CN112528869B - Phase-free data imaging method based on complex neural network - Google Patents
Phase-free data imaging method based on complex neural network Download PDFInfo
- Publication number
- CN112528869B CN112528869B CN202011470944.7A CN202011470944A CN112528869B CN 112528869 B CN112528869 B CN 112528869B CN 202011470944 A CN202011470944 A CN 202011470944A CN 112528869 B CN112528869 B CN 112528869B
- Authority
- CN
- China
- Prior art keywords
- complex
- branch
- network
- layer
- field data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000003384 imaging method Methods 0.000 title claims abstract description 35
- 238000013528 artificial neural network Methods 0.000 title claims abstract description 18
- 238000012549 training Methods 0.000 claims abstract description 37
- 238000000034 method Methods 0.000 claims abstract description 35
- 230000004913 activation Effects 0.000 claims abstract description 15
- 238000012545 processing Methods 0.000 claims abstract description 11
- 238000005070 sampling Methods 0.000 claims description 14
- 238000004364 calculation method Methods 0.000 claims description 7
- 239000011159 matrix material Substances 0.000 claims description 6
- 230000004927 fusion Effects 0.000 claims description 4
- 238000010606 normalization Methods 0.000 claims 1
- 230000008569 process Effects 0.000 abstract description 11
- 230000004044 response Effects 0.000 abstract description 2
- 238000004422 calculation algorithm Methods 0.000 description 19
- 230000006870 function Effects 0.000 description 14
- 238000012360 testing method Methods 0.000 description 13
- 238000010586 diagram Methods 0.000 description 7
- 238000013135 deep learning Methods 0.000 description 6
- 238000011084 recovery Methods 0.000 description 4
- 238000005457 optimization Methods 0.000 description 3
- 238000013527 convolutional neural network Methods 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- ORILYTVJVMAKLC-UHFFFAOYSA-N Adamantane Natural products C1C(C2)CC3CC1CC2C3 ORILYTVJVMAKLC-UHFFFAOYSA-N 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000002059 diagnostic imaging Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/10—Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- General Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- General Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Health & Medical Sciences (AREA)
- Software Systems (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Computing Systems (AREA)
- Computational Linguistics (AREA)
- Mathematical Physics (AREA)
- Multimedia (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Biology (AREA)
- Image Analysis (AREA)
- Image Processing (AREA)
Abstract
Description
技术领域technical field
本发明属于电磁逆问题的成像技术领域,具体涉及一种基于复数神经网络的无相位数据成像方法。The invention belongs to the technical field of imaging of electromagnetic inverse problems, and in particular relates to a phase-free data imaging method based on a complex neural network.
背景技术Background technique
电磁逆散射广泛应用在微波遥感、医学成像、地质勘查等领域。具体是通过反射回的电磁波数据来重建未知物体的物理和几何特征信息,主要包括探测体的位置、形状、介电常数等。电磁逆散射成像问题的最大挑战来自于其不适定性和高度非线性。得到的电磁波信息是经过多次散射、折射和衍射后的结果,通常不会在成像区域内简单路径传播。量化的成像结果需要解全部的非线性方程组,而这些方程组是病态性的,具有不唯一且不稳定的解,即数据微小的变化可能导致巨大偏差,这些因素导致电磁逆散射问题很难求解。Electromagnetic inverse scattering is widely used in microwave remote sensing, medical imaging, geological exploration and other fields. Specifically, the physical and geometric feature information of the unknown object is reconstructed through the reflected electromagnetic wave data, mainly including the position, shape, and dielectric constant of the detected object. The biggest challenge of the electromagnetic inverse scattering imaging problem comes from its ill-posedness and high nonlinearity. The obtained electromagnetic wave information is the result of multiple scattering, refraction and diffraction, and usually does not propagate in a simple path within the imaging area. Quantified imaging results need to solve all nonlinear equations, and these equations are ill-conditioned, have non-unique and unstable solutions, that is, small changes in data may lead to huge deviations, these factors make the electromagnetic inverse scattering problem difficult solve.
在实际情况下,一方面很难准确地测量散射场数据在高频范围内的相位信息,另一方面为了得到相位信息,硬件成本上的开销将会大大提高,还不可避免的引入新的噪声。因此,基于无相位数据的逆问题成像研究具有重要的工程实际应用意义。In practice, on the one hand, it is difficult to accurately measure the phase information of the scattered field data in the high-frequency range; on the other hand, in order to obtain the phase information, the hardware cost will be greatly increased, and new noise will inevitably be introduced . Therefore, the imaging research of the inverse problem based on phase-free data has important engineering practical application significance.
逆问题的成像方法主要包括基于学习的方法和基于模型的方法。其中,传统的基于模型的迭代算法包括迭代阈值收缩算法(Iterative Shrinkage/ThresholdingAlgorithm,ISTA)、交替方向乘子法Alternating Direction Method of Multipliers,ADMM)和原始对偶混合梯度算法(Primal Dual Hybrid Gradient,PDHG)。随着机器学习领域的不断进步,特别是深度学习的应用,使得神经网络越来越多被用来解决逆成像中的非线性拟合问题。利用深度学习的逆成像解决方法主要有基于完全学习的方法,即仅仅通过大量训练数据的拟合,来学习测量数据到图像数据的映射,这样的端对端的学习网络以“黑盒”形式来解决逆成像,这要求网络模型必须学会所有的逆成像物理规则,这样学习到的网络可移植性较差;第二是基于图像预处理的方法。主要是网络模型的输入是以经过迭代算法处理后的初始图像,这样虽然加大了成像时间,但是增加了模型的可解释性和可操作性;第三是部分基于模型的深度网络。神经网络不但取代了方法二中的成像优化阶段,还直接取代了迭代算法的初始成像阶段。即用另一个神经网络来取代传统迭代算法,如可学习的迭代阈值收缩算法一样。Imaging methods for inverse problems mainly include learning-based methods and model-based methods. Among them, traditional model-based iterative algorithms include Iterative Shrinkage/Thresholding Algorithm (ISTA), Alternating Direction Method of Multipliers (ADMM) and Primal Dual Hybrid Gradient (PDHG) . With the continuous progress in the field of machine learning, especially the application of deep learning, neural networks are increasingly used to solve nonlinear fitting problems in inverse imaging. The inverse imaging solution using deep learning is mainly based on a complete learning method, that is, only through the fitting of a large amount of training data, to learn the mapping from measurement data to image data, such an end-to-end learning network in the form of a "black box" To solve inverse imaging, this requires the network model to learn all the physical rules of inverse imaging, so the learned network is less portable; the second is the method based on image preprocessing. The main reason is that the input of the network model is the initial image processed by an iterative algorithm. Although this increases the imaging time, it increases the interpretability and operability of the model; the third is a partially model-based deep network. The neural network not only replaces the imaging optimization stage in
现有技术方案面对探测目标区域较大的物体时,传统高精度计算电磁方法(例如,矩量法、有限元方法、时域有限差分法等)需要消耗大量计算资源,耗时极长。尽管各种近似数值方法(例如,高频近似方法,Born近似方法等)一定程度上提高了计算速度,但这些方法往往忽略了目标之间的电磁互耦作用,导致计算精度较低。另一方面,对于电磁逆散射问题,如雷达成像等,在过去的几十年当中,许多重构算法得以应用。例如后向投影算法、牛顿迭代算法、基因算法等。这些算法通常受限于逐点扫描成像或迭代成像等过程,在应用到大尺度成像场景时,往往计算量巨大,无法满足实时性需求。When the existing technical solutions face the detection of objects with large target areas, traditional high-precision calculation electromagnetic methods (such as the method of moments, finite element method, finite difference method in time domain, etc.) need to consume a lot of computing resources and take a long time. Although various approximate numerical methods (for example, high-frequency approximation method, Born approximation method, etc.) improve the calculation speed to a certain extent, these methods often ignore the electromagnetic mutual coupling between targets, resulting in low calculation accuracy. On the other hand, for electromagnetic inverse scattering problems, such as radar imaging, many reconstruction algorithms have been applied in the past few decades. For example, back projection algorithm, Newton iterative algorithm, genetic algorithm, etc. These algorithms are usually limited to point-by-point scanning imaging or iterative imaging processes. When applied to large-scale imaging scenarios, the calculations are often huge and cannot meet the real-time requirements.
近年来,深度学习被广泛应用在多个领域,用来完成分类和回归任务,并取得了不错的成绩。目前,大部分主流网络都是基于实数域的搭建,而电磁散射和逆散射问题则处于复数域;其次,由于深度学习网络的“黑盒子”属性,缺少准确的物理支撑,造成现有的深度学习框架很难直接应用于电磁散射和逆散射问题,即使训练结果较好,但其很难适应于其他不同的数据集。In recent years, deep learning has been widely used in many fields to complete classification and regression tasks, and achieved good results. At present, most mainstream networks are built based on the real number domain, while the electromagnetic scattering and inverse scattering problems are in the complex number domain; secondly, due to the "black box" property of the deep learning network, the lack of accurate physical support results in the existing deep It is difficult to directly apply the learning framework to electromagnetic scattering and inverse scattering problems, and even if the training results are good, it is difficult to adapt to other different data sets.
发明内容Contents of the invention
为了克服现有技术中高精度的电磁计算方法计算量大,无法满足大尺度成像场景下的应用和实时性需求的问题,以及现有的深度学习网络极度依赖于训练集,可解释性和适应性差的问题,本发明提出了一种基于复数神经网络的无相位数据成像方法,利用复数域Unet网络中的两个分支来处理电磁逆散射的复数域问题,精度高,响应快。In order to overcome the problem that the high-precision electromagnetic calculation method in the prior art has a large amount of calculation and cannot meet the application and real-time requirements in large-scale imaging scenarios, and the existing deep learning network is extremely dependent on the training set, which has poor interpretability and adaptability To solve the problem, the present invention proposes a phase-free data imaging method based on a complex neural network, using two branches in the complex domain Unet network to deal with the complex domain problem of electromagnetic inverse scattering, with high precision and fast response.
为了实现上述目的,本发明采用如下技术方案:In order to achieve the above object, the present invention adopts the following technical solutions:
一种基于复数神经网络的无相位数据成像方法,包括以下步骤:A phase-free data imaging method based on a complex neural network, comprising the following steps:
1)采集真实样本图像,由真实样本图像生成无相位总场数据和理想散射场数据,将无相位总场数据、理想散射场数据和真实样本图像构成训练集;1) Collect real sample images, generate phase-free total field data and ideal scattered field data from real sample images, and form a training set with phase-free total field data, ideal scattered field data and real sample images;
2)建立双分支复数域Unet网络,其中分支一包括虚部生成模块和第一复数网络,分支二为第二复数网络,所述的第一复数网络和第二复数网络均由复数卷积模块、复数批处理化模块和复数激活函数模块构成;2) Establish a two-branch complex field Unet network, wherein branch one includes an imaginary part generation module and the first complex network, branch two is the second complex network, and the first complex network and the second complex network are composed of complex convolution modules , complex batch processing module and complex activation function module;
3)对分支一进行训练:3) Training branch one:
将无相位总场数据作为实数部分输入到复数域Unet网络的分支一中,首先通过虚部生成模块生成与实数部分相对应的虚数部分,将实数部分和生成的虚数部分相结合作为第一复数网络的输入,获得预测散射场数据;根据预测散射场数据与理想散射场数据计算损失,对分支一进行训练;Input the phase-free total field data as the real part into
4)对分支二进行训练:4) Training branch two:
将理想散射场数据输入到复数域Unet网络的分支二中,经第二复数网络处理,输出复数数据后取模得到预测图像;根据预测图像与真实样本图像计算损失,对分支二进行训练;Input the ideal scattering field data into the
5)对复数域Unet网络进行微调训练:5) Perform fine-tuning training on the complex domain Unet network:
将训练好的分支一和分支二级联,无相位总场数据经过分支一后预测输出的预测散射场数据作为分支二的输入,输出预测图像数据;根据预测图像与真实样本图像计算损失,对复数域Unet网络中级联后的分支一、分支二进行微调,得到训练好的复数域Unet网络;The trained
6)针对待成像的无相位数据,利用训练好的复数域Unet网络,生成相对应的图像。6) For the phase-free data to be imaged, use the trained complex domain Unet network to generate the corresponding image.
与现有技术相比,本发明的优势在于:Compared with the prior art, the present invention has the advantages of:
1)逆散射问题由于存在不适应性和非线性,通常采用迭代优化算法,如FISTA算法,但迭代优化算法方面主要存在耗时较长,难以应用实时构建等缺点;非迭代算法虽然能够在短时间完成重建工作,但准确性不高,特别是对于高介电常数的物体。基于人工神经网络的算法往往只针对特定形状、位置、尺寸的物体,可适应性不强。1) Due to the inadaptability and nonlinearity of the inverse scattering problem, an iterative optimization algorithm is usually used, such as the FISTA algorithm. time to complete the reconstruction, but the accuracy is not high, especially for objects with high permittivity. Algorithms based on artificial neural networks are often only aimed at objects of specific shapes, positions, and sizes, and their adaptability is not strong.
基于深度学习的总场数据相位恢复算法主要采用实数网络,对于输出为复值形式的散射场数据难以达到较好的拟合效果;对于散射场复值数据则分通道进行处理,忽视了复值数据实部和虚部之间的内在联系;因此,本发明提出基于复数神经网络的Unet模型的成像算法,复数神经网络的Unet核心是采用基于复数基本运算法则的实部和实部、实部和虚部、虚部和实部以及虚部和虚部的复卷积神经网络代替实数卷积神经网络,除此之外,使用实数数据生成虚数数据,复数输出结果取模处理等方式来提高成像质量。The total field data phase recovery algorithm based on deep learning mainly uses real number network, it is difficult to achieve a good fitting effect for the scattered field data whose output is in the form of complex value; for the complex valued data of the scattered field, it is processed in separate channels, ignoring the complex value Intrinsic link between data real part and imaginary part; Therefore, the present invention proposes the imaging algorithm based on the Unet model of complex number neural network, the Unet core of complex number neural network is to adopt the real part and real part, real part based on complex number basic algorithm The complex convolutional neural network of sum imaginary part, imaginary part and real part, imaginary part and imaginary part replaces real number convolutional neural network. In addition, real number data is used to generate imaginary number data, and complex number output results are modulo processed to improve image quality.
2)本方法采用分步训练,在网络的训练过程中引入散射场数据来引导最优下降方向,对于总场数据直接恢复至图像的端对端训练方式更加具有可控性和可解释性;最后通过级联微调的方式来达到较好地相位恢复以及数据成像。2) This method adopts step-by-step training, and introduces scattered field data in the training process of the network to guide the optimal descending direction, which is more controllable and interpretable for the end-to-end training method in which the total field data is directly restored to the image; Finally, better phase recovery and data imaging are achieved through cascade fine-tuning.
3)最终,基于复数神经网络的Unet网络能够很好地完成总场数据到散射场数据的恢复以及散射场数据到图像数据的映射,同时保留较好地轮廓信息和介电常数的预测,具备了较强的鲁棒性。3) Finally, the Unet network based on the complex neural network can well complete the restoration of the total field data to the scattered field data and the mapping of the scattered field data to the image data, while retaining better contour information and permittivity prediction, with stronger robustness.
附图说明Description of drawings
图1为本发明的基于复数神经网络的无相位数据成像方法的流程图;Fig. 1 is the flow chart of the phase-free data imaging method based on complex neural network of the present invention;
图2为本发明采用的复数域Unet网络中分支一流程示意图;Fig. 2 is a schematic flow chart of a branch in the complex domain Unet network adopted by the present invention;
图3为本发明采用的复数域Unet网络中分支二流程示意图;Fig. 3 is a schematic diagram of branch two flow charts in the complex domain Unet network adopted by the present invention;
图4为本发明中的级联后的复数域Unet网络示意图;Fig. 4 is the Unet network schematic diagram of the multiple domain Unet after cascading in the present invention;
图5为以Emnist为测试集的测试结果图;Figure 5 is a test result diagram with Emnist as the test set;
图6为以Austria为测试集的测试结果图;Figure 6 is a test result diagram with Austria as the test set;
图7为测试Austria不同介电常数的结果图;Figure 7 is the result of testing different dielectric constants in Austria;
图8为本实施例中的分支一结构示意图;Fig. 8 is a schematic structural diagram of a branch in this embodiment;
图9为本实施例中的分支二结构示意图。FIG. 9 is a schematic diagram of the structure of
具体实施方式Detailed ways
下面结合具体实施方式对本发明做进一步阐述和说明。本发明中各个实施方式的技术特征在没有相互冲突的前提下,均可进行相应组合。The present invention will be further elaborated and described below in combination with specific embodiments. The technical features of the various implementations in the present invention can be combined accordingly on the premise that there is no conflict with each other.
本发明提出的一种基于复数神经网络的无相位数据成像方法,其整理流程图如图1所示,主要步骤为:A kind of phaseless data imaging method based on complex neural network proposed by the present invention, its sorting flow chart is as shown in Figure 1, and main steps are:
步骤一:采集真实样本图像,由真实样本图像生成无相位总场数据和理想散射场数据,将无相位总场数据、理想散射场数据和真实样本图像构成训练集;Step 1: Collect real sample images, generate phase-free total field data and ideal scattered field data from the real sample images, and use phase-free total field data, ideal scattered field data and real sample images to form a training set;
步骤二:建立双分支复数域Unet网络,其中分支一包括虚部生成模块和第一复数网络,分支二为第二复数网络,所述的第一复数网络和第二复数网络均由复数卷积模块、复数批处理化模块和复数激活函数模块构成;Step 2: Establish a two-branch complex field Unet network, wherein branch one includes an imaginary part generation module and the first complex network, branch two is the second complex network, and the first complex network and the second complex network are both composed of complex convolutions module, complex batch processing module and complex activation function module;
步骤三:对分支一进行训练:Step 3: Train Branch 1:
将无相位总场数据作为实数部分输入到复数域Unet网络的分支一中,首先通过虚部生成模块生成与实数部分相对应的虚数部分,将实数部分和生成的虚数部分相结合作为第一复数网络的输入,获得预测散射场数据;根据预测散射场数据与理想散射场数据计算损失,对分支一进行训练;Input the phase-free total field data as the real part into
步骤四:对分支二进行训练:Step 4: Train branch 2:
将理想散射场数据输入到复数域Unet网络的分支二中,经第二复数网络处理,输出复数数据后取模得到预测图像;根据预测图像与真实样本图像计算损失,对分支二进行训练;Input the ideal scattering field data into the
步骤五:对复数域Unet网络进行微调训练:Step 5: Perform fine-tuning training on the complex domain Unet network:
将训练好的分支一和分支二级联,无相位总场数据经过分支一后预测输出的预测散射场数据作为分支二的输入,输出预测图像数据;根据预测图像与真实样本图像计算损失,对复数域Unet网络中级联后的分支一、分支二进行微调,得到训练好的复数域Unet网络;The trained
步骤六:针对待成像的无相位数据,利用训练好的复数域Unet网络,生成相对应的图像。Step 6: For the phase-free data to be imaged, use the trained complex domain Unet network to generate the corresponding image.
下面对本发明的具体实施步骤进行详细说明。The specific implementation steps of the present invention will be described in detail below.
训练集中真实样本图像的尺寸统一,由真实样本图像生成的无相位总场数据和散射场数据的维度统一。本实施例中,步骤一采集了总计5000张的真实样本图像,其中,无相位总场数据和理想散射场数据是由真实样本图像在理想条件下生成,维度分别为(32,16)和(2,32,16);真实图像数据介电常数范围为1.0-2.0。The dimensions of the real sample images in the training set are uniform, and the dimensions of the phase-free total field data and scattered field data generated from the real sample images are uniform. In this embodiment,
本实施例中,无相位总场数据和理想散射场数据的生成过程采用本领域的现有技术手段,具体操作首先是建立模型,即定义求解方程、创建模型几何、定义材料属性、建立金属边界和辐射边界并确定模型与模型的位置关系,确定发射和接收天线数目;其中,材料属性包括相对磁导率,相对介电常数和电导率;接着是细分网格,利用有限元方法将模型空间离散化,求解电磁波问题时,网格解析度在处理波类型的相关问题时至关重要,只有网格足够精细才能解析所有介质中的波长;最后是在模拟域内求解一组描述电场的线性方程,最后通过计算的得到的电场结果提取有用的信息。将无相位总场数据、理想散射场数据和真实样本图像共同构成训练集。In this embodiment, the generation process of phase-free total field data and ideal scattered field data adopts the existing technical means in this field. The specific operation is first to establish a model, that is, define the solution equation, create the model geometry, define material properties, and establish metal boundaries and the radiation boundary and determine the positional relationship between the model and the model, and determine the number of transmitting and receiving antennas; among them, the material properties include relative magnetic permeability, relative permittivity and electrical conductivity; followed by subdividing the mesh, using the finite element method to convert the model Space discretization, when solving electromagnetic wave problems, the grid resolution is very important when dealing with wave type-related problems. Only when the grid is fine enough can the wavelengths in all media be resolved; finally, a set of linear equations describing the electric field is solved in the simulation domain. Equations, and finally extract useful information from the calculated electric field results. The phase-free total field data, ideal scattered field data and real sample images constitute the training set.
在本实施例中,步骤二建立的复数域Unet网络,包括分支一和分支二;所述的分支一首先通过虚部生成模块生成虚部数据,与实部数据相结合得到复数数据,将复数数据输入复数网络进行处理,得到预测数据;分支二也采用与分支一相同的复数网络。所述的复数网络均包括复数卷积模块、复数批处理化模块和复数激活函数模块。复数卷积模块对于输入的复数数据,分别对实数和虚数部分进行卷积操作,卷积过程按照复数基本运算作为准则,最后结果以复数形式输出。In this embodiment, the complex domain Unet network established in
本实施例中的分支一和分支二结构示意图如图2和图3所示。The schematic diagrams of the structure of the
分支一主要用于相位恢复,输入为维度是(1,32,16)的无相位数据,经过虚部生成模块再与实部输入进行组合得到维度为(2,32,16)的数据作为复数Unet网络的输入,输出为维度是(2,32,16)预测的散射场数据。
分支二主要用于散射场成像,输入为维度是(2,32,16)的理想条件下散射场数据,经过复数UNet网络后,输出为维度是(1,32,16)的复数数据,经过对复数取模得到维度是(1,32,32)的图像数据。级联网络是将训练好的分支一和分支二网络进行级联,即分支二的输入为分支一的输出。
在本发明的一项具体实施中,实数激活函数模块和复数激活函数模块均采用Relu激活函数,其中,复数激活函数模块分别在实数部分和生成的虚数部分施加激活函数。In a specific implementation of the present invention, both the real number activation function module and the complex number activation function module use the Relu activation function, wherein the complex number activation function module applies activation functions to the real number part and the generated imaginary number part respectively.
所述的复数卷积模块采用Unet网络,包括由若干下采样层构成的下采样编码结构、由若干上采样层构成的上采样解码结构以及跳跃连接;所述下采样层和上采样层的数量相等;将分支一的复数卷积模块中的下采样层和上采样层的数量记为n,将分支二的复数卷积模块中的下采样层和上采样层的数量记为m;The complex convolution module adopts a Unet network, including a downsampling encoding structure composed of several downsampling layers, an upsampling decoding structure composed of several upsampling layers and a skip connection; the number of the downsampling layer and the upsampling layer Equal; the number of downsampling layers and upsampling layers in the complex convolution module of branch one is recorded as n, and the number of downsampling layers and upsampling layers in the complex convolution module of branch two is recorded as m;
其中,下采样是压缩的过程,即Encoder。通过卷积和下采样来降低图像尺寸,提取一些浅显的特征。上采样是解码的过程,即Decoder。通过卷积和上采样来获取一些深层次的特征。复数域的Unet网络是通过构建复数卷积模块、复数批处理模块和复数激活函数来取代实数Unet网络。Among them, downsampling is the process of compression, that is, Encoder. The image size is reduced by convolution and downsampling, and some shallow features are extracted. Upsampling is the process of decoding, namely Decoder. Get some deep features by convolution and upsampling. The Unet network in the complex domain replaces the real Unet network by constructing a complex convolution module, a complex batch processing module and a complex activation function.
在分支一的复数卷积模块中,将无相位总场数据对应的实数部分和生成的虚数部分相结合,作为第一层下采样层的输入,然后将上一层下采样层的输出作为下一层下采样层的输入,最后一层下采样层的输出作为第一层上采样的输入;且第i层下采样层的输出与第n-i层上采样层的输出采用跳跃连接的方式相融合,将融合结果作为下一层上采样层的输入,直至获得最后一层上采样层的输出作为复数卷积模块的输出;本实施例中,如图8所示,n取3。In the complex convolution module of
在分支二的复数卷积模块中,首先将散射场数据作为第一层下采样层的输入,然后将上一层下采样层的输出作为下一层下采样层的输入,最后一层下采样层的输出作为第一层上采样的输入;且第i层下采样层的输出与第m-i层上采样层的输出采用跳跃连接的方式相融合,将融合结果作为下一层上采样层的输入,直至获得最后一层上采样层的输出作为复数卷积模块的输出。本实施例中,如图9所示,m取3。In the complex convolution module of branch two, the scattered field data is firstly used as the input of the first layer of downsampling layer, then the output of the previous layer of downsampling layer is used as the input of the next layer of downsampling layer, and the last layer of downsampling layer The output of the layer is used as the input of the first layer of upsampling; and the output of the i-th down-sampling layer is fused with the output of the m-i-th up-sampling layer by skip connection, and the fusion result is used as the input of the next up-sampling layer , until the output of the last upsampling layer is obtained as the output of the complex convolution module. In this embodiment, as shown in FIG. 9 , m is set to 3.
在所述的复数卷积模块中,下采样层和上采样层采用复数二维卷积网络。二维复数卷积的操作主要是首先通过定义复数权重矩阵W=A+iB,以及复数卷积层的输入h=x+iy,不同于实数域卷积网络,复数卷积网络要求输入为复数;接着将复数权重矩阵与输入矩阵进行卷积操作,如下式所示,其中*表示卷积操作。In the complex convolution module, the downsampling layer and the upsampling layer use a complex two-dimensional convolutional network. The operation of two-dimensional complex convolution is mainly by first defining the complex weight matrix W=A+iB, and the input h=x+iy of the complex convolution layer, which is different from the real-number field convolution network. The complex convolution network requires the input to be a complex number ; Then the complex weight matrix is convolved with the input matrix, as shown in the following formula, where * represents the convolution operation.
w*h=(A+iB)*(x+iy)=(A*x-B*y)+i(B*x+A*y)w*h=(A+iB)*(x+iy)=(A*x-B*y)+i(B*x+A*y)
写成矩阵形式为下式所示,其中R(W*h),I(W*h)表示输出的实部和虚部:Written in matrix form, it is shown in the following formula, where R(W*h), I(W*h) represent the real and imaginary parts of the output:
其中,R(W*h)表示复数二维卷积网络输出的实部,I(W*h)表示复数二维卷积网络输出的虚部,W为复数权重矩阵,A为复数权重中的实部,B为复数权重中的虚部,h表示复数二维卷积网络的输入,x、y分别表示h的实部和虚部,*表示卷积操作。Among them, R(W*h) represents the real part of the output of the complex two-dimensional convolutional network, I(W*h) represents the imaginary part of the output of the complex two-dimensional convolutional network, W is the complex weight matrix, and A is the complex weight The real part of , B is the imaginary part of the complex weight, h represents the input of the complex two-dimensional convolutional network, x and y represent the real and imaginary parts of h, respectively, and * represents the convolution operation.
对上述网络结构中的分支一、分支二分别进行训练,并对整体结构进行微调。具体实现过程如下:The
1)网络训练第一阶段为相位恢复。1) The first stage of network training is phase recovery.
输入为无相位总场数据,输出为预测的散射场数据,具体为:The input is the phase-free total field data, and the output is the predicted scattered field data, specifically:
将无相位总场数据作为实数部分输入到虚部生成模块,生成相对应的虚数部分,将实数部分与生成的虚数部分相结合,作为复数网络的输入,分别经过复数卷积模块、复数批处理化模块、复数激活函数模块后获得预测散射场数据。Input the phase-free total field data as the real part to the imaginary part generation module, generate the corresponding imaginary part, combine the real part with the generated imaginary part, and use it as the input of the complex network, and pass through the complex convolution module and complex batch processing respectively Obtain the predicted scattered field data after the optimization module and the complex activation function module.
分支一训练的损失函数为真实值与预测值的差值的平方(MSE Loss);训练迭代数目为200次,每回合的输入样本数目为20,优化器为Adam。The loss function of branch one training is the square of the difference between the real value and the predicted value (MSE Loss); the number of training iterations is 200, the number of input samples per round is 20, and the optimizer is Adam.
2)第二阶段为散射场成像阶段。2) The second stage is the scattering field imaging stage.
输入为理想条件下的散射场数据,对复数Unet的复数输出进行取模处理,作为最终的预测样本成像数据。具体为:将理想散射场数据输入到复数域Unet网络中的分支二中,复数域下的理想散射场数据分别经过复数卷积模块、复数批处理化模块和复数激活函数模块处理,将分支二输出的复数数据取模得到预测图像。The input is the scattered field data under ideal conditions, and the complex output of the complex Unet is modulo-processed as the final predicted sample imaging data. Specifically, the ideal scattering field data is input into the second branch of the Unet network in the complex domain, and the ideal scattering field data in the complex domain are respectively processed by the complex convolution module, the complex batch processing module and the complex activation function module, and the branch two The output complex data is moduloed to obtain the predicted image.
分支二训练的损失函数由真实值与预测值的差值的平方(MSE)和结构相似性损失函数(SSIM Loss)组成。计算样本真实值和预测值的SSIM时,分别对其进行归一化处理,使像素值在0-1范围内。训练超参数同上。The loss function of branch two training consists of the square of the difference between the real value and the predicted value (MSE) and the structural similarity loss function (SSIM Loss). When calculating the SSIM of the real value and the predicted value of the sample, it is normalized separately so that the pixel value is in the range of 0-1. The training hyperparameters are the same as above.
3)第三阶段为级联微调训练。3) The third stage is cascade fine-tuning training.
将阶段一和阶段二训练好的模型进行级联,即无相位数据经过分支一后预测输出散射场数据作为分支二的输入,输出为图像数据。The models trained in
训练过程中,当测试集误差小于阈值0.001时,则认为阶段三训练已达到微调目的,结束训练,得到训练好的复数域Unet网络。训练迭代数目为20次,每回合的输入样本数目为20,优化器为SGD,学习率为0.01,动量系数为0.9。During the training process, when the error of the test set is less than the threshold 0.001, it is considered that the stage three training has achieved the purpose of fine-tuning, the training is ended, and the trained complex domain Unet network is obtained. The number of training iterations is 20, the number of input samples per round is 20, the optimizer is SGD, the learning rate is 0.01, and the momentum coefficient is 0.9.
4)级联后训练完毕后的模型即为最终的预测模型,针对待成像的无相位数据,如图4所示,将无相位数据作为训练好的复数域Unet网络中分支一的输入,得到预测散射场数据并作为分支二的输入,将分支二输出的复数数据取模得到生成的图像。4) The model after cascade training is the final prediction model. For the phase-free data to be imaged, as shown in Figure 4, the phase-free data is used as the input of
在本发明的一个实施例中,依次使用测试集Emnist,Austria对网络进行泛化性能检测;Emnist、Austria测试集分别为100张和10张,介电常数范围为1-2。本实施例的测试结果分别与实数网络、BPS算法、BPS+Unet网络进行了对比分析,如图5、6、7所示。其中图5为测试集Emnist结果,图6为测试集Austria结果,图7为测试Austria不同介电常数的结果。In one embodiment of the present invention, the test sets Emnist and Austria are used in sequence to test the generalization performance of the network; the test sets of Emnist and Austria are respectively 100 and 10, and the dielectric constant range is 1-2. The test results of this embodiment are compared with the real number network, the BPS algorithm, and the BPS+Unet network, as shown in Figures 5, 6, and 7. Figure 5 shows the test set Emnist results, Figure 6 shows the test set Austria results, and Figure 7 shows the results of different permittivity tests in Austria.
其中,图5和图6中的第一行为实数网络输出图像;第二行为BPS算法输出图像;第三行为BPS+UNet输出图像,以第二行的bps及散射场作为输入;第四行为复数网络图像;第五行为真实样本图像;Among them, the first line in Figure 5 and Figure 6 is the output image of the real number network; the second line is the output image of the BPS algorithm; the third line is the output image of BPS+UNet, and the bps and the scattering field of the second line are used as input; the fourth line is complex Network image; the fifth row is a real sample image;
图像上方的数字分别代表结构相似性SSIM损失、均方误差MSE损失、平均绝对误差MAE损失。The numbers above the images represent structural similarity SSIM loss, mean square error MSE loss, mean absolute error MAE loss, respectively.
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。The above-mentioned embodiments only express several implementation modes of the present invention, and the description thereof is relatively specific and detailed, but should not be construed as limiting the patent scope of the present invention. It should be pointed out that those skilled in the art can make several modifications and improvements without departing from the concept of the present invention, and these all belong to the protection scope of the present invention. Therefore, the protection scope of the patent for the present invention should be based on the appended claims.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011470944.7A CN112528869B (en) | 2020-12-14 | 2020-12-14 | Phase-free data imaging method based on complex neural network |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011470944.7A CN112528869B (en) | 2020-12-14 | 2020-12-14 | Phase-free data imaging method based on complex neural network |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112528869A CN112528869A (en) | 2021-03-19 |
CN112528869B true CN112528869B (en) | 2023-04-25 |
Family
ID=74999701
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011470944.7A Active CN112528869B (en) | 2020-12-14 | 2020-12-14 | Phase-free data imaging method based on complex neural network |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112528869B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115200702A (en) * | 2022-06-17 | 2022-10-18 | 北京理工大学 | Computational imaging method and device based on complex neural network |
CN117952181B (en) * | 2024-01-29 | 2024-11-15 | 北京航空航天大学 | A phase-free near-field reconstruction method for high-power pulses based on neural networks |
CN117973456B (en) * | 2024-03-29 | 2024-07-02 | 安徽大学 | Electromagnetic backscatter imaging method based on deep learning network model |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107607942A (en) * | 2017-08-31 | 2018-01-19 | 北京大学 | Based on the large scale electromagnetic scattering of deep learning model and the Forecasting Methodology of back scattering |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7308154B1 (en) * | 2003-10-20 | 2007-12-11 | Rockwell Collins, Inc. | Method and apparatus for enhancing a degraded digital image |
CN104597444B (en) * | 2015-01-30 | 2017-05-03 | 中国科学技术大学 | Microwave gaze high resolution imaging method based on intensity association |
CN110990757B (en) * | 2019-12-05 | 2023-09-19 | 杭州电子科技大学 | Method for solving highly nonlinear electromagnetic backscatter problem by using non-phase data |
CN111626412B (en) * | 2020-05-12 | 2023-10-31 | 浙江大学 | One-dimensional convolution acceleration device and method for complex neural network |
CN111609787B (en) * | 2020-05-28 | 2021-10-01 | 杭州电子科技大学 | Two-step phase-free imaging method for solving electromagnetic inverse scattering problem based on neural network |
-
2020
- 2020-12-14 CN CN202011470944.7A patent/CN112528869B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107607942A (en) * | 2017-08-31 | 2018-01-19 | 北京大学 | Based on the large scale electromagnetic scattering of deep learning model and the Forecasting Methodology of back scattering |
Also Published As
Publication number | Publication date |
---|---|
CN112528869A (en) | 2021-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109993825B (en) | Three-dimensional reconstruction method based on deep learning | |
CN112528869B (en) | Phase-free data imaging method based on complex neural network | |
Wang et al. | High-quality image compressed sensing and reconstruction with multi-scale dilated convolutional neural network | |
CN111870245B (en) | Cross-contrast-guided ultra-fast nuclear magnetic resonance imaging deep learning method | |
Li et al. | Deep learning methods in real-time image super-resolution: a survey | |
CN111462012A (en) | SAR image simulation method for generating countermeasure network based on conditions | |
Yao et al. | Enhanced supervised descent learning technique for electromagnetic inverse scattering problems by the deep convolutional neural networks | |
CN113838107A (en) | Dense connection-based heterogeneous image automatic registration method | |
CN111428407A (en) | A computational method of electromagnetic scattering based on deep learning | |
An et al. | Image fusion algorithm based on unsupervised deep learning-optimized sparse representation | |
Tang et al. | An end‐to‐end steel surface defect detection approach via swin transformer | |
Tian et al. | Image compressed sensing using multi-scale residual generative adversarial network | |
CN119147914A (en) | GIS field-electricity fusion real-time state sensing and early warning system and method | |
Huang et al. | 3D human pose estimation with multi-scale graph convolution and hierarchical body pooling | |
CN117173329A (en) | A point cloud upsampling method based on reversible neural network | |
Wang et al. | A wavelet-domain consistency-constrained compressive sensing framework based on memory-boosted guidance filtering | |
Wang et al. | YOLO-RLC: An Advanced Target-Detection Algorithm for Surface Defects of Printed Circuit Boards Based on YOLOv5. | |
Wu et al. | A new ECT image reconstruction algorithm based on Vision transformer (ViT) | |
CN111444601B (en) | An AI-learning electromagnetic scattering calculation method suitable for any incident field | |
Qin et al. | Multi-resolution space-attended residual dense network for single image super-resolution | |
Xu et al. | Non-local recurrent regularization networks for multi-view stereo | |
Nie et al. | EDAfuse: A encoder–decoder with atrous spatial pyramid network for infrared and visible image fusion | |
Xiao et al. | Multi-dimensional graph interactional network for progressive point cloud completion | |
Wu et al. | Computationally effective estimation of supersonic flow field around airfoils using sparse convolutional neural network | |
CN116628502A (en) | An Electromagnetic Inverse Scatter Imaging Method Based on Deep U-Net Model |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |