CN112550185A - 氢燃料电池车载高压集成控制器 - Google Patents
氢燃料电池车载高压集成控制器 Download PDFInfo
- Publication number
- CN112550185A CN112550185A CN202011368455.0A CN202011368455A CN112550185A CN 112550185 A CN112550185 A CN 112550185A CN 202011368455 A CN202011368455 A CN 202011368455A CN 112550185 A CN112550185 A CN 112550185A
- Authority
- CN
- China
- Prior art keywords
- voltage
- module
- boosting
- dcdc module
- integrated controller
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R16/00—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
- B60R16/02—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/02—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from AC mains by converters
- H02J7/04—Regulation of charging current or voltage
- H02J7/06—Regulation of charging current or voltage using discharge tubes or semiconductor devices
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/34—Parallel operation in networks using both storage and other DC sources, e.g. providing buffering
- H02J7/342—The other DC source being a battery actively interacting with the first one, i.e. battery to battery charging
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of DC power input into DC power output
- H02M3/02—Conversion of DC power input into DC power output without intermediate conversion into AC
- H02M3/04—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters
- H02M3/10—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/80—Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
- Y02T10/92—Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/14—Plug-in electric vehicles
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Mechanical Engineering (AREA)
- Transportation (AREA)
- Fuel Cell (AREA)
Abstract
一种氢燃料电池车载高压集成控制器,包括升压DCDC模块、充电机、降压DCDC模块和配电模块,它们布置在高压集成控制器封装箱上,升压DCDC模块输入端、充电机输入端、降压DCDC模块输出端及配电模块输出端分别布置在高压集成控制器封装箱的不同端口处;所述升压DCDC模块输出端与充电机输出端、降压DCDC模块的输入端及配电模块的输入端并联共用电路。本发明集成了燃料电池高压控制器需要的升压、降压、充电及配电等功能,可满足增程式燃料电池车辆大功率升压的需求,同时满足高电压平台从电源到用电器的所有相关电压转换和大部分高压输出配电需求。
Description
技术领域
本发明属于增程式氢燃料电池车辆领域,具体涉及氢燃料电池车载高压集成控制器。
背景技术
增程式氢燃料电池车辆是在纯电动车辆的基础上,增加了一套氢燃料动力系统。参见图1,氢燃料动力系统的电堆1通过氢气和氧气的反应产生高压电,然后经过大功率升压DCDC2稳压并升高电压,用于高压电池3充电,高压电池再通过配电模块4给压缩机5、PTC6、空压机控制器7等高压用电器供电,驱动车辆行驶。增程式氢燃料电池车辆也可直接通过充电机9把来自于充电座8的220V交流电转换为高压直流电给高压电池3充电。 同时,高压电池通过降压DCDC10给12V蓄电池11充电。
近年来,随着国家政策的鼓励,燃料电池技术取得快速发展,但国内燃料电池系统及相关产品由于发展时间短,距离大批量应用仍有较大的差距,燃料电池上应用的大功率升压DCDC在技术方案、性能指标等方面仍不成熟,总体上还达不到量产的水平。
乘用车布置空间有限,要把一套氢燃料电池动力系统布置到车上是燃料电池技术应用的一大难题。现有技术增程式氢燃料电池车辆上用于功率转换的高压控制器有大功率升压DCDC2 、充电机9和降压DCDC10,还有配电盒4在高压电池3与高压用电器之间起转换作用,大量的控制器造成布置上的困难,这些控制器需要大量的高压线束和冷却管路布置来相互连接,不利于整车的布置,也会导致整车重量增加。
发明内容
本发明公开的氢燃料电池车载高压集成控制器,集成燃料电池高压控制器需要的升压、降压、充电及配电等功能,可满足增程式燃料电池车辆大功率升压的需求,同时满足高电压平台从电源到用电器的所有相关电压转换和大部分高压输出配电需求。
本发明公开的氢燃料电池车载高压集成控制器,包括升压DCDC模块、充电机、降压DCDC模块和配电模块。
所述升压DCDC模块被用于接收电堆输入电压并进行稳压、升压处理后给高压电池充电。
所述充电机被用于接收充电座输入交流电并转换为直流电后给高压电池充电。
所述降压DCDC模块被用于接收高压电池的高压直流电并降为低压电,给蓄电池充电。
所述配电模块被用于接收高压电池的高压直流电并给三路高压用电器进行供电。
升压DCDC模块、充电机、降压DCDC模块和配电模块布置在高压集成控制器封装箱上。
所述升压DCDC模块输入端、充电机输入端、降压DCDC模块输出端及配电模块输出端分别布置在高压集成控制器封装箱的不同端口处;所述升压DCDC模块输出端与充电机输出端、降压DCDC模块的输入端及配电模块的输入端并联共用电路。
进一步地,升压DCDC模块采用四相交错并联的BOOST电路结构;
其输入端通过串联500A的保险、开放控制权限继电器与电堆进行关断控制;其输入端串联一组电压传感器和电流传感器;输出端串联一组电压传感器和电流传感器;其四相交错BOOST电路上的每一相电路串联一组电流传感器及线圈。
进一步地,高压集成控制器封装箱仅设置一处进水口、出水口及连接两者的冷却管路。
进一步地,升压DCDC模块完成升压后输出回路通过30A的保险并联了充电机和降压DCDC模块。
进一步地,充电机把220V三相交流电变换为直流电,给高压电池充电。
进一步地,降压DCDC把高压电池的高压直流电降低到12V,给整车12V蓄电池充电。
进一步地,配电模块被用于接收高压电池的高压直流电并通过三路保险给空压机控制器、压缩机和PTC供电。
进一步地,升压DCDC模块被用于接收电堆通过氢气和氧气化学反应产生高压直流电压作为输入电压。
本发明有益技术效果为:
1)大功率升压DCDC提供一种把电堆的低压电转换为高压电实现把电堆的电压稳定输出到高压电池平台功能;在大功率升压DCDC中应用的多传感器电流检测能提供高精度的电流检测,提高升压性能。
2)升压DCDC模块、充电机、降压DCDC模块和配电模块布置在高压集成控制器封装箱上;所述升压DCDC模块输出端与充电机输出端、降压DCDC模块的输入端及配电模块的输入端并联共用电路,把外部线束连接的部分通过封装箱内部线路连接,把多个控制器集成了一起,使本产品相比未集成前,整体尺寸小型化,可有效降低氢燃料电池动力系统在整车上的布置难度。
3)集成化减少冷却管路、高压线束、接插件、固定支架和螺栓等辅料,合计降重,进一步降低整车成本。
附图说明
图1是现有技术结构示意图;
图2是本发明结构示意图;
图3是本发明电路原理图;
图中,1-电堆、2-升压DCDC模块、3-高压电池、4-配电模块、5-压缩机、6-PTC、7-空压机控制器、8-压缩机、9-充电机、10-降压DCDC模块、11-蓄电池、12-进水口、13-出水口、14-氢燃料电池车载高压集成控制器。
具体实施方式
下面结合附图对本发明作进一步说明。
参见图1至图3所示,本发明公开的氢燃料电池车载高压集成控制器,包括大功率的升压DCDC模块2、充电机9、降压DCDC模块10和配电模块4.
升压DCDC模块接收电堆1通过氢气和氧气化学反应产生高压直流电压作为输入电压,并进行稳压、升压处理后给高压电池3充电.
大功率的升压DCDC模块2采用四相交错并联的BOOST电路结构,BOOST 电路包括电感、三极管和二极管,核心的三极管采用了损耗小效率高的碳化硅MOS管;其输入端通过串联500A的保险、开放控制权限继电器与电堆进行关断控制,以用于车辆纯电工作时实现大功率升压DCDC与电堆的关断控制,起到保护电堆的作用;其输入端串联一组电压传感器和电流传感器;输出端串联一组电压传感器和电流传感器。大功率升压DCDC 采用了多传感器检测技术,电堆的输入电流高达400A,而单一的电流霍尔传感器很难在全范围内保证精度,因此其四相交错BOOST电路上的每一相BOOST电路串联一组电流传感器及线圈,每相BOOST电路检测、输出检测等保证电流的检测精度,环路实时响应满足底层驱动算法的性能要求。大功率升压DCDC完成升压后输出回路通过30A的保险并联了充电机和降压DCDC模块。
充电机9接收充电座8输入交流电,把220V三相交流电变换为直流电后给高压电池3充电。
降压DCDC模块10接收高压电池3的高压直流电,并降为12V低压电,给12V蓄电池11充电。
配电模块4接收高压电池3的高压直流电并通过三路保险给空压机控制器7、压缩机5和PTC6供电。
大功率的升压DCDC模块2、充电机9、降压DCDC模块和配电模块布置在高压集成控制器封装箱上。
升压DCDC模块输入端、充电机输入端、降压DCDC模块输出端及配电模块输出端分别布置在高压集成控制器封装箱的不同端口处;所述升压DCDC模块输出端与充电机输出端、降压DCDC模块的输入端及配电模块的输入端并联共用电路。
工作时,
有三路输入,第一路为电堆1通过氢气和氧气化学反应产生的高压直流电压,输入到氢燃料电池车载高压集成控制器14后经过BOOST电路内核稳压后升高到指定电压,给高压电池3充电;第二路为通过充电座8输入的220V交流电,输入到氢燃料电池车载高压集成控制器14后把高压交流电压变换为指定的直流电压,给高压电池3充电;第三路输入为高压电池3的高压直流电,输入到氢燃料电池车载高压集成控制器14后给三个用电器配电,同时输入到降压DCDC给12V 蓄电池充电。
有五路输出,第一路输出给高压电池3充电,第二路通过氢燃料电池车载高压集成控制器14把高压电池3的高压直流电降压成12V的低压电,给12V蓄电池11充电,另外三路与高压电池3的输出直接连通,分别配置不同的保险,给压缩机5、PTC6、空压机控制器7提供高压直流电压。
本发明集成后减少了各控制器之间的连接管路,只有一个进水口12和出水口13及连接两者的冷却管路。同时满足增程式燃料电池车辆高电压平台从电源到用电器的所有相关电压转换和高压输出配电需求。
Claims (7)
1.氢燃料电池车载高压集成控制器,其特征在于,包括升压DCDC模块(2)、充电机(9)、降压DCDC模块(10)和配电模块(4);
所述升压DCDC模块被用于接收电堆(1)输入电压并进行稳压、升压处理后给高压电池(3)充电;
所述充电机被用于接收充电座(8)输入交流电并转换为直流电后给高压电池(3)充电;
所述降压DCDC模块被用于接收高压电池(3)的高压直流电并降为低压电,给蓄电池(11)充电;
所述配电模块被用于接收高压电池(3)的高压直流电并给三路高压用电器进行供电;
升压DCDC模块、充电机、降压DCDC模块和配电模块布置在高压集成控制器封装箱上;
所述升压DCDC模块输入端、充电机输入端、降压DCDC模块输出端及配电模块输出端分别布置在高压集成控制器封装箱的不同端口处;所述升压DCDC模块输出端与充电机输出端、降压DCDC模块的输入端及配电模块的输入端并联共用电路;
高压集成控制器封装箱仅设置一处进水口(12)、出水口(13)及连接两者的冷却管路。
2.如权利要求1所述的氢燃料电池车载高压集成控制器,其特征在于:
升压DCDC模块(2)采用四相交错并联的BOOST电路结构;
其输入端通过串联500A的保险、开放控制权限继电器与电堆进行关断控制;其输入端串联一组电压传感器和电流传感器;输出端串联一组电压传感器和电流传感器;其四相交错BOOST电路上的每一相电路串联一组电流传感器及线圈。
3.如权利要求1或2所述的氢燃料电池车载高压集成控制器,其特征在于:
升压DCDC模块完成升压后输出回路通过30A的保险并联了充电机(9)和降压DCDC模块(10)。
4.如权利要求1或2所述的氢燃料电池车载高压集成控制器,其特征在于:
充电机把220V三相交流电变换为直流电,给高压电池充电。
5.如权利要求1或2所述的氢燃料电池车载高压集成控制器,其特征在于:
降压DCDC模块把高压电池的高压直流电降低到12V,给整车12V蓄电池(11)充电。
6.如权利要求1或2所述的氢燃料电池车载高压集成控制器,其特征在于:
配电模块(4)被用于接收高压电池(3)的高压直流电并通过三路保险给空压机控制器(7)、压缩机(5)和PTC(6)供电。
7.如权利要求1或2所述的氢燃料电池车载高压集成控制器,其特征在于:
升压DCDC模块(2)被用于接收电堆通过氢气和氧气化学反应产生高压直流电压作为输入电压。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011368455.0A CN112550185A (zh) | 2020-11-30 | 2020-11-30 | 氢燃料电池车载高压集成控制器 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011368455.0A CN112550185A (zh) | 2020-11-30 | 2020-11-30 | 氢燃料电池车载高压集成控制器 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN112550185A true CN112550185A (zh) | 2021-03-26 |
Family
ID=75046701
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011368455.0A Pending CN112550185A (zh) | 2020-11-30 | 2020-11-30 | 氢燃料电池车载高压集成控制器 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112550185A (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113335084A (zh) * | 2021-07-21 | 2021-09-03 | 东蒲联合科技(福建)有限责任公司 | 增程式电动冷链物流车一体式配电系统及物流车 |
CN113352952A (zh) * | 2021-07-22 | 2021-09-07 | 深圳市福瑞电气有限公司 | 一种用于氢电混合动力汽车的动力控制集成方法及系统 |
CN113635764A (zh) * | 2021-07-22 | 2021-11-12 | 武汉格罗夫氢能汽车有限公司 | 一种燃料电池汽车集成控制电路结构 |
CN115008993A (zh) * | 2022-06-30 | 2022-09-06 | 奇瑞商用车(安徽)有限公司 | 一种集成化动力电池及电动汽车 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN204956151U (zh) * | 2015-09-15 | 2016-01-13 | 北汽福田汽车股份有限公司 | 一种电动汽车电驱动系统集成控制器及电动汽车 |
CN105549442A (zh) * | 2016-01-14 | 2016-05-04 | 阿尔特汽车技术股份有限公司 | 电动汽车高压集成控制系统 |
CN108839577A (zh) * | 2018-06-20 | 2018-11-20 | 安徽安凯汽车股份有限公司 | 一种氢燃料电池混联式混合动力系统及客车 |
CN109861528A (zh) * | 2018-12-28 | 2019-06-07 | 潍柴动力股份有限公司 | 一种dc-dc变换器 |
CN210000133U (zh) * | 2019-06-12 | 2020-01-31 | 武汉德朗高科汽车电气有限公司 | 一种燃料电池混合动力汽车的高压配电系统 |
CN110868068A (zh) * | 2019-11-28 | 2020-03-06 | 重庆理工大学 | 一种多相交错并联直流变换器及其均流控制方法 |
US20200274375A1 (en) * | 2017-11-08 | 2020-08-27 | Eaton Intelligent Power Limited | Power distribution and circuit protection for a mobile application having a high efficiency inverter |
CN211617605U (zh) * | 2019-12-26 | 2020-10-02 | 郑州宇通客车股份有限公司 | 一种燃料电池汽车及其高压电器系统 |
CN211892863U (zh) * | 2020-02-18 | 2020-11-10 | 武汉海亿新能源科技有限公司 | 氢燃料电池客车四合一配电箱 |
-
2020
- 2020-11-30 CN CN202011368455.0A patent/CN112550185A/zh active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN204956151U (zh) * | 2015-09-15 | 2016-01-13 | 北汽福田汽车股份有限公司 | 一种电动汽车电驱动系统集成控制器及电动汽车 |
CN105549442A (zh) * | 2016-01-14 | 2016-05-04 | 阿尔特汽车技术股份有限公司 | 电动汽车高压集成控制系统 |
US20200274375A1 (en) * | 2017-11-08 | 2020-08-27 | Eaton Intelligent Power Limited | Power distribution and circuit protection for a mobile application having a high efficiency inverter |
CN108839577A (zh) * | 2018-06-20 | 2018-11-20 | 安徽安凯汽车股份有限公司 | 一种氢燃料电池混联式混合动力系统及客车 |
CN109861528A (zh) * | 2018-12-28 | 2019-06-07 | 潍柴动力股份有限公司 | 一种dc-dc变换器 |
CN210000133U (zh) * | 2019-06-12 | 2020-01-31 | 武汉德朗高科汽车电气有限公司 | 一种燃料电池混合动力汽车的高压配电系统 |
CN110868068A (zh) * | 2019-11-28 | 2020-03-06 | 重庆理工大学 | 一种多相交错并联直流变换器及其均流控制方法 |
CN211617605U (zh) * | 2019-12-26 | 2020-10-02 | 郑州宇通客车股份有限公司 | 一种燃料电池汽车及其高压电器系统 |
CN211892863U (zh) * | 2020-02-18 | 2020-11-10 | 武汉海亿新能源科技有限公司 | 氢燃料电池客车四合一配电箱 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113335084A (zh) * | 2021-07-21 | 2021-09-03 | 东蒲联合科技(福建)有限责任公司 | 增程式电动冷链物流车一体式配电系统及物流车 |
CN113352952A (zh) * | 2021-07-22 | 2021-09-07 | 深圳市福瑞电气有限公司 | 一种用于氢电混合动力汽车的动力控制集成方法及系统 |
CN113635764A (zh) * | 2021-07-22 | 2021-11-12 | 武汉格罗夫氢能汽车有限公司 | 一种燃料电池汽车集成控制电路结构 |
CN115008993A (zh) * | 2022-06-30 | 2022-09-06 | 奇瑞商用车(安徽)有限公司 | 一种集成化动力电池及电动汽车 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Maroti et al. | The state-of-the-art of power electronics converters configurations in electric vehicle technologies | |
CN112550185A (zh) | 氢燃料电池车载高压集成控制器 | |
US9013066B2 (en) | High voltage electric accumulators with internal distributed DC-DC converters for self regulation and protection | |
EP2226878B1 (en) | Fuel cell system | |
CN108475937A (zh) | 一种用于包含一个或多个感应线圈的感应负载的控制器 | |
CN103490460A (zh) | 用于传递来自能源的能量的系统和制造其的方法 | |
KR20100028527A (ko) | 재구성가능한 다중 기능 전력 컨버터를 갖춘 제어 시스템 및 하이브리드 자동차 | |
CN101483388B (zh) | Dc/dc转换器装置及驱动方法、车辆、燃料电池系统 | |
Kisacikoglu et al. | Fuzzy logic control of a fuel cell/battery/ultra-capacitor hybrid vehicular power system | |
Al-Sheikh et al. | Power electronics interface configurations for hybrid energy storage in hybrid electric vehicles | |
Li et al. | Power electronics integration on battery cells | |
US20230023934A1 (en) | Multi-Port Power Converter | |
CN101593985B (zh) | 一种自发电的充电装置及充电方法 | |
Thounthong et al. | A control strategy of fuel cell/battery hybrid power source for electric vehicle applications | |
Pavan et al. | Energy management system in hybrid electric vehicle | |
JP2009225568A (ja) | 燃料電池車両システム | |
Azib et al. | Structure and control strategy for a parallel hybrid fuel cell/supercapacitors power source | |
JP5661075B2 (ja) | 充放電装置 | |
CN221292999U (zh) | 一种基于双向dcdc的氢燃料电池系统架构 | |
KR101349021B1 (ko) | 연료전지 하이브리드 차량의 충방전 전류 제한 방법 | |
CN212950158U (zh) | 一种集成电能转换装置、供电装置、车辆及设备 | |
CN112912268B (zh) | 一种供电装置、车辆及设备 | |
Vijayan et al. | Comparative study of various DC-DC converter topologies for PV powered EV charging stations | |
Chamarthi et al. | A proposed cuk converter based dual input hybrid converter topology as ev charging station | |
TW201810905A (zh) | 雙向電力轉換器及其操作方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20210326 |