CN112550664B - A variable-camber wing structure driven by shape memory alloys - Google Patents
A variable-camber wing structure driven by shape memory alloys Download PDFInfo
- Publication number
- CN112550664B CN112550664B CN202011450201.3A CN202011450201A CN112550664B CN 112550664 B CN112550664 B CN 112550664B CN 202011450201 A CN202011450201 A CN 202011450201A CN 112550664 B CN112550664 B CN 112550664B
- Authority
- CN
- China
- Prior art keywords
- wing
- rigid section
- trailing edge
- flexible
- shape memory
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C3/00—Wings
- B64C3/38—Adjustment of complete wings or parts thereof
- B64C3/44—Varying camber
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Aviation & Aerospace Engineering (AREA)
- Toys (AREA)
Abstract
本发明公开了一种基于形状记忆合金驱动的可变弯度机翼结构,属于航空装备技术领域。机翼结构主要包括被柔性蒙皮包敷的柔性后缘结构1和前缘刚性段2;所述柔性后缘结构1为多个刚性段4依次铰接的方式构成,其与前缘刚性段2整体形成近似仿恐龙尾骨结构;柔性后缘结构的上下翼面在沿翼型弦向方向上均有合金丝。当柔性后缘结构1上翼面的形状记忆合金丝组被加热时,其长度变短,整个柔性后缘结构1产生向上变形;反之产生向下变形。本设计机翼结构简单,具有功重比较大的特点,可以主动地进行翼型变化,获得最佳气动特性;机翼能够获得不同的气动特性;采用模块化组装设计,大大节省机翼内部空间。
The invention discloses a variable camber wing structure driven by a shape memory alloy, which belongs to the technical field of aviation equipment. The wing structure mainly includes a flexible trailing edge structure 1 and a leading edge rigid segment 2 covered by a flexible skin; the flexible trailing edge structure 1 is formed by a plurality of rigid segments 4 hinged in sequence, which is integral with the leading edge rigid segment 2 A similar dinosaur tailbone structure is formed; the upper and lower airfoils of the flexible trailing edge structure have alloy wires along the chordwise direction of the airfoil. When the shape memory alloy wire group on the upper airfoil of the flexible trailing edge structure 1 is heated, its length becomes shorter, and the entire flexible trailing edge structure 1 deforms upward; otherwise, it deforms downward. The design of the wing is simple in structure and has the characteristics of large power-to-weight ratio, which can actively change the airfoil to obtain the best aerodynamic characteristics; the wing can obtain different aerodynamic characteristics; the modular assembly design is adopted, which greatly saves the interior space of the wing .
Description
技术领域technical field
本发明属于航空装备技术领域,涉及双程形状记忆合金(SMA)驱动的可变形柔性机翼结构。The invention belongs to the technical field of aviation equipment, and relates to a deformable flexible wing structure driven by a two-way shape memory alloy (SMA).
背景技术Background technique
目前,变形机翼已经成为未来先进航空飞行器的重要特征和发展方向。与固定式机翼不同,变形机翼可以根据不同的飞行任务和飞行环境条件改变机翼形状进而获得最优的飞行性能。此前有文献中提出的一种鱼骨式柔性后缘,其特点采用柔性材料作为主承力结构的后缘设计,翼型主体部分具有结构简单,易于加工的特点,后缘靠间隔的支撑肋板的长度过渡来贴合整体机翼的气动外形。但是该翼型由于后缘结构与致动器的配合关系,使得该翼型整体支撑结构往往难以进行设计,因此也难以在保持一定支撑能力的前提下进行柔性蒙皮的集成,并且前缘结构无法抵抗后缘整体梁、另一侧致动器以及蒙皮变形带来的阻力,偏转效果不佳。At present, the deformable wing has become an important feature and development direction of future advanced aviation vehicles. Unlike fixed wings, deformable wings can change the shape of the wing according to different flight tasks and flight environmental conditions to obtain optimal flight performance. A herringbone flexible trailing edge has been proposed in the literature, which is characterized by using flexible materials as the trailing edge design of the main load-bearing structure. The main part of the airfoil has the characteristics of simple structure and easy processing. The length transition to fit the aerodynamic shape of the overall wing. However, due to the cooperative relationship between the trailing edge structure and the actuator, the overall support structure of the airfoil is often difficult to design, so it is difficult to integrate the flexible skin under the premise of maintaining a certain supporting capacity, and the leading edge structure is difficult to design. Unable to resist the resistance caused by the integral beam of the trailing edge, the actuator on the other side and the deformation of the skin, the deflection effect is not good.
因此,本设计拟采用一种多段关节铰接式的多关节机翼后缘结构以满足在变化的飞行环境中能够始终保持良好飞行性能的要求。Therefore, this design intends to use a multi-joint articulated multi-joint wing trailing edge structure to meet the requirements of maintaining good flight performance in changing flight environments.
发明内容SUMMARY OF THE INVENTION
飞行器的飞行环境是连续变化的,气动参数也是连续变化,而传统固定式机翼飞行器只能够在特定环境下达到最佳飞行效率,无法适应多变的环境变化。The flight environment of the aircraft is continuously changing, and the aerodynamic parameters are also continuously changing, while the traditional fixed-wing aircraft can only achieve the best flight efficiency in a specific environment, and cannot adapt to the changeable environmental changes.
变形机翼飞行器能够利用智能材料或其他驱动器,根据飞行环境和飞行任务的变化,相应地改变机翼外形,改善飞机的气动特性和操纵性能,增升减阻,增大航时与航程,减少或消除抖振、颤振及涡流干扰等影响,使飞机能够更高效地完成多种飞行任务。Transforming wing aircraft can use intelligent materials or other drivers to change the shape of the wing accordingly according to the changes in the flight environment and flight tasks, improve the aerodynamic characteristics and handling performance of the aircraft, increase lift and reduce drag, increase flight time and range, reduce Or eliminate the effects of buffeting, flutter and eddy current interference, so that the aircraft can complete a variety of flight tasks more efficiently.
本设计为了能够满足飞行器在不同飞行环境和飞行任务条件下依然能够具备最佳气动性能,通过使用新型智能材料形状记忆合金(SMA)驱动机翼,使翼型柔顺、平滑、自主地改变来改善其气动特性,具备无缝、体积小、重量轻、响应快等优良特性,能出色地适应不同的飞行条件、更高效地完成各种飞行任务。In order to ensure that the aircraft can still have the best aerodynamic performance under different flight environments and flight mission conditions, this design is improved by using a new smart material shape memory alloy (SMA) to drive the wing to make the airfoil flexible, smooth and autonomously change. Its aerodynamic characteristics are seamless, small in size, light in weight, and fast in response. It can adapt to different flight conditions and complete various flight tasks more efficiently.
为了解决传统翼型结构的种种缺陷问题,本发明的主要目的是利用双程形状记忆合金设计一种可变性机翼结构,旨在解决飞行器在不同飞行条件下无法保持最佳气动性能的问题。In order to solve the various defects of the traditional airfoil structure, the main purpose of the present invention is to design a variable wing structure by using two-way shape memory alloy, aiming to solve the problem that the aircraft cannot maintain the best aerodynamic performance under different flight conditions.
为了实现上述目的,本发明设计的双程形状记忆合金驱动的变形机翼结构主要包括被柔性蒙皮包敷的柔性后缘结构1和前缘刚性段2;In order to achieve the above purpose, the double-pass shape memory alloy-driven deformed wing structure designed by the present invention mainly includes a flexible trailing edge structure 1 and a leading edge
所述柔性后缘结构1为多个刚性段4依次铰接的方式构成,其与前缘刚性段2整体形成近似仿恐龙尾骨结构;从前缘刚性段2到柔性后缘结构1的各刚性段4,遵循尺寸依次变小的方式,使得整个机翼形成一光滑翼面;The flexible trailing edge structure 1 is constituted by a plurality of rigid segments 4 that are hinged in sequence, which together with the leading edge
所述柔性后缘结构1的每个刚性段4结构特征为:其主体为一长方壳体,每个刚性段与上一相邻刚性段相邻的面上向外突出一前端凸块10,其与下一相邻刚性段的一面则缺失,使得刚性段长方壳体内部空腔刚好容纳下一相邻刚性段的前端凸块10;每个刚性段与下一相邻刚性段的前端凸块10之间通过贯通的圆柱销12连接,形成多个刚性段依次铰接的方式;在刚性段壳体的上下两个内壁面上,开有沿翼展方向的多条互相平行的细槽9,每个刚性段4的细槽9尺寸和位置相应,使得所有刚性段4依次铰接后,其细槽9依次连通为贯穿整个柔性后缘结构的多条通槽,相应根数的多条形状记忆合金丝置于所述多条通槽内,合金丝固定于柔性后缘结构沿翼型弦向方向的合金丝固定端5。The structural features of each rigid segment 4 of the flexible trailing edge structure 1 are: its main body is a rectangular shell, and a
工作时,当柔性后缘结构1上翼面的形状记忆合金丝组被加热时,由于温度效应,其长度变短,由于下翼面的形状记忆合金丝组的存在,整个柔性后缘结构1产生向上变形;反之,当柔性后缘结构1下翼面的形状记忆合金丝组被加热时,下翼面合金丝受热收缩,由于下翼面的形状记忆合金丝组的存在,整个柔性后缘结构1会产生向下变形。During operation, when the shape memory alloy wire group on the upper airfoil of the flexible trailing edge structure 1 is heated, its length becomes shorter due to the temperature effect. Due to the existence of the shape memory alloy wire group on the lower airfoil, the entire flexible trailing edge structure 1 On the contrary, when the shape memory alloy wire group of the lower airfoil of the flexible trailing edge structure 1 is heated, the alloy wire of the lower airfoil shrinks due to the heat. Due to the existence of the shape memory alloy wire group of the lower airfoil, the entire flexible trailing edge Structure 1 will deform downwards.
为了使所述变形机翼结构更好地模块化装配,可以将多组以上变形机翼结构在翼型展向方向上设置模块化装配结构构成(图5)。In order to better assemble the deformed wing structure in a modular manner, a plurality of groups or more of the deformed wing structure may be arranged in the spanwise direction of the airfoil to form a modular assembly structure ( FIG. 5 ).
为了使所述变形机翼结构在变形时产生更小阻力,可以在柔性后缘结构1到前缘刚性段2之间增加换向结构(图6),使得机翼向上或向下变形时,增加下侧或上侧弦长。In order to make the deformed wing structure produce less resistance during deformation, a reversing structure can be added between the flexible trailing edge structure 1 and the leading edge rigid section 2 (Fig. 6), so that when the wing deforms upward or downward, Increase the underside or overside chord length.
本发明的优点在于:The advantages of the present invention are:
1.本设计可变弯度机翼的结构相对传统机翼结构简单,同时形状记忆合金作为驱动器,具有功重比较大的特点,可以主动地进行翼型变化,获得最佳气动特性。1. The structure of the variable camber wing of this design is simpler than that of the traditional wing. At the same time, as the driver, the shape memory alloy has the characteristics of large power-to-weight ratio, which can actively change the airfoil and obtain the best aerodynamic characteristics.
2.由合金丝驱动的可变弯度机翼是通过对形状记忆合金丝的反馈控制系统来实现对机翼形状的定量改变,使机翼能够获得不同的气动特性。2. The variable camber wing driven by the alloy wire realizes the quantitative change of the wing shape through the feedback control system of the shape memory alloy wire, so that the wing can obtain different aerodynamic characteristics.
3.采用模块化组装设计,大大节省机翼内部空间。3. The modular assembly design is adopted, which greatly saves the interior space of the wing.
本发明的效果:本设计翼型可在无风载条件下,以翼尖中心线参考可实现偏转15度以上的目标,以第一节轴心固定点作为偏转参考点,则可偏转极限角度约10度。极限偏转时间约为4秒,回复时间约为7秒。Effects of the present invention: The airfoil of this design can achieve a deflection of more than 15 degrees with reference to the centerline of the wingtip under the condition of no wind load, and with the fixed point of the axis of the first section as the deflection reference point, the limit angle can be deflected about 10 degrees. The ultimate deflection time is about 4 seconds, and the recovery time is about 7 seconds.
附图说明Description of drawings
图1为实施例中可变弯度机翼结构主动段结构示意图;1 is a schematic structural diagram of an active section of a variable-camber wing structure in an embodiment;
图2为实施例中柔性后缘结构示意图;FIG. 2 is a schematic diagram of a flexible trailing edge structure in an embodiment;
图3为实施例中后缘单个关节结构示意图;3 is a schematic diagram of a single joint structure of the rear edge in the embodiment;
图4为实施例中柔性蒙皮示意图;4 is a schematic diagram of a flexible skin in an embodiment;
图5为实施例中机翼结构展向主-被-主结构示意图;5 is a schematic diagram of the spanwise main-by-main structure of the wing structure in the embodiment;
图6为实施例中提供的用于双向可变后缘机翼的换向机构结构示意图。FIG. 6 is a schematic structural diagram of a reversing mechanism for a bidirectional variable trailing edge wing provided in an embodiment.
图中,1-柔性后缘结构、2-前缘刚性段、11-柔性蒙皮。In the figure, 1-flexible trailing edge structure, 2-leading edge rigid segment, 11-flexible skin.
具体实施方式Detailed ways
下面结合附图与具体实施方法对本发明进一步说明。The present invention will be further described below with reference to the accompanying drawings and specific implementation methods.
本实施例中的双程形状记忆合金驱动的变形机翼结构主要包括被柔性蒙皮包敷的柔性后缘结构1和前缘刚性段2;The two-way shape memory alloy-driven deformed wing structure in this embodiment mainly includes a flexible trailing edge structure 1 and a leading edge
所述柔性后缘结构1包括为8个刚性段4依次铰接的方式构成,其与前缘刚性段2整体形成近似仿恐龙尾骨结构;从前缘刚性段2到柔性后缘结构1的各刚性段,遵循尺寸依次变小的方式,使得整个机翼形成一光滑翼面;The flexible trailing edge structure 1 consists of eight rigid segments 4 that are hinged in sequence, which together with the leading edge
所述柔性后缘结构1的每个刚性段4结构特征为:其主体为一长方壳体,每个刚性段与上一相邻刚性段相邻的面上向外突出一前端凸块10,其与下一相邻刚性段的一面则缺失,使得刚性段长方壳体内部空腔刚好容纳下一相邻刚性段的前端凸块10;每个刚性段与下一相邻刚性段的前端凸块10之间通过贯通的圆柱销12连接,形成多个刚性段依次铰接的方式;在刚性段壳体的上下两个内壁面上,开有沿翼展方向的10条互相平行的细槽9,每个刚性段的细槽尺寸和位置相应,使得所有刚性段依次铰接后,其细槽9依次连通为贯穿整个柔性后缘结构的10条通槽,10条形状记忆合金丝置于所述10条通槽内,它们的两端分别固定于柔性后缘结构1沿翼型弦向方向的合金丝固定槽5。本实施例中采用的形状记忆合金丝直径为0.15mm,根据测试单根丝可提供的拉力约为2N。The structural features of each rigid segment 4 of the flexible trailing edge structure 1 are: its main body is a rectangular shell, and a
为了使所述变形机翼结构更好地模块化装配,本实施例将3组以上变形机翼结构在翼展方向上设置互相匹配的凸块8和凹槽,形成模块化装配。实际使用中,中间的一组变形机翼结构未使用形状记忆合金丝,仅仅是铰接刚性段结构,其两侧的两组变形机翼结构则为提供了形状记忆合金丝驱动的铰接刚性段结构,使得机翼形成主动14、被动13、主动14的模块化连续组装方式。In order to better modularize the deformed wing structure, in this embodiment, more than three groups of deformed wing structures are provided with mutually matching
为了使所述变形机翼结构在变形时产生更小阻力,本实施例在前缘刚性段到柔性后缘结构增加换向结构(图6),使得机翼向上或向下变形时,增加下侧或上侧弦长。该换向机构主要包括上滑片15、下滑片16、电磁铁安装块17、弹簧预紧过渡块18和弹簧组、限位块19;所述上滑片15和下滑片16平行对应安装,上滑片15和下滑片16的上分别有上卡槽20和下卡槽21;所述电磁铁安装块17内部安装有一种微型自保持式推拉电磁铁,整个电磁铁安装块介于上滑片15和下滑片16之间,微型自保持式推拉电磁铁控制一铁芯卡销在上卡槽20或下卡槽21内转换;In order to make the deformed wing structure generate less resistance during deformation, in this embodiment, a reversing structure is added from the rigid section of the leading edge to the flexible trailing edge structure (Fig. 6), so that when the wing is deformed upward or downward, the lower Side or upper chord length. The reversing mechanism mainly includes an upper
所述与机翼相连的弹簧预紧过渡块和变形段连接处的侧壁上分别开有上下两个槽,当两者对接时候,所述的两个槽分别对接形成上、下通槽22;Two upper and lower grooves are respectively opened on the side wall of the connection between the spring preloading transition block connected to the wing and the deformation section. When the two are butted, the two grooves are respectively connected to form upper and lower through
换向机构安装好以后,固定于机翼固定段和变形段连接处的壳体内部,且换向机构的上滑片15和下滑片16分别在机翼固定段和变形段形成的上、下通槽22内可自由滑动;换向机构弹簧组包括5根平行对称分布的弹簧,它们的一端固定于上滑片15或下滑片16的端面,另一端通过弹簧预紧过渡块18固定于机翼固定段内部,用来提供一定的预紧力,抵消变形段通过滑片传递到电磁铁锁定销的侧向作用力,从而提高换向机构的稳定性;换向机构限位块19置于机翼变形段前端,其保证上滑片15和下滑片16在翼展方向的滑动限位。After the reversing mechanism is installed, it is fixed inside the shell at the connection between the wing fixed section and the deformed section, and the upper sliding
若需要机翼后缘向上偏转,首先通过给控制下侧滑片的电磁铁通电释放电磁铁铁芯卡销,使下侧滑片处于可自由滑动状态,然后对上侧排布的形状记忆合金丝进行加热,此时合金丝会产生形变,提供一定的驱动力来驱动机翼后缘向上偏转,由于下侧机翼弦长相对增加,会带动下侧未锁滑片滑动,从而完成机翼后缘向上偏转的动作;向下偏转时,首先通过给控制上侧滑片的电磁铁通电释放电磁铁铁芯卡销,使上侧滑片处于可自由滑动状态,给控制下侧滑片的电磁铁反向通电弹出铁芯卡销锁死下侧滑片,然后对下侧排布的形状记忆合金丝进行加热,此时合金丝会产生形变,提供一定的驱动力来驱动机翼后缘向下偏转,由于上侧机翼弦长相对增加,会带动上侧未锁滑片滑动,从而完成机翼后缘向下偏转的动作。If the trailing edge of the wing needs to be deflected upward, first release the electromagnet core latch by energizing the electromagnet that controls the lower side slider, so that the lower side slider is in a free sliding state, and then the shape memory alloy arranged on the upper side is energized. When the wire is heated, the alloy wire will deform and provide a certain driving force to drive the trailing edge of the wing to deflect upward. Due to the relative increase in the chord length of the lower wing, it will drive the unlocked slide on the lower side to slide, thereby completing the wing. The movement of the trailing edge deflecting upwards; when deflecting downwards, first release the electromagnet core pin by energizing the electromagnet that controls the upper sliding piece, so that the upper sliding piece is in a free sliding state, and the lower sliding piece is controlled. The electromagnet is reversely energized to pop out the iron core bayonet to lock the lower sliding piece, and then heat the shape memory alloy wire arranged on the lower side. At this time, the alloy wire will deform and provide a certain driving force to drive the trailing edge of the wing. Downward deflection, due to the relative increase in the chord length of the upper wing, will drive the upper unlocked slide to slide, thereby completing the downward deflection of the trailing edge of the wing.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011450201.3A CN112550664B (en) | 2020-12-09 | 2020-12-09 | A variable-camber wing structure driven by shape memory alloys |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011450201.3A CN112550664B (en) | 2020-12-09 | 2020-12-09 | A variable-camber wing structure driven by shape memory alloys |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112550664A CN112550664A (en) | 2021-03-26 |
CN112550664B true CN112550664B (en) | 2022-10-18 |
Family
ID=75061070
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011450201.3A Active CN112550664B (en) | 2020-12-09 | 2020-12-09 | A variable-camber wing structure driven by shape memory alloys |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112550664B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113232833B (en) * | 2021-05-14 | 2022-03-25 | 南京航空航天大学 | A variable-camber wing driven by shape memory alloy cables and its design method |
EP4119440A1 (en) * | 2021-07-16 | 2023-01-18 | BAE SYSTEMS plc | Control surface actuation |
GB2609020B (en) * | 2021-07-16 | 2025-02-05 | Bae Systems Plc | Control surface actuation |
CN113562159B (en) * | 2021-08-10 | 2023-07-14 | 大连理工大学 | Rib structure of an intelligent bionic deformable wing |
CN114604416B (en) * | 2022-03-11 | 2023-07-21 | 成都飞机工业(集团)有限责任公司 | Honeycomb supporting structure comprising flexible skin and preparation method of flexible skin |
CN115806042B (en) * | 2023-02-03 | 2023-04-28 | 北京大学 | Variant wing and aircraft |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10055961B4 (en) * | 2000-11-11 | 2004-09-09 | Eads Deutschland Gmbh | Variable wing area with adjustable profile shape that extends in the span direction |
CN101693467A (en) * | 2009-10-13 | 2010-04-14 | 南京航空航天大学 | Self-adapting morphing trailing edge based on SMA |
JP2013173417A (en) * | 2012-02-24 | 2013-09-05 | Fuji Heavy Ind Ltd | Variable wing structure |
CN107628228B (en) * | 2017-08-28 | 2020-09-18 | 中国航空工业集团公司沈阳飞机设计研究所 | Wing leading edge continuous bending structure |
US11608156B2 (en) * | 2019-03-26 | 2023-03-21 | Yaborä Indústria Aeronáutica S.A. | Lateral roller assemblies for wing leading edge slat tracks |
CN210618452U (en) * | 2019-05-28 | 2020-05-26 | 上海歌尔泰克机器人有限公司 | Variable-inclination winglet and aircraft |
CN111152912B (en) * | 2020-01-09 | 2022-06-10 | 南京航空航天大学 | A stiffness compensation device for a flexible wing and its working method |
-
2020
- 2020-12-09 CN CN202011450201.3A patent/CN112550664B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN112550664A (en) | 2021-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112550664B (en) | A variable-camber wing structure driven by shape memory alloys | |
CN111232186B (en) | Variable camber wing of trailing edge of piezoelectricity fiber material driven | |
US9856012B2 (en) | Morphing wing for an aircraft | |
CN104443354B (en) | A kind of wing with self adaptation variable camber trailing edge | |
CN109515683B (en) | Deformable wing with variable chord length and curvature | |
Amendola et al. | Distributed actuation concepts for a morphing aileron device | |
CN110053760B (en) | A flexible deformable wing | |
CN109823534B (en) | Flapping wing for ornithopter | |
CN210258812U (en) | Morphing wing based on active deformation negative Poisson ratio honeycomb structure | |
CN111959746B (en) | Parallel connecting rod type deformation wing framework | |
CN108284943B (en) | Mechanism for flexibly bending tail edge of wing | |
CN112141318A (en) | Trailing edge variable camber mechanism based on knuckle link drive | |
CN112520013A (en) | Deformable wing with variable bending degree based on connecting rod driving | |
CN1321859C (en) | Miniature aircraft | |
CN112278238B (en) | Wing and aircraft that can warp in succession | |
CN114572380B (en) | Flexible trailing edge wing based on rigid-flexible coupling mechanism | |
CN112678149A (en) | Multi-body active variable configuration distributed propeller aircraft | |
CN114633875B (en) | Flexible control surface capable of continuously changing bending degree | |
CN113602476B (en) | Continuous deformation structure and deformation method for trailing edge of wing | |
CN117246506A (en) | Intelligent deformation driving device for trailing edge of aeroplane wing | |
CN116461691A (en) | Airfoil continuous deformation mechanism based on slide bar-flexible truss-skin | |
CN113135283A (en) | Small-size high-precision fullerene flap actuating mechanism | |
CN113173243A (en) | Piezoelectric fishbone wing structure | |
CN2681998Y (en) | Wing-body fusion body micro aircraft | |
CN113120220B (en) | Three-dimensional single-shaft driving system for rigid-flexible coupling variable camber wing front edge |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |