CN112526747B - An aberration-corrected imaging lens assembly for two-dimensional motion of a conformal optical system - Google Patents
An aberration-corrected imaging lens assembly for two-dimensional motion of a conformal optical system Download PDFInfo
- Publication number
- CN112526747B CN112526747B CN202011449397.4A CN202011449397A CN112526747B CN 112526747 B CN112526747 B CN 112526747B CN 202011449397 A CN202011449397 A CN 202011449397A CN 112526747 B CN112526747 B CN 112526747B
- Authority
- CN
- China
- Prior art keywords
- lens
- conformal
- aberration
- imaging lens
- lens assembly
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/0025—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
- G02B27/0068—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration having means for controlling the degree of correction, e.g. using phase modulators, movable elements
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
- Lens Barrels (AREA)
Abstract
Description
技术领域technical field
本发明属于武器装备光电探测器设计技术领域,尤其涉及一种共形光学系统两维运动的像差校正成像透镜组件。The invention belongs to the technical field of weapon equipment photodetector design, and in particular relates to an aberration-correcting imaging lens assembly for two-dimensional motion of a conformal optical system.
背景技术Background technique
共形光学指的是在光学系统的优化设计中,不但要使得光学系统成像质量达到最好,而且要使得光学系统在与其应用环境的交互中达到最优,它主要应用于高速飞行器和导弹的导航、跟踪或者侦察用成像探测系统中。传统的机载光学遥感器为满足较大视场,常采用平面拼接式光学窗口,该类光学窗口虽然对光学系统成像质量影响较小,但是会给机身引入较大的阻力,且平面窗口会增大雷达横截面的反射面积。Conformal optics refers to the optimal design of the optical system, not only to achieve the best imaging quality of the optical system, but also to optimize the interaction of the optical system with its application environment. It is mainly used in high-speed aircraft and missiles In imaging detection systems for navigation, tracking or reconnaissance. In order to meet the larger field of view, the traditional airborne optical remote sensor often adopts a flat spliced optical window. Although this type of optical window has little impact on the imaging quality of the optical system, it will introduce greater resistance to the fuselage, and the flat window Will increase the reflective area of the radar cross section.
共形光学系统采用的窗口外表面面型需要与机舱载体外表面进行平滑的吻合,即“共形”于高速载体外表面,使得窗口面型符合载体的流体力学性能和气动性能,但是此时光学窗口参与成像的光学表面一般为非球面光学面型,甚至为不规则的自由曲面。此时,当舱内的光学系统对一定范围的视场进行大扫描成像时,共形于高速载体的气动光学窗口会为后续的成像光学系统引入严重的像差,且这些像差会随着扫描视场角的变化而动态变化,极大地影响了飞行器遥感相机的成像分辨率。共形光学理论针对气动光学窗口引入的各种严重动态像差,研究科学的像差校正方法,通过设计灵活多样的像差校正器,使得成像系统在保证机身空气动力学性能的基础上满足系统本身的成像性能。The outer surface of the window used by the conformal optical system needs to be smoothly matched with the outer surface of the cabin carrier, that is, "conformal" to the outer surface of the high-speed carrier, so that the window surface conforms to the hydrodynamic and aerodynamic properties of the carrier, but at this time The optical surface of the optical window that participates in imaging is generally an aspheric optical surface, or even an irregular free-form surface. At this time, when the optical system in the cabin performs large-scale scanning imaging on a certain range of field of view, the aero-optical window conformal to the high-speed carrier will introduce serious aberrations to the subsequent imaging optical system, and these aberrations will be The dynamic change due to the change of the scanning field of view greatly affects the imaging resolution of the remote sensing camera of the aircraft. Conformal optics theory researches scientific aberration correction methods for various severe dynamic aberrations introduced by aero-optical windows. By designing flexible and diverse aberration correctors, the imaging system can meet the aerodynamic performance requirements of the fuselage. The imaging performance of the system itself.
目前国内外学者研制的光学像差校正器主要分为两类,即静态像差校正器和动态像差校正器,而两类像差校正器均有先天的劣势。静态像差校正器校正像差不完善,动态像差校正器结构复杂、体积庞大、增加了系统的复杂度。At present, the optical aberration correctors developed by scholars at home and abroad are mainly divided into two categories, namely static aberration correctors and dynamic aberration correctors, and both types of aberration correctors have inherent disadvantages. The static aberration corrector corrects imperfect aberrations, and the dynamic aberration corrector has a complex structure and a large volume, which increases the complexity of the system.
发明内容Contents of the invention
本发明解决的技术问题是:克服现有技术的不足,提供了一种共形光学系统两维运动的像差校正成像透镜组件,将固有成像透镜组件转化为动态像差校正元件,实现共形光学系统像差动态校正。The technical problem solved by the present invention is: to overcome the deficiencies of the prior art, to provide an aberration-corrected imaging lens assembly with two-dimensional motion of a conformal optical system, to transform the inherent imaging lens assembly into a dynamic aberration-corrected element, and to realize conformal Optical system aberration dynamic correction.
本发明目的通过以下技术方案予以实现:一种共形光学系统两维运动的像差校正成像透镜组件,包括:共形光学窗口、像差校正成像透镜组件和伺服控制系统;其中,所述像差校正成像透镜组件和所述伺服控制系统相连接,伺服控制系统能够对像差校正成像透镜组件进行运动控制;所述像差校正成像透镜组件包括第一透镜、第二透镜和第三透镜;所述伺服控制系统能够驱动第一透镜和第三透镜相对于第二透镜沿光轴运动,所述伺服控制系统能够驱动第一透镜、第二透镜和第三透镜绕光轴转动。The object of the present invention is achieved through the following technical solutions: an aberration-corrected imaging lens assembly with two-dimensional motion of a conformal optical system, including: a conformal optical window, an aberration-corrected imaging lens assembly, and a servo control system; wherein the image The aberration correction imaging lens assembly is connected to the servo control system, and the servo control system can control the movement of the aberration correction imaging lens assembly; the aberration correction imaging lens assembly includes a first lens, a second lens and a third lens; The servo control system can drive the first lens and the third lens to move along the optical axis relative to the second lens, and the servo control system can drive the first lens, the second lens and the third lens to rotate around the optical axis.
上述共形光学系统两维运动的像差校正成像透镜组件中,共形光学窗口与第二透镜的距离为136mm;第一透镜相对于第二透镜沿轴运动的距离范围为0mm-4mm,第三透镜相对于第二透镜沿轴运动的距离范围为0mm-6.7mm;第一透镜、第二透镜和第三透镜绕轴转动的角度范围为0-0.76°。In the above-mentioned aberration-corrected imaging lens assembly with two-dimensional movement of the conformal optical system, the distance between the conformal optical window and the second lens is 136mm; the distance between the first lens and the second lens along the axis is 0mm-4mm, and The distance range of the movement of the three lenses relative to the second lens along the axis is 0mm-6.7mm; the angle range of the rotation of the first lens, the second lens and the third lens around the axis is 0-0.76°.
上述共形光学系统两维运动的像差校正成像透镜组件中,所述共形光学窗口包括共形外表面和共形内表面;其中,共形外表面和共形内表面为偏轴的同心抛物面;共形外表面和共形内表面的二次曲面系数都是-0.875;所述共形外表面的曲率半径为50mm,所述共形内表面的曲率半径为46mm。In the above-mentioned aberration-corrected imaging lens assembly for two-dimensional motion of the conformal optical system, the conformal optical window includes a conformal outer surface and a conformal inner surface; wherein the conformal outer surface and the conformal inner surface are off-axis concentric Paraboloid; the quadratic coefficients of both the conformal outer surface and the conformal inner surface are -0.875; the curvature radius of the conformal outer surface is 50mm, and the curvature radius of the conformal inner surface is 46mm.
上述共形光学系统两维运动的像差校正成像透镜组件中,所述共形内表面为双向可调的对称式Zernike表面。In the aberration-corrected imaging lens assembly for two-dimensional movement of the above-mentioned conformal optical system, the conformal inner surface is a two-way adjustable symmetrical Zernike surface.
上述共形光学系统两维运动的像差校正成像透镜组件中,所述第一透镜包括第一球面和第二球面,所述第一透镜的材料为锗,所述第一透镜的厚度为3mm;所述第二透镜包括平面和第一柱面,所述第二透镜的材料为硒化锌,所述第二透镜的厚度为2mm;所述第三透镜包括第二柱面和第三球面,所述第三透镜的材料为锗,所述第三透镜的厚度为3mm。In the aberration-corrected imaging lens assembly for two-dimensional motion of the conformal optical system, the first lens includes a first spherical surface and a second spherical surface, the material of the first lens is germanium, and the thickness of the first lens is 3mm ; The second lens includes a plane and a first cylindrical surface, the material of the second lens is zinc selenide, and the thickness of the second lens is 2mm; the third lens includes a second cylindrical surface and a third spherical surface , the material of the third lens is germanium, and the thickness of the third lens is 3 mm.
上述共形光学系统两维运动的像差校正成像透镜组件中,所述共形内表面的矢量高度表达式如下:In the aberration-corrected imaging lens assembly for two-dimensional motion of the above-mentioned conformal optical system, the vector height expression of the conformal inner surface is as follows:
其中,Z光学表面矢量高度,C光线在光学表面上的交点径向位置,r为半径值,k为二次曲面系数,Ai是标准泽尼克多项式的第i项系数,是光线在标准则尼克表面上的交点轴向位置,ρ光线在光学表面上的归一化交点径向位置,是光线与光学表面的夹角。Among them, the vector height of Z optical surface, the radial position of the intersection point of C rays on the optical surface, r is the radius value, k is the quadratic surface coefficient, A i is the i-th coefficient of the standard Zernike polynomial, is the axial position of the intersection point of the ray on the standard regular Nick surface, the radial position of the normalized intersection point of the ρ ray on the optical surface, is the angle between the ray and the optical surface.
本发明与现有技术相比具有如下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
(1)本发明将固有成像透镜组件转化为动态像差校正元件,实现共形光学系统像差动态校正;(1) The present invention converts the inherent imaging lens assembly into a dynamic aberration correction element, realizing the dynamic correction of the aberration of the conformal optical system;
(2)本发明由三个透镜组成,像差校正成像组件的作用包含:第一,作为像差校正器,产生波前像差,校正共形光学系统波前像差,第二,作为中继成像系统,接收共形光学系统平行光入射,完成共形光学中继成像;(2) The present invention is composed of three lenses, and the functions of the aberration correction imaging component include: first, as an aberration corrector, generating wavefront aberration, and correcting the wavefront aberration of the conformal optical system; Relay imaging system, receiving parallel light incident from conformal optical system, to complete conformal optical relay imaging;
(3)本发明透镜组件中的两透镜进行轴向运动,透镜组件中的所有三个透镜进行绕轴转动。其中两个透镜的沿轴运动补偿了系统中随观测场变化的离焦量,三个透镜的绕轴转动用于补偿系统中的随观测场变化的像散。(3) Two lenses in the lens assembly of the present invention move axially, and all three lenses in the lens assembly rotate around their axes. The axial movement of the two lenses compensates the defocusing amount that changes with the observation field in the system, and the rotation of the three lenses around the axis is used to compensate the astigmatism in the system that changes with the observation field.
附图说明Description of drawings
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:Various other advantages and benefits will become apparent to those of ordinary skill in the art upon reading the following detailed description of the preferred embodiment. The drawings are only for the purpose of illustrating a preferred embodiment and are not to be considered as limiting the invention. Also throughout the drawings, the same reference numerals are used to designate the same parts. In the attached picture:
图1是本发明实施例提供的共形光学系统两维运动的像差校正成像透镜组件的结构示意图;FIG. 1 is a schematic structural diagram of an aberration-corrected imaging lens assembly for two-dimensional movement of a conformal optical system provided by an embodiment of the present invention;
图2是本发明实施例提供的像差校正成像透镜组件两维运动的控制流程图。FIG. 2 is a control flow diagram of the two-dimensional movement of the aberration-corrected imaging lens assembly provided by the embodiment of the present invention.
具体实施方式Detailed ways
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。Exemplary embodiments of the present disclosure will be described in more detail below with reference to the accompanying drawings. Although exemplary embodiments of the present disclosure are shown in the drawings, it should be understood that the present disclosure may be embodied in various forms and should not be limited by the embodiments set forth herein. Rather, these embodiments are provided for more thorough understanding of the present disclosure and to fully convey the scope of the present disclosure to those skilled in the art. It should be noted that, in the case of no conflict, the embodiments of the present invention and the features in the embodiments can be combined with each other. The present invention will be described in detail below with reference to the accompanying drawings and examples.
图1是本发明实施例提供的共形光学系统两维运动的像差校正成像透镜组件的结构示意图。如图1所示,该共形光学系统两维运动的像差校正成像透镜组件包括:共形光学窗口1、像差校正成像透镜组件13和伺服控制系统。其中,所述像差校正成像透镜组件13和所述伺服控制系统相连接,伺服控制系统能够对像差校正成像透镜组件13进行运动控制;所述像差校正成像透镜组件包括第一透镜2、第二透镜3和第三透镜4;所述伺服控制系统能够驱动第一透镜2和第三透镜4相对于第二透镜3沿轴运动,所述伺服控制系统能够驱动第一透镜2、第二透镜3和第三透镜4绕轴运动。FIG. 1 is a schematic structural diagram of an aberration-corrected imaging lens assembly for two-dimensional movement of a conformal optical system provided by an embodiment of the present invention. As shown in FIG. 1 , the aberration-corrected imaging lens assembly for two-dimensional movement of the conformal optical system includes: a conformal
共形光学窗口1与第二透镜3的距离为136mm;The distance between the conformal
所述伺服控制系统能够驱动第一透镜2和第三透镜4相对于第二透镜3沿轴运动中具体的第一透镜2相对于第二透镜3运动的距离范围为0mm-4mm,第三透镜4相对于第二透镜3运动的距离范围为0mm-6.7mm。The servo control system can drive the
第一透镜2、第二透镜3和第三透镜4绕轴运动的角度范围为0-0.76°。The angle range of the movement of the
共形光学系统包含共形光学窗口1,包含共形外表面5和共形内表面6。共形内表面6为一个非球面,作用为补偿高次非球面像差。两维运动像差校正器13安装的位置可以接受进入共形光学窗口1的成像光线,其动态运动可以补偿低阶像差,主要包含大角度观测场内离焦与像散。所说的观测场指的是传感器在具备俯仰、方位方向有足够大角度的旋转或指向范围,是与瞬时视场对比而言的,一般传感器的瞬时视场远远小于观测场。The conformal optical system comprises a conformal
如图1所示,共形光学窗口1的作用一般包含两种:第一,保证高速飞行器的流体力学性能;第二,保证窗口后面成像光学系统可以满足足够的观测场成像。为了足够的流体性能,共形光学窗口的面形一般与高速飞机的安装接口满足平滑过渡,然而满足该条件的光学窗口一般会引入随着观测场变化的像差。该像差包括高阶像差和低阶像差,分别采用静态校正方法和动态校正方法,其中高阶像差一般通过静态像差校正器,即共形光学系统的内表面进行校正。低阶像差尤其是像散和离焦,一般动态相差校正器,即共形光学系统像差发生器进行校正。As shown in Figure 1, the conformal
光学系统入瞳直径为50mm,观测场的范围从俯仰-30°~30°,工作中心波长为4.2μm,以上为一个设计实例,该方法适用于同类型的共形光学系统。The entrance pupil diameter of the optical system is 50mm, the observation field ranges from -30° to 30° in elevation, and the working center wavelength is 4.2μm. The above is a design example, and this method is applicable to the same type of conformal optical system.
共形光学窗口1的两个表面为偏轴的同心抛物面,内外表面的二次曲面系数都是-0.875,其内表面面形不同于外表面面型,内表面是对称式Zernike表面,外表面的曲率半径为50mm,内表面的曲率半径为46mm,内表面的矢量高度表达式如下:The two surfaces of the conformal
其中,Z光学表面矢量高度,C光线在光学表面上的交点径向位置,r为半径值,k为二次曲面系数,Ai是标准泽尼克多项式的第i项系数,是光线在标准则尼克表面上的交点轴向位置,ρ光线在光学表面上的归一化交点径向位置,是光线与光学表面的夹角。Among them, the vector height of Z optical surface, the radial position of the intersection point of C rays on the optical surface, r is the radius value, k is the quadratic surface coefficient, A i is the i-th coefficient of the standard Zernike polynomial, is the axial position of the intersection point of the ray on the standard regular Nick surface, the radial position of the normalized intersection point of the ρ ray on the optical surface, is the angle between the ray and the optical surface.
两维运动的像差校正器13包含透镜2、透镜3、透镜4组成,像差校正器的两维运动包含:(1)透镜2与透镜4的沿轴运动;(2)透镜2、透镜3、透镜4的绕轴转动,透镜2相对于透镜3的运动补偿了系统中的离焦,透镜4相对于透镜3的运动补偿了系统中的像散;透镜2、透镜3、透镜4的绕轴转动可以改变像散的方向。The
透镜2包含一个球面7和一个球面8,材料选用锗,厚度为3mm;透镜3包含一个平面9和一个柱面(或环形表面)10,材料为硒化锌,厚度为2mm;透镜4包含一个柱面11(或环形表面)和一个球面12,材料为锗,厚度约为3mm。图中透镜2相对于3沿轴运动的作用是补偿光学系统的离焦,图中透镜4相对于3沿轴运动的作用是补偿光学系统的像散。The
共形光学窗口引入的初始波前差在观测场内达约RMS值5个波长,这是光学成像性能所无法容忍的像差,必须进行校正。将波前像差分解为正交Zernike多项式像差的形式,通过分解得知,像差类型中包含高次像差,因此将整流罩内表面设置为则尼克多项式表面以校正像差中的高次项,经过内表面像差校正后,像差在观测场内的波前差约为RMS值0.3~0.5个波长。The initial wavefront difference introduced by the conformal optical window reaches about 5 wavelengths of RMS value in the observation field, which is an intolerable aberration for optical imaging performance and must be corrected. The wavefront aberration is decomposed into the form of orthogonal Zernike polynomial aberration. Through the decomposition, it is known that the aberration type includes high-order aberrations, so the inner surface of the fairing is set as the Zernike polynomial surface to correct the high-order aberrations in the aberration. Second item, after the internal surface aberration is corrected, the wavefront difference of the aberration in the observation field is about 0.3 to 0.5 wavelengths of RMS value.
剩余像差主要由低阶像差组成,例如离焦和像散,窗口内表面通常无法校正,此时,当两维运动像差校正器进行校正后,像差被校正为剩下0.025波长RMS值。当产生两维运动时,三个透镜之间的间隔、旋转都会精确移除像差中的离焦与像散。三个透镜的两维运动需提供足够的速度以匹配成像光学系统在观测场内扫描的速度,伺服控制系统通过控制数据库对两维运动像差校正器的动作进行精确控制。The remaining aberrations are mainly composed of low-order aberrations, such as defocus and astigmatism, and the inner surface of the window cannot usually be corrected. At this time, when the two-dimensional motion aberration corrector is corrected, the aberrations are corrected to the remaining 0.025 wavelength RMS value. When two-dimensional motion is generated, the spacing and rotation between the three lenses will precisely remove defocus and astigmatism in aberrations. The two-dimensional movement of the three lenses needs to provide sufficient speed to match the scanning speed of the imaging optical system in the observation field, and the servo control system precisely controls the action of the two-dimensional motion aberration corrector through the control database.
图2给出了两维运动的像差校正成像透镜组件13的控制流程,第14步决定像差校正成像透镜组件13的位置;第15步表示探测器提供了像差数据;通过判断系统波前RMS值是否满足系统要求,判断是否需要像差校正成像透镜组件13产生运动,如果需要产生运动,则伺服控制系统通过调用位置预存数据库数据对像差校正成像透镜组件13进行运动控制,其随时间变化的具体动作变化主要取决于光线进入共形光学窗口的位置与面型变化,像差校正成像透镜组件13在不同共形光学系统中的应用具有普适性,像差校正成像透镜组件13的动作取决于共形光学窗口的材料、厚度、外表面、内表面的面形,像差校正成像透镜组件13一般置于共形光学窗口后面无焦位置处。Fig. 2 has provided the control process of the aberration correction
第16步判断两个透镜是否应该分开并产生轴向运动,如果通过预存数据库判断透镜之间应该产生轴向运动,则第17步控制像差校正成像透镜组件13中的透镜之间产生轴向运动。第18步判断像差校正成像透镜组件13是否应该产生绕轴旋转运动,如果通过预存数据库判断像差校正成像透镜组件13必须产生绕轴转动,则第19步则控制像差校正成像透镜组件13产生绕轴转动,如果判断得知不需要,则直接跳到达到流程的第20步结束。The 16th step judges whether two lenses should be separated and produce axial movement, if it is judged that axial movement should be produced between the lenses through the prestored database, then the 17th step controls the aberration correction
本发明将固有成像透镜组件转化为动态像差校正元件,实现共形光学系统像差动态校正;本发明由三个透镜组成,像差校正成像组件的作用包含:第一,作为像差校正器,产生波前像差,校正共形光学系统波前像差,第二,作为中继成像系统,接收共形光学系统平行光入射,完成共形光学中继成像;本发明透镜组件中的两透镜进行轴向运动,透镜组件中的所有三个透镜进行绕轴转动。其中两个透镜的沿轴运动补偿了系统中随观测场变化的离焦量,三个透镜的绕轴转动用于补偿系统中的随观测场变化的像散。The present invention transforms the inherent imaging lens assembly into a dynamic aberration correction element to realize the dynamic correction of the aberration of the conformal optical system; the present invention is composed of three lenses, and the functions of the aberration correction imaging assembly include: first, as an aberration corrector , generate wavefront aberration, and correct the wavefront aberration of the conformal optical system, and secondly, as a relay imaging system, receive the incident parallel light of the conformal optical system to complete the conformal optical relay imaging; the two components in the lens assembly of the present invention The lenses undergo axial movement and all three lenses in the lens assembly pivot. The axial movement of the two lenses compensates the defocusing amount that changes with the observation field in the system, and the rotation of the three lenses around the axis is used to compensate the astigmatism in the system that changes with the observation field.
本发明虽然已以较佳实施例公开如上,但其并不是用来限定本发明,任何本领域技术人员在不脱离本发明的精神和范围内,都可以利用上述揭示的方法和技术内容对本发明技术方案做出可能的变动和修改,因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化及修饰,均属于本发明技术方案的保护范围。Although the present invention has been disclosed as above with preferred embodiments, it is not intended to limit the present invention, and any person skilled in the art can use the methods disclosed above and technical content to analyze the present invention without departing from the spirit and scope of the present invention. Possible changes and modifications are made in the technical solution. Therefore, any simple modification, equivalent change and modification made to the above embodiments according to the technical essence of the present invention, which do not depart from the content of the technical solution of the present invention, all belong to the technical solution of the present invention. protected range.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011449397.4A CN112526747B (en) | 2020-12-09 | 2020-12-09 | An aberration-corrected imaging lens assembly for two-dimensional motion of a conformal optical system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011449397.4A CN112526747B (en) | 2020-12-09 | 2020-12-09 | An aberration-corrected imaging lens assembly for two-dimensional motion of a conformal optical system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112526747A CN112526747A (en) | 2021-03-19 |
CN112526747B true CN112526747B (en) | 2022-11-11 |
Family
ID=74998679
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011449397.4A Active CN112526747B (en) | 2020-12-09 | 2020-12-09 | An aberration-corrected imaging lens assembly for two-dimensional motion of a conformal optical system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112526747B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114578552B (en) * | 2022-03-16 | 2023-07-25 | 长春理工大学 | Fixed corrector and design method for dynamic aberration correction of parabolic conformal headgear |
CN115718361B (en) * | 2022-11-24 | 2025-02-18 | 蔚来汽车科技(安徽)有限公司 | Optical systems, cameras and vehicles |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5526181A (en) * | 1993-12-22 | 1996-06-11 | Hughes Aircraft Company | Dynamic aberration corrector for conformal windows |
US6018424A (en) * | 1996-12-11 | 2000-01-25 | Raytheon Company | Conformal window design with static and dynamic aberration correction |
US6201230B1 (en) * | 1997-10-02 | 2001-03-13 | Raytheon Company | Sensor system with dynamic optical corrector |
CN107656368A (en) * | 2017-10-30 | 2018-02-02 | 北京遥感设备研究所 | A kind of big L/D ratio exposes thoroughly visual field without thermalization Conformal Optical System |
CN110989167A (en) * | 2019-12-26 | 2020-04-10 | 哈尔滨工业大学 | A conformal optical system based on wavefront coding and its dynamic aberration correction method |
-
2020
- 2020-12-09 CN CN202011449397.4A patent/CN112526747B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN112526747A (en) | 2021-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112526747B (en) | An aberration-corrected imaging lens assembly for two-dimensional motion of a conformal optical system | |
Asadnezhad et al. | Optical system design of star sensor and stray light analysis | |
US4291848A (en) | Missile seeker optical system | |
CN104035188A (en) | Low-cost refracting-reflecting athermalizing medium wave infrared lens | |
US11386246B2 (en) | Method for designing hybrid surface optical system | |
US20180210180A1 (en) | Off-axis hybrid surface three-mirror optical system | |
EP1196806A2 (en) | Optical system having a generalized torus optical corrector | |
CN112859304A (en) | Broadband large-view-field imaging system based on free-form surface micro-nano structure lens | |
US6018424A (en) | Conformal window design with static and dynamic aberration correction | |
US6871817B1 (en) | System containing an anamorphic optical system with window, optical corrector, and sensor | |
Chen et al. | Wolter-I-like X ray telescope structure using one conical mirror and one quadric mirror | |
CN103278918B (en) | Conformal cowling and conformal optical system based on gradient refractive index optical element | |
CN103926693A (en) | Compact large-framework-angle conformal optical system | |
CN108828754B (en) | Ultra-high-resolution imaging optical system and imaging method for submicron pixels | |
US20240302134A1 (en) | Missile guidance system | |
US20050077489A1 (en) | Liquid filled conformal windows and domes | |
EP2573604B1 (en) | Ultra compact inverse telephoto optical system for use in the IR spectrum | |
CN103512427A (en) | Lobster eye infrared imaging guiding system | |
CN106054381B (en) | Conformal small recessed infrared optical system containing distorting lens | |
CN102262298B (en) | Large-field scanning infrared optical system comprising transmission-type spatial light modulator | |
Zhang et al. | Dynamic aberrations correction of Roll-Nod conformal seeker based on the diffraction surface and anamorphic asphere surface | |
CN114675415B (en) | An off-axis two-mirror optical system and its design method | |
Fan et al. | Research on aberration correction methods of conformal dome based on haack curve | |
CN116841102A (en) | Homogeneous material large view field camera | |
CN111290103B (en) | Large-area-array medium-wave infrared double-view-field optical system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |