所实现的技术均属于本发明的范围。
实施例一:菌种的选育
(1)菌株
红球菌HQcdag(Rhodococcus sp.)
(2)培养基
每1L所述富集培养基含有:NaCl 0.5g、K2HPO4 1g、KH2PO4 1g、MgSO4 0.1g、胶体甲壳素5g,所述液体培养基pH自然;
每1L所述筛选培养基含有:NaCl 0.5g、K2HPO4 1g、KH2PO4 1g、MgSO4 0.1g、胶体甲壳素5g、对硝基乙酰苯胺0.2g、琼脂20g,所述平板固体培养基pH自然;
每1L所述摇瓶上种子培养基含有:蛋白胨10g、牛肉膏3g、氯化钠5g,所述液体培养基pH自然;
每1L所述固体斜面培养基含有:蛋白胨10g、牛肉膏3g、氯化钠5g、琼脂20g,0.1MPa灭菌20min,所述斜面固体培养基pH自然;
每1L所述摇瓶上复筛发酵培养基含有:酵母浸粉2.5g、蛋白胨2.5g、胶体甲壳素5g、NaCl 5g、K2HPO4 1g、KH2PO4 1g、MgSO4 0.5g,所述发酵培养基pH7.0。
(3)实验中所用溶液
无菌生理盐水:取8.5g氯化钠溶于1L的蒸馏水中溶解,0.1MPa灭菌20min。
(4)筛选方法
从小龙虾养殖厂采集土样15份。首先从每份样品中取一定样品,用无菌生理盐水将样品打散;再用富集培养基30℃培养1d;接着用生理盐水梯度稀释成不同的土壤悬液,取0.1ml涂布于筛选平板置37℃条件下,培养2-3d,挑取显色圈大且明显的菌株作为初筛菌株;挑出平板上的单菌落,接入斜面固体培养基保藏备用。
甲壳素脱乙酰酶酶活测定方法:取一支试管,依次加入1ml 200mg/l的对硝基乙酰苯胺溶液,1ml适当浓度的细胞破碎上清液以及50℃预保温的浓度为0.05mol/l的磷酸缓冲溶液3ml,使反应终体积为5ml。于50℃水浴反应30min,沸水浴终止酶促反应,离心,测上清液吸光值(A400)。空白对照体系中添加1ml同样浓度的灭活酶液,测定上清液的吸光值(A0),每个样品对应一个空白。
一个酶活单位(U)确定为:以对硝基乙酰苯胺为底物,45℃下每小时产生1μg对硝基苯胺所需的酶量定义为一个酶活力单位。
酶活力(U/ml)=(A400-A0)×酶液稀释倍数/K×T(K由标准曲线测得,T指酶促反应时间,h)
通过摇瓶复筛发酵试验,获得了一株产甲壳素脱乙酰酶能力较强的红球菌HQcdag(Rhodococcus sp.),现已于2020年7月21日保藏于中国典型培养物保藏中心(保藏地址:中国.武汉.武汉大学),其保藏编号为CCTCC NO:M 2020336。
实施例二:双菌株协同发酵的种子液配比优化
(1)菌株:实例一筛选出的菌种红球菌HQcdag(Rhodococcus sp.)和蜡状芽孢杆菌CJPE209(Bacillus cereus),保藏编号CCTCC NO:M 2015734。
(2)方法步骤:
培养基为种子培养基(蛋白胨10g/L,牛肉膏3g/L,氯化钠5g/L)。培养条件为:自然pH,接种量1%,装液量100ml/300ml,37℃,180r/min。
a.双菌株混合时间的优选试验
分别测定两菌株的生长曲线,如图1和图2所示,找出其对数生长期。
b.双菌株接种量配比的优选实验
生长周期取均处于两菌株生长对数时期的第20h测定活菌数,然后按一定比例(9:1,8:2,7:3,6:4,5:5,4:6,3:7,2:8,1:9,0:10)换算成体积比接入发酵培养基中发酵。结果如图3所示,蜡状芽胞杆菌和红球菌的活菌数比为2:8时,甲壳素脱乙酰酶的酶活最高,为226.27U/ml。
实施例三:双菌株协同发酵的培养条件优化
(1)菌株:实施例一筛选出的菌种红球菌HQcdag(Rhodococcus sp.)和蜡状芽孢杆菌CJPE209(Bacillus cereus),蜡状芽胞杆菌和红球菌的活菌数比为2:8。
(2)方法步骤:
发酵培养基为初始培养基(酵母浸粉2.5g/L、蛋白胨2.5g/L、胶体甲壳素5g/L、NaCl5g/L、K2HPO4 1g/L、KH2PO4 1g/L、MgSO4 0.5g/L)。初始发酵条件为:自然pH,接种量1%,装液量50ml/250ml,37℃,180r/min摇瓶发酵24h。
采用单因素试验考察双菌株协同发酵的发酵周期、总接种量、发酵转速、装液量、发酵温度对甲壳素脱乙酰酶产量的影响。
a.发酵周期的优选试验
其它发酵条件为初始发酵条件,每隔12h取样测量甲壳素脱乙酰酶酶活,确定双菌株协同发酵的最优发酵周期。
由图4可知,当发酵到24h时甲壳素脱乙酰酶的酶活最高,为222.4U/ml,故选择发酵周期为24h。
b.总接种量的优选试验
发酵时间取上述试验确定的最优结果,其它发酵条件为初始发酵条件,总接种量分别为1%、3%、5%、7%、9%时,考察总接种量对双菌株协同发酵产甲壳素脱乙酰酶的影响。
由图5可知,当总接种量为3%时,甲壳素脱乙酰酶的酶活最高,为234.7U/ml,故选择总接种量为3%。
c.发酵转速的优选试验
发酵时间和接种量取上述试验确定的最优结果,其它发酵条件为初始发酵条件,调整发酵转速分别为140r/min、160r/min、180r/min、200r/min和220/min,摇瓶发酵培养后测定甲壳素脱乙酰酶的酶活,考察发酵转速对双菌株协同发酵产甲壳素脱乙酰酶的影响。
由图6可知,当发酵转速为160r/min时,甲壳素脱乙酰酶的酶活达到292.9U/ml,故选择发酵转速为160r/min。
d.发酵摇瓶装液量的优选试验
发酵时间、接种量、转速取上述试验确定的最优结果,其它发酵条件为初始发酵条件,采用250ml摇瓶装液,摇瓶装液量分别为25ml、50ml、75ml、100ml、125ml时,考察装液量对双菌株协同发酵产甲壳素脱乙酰酶的影响。
由图7可知,当摇瓶装液量为50ml(摇瓶体积250ml)时,甲壳素脱乙酰酶的酶活为308.6U/ml,故选择装液量为50ml(摇瓶体积250ml)。
e.发酵温度的优选试验
发酵时间、接种量、转速和装液量取上述试验确定的最优结果,其它发酵条件为初始发酵条件,分别在30℃、35℃、37℃、40℃、45℃摇床中进行发酵培养后测定甲壳素脱乙酰酶酶活,考察温度对双菌株协同发酵产甲壳素脱乙酰酶的影响。
由图8可知,当发酵温度为35℃时,甲壳素脱乙酰酶的酶活最高,为401.28U/ml,故选择发酵温度为35℃。
f.最优培养条件
培养条件为发酵时间24h,温度35℃,总接种量3%,发酵转速160r/min,装液量50ml(摇瓶为250ml);培养基成分为(每1L含):酵母浸粉2.5g、蛋白胨2.5g、胶体甲壳素5g、NaCl 5g、K2HPO4 1g、KH2PO4 1g、MgSO4 0.5g,进行发酵验证试验。发酵后所得发酵液中甲壳素脱乙酰酶酶活为421.4U/ml。
实施例四:甲壳素酶促进红球菌HQcdag产甲壳素脱乙酰酶验证实验
a.蜡状芽胞杆菌发酵产甲壳素酶验证实验
以蜡状芽孢杆菌CJPE209(Bacillus cereus)为发酵菌株;培养条件同实施例三中的最优培养条件,6000r/min离心10min去除沉淀,得到发酵上清液。将适当稀释的酶液0.5mL和1.5mL1.0%的胶体甲壳素(胶体甲壳素溶于0.05mol/LpH7的磷酸缓冲液)混匀,50℃反应30min。反应结束后,沸水浴10min终止反应。加入3mL的DNS溶液,沸水浴10min后立即冷却,用去离子水定容至25mL。以灭活的粗酶液作为空白对照,490nm处测定吸光值,每组三个平行,取平均值。以D-氨基葡萄糖盐酸盐作为标准曲线,计算酶和底物反应的还原糖量。酶活定义:在一定条件下,酶降解底物每分钟产生1μmol还原糖为1U。测得甲壳素酶酶活为1.91U/ml。
b.甲壳素酶酶解产物促进红球菌产脱乙酰酶验证实验
以蜡状芽孢杆菌CJPE209(Bacillus cereus)为发酵菌株,发酵96h离心取上清,即得甲壳素酶粗酶液。分别取3个试管编号为1、2、3,并均加入10ml的0.5%的胶体甲壳素。向试管1中加入3ml甲壳素酶粗酶液,2中加入3ml灭活的甲壳素酶粗酶液,3中加入3ml水,均在30℃孵育72h后分别得到原料1、原料2和原料3。分别配制发酵培养基1(培养基组分为酵母浸粉2.5g/L、蛋白胨2.5g/L、NaCl 5g/L、K2HPO4 1g/L、KH2PO4 1g/L、MgSO4 0.5g/L+原料1),2(培养基组分为酵母浸粉2.5g/L、蛋白胨2.5g/L、NaCl 5g/L、K2HPO4 1g/L、KH2PO4 1g/L、MgSO4 0.5g/L+原料2),3(培养基组分为酵母浸粉2.5g/L、蛋白胨2.5g/L、NaCl 5g/L、K2HPO41g/L、KH2PO4 1g/L、MgSO4 0.5g/L+原料3)用于红球菌HQcdag(Rhodococcus sp.)发酵,培养条件同实施例三中的最优培养条件。发酵24h后测得甲壳素脱乙酰酶的酶活分别为120.35U/ml,18.29U/ml和14.53U/ml。证明甲壳素酶粗酶液处理后的胶体甲壳素可促进红球菌产甲壳素脱乙酰酶。
c.甲壳素酶降解产物分析
取步骤b所制得原料1过0.22μm液相专用有机膜备用。配置1mg/ml浓度的GlcNAc、(GlcNAc)2、(GlcNAc)3、(GlcNAc)4、(GlcNAc)5、(GlcNAc)6标样液。用Prominence LC-20AD(岛津,日本)和4.6mm×250mm氨基液相色谱柱(依利特,中国)检测酶解产物,流动相组成为V(乙腈):V(水)=7:3,检测器选取紫外检测器,波长为195nm,流速为0.5mL/min,柱温30℃,进样量10μL。由图9可见,甲壳素粗酶降解产物在11.36min时出的峰与标样中(GlcNAc)2的出峰时间相近,说明甲壳素酶解产物为(GlcNAc)2

Claims (5)

1.高产甲壳素脱乙酰酶的菌剂组合,其特征在于,包括红球菌HQcdag(Rhodococcussp.),保藏编号CCTCC NO: M 2020336,以及蜡状芽孢杆菌 CJPE209(Bacillus cereus),保藏编号CCTCC NO: M 2015734。
2.根据权利要求1所述的菌剂组合,其特征在于,蜡状芽胞杆菌CJPE209和红球菌HQcdag的活菌数比为1-2:1-4。
3.根据权利要求1或2所述的菌剂组合,其特征在于,蜡状芽胞杆菌CJPE209和红球菌HQcdag的活菌数比为1:4。
4.权利要求1至3中任一项所述的菌剂组合在生产甲壳素脱乙酰酶中的应用。
5.权利要求1至3中任一项所述的菌剂组合在降解甲壳素中的应用。
CN202011574278.1A 2020-12-25 2020-12-25 高产甲壳素脱乙酰酶的菌剂组合及其应用 Active CN112553123B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011574278.1A CN112553123B (zh) 2020-12-25 2020-12-25 高产甲壳素脱乙酰酶的菌剂组合及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011574278.1A CN112553123B (zh) 2020-12-25 2020-12-25 高产甲壳素脱乙酰酶的菌剂组合及其应用

Publications (2)

Publication Number Publication Date
CN112553123A CN112553123A (zh) 2021-03-26
CN112553123B true CN112553123B (zh) 2021-10-15

Family

ID=75033536

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011574278.1A Active CN112553123B (zh) 2020-12-25 2020-12-25 高产甲壳素脱乙酰酶的菌剂组合及其应用

Country Status (1)

Country Link
CN (1) CN112553123B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105820979A (zh) * 2016-04-25 2016-08-03 湖北工业大学 一株羽毛降解菌株及应用
CN108441440A (zh) * 2018-01-25 2018-08-24 山东省农业科学院农产品研究所 一种蜡状芽孢杆菌116及其应用
CN111154747A (zh) * 2020-01-19 2020-05-15 天津科技大学 一种混菌发酵提高几丁质脱乙酰基酶产量的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9267141B2 (en) * 2009-04-24 2016-02-23 The Johns Hopkins University Conversion of chitin into N-acetylglucosamine, glucosamine and bioethanol

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105820979A (zh) * 2016-04-25 2016-08-03 湖北工业大学 一株羽毛降解菌株及应用
CN108441440A (zh) * 2018-01-25 2018-08-24 山东省农业科学院农产品研究所 一种蜡状芽孢杆菌116及其应用
CN111154747A (zh) * 2020-01-19 2020-05-15 天津科技大学 一种混菌发酵提高几丁质脱乙酰基酶产量的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Enhanced Chitin Deacetylase Production Ability of Rhodococcus equi CGMCC14861 by Co-culture Fermentation With Staphylococcus sp. MC7;Qinyuan Ma等;《Front Microbiol.》;20201210;全文 *
响应面法优化芽孢杆菌CJPE209产角蛋白酶发酵培养基的研究;蒋彪 等;《中国酿造》;20121231;第36卷(第5期);76-80 *
蜡状芽孢杆菌几丁质脱乙酰基酶克隆和表达;孙玉英 等;《食品研究与开发》;20161130;第37卷(第21期);151-155 *

Also Published As

Publication number Publication date
CN112553123A (zh) 2021-03-26

Similar Documents

Publication Publication Date Title
JP5455244B2 (ja) 遊離細胞によるガラクトオリゴ糖の製造方法
JP2018503393A (ja) 一種の微生物の発酵によるグルコサミンを生産する菌株及びその方法
EP3730623A1 (en) Small-molecule hyaluronic acid or salt thereof, and preparation method therefor
JP2000513925A (ja) N―アセチル―d―グルコサミンの生産方法
CN109251954B (zh) 一种海参多肽的生产方法
CN110527646A (zh) 热带芽孢杆菌wzz018及其应用
CN114561303B (zh) 一株分泌高性能纤维素酶的里氏木霉工程菌株及其应用
CN110423718B (zh) 利用芽孢杆菌发酵液生产木霉菌厚垣孢子的方法及应用
CN1932005A (zh) 人苍白杆菌及其在降解植物秸秆或重要酶的制备中的应用
Shokatayeva et al. Bacterial cellulose and pullulan from simple and low cost production media
CN113652379B (zh) 一种芽孢杆菌胞壁解聚giec及其应用
CN112553123B (zh) 高产甲壳素脱乙酰酶的菌剂组合及其应用
CN112662572B (zh) 一种高产壳聚糖酶的菌株及其应用
JP6202716B2 (ja) バイオマスの糖化方法
CN108239613B (zh) 一种饲料类芽孢杆菌、其培养基及在制备浒苔多糖降解酶中的应用
CN105087427B (zh) 产琼胶酶的需钠弧菌及其应用
CN115340964B (zh) 一种具有膨胀素活性的芽孢菌属菌株及其应用
CN112458022B (zh) 高产几丁质脱乙酰酶的地衣芽孢杆菌Bl22及其相关产品和应用
CN101067117A (zh) 基因重组毕赤酵母生产耐高温木聚糖酶的方法
Harvinda et al. Production, purification and characterization of chitinase from Micromonospora sp. AR17
CN100360038C (zh) 一种利用废弃菌渣生产微生物杀虫剂和壳聚糖酶的方法
CN104059902B (zh) β‑淀粉酶‑海藻糖合酶融合酶及其表达基因与应用
JP2011244756A (ja) セルロース分解促進剤及びその用途
Islam et al. Synthesis of bacterial cellulose sheets from alternative natural and waste resources
CN109652474A (zh) 生物催化丙烯腈水合反应的方法、产腈菌株的灭活方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant