CN112526576B - Ophthalmic lens dose measurement device and method - Google Patents
Ophthalmic lens dose measurement device and method Download PDFInfo
- Publication number
- CN112526576B CN112526576B CN202011348473.2A CN202011348473A CN112526576B CN 112526576 B CN112526576 B CN 112526576B CN 202011348473 A CN202011348473 A CN 202011348473A CN 112526576 B CN112526576 B CN 112526576B
- Authority
- CN
- China
- Prior art keywords
- detector
- crystal
- energy
- particles
- radiation particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005259 measurement Methods 0.000 title claims abstract description 33
- 238000000034 method Methods 0.000 title claims abstract description 10
- 239000013078 crystal Substances 0.000 claims abstract description 74
- 239000002245 particle Substances 0.000 claims abstract description 57
- 230000005855 radiation Effects 0.000 claims abstract description 46
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 17
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 17
- 239000010703 silicon Substances 0.000 claims abstract description 17
- 230000004907 flux Effects 0.000 claims abstract description 16
- 238000012545 processing Methods 0.000 claims abstract description 15
- 238000001228 spectrum Methods 0.000 claims description 15
- 238000012546 transfer Methods 0.000 claims description 8
- 230000005251 gamma ray Effects 0.000 claims description 7
- 238000006243 chemical reaction Methods 0.000 claims description 5
- 230000003993 interaction Effects 0.000 claims description 5
- 239000011163 secondary particle Substances 0.000 claims description 4
- 230000008569 process Effects 0.000 claims description 3
- 238000000691 measurement method Methods 0.000 claims 1
- 210000000695 crystalline len Anatomy 0.000 abstract 2
- 230000005540 biological transmission Effects 0.000 abstract 1
- 239000002131 composite material Substances 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 5
- 238000004891 communication Methods 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 238000011897 real-time detection Methods 0.000 description 2
- 238000000904 thermoluminescence Methods 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000005865 ionizing radiation Effects 0.000 description 1
- 238000012806 monitoring device Methods 0.000 description 1
- 230000004770 neurodegeneration Effects 0.000 description 1
- 208000015122 neurodegenerative disease Diseases 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/16—Measuring radiation intensity
- G01T1/1603—Measuring radiation intensity with a combination of at least two different types of detector
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/02—Dosimeters
- G01T1/026—Semiconductor dose-rate meters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/16—Measuring radiation intensity
- G01T1/24—Measuring radiation intensity with semiconductor detectors
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Molecular Biology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Measurement Of Radiation (AREA)
Abstract
Description
技术领域technical field
本发明涉及空间辐射探测技术领域,尤其涉及眼晶状体剂量测量装置及方法。The present invention relates to the technical field of space radiation detection, and in particular, to an ocular lens dose measurement device and method.
背景技术Background technique
空间站中,航天员必然暴露于舱内的空间辐射环境中,空间电离辐射是载人航天飞行中影响宇航员健康因素的重要因素之一。因为空间辐射对人类空间探索活动的威胁,空间辐射剂量测量一直是科学家极为关注的问题。尤其是在空间中带电粒子等导致的神经退行性疾病的风险较高。眼晶体是辐射敏感器官,关于眼晶体的辐射监测对航天员健康评估具有重要意义。目前眼晶体辐射剂量的探测依赖于被动型的剂量监测装置,如热释光片等,例如眼晶体的测量仅仅依靠被动型的热释光探测器进行测量,仅获得了累计剂量,无法进行实时的监测;还有多通过闪烁晶体获得粒子的能谱,然而闪烁晶体密度与眼晶体差别较大,组织等效性较差,故测量精度较差。In the space station, astronauts are inevitably exposed to the space radiation environment in the cabin. Space ionizing radiation is one of the important factors affecting the health of astronauts in manned spaceflight. Because of the threat of space radiation to human space exploration activities, space radiation dose measurement has always been a matter of great concern to scientists. In particular, the risk of neurodegenerative diseases such as charged particles in space is high. The ocular lens is a radiation-sensitive organ, and the radiation monitoring of the ocular lens is of great significance to the health assessment of astronauts. At present, the detection of the radiation dose of the ocular lens relies on passive dose monitoring devices, such as thermoluminescence sheets, etc. For example, the measurement of the ocular lens only relies on passive thermoluminescence detectors to measure, only the accumulated dose is obtained, and real-time measurement is not possible. However, the density of scintillation crystals is quite different from that of ocular lenses, and the tissue equivalence is poor, so the measurement accuracy is poor.
发明内容SUMMARY OF THE INVENTION
为了解决上述的技术问题,本发明的一个目的是一种眼晶状体剂量测量装置,包括Si-EJ276探测器和控制模块;In order to solve the above-mentioned technical problems, one object of the present invention is an ocular lens dose measurement device, comprising a Si-EJ276 detector and a control module;
所述Si-EJ276探测器包括沿辐射粒子入射方向依次设置的Si探测器和EJ276晶体探测器,所述Si探测器和EJ276晶体探测器耦合,所述EJ276晶体探测器包括EJ276晶体和硅光电倍增管,所述硅光电倍增管与EJ276晶体耦合;The Si-EJ276 detector includes a Si detector and an EJ276 crystal detector arranged in sequence along the incident direction of the radiation particles, the Si detector and the EJ276 crystal detector are coupled, and the EJ276 crystal detector includes an EJ276 crystal and a silicon photomultiplier tube, the silicon photomultiplier tube is coupled with the EJ276 crystal;
所述控制模块设于Si-EJ276探测器上,EJ276晶体探测器在不同辐射粒子的情况下输出不同快慢成分的信号波形,所述控制模块用于对EJ276晶体探测器的输出信号进行脉冲信号处理后,区分辐射粒子并获得辐射粒子的能量及通量。The control module is set on the Si-EJ276 detector. The EJ276 crystal detector outputs signal waveforms of different fast and slow components in the case of different radiation particles. The control module is used to perform pulse signal processing on the output signal of the EJ276 crystal detector. Then, the radiated particles are distinguished and the energy and flux of the radiated particles are obtained.
采用以上技术方案,所述EJ276晶体的直径为0.8-1.2英寸,厚度为0.8-1.2英寸。Using the above technical solution, the EJ276 crystal has a diameter of 0.8-1.2 inches and a thickness of 0.8-1.2 inches.
采用以上技术方案,所述EJ276晶体的直径为1英寸,厚度为1英寸。Using the above technical solution, the EJ276 crystal has a diameter of 1 inch and a thickness of 1 inch.
采用以上技术方案,所述Si探测器的灵敏面积为直径15-20mm,厚度为280-320μm。With the above technical solution, the sensitive area of the Si detector is 15-20 mm in diameter and 280-320 μm in thickness.
采用以上技术方案,所述Si-EJ276探测器包括外壳,所述外壳包裹住耦合的Si探测器和EJ276晶体探测器。With the above technical solution, the Si-EJ276 detector includes a casing that wraps the coupled Si detector and the EJ276 crystal detector.
采用以上技术方案,所述Si-EJ276探测器包括前置放大器和模数转换器;Using the above technical solution, the Si-EJ276 detector includes a preamplifier and an analog-to-digital converter;
所述Si探测器的输出端和硅光电倍增管的输出端分别耦合有前置放大器,所述前置放大器用于将Si探测器输出的信号和硅光电倍增管输出端的电信号进行初步放大;The output end of the Si detector and the output end of the silicon photomultiplier tube are respectively coupled with a preamplifier, and the preamplifier is used to preliminarily amplify the signal output by the Si detector and the electrical signal at the output end of the silicon photomultiplier tube;
所述模数转换器耦合Si探测器上前置放大器的输出端,所述模数转换器用于将经过前置放大器放大的信号进行模数转换。The analog-to-digital converter is coupled to the output end of the preamplifier on the Si detector, and the analog-to-digital converter is used to perform analog-to-digital conversion on the signal amplified by the preamplifier.
采用以上技术方案,所述Si-EJ276探测器还包括偏压电源,所述偏压电源设于Si-EJ276探测器的内部。Using the above technical solution, the Si-EJ276 detector further includes a bias power supply, and the bias power supply is arranged inside the Si-EJ276 detector.
本发明的另一目的是提供一种空间辐射探测方法,包括:Another object of the present invention is to provide a space radiation detection method, comprising:
辐射粒子经过Si探测器时与Si原子发生相互作用,记录能量损失值ΔE;When the radiation particles pass through the Si detector, they interact with Si atoms, and the energy loss value ΔE is recorded;
辐射粒子与Si原子相互作用后生成的次级粒子或未发生相互作用的原始辐射粒子经过EJ276晶体探测器时,EJ276晶体吸收粒子剩余的能量;When the secondary particles generated by the interaction of radiation particles and Si atoms or the original radiation particles without interaction pass through the EJ276 crystal detector, the EJ276 crystal absorbs the remaining energy of the particles;
Si探测器测得的能量损失值ΔE除以Si探测器的厚度获得传能线密度谱;The energy loss value ΔE measured by the Si detector is divided by the thickness of the Si detector to obtain the energy transfer line density spectrum;
EJ276晶体探测器在不同辐射粒子的情况下产生不同快慢成分的信号波形,控制模块对EJ276晶体探测器的输出信号进行脉冲信号处理后,区分辐射粒子并获得辐射粒子的能量及通量。The EJ276 crystal detector generates signal waveforms with different fast and slow components in the case of different radiation particles. After the control module processes the output signal of the EJ276 crystal detector, it can distinguish the radiation particles and obtain the energy and flux of the radiation particles.
采用以上技术方案,所述区分辐射粒子并获得辐射粒子的能量及通量,包括:Using the above technical solution, the described distinguishing radiation particles and obtaining the energy and flux of the radiation particles include:
将信号波形中衰减的慢成分进行积分得到中子的事件,在中子的事件中获得快中子的能谱和通量信息;Integrate the decayed slow components in the signal waveform to obtain the neutron event, and obtain the energy spectrum and flux information of the fast neutron in the neutron event;
将信号波形中的快成分认定为γ射线的事件,γ射线与中子区分之后获得γ射线的能谱信息。The fast component in the signal waveform is identified as a gamma ray event, and the energy spectrum information of the gamma ray is obtained after distinguishing the gamma ray from the neutron.
采用以上技术方案,所述在中子的事件中获得热中子和快中子的能量和通量,包括;Using the above technical solution, the energy and flux of thermal neutrons and fast neutrons are obtained in the event of neutrons, including;
在中子的事件中,通过反推质子的动能获得快中子的能谱和通量信息。In the event of neutrons, the energy spectrum and flux information of fast neutrons are obtained by inverting the kinetic energy of protons.
本发明的有益效果:本发明采用Si探测器和EJ276晶体探测器耦合形成Si-EJ276探测器,EJ276晶体的密度较小,EJ276晶体与晶状体的组织等效性好,显著提高了该探测器的测量精度,在实现带电粒子种类甄别及能量测量的同时,可实现传能线密度LET的测量功能,达到复合式测量的目的,而且在获得累计剂量的同时,也获得了晶状体随时间变化、剂量的深度分布的信息,满足实时探测需求。The beneficial effects of the present invention: the present invention adopts the Si detector and the EJ276 crystal detector to couple to form a Si-EJ276 detector, the density of the EJ276 crystal is small, the tissue equivalence between the EJ276 crystal and the lens is good, and the performance of the detector is significantly improved. The measurement accuracy can realize the measurement function of the linear energy transfer density LET while realizing the type identification and energy measurement of charged particles, so as to achieve the purpose of compound measurement. The depth distribution information can meet the real-time detection requirements.
附图说明Description of drawings
图1是本发明实施例1的系统框图。FIG. 1 is a system block diagram of
图2是本发明Si-EJ276探测器的结构示意图。Figure 2 is a schematic structural diagram of the Si-EJ276 detector of the present invention.
图3是图2的仰视图。FIG. 3 is a bottom view of FIG. 2 .
图4是图3上A部的局部放大示意图。FIG. 4 is a partial enlarged schematic view of the part A in FIG. 3 .
图5是本发明实施例2的流程示意图。FIG. 5 is a schematic flowchart of
图6是本发明Si探测器脉冲信号处理电路的原理示意图。6 is a schematic diagram of the principle of the Si detector pulse signal processing circuit of the present invention.
图7是本发明EJ276脉冲幅度甄别器脉冲信号处理电路的原理示意图。7 is a schematic diagram of the principle of the pulse signal processing circuit of the EJ276 pulse amplitude discriminator of the present invention.
图8是本发明数据处理与通讯控制单元的功能结构示意图。FIG. 8 is a schematic diagram of the functional structure of the data processing and communication control unit of the present invention.
图中标号说明:11、Si探测器;12、EJ276晶体探测器;13、外壳;14、硅光电倍增管;15、前置放大器;16、模数转换器;17、EJ276晶体;2、控制模块。Description of the symbols in the figure: 11, Si detector; 12, EJ276 crystal detector; 13, shell; 14, silicon photomultiplier; 15, preamplifier; 16, analog-to-digital converter; 17, EJ276 crystal; 2, control module.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, but not all of the embodiments.
所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。Examples of such embodiments are illustrated in the accompanying drawings, wherein the same or similar reference numerals refer to the same or similar elements or elements having the same or similar functions throughout. The embodiments described below with reference to the accompanying drawings are exemplary, and are intended to explain the present invention and should not be construed as limiting the present invention.
实施例1Example 1
参照图1所示,本发明实施例1提供一种眼晶状体剂量测量装置,包括Si-EJ276探测器和控制模块2,Si-EJ276探测器包括沿辐射粒子入射方向依次设置的Si探测器11和EJ276晶体探测器12,Si探测器11和EJ276晶体探测器12耦合,EJ276晶体探测器12包括EJ276晶体17和硅光电倍增管14,硅光电倍增管14与EJ276晶体17耦合,EJ276晶体17使用硅光电倍增管14进行光电转换,硅光电倍增管14能够以光速进行传输,在极短的时间内实现光电转换;控制模块2设于Si-EJ276探测器上,EJ276晶体探测器12在不同辐射粒子的情况下输出不同快慢成分的信号波形,控制模块2用于对EJ276晶体探测器12的输出信号进行脉冲信号处理后,区分辐射粒子并获得辐射粒子的能量及通量。Referring to FIG. 1 ,
其中EJ276晶体17的直径为0.8-1.2英寸,厚度为0.8-1.2英寸。优选的,本实施例EJ276晶体17的直径为1英寸,厚度为1英寸。另外Si探测器的灵敏面积为直径15-20mm,厚度为280-320μm。为了匹配直径1英寸的EJ276晶体17,本实施例使用灵敏面积直径为18mm,厚度为300μm的Si探测器11,Si探测器11耦合在EJ276晶体探测器12的前端,用于获得传能线密度谱LET,例如Si探测器11测得的能量损失值ΔE除以Si探测器11的厚度即可获得传能线密度谱LET。还有空间高能粒子可从各个方向入射到EJ276晶体探测器12上,而且对于高能的粒子可贯穿整个EJ276晶体探测器12,而对于不同方向的贯穿的粒子在EJ276晶体探测器12中的径迹长度不同,无法通过EJ276晶体探测器12的能量沉积来估算粒子的能量。因此本实施例在EJ276晶体探测器12的前端耦合有Si探测器11,Si探测器11和EJ276晶体探测器12之间做符合测量,从而实现只对穿过Si探测器11和EJ276晶体探测器12的粒子进行测量。The EJ276 crystal 17 has a diameter of 0.8-1.2 inches and a thickness of 0.8-1.2 inches. Preferably, the diameter of the EJ276
参照图2、图3、图4所示,Si-EJ276探测器还包括外壳13,外壳13包裹住耦合的Si探测器11和EJ276晶体探测器12,通过外壳13进行封装,能够很好的耦合Si探测器11和EJ276晶体探测器12。使用时,将Si-EJ276探测器安装在空间站中,进行带电粒子、γ射线以及中子的测量。Referring to Figure 2, Figure 3, Figure 4, the Si-EJ276 detector further includes a
继续参照图1所示,Si-EJ276探测器包括前置放大器15和模数转换器16,Si探测器11的输出端和硅光电倍增管14的输出端分别耦合有前置放大器15,所述前置放大器15用于将Si探测器11输出的信号和硅光电倍增管14输出端的电信号进行初步放大;模数转换器16耦合Si探测器11上前置放大器15的输出端,所述模数转换器16用于将经过前置放大器15放大的信号进行模数转换。1, the Si-EJ276 detector includes a
还有Si-EJ276探测器需要设置偏压,因此本实施例Si-EJ276探测器还包括偏压电源,偏压电源设于Si-EJ276探测器的内部。In addition, the Si-EJ276 detector needs to set a bias voltage, so the Si-EJ276 detector in this embodiment also includes a bias voltage power supply, and the bias voltage power supply is arranged inside the Si-EJ276 detector.
其中EJ276晶体17相比较闪烁晶体而言,EJ276晶体17的密度较小,EJ276晶体17与晶状体的组织等效性更好,显著提高了该探测器的测量精度。Among them, compared with the scintillation crystal, the
实施例2Example 2
参照图5所示,本发明实施例2提供一种空间辐射探测方法,包括如下步骤:Referring to FIG. 5 ,
在步骤101中,辐射粒子经过Si探测器11时与Si原子发生相互作用,记录能量损失值ΔE。In
示例地,当辐射粒子(包括带电和不带电粒子)从前端入射时,经过Si探测器11时辐射粒子与Si原子发生相互作用,在Si探测器11中的能量损失值ΔE被记录下来,由于Si探测器11的体积不是很大,对于能量较高的空间辐射粒子与Si原子发生相互作用后,生成的次级粒子或未发生相互作用的原始辐射粒子很大概率将继续沿入射方向或与入射方向成某一角度运动。For example, when radiation particles (including charged and uncharged particles) are incident from the front end, the radiation particles interact with Si atoms when passing through the
在步骤102中,辐射粒子与Si原子相互作用后生成的次级粒子或未发生相互作用的原始辐射粒子经过EJ276晶体探测器12时,EJ276晶体17吸收粒子剩余的能量。In
在步骤103中,Si探测器11测得的能量损失值ΔE除以Si探测器11的厚度获得传能线密度谱LET。In
示例地,采用Si探测器测量,能量分辨率在10%以内,能够实现传能线密度LET的测量功能。剂量的测量精度在10%以内,LET测量指数指标0.4keV/μm~750keV/μm也能够同时满足。LET谱测量考虑到空间粒子能谱特点,测量覆盖质子、α、6Li、12C、24Si、56Fe等,能量覆盖10MeV/u–1GeV的质子,因此,LET覆盖0.42keV/μm-320keV/μm。For example, using a Si detector to measure, the energy resolution is within 10%, and the measurement function of the linear energy transfer density LET can be realized. The measurement accuracy of the dose is within 10%, and the LET measurement index index of 0.4keV/μm~750keV/μm can also be satisfied at the same time. Considering the characteristics of space particle energy spectrum, LET spectrum measurement covers protons, α, 6 Li, 12 C, 24 Si, 56 Fe, etc., and the energy covers protons of 10MeV/u–1GeV. Therefore, LET covers 0.42keV/μm-320keV /μm.
在步骤104中,EJ276晶体探测器12在不同辐射粒子的情况下产生不同快慢成分的信号波形,控制模块2对EJ276晶体探测器12的输出信号进行脉冲信号处理后,区分辐射粒子并获得辐射粒子的能量及通量。In
示例地,首先EJ276晶体探测器12在不同辐射粒子的情况下产生不同快慢成分的信号波形;之后将信号波形中衰减的慢成分进行积分得到中子的事件,将信号波形中的快成分认定为γ射线的事件。For example, first, the
示例地,在中子的事件中,通过反推质子的动能获得快中子的能谱和通量信息,γ射线与中子区分之后获得γ射线的能谱信息。For example, in the event of neutrons, the energy spectrum and flux information of fast neutrons are obtained by inferring the kinetic energy of protons, and the energy spectrum information of gamma rays is obtained after distinguishing gamma rays from neutrons.
示例地,控制模块包括脉冲信号处理单元和数据处理及通讯控制单元。一方面脉冲信号处理单元主要包括Si探测器脉冲信号处理电路和EJ276脉冲幅度甄别器脉冲信号处理电路,其中对硅探测器的输出信号经电荷前置放大器后,首先经过极零相消电路调整波形,然后分为2路一路进行滤波成形以进行幅度测量,另一路进行快速放大以进行触发时间分析。关于Si探测器脉冲信号处理电路如图6所示。另外对EJ276晶体输出,为了进行大动态范围能量测量,对输出信号进行了高低增益双路放大,关于EJ276脉冲幅度甄别器脉冲信号处理电路如图7所示。另一方面数据处理与通讯控制单元主要包括多通道幅度信号采集电路、多通道时间信号甄别电路、模块状态监测电路、主控电路和通讯接口电路,具体结构详见图8所示。EJ276晶体探测器点火,记录信号幅度与时间及n/γ甄别因子,用于测量中子、γ以及带电粒子。For example, the control module includes a pulse signal processing unit and a data processing and communication control unit. On the one hand, the pulse signal processing unit mainly includes the Si detector pulse signal processing circuit and the EJ276 pulse amplitude discriminator pulse signal processing circuit. After the output signal of the silicon detector is passed through the charge preamplifier, the waveform is first adjusted by the pole-zero cancellation circuit. , and then divided into 2 channels for filtering and shaping for amplitude measurement, and the other for fast amplification for trigger time analysis. Figure 6 shows the pulse signal processing circuit of the Si detector. In addition, for the EJ276 crystal output, in order to measure the energy in a large dynamic range, the output signal is amplified with high and low gain. The pulse signal processing circuit of the EJ276 pulse amplitude discriminator is shown in Figure 7. On the other hand, the data processing and communication control unit mainly includes a multi-channel amplitude signal acquisition circuit, a multi-channel time signal discrimination circuit, a module state monitoring circuit, a main control circuit and a communication interface circuit. The specific structure is shown in Figure 8. The EJ276 crystal detector ignites, records the signal amplitude and time, and the n/γ discrimination factor for the measurement of neutrons, γ, and charged particles.
综上所述,本发明采用Si探测器和EJ276晶体17探测器耦合形成Si-EJ276探测器,EJ276晶体17的密度较小,EJ276晶体17与晶状体的组织等效性好,显著提高了该探测器的测量精度,在实现带电粒子种类甄别及能量测量的同时,可实现传能线密度LET的测量功能,达到复合式测量的目的,而且在获得累计剂量的同时,也获得了晶状体随时间变化、剂量的深度分布的信息,满足实时探测需求。To sum up, the present invention adopts Si detector and
以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。The above-mentioned embodiments are only preferred embodiments for fully illustrating the present invention, and the protection scope of the present invention is not limited thereto. Equivalent substitutions or transformations made by those skilled in the art on the basis of the present invention are all within the protection scope of the present invention. The protection scope of the present invention is subject to the claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011348473.2A CN112526576B (en) | 2020-11-26 | 2020-11-26 | Ophthalmic lens dose measurement device and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011348473.2A CN112526576B (en) | 2020-11-26 | 2020-11-26 | Ophthalmic lens dose measurement device and method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112526576A CN112526576A (en) | 2021-03-19 |
CN112526576B true CN112526576B (en) | 2022-10-04 |
Family
ID=74994385
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011348473.2A Active CN112526576B (en) | 2020-11-26 | 2020-11-26 | Ophthalmic lens dose measurement device and method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112526576B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1572636A (en) * | 1967-06-15 | 1969-06-27 | ||
TW201119636A (en) * | 2009-11-02 | 2011-06-16 | Salutaris Medical Devices Inc | Methods and devices for delivering appropriate minimally-invasive extraocular radiation |
CN102628951A (en) * | 2012-03-30 | 2012-08-08 | 中国科学院合肥物质科学研究院 | Radiation dose measurement method based on quantum dot electroluminescent principle |
CN206362944U (en) * | 2016-12-27 | 2017-07-28 | 同方威视技术股份有限公司 | Detection system for fast neutron imaging |
-
2020
- 2020-11-26 CN CN202011348473.2A patent/CN112526576B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1572636A (en) * | 1967-06-15 | 1969-06-27 | ||
DE1764467A1 (en) * | 1967-06-15 | 1971-09-16 | Atomic Energy Commission | microscope |
TW201119636A (en) * | 2009-11-02 | 2011-06-16 | Salutaris Medical Devices Inc | Methods and devices for delivering appropriate minimally-invasive extraocular radiation |
CN102628951A (en) * | 2012-03-30 | 2012-08-08 | 中国科学院合肥物质科学研究院 | Radiation dose measurement method based on quantum dot electroluminescent principle |
CN206362944U (en) * | 2016-12-27 | 2017-07-28 | 同方威视技术股份有限公司 | Detection system for fast neutron imaging |
Also Published As
Publication number | Publication date |
---|---|
CN112526576A (en) | 2021-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5298756A (en) | Scintillator fiber optic long counter | |
US6876711B2 (en) | Neutron detector utilizing sol-gel absorber and activation disk | |
US11506803B2 (en) | Method and device for processing nuclear energy spectrum | |
CN104360376A (en) | Gamma camera having function of identifying radioactive source, namely nuclide, and nuclide identification method | |
CN113009542B (en) | Radiation detection device and chip | |
CN112526580B (en) | Space radiation detection device and method | |
EP1989573B1 (en) | Solid state neutron detector | |
US20230350084A1 (en) | Online detection system for type identification and activity measurement of radiations in gas or liquid | |
CN107957589B (en) | Lithium glass detector and direct-reading neutron dosimeter applying same | |
CN106405623B (en) | Compton sums it up spectrometer | |
CN112526576B (en) | Ophthalmic lens dose measurement device and method | |
CN108196295B (en) | Quick positioning and measuring device for radioactive contamination on human body surface | |
JP6867884B2 (en) | Radiation measuring device | |
CN214586023U (en) | A Gamma Dose Monitoring Device Based on Remote Wireless Communication | |
CN106291657A (en) | A kind of based on the radiant spectral analysis system closing bundle flash fiber | |
CN106199678B (en) | A kind of measuring device and its measurement method for fast neutron flux | |
JP2871523B2 (en) | Radiation detector | |
CN108535766A (en) | A kind of lamination flicker type anti-Compton gamma ray spectrometer | |
Wang et al. | Development of a high energy resolution and wide dose rate range portable gamma-ray spectrometer | |
CN117233823A (en) | Gamma probe and detection system and application thereof | |
CN106093998B (en) | High-energy ray detects mould group and including its wearable device | |
CN115236720A (en) | A multi-type ray detection device | |
CN114167473A (en) | Complex environment personal dose equivalent measuring system | |
CN113921151A (en) | Containment pressure relief and exhaust activity monitoring signal processing system | |
US10996353B1 (en) | N-type gallium nitride scintillation for fast-neutron detection |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |