CN112511325A - 网络拥塞控制方法、节点、系统及存储介质 - Google Patents
网络拥塞控制方法、节点、系统及存储介质 Download PDFInfo
- Publication number
- CN112511325A CN112511325A CN201910874378.7A CN201910874378A CN112511325A CN 112511325 A CN112511325 A CN 112511325A CN 201910874378 A CN201910874378 A CN 201910874378A CN 112511325 A CN112511325 A CN 112511325A
- Authority
- CN
- China
- Prior art keywords
- leaf node
- network
- node
- leaf
- spine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 73
- 230000008569 process Effects 0.000 claims abstract description 21
- 230000008859 change Effects 0.000 claims abstract description 19
- 230000005540 biological transmission Effects 0.000 claims description 93
- 238000004891 communication Methods 0.000 claims description 55
- 230000015654 memory Effects 0.000 claims description 55
- 238000013507 mapping Methods 0.000 claims description 33
- 230000006855 networking Effects 0.000 claims description 18
- 238000012549 training Methods 0.000 claims description 12
- 238000007781 pre-processing Methods 0.000 claims description 8
- 238000004590 computer program Methods 0.000 claims description 6
- 238000012545 processing Methods 0.000 description 44
- 238000010586 diagram Methods 0.000 description 32
- 238000005538 encapsulation Methods 0.000 description 20
- 230000010365 information processing Effects 0.000 description 15
- 238000006243 chemical reaction Methods 0.000 description 6
- 238000013500 data storage Methods 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 238000003062 neural network model Methods 0.000 description 6
- 230000009286 beneficial effect Effects 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 4
- 239000003550 marker Substances 0.000 description 3
- 238000010606 normalization Methods 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- 238000004422 calculation algorithm Methods 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000013530 stochastic neural network Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/08—Configuration management of networks or network elements
- H04L41/0803—Configuration setting
- H04L41/0823—Configuration setting characterised by the purposes of a change of settings, e.g. optimising configuration for enhancing reliability
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/12—Discovery or management of network topologies
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/14—Network analysis or design
- H04L41/145—Network analysis or design involving simulating, designing, planning or modelling of a network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/50—Network service management, e.g. ensuring proper service fulfilment according to agreements
- H04L41/5003—Managing SLA; Interaction between SLA and QoS
- H04L41/5009—Determining service level performance parameters or violations of service level contracts, e.g. violations of agreed response time or mean time between failures [MTBF]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/48—Routing tree calculation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic control in data switching networks
- H04L47/10—Flow control; Congestion control
- H04L47/12—Avoiding congestion; Recovering from congestion
- H04L47/122—Avoiding congestion; Recovering from congestion by diverting traffic away from congested entities
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic control in data switching networks
- H04L47/10—Flow control; Congestion control
- H04L47/12—Avoiding congestion; Recovering from congestion
- H04L47/125—Avoiding congestion; Recovering from congestion by balancing the load, e.g. traffic engineering
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic control in data switching networks
- H04L47/10—Flow control; Congestion control
- H04L47/12—Avoiding congestion; Recovering from congestion
- H04L47/127—Avoiding congestion; Recovering from congestion by using congestion prediction
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic control in data switching networks
- H04L47/10—Flow control; Congestion control
- H04L47/24—Traffic characterised by specific attributes, e.g. priority or QoS
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic control in data switching networks
- H04L47/10—Flow control; Congestion control
- H04L47/29—Flow control; Congestion control using a combination of thresholds
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic control in data switching networks
- H04L47/10—Flow control; Congestion control
- H04L47/31—Flow control; Congestion control by tagging of packets, e.g. using discard eligibility [DE] bits
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic control in data switching networks
- H04L47/70—Admission control; Resource allocation
- H04L47/82—Miscellaneous aspects
- H04L47/829—Topology based
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing data switching networks
- H04L43/08—Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
- H04L43/0805—Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability
- H04L43/0817—Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability by checking functioning
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing data switching networks
- H04L43/08—Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
- H04L43/0852—Delays
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/02—Topology update or discovery
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic control in data switching networks
- H04L47/10—Flow control; Congestion control
- H04L47/11—Identifying congestion
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L49/00—Packet switching elements
- H04L49/15—Interconnection of switching modules
- H04L49/1515—Non-blocking multistage, e.g. Clos
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
Abstract
本申请实施例公开了一种网络拥塞控制方法、节点、系统及计算机存储介质,所述方法应用于叶脊网络系统中,该系统包括脊节点和与该脊节点通信的至少一个叶节点,所述方法包括:脊节点接收至少一个叶节点发送的网络信息,该网络信息包括叶节点的网络拓扑信息和叶节点的网络性能指标;根据该至少一个叶节点的网络拓扑信息对至少一个叶节点和脊节点进行组网得到组合网络拓扑。若该组合网络拓扑为叶脊网络系统的全局网络拓扑,则根据至少一个叶节点的网络性能指标,对该至少一个叶节点进行网络拥塞控制。采用本申请,能够解决现有网络拥塞控制方案中由于网络流量动态变化,在控制过程中无法满足低时延、高吞吐等网络性能要求。
Description
技术领域
本申请涉及通信技术领域,尤其涉及网络拥塞控制方法、节点、系统及计算机存储介质。
背景技术
现代数据中心网络(date center,DC)对低时延、高吞吐等特性有着越来越强烈的需求。例如在云存储等业务中,由于业务操作的高并发特性,数据中心网络中会存在大量的并发数据流(即报文),容易造成网络拥塞,导致报文传输的时延高、吞吐率低、网络资源消耗较多等问题。
目前,数据中心网络采用数据中心网络量化拥塞通知(data center quantizedcongestion notification,DCQCN)算法来实现网络拥塞控制。参见图1示出DCQCN拥塞控制的场景示意图。如图1中,交换机(也可称为拥塞节点,congestion point)接收发送端设备(也可称为源节点,send point)发送的报文,并采用队列形式存储,简称为报文队列。交换机依据报文队列的长度,对报文队列中的传输报文进行显示拥塞通知(explicitcongestion notification,ECN)标记,使得传输报文中携带有ECN标志,用于指示交换机发生了网络拥塞。相应地,交换机将报文队列中的传输报文转发给接收端设备(也可称为目标节点,receive point)。接收端设备在检测到传输报文中携带ECN标志后,向发送端设备返回拥塞通知报文(congestion notification packet,CNP),用于通知发送端设备调整报文的发送速率,以缓解网络拥塞。
然而在实践中发现,数据中心网络中的网络流量是动态变化的,即随着时间的变化而改变。如果仍采用上述DCQCN拥塞控制方案,将影响网络性能,无法满足网络的低时延、高吞吐等性能要求。
发明内容
本申请实施例公开了一种网络拥塞控制方法、节点、系统及存储介质,能够解决现有DCQCN网络拥塞控制方案中由于网络流量动态变化而无法满足低时延、高吞吐等网络性能要求的问题。
第一方面,本申请实施例公开提供了一种网络拥塞控制方法,应用于叶脊网络系统中,该系统中包括脊节点和与该脊节点通信的至少一个叶节点,所述方法包括:脊节点接收至少一个叶节点发送的网络信息,该网络信息包括叶节点的网络拓扑信息和叶节点的网络性能指标。具体地,脊节点可周期性接收该叶节点采集并发送的网络信息。进而脊节点根据至少一个叶节点的网络拓扑信息,对至少一个叶节点和脊节点进行组网,得到组合网络拓扑。若该组合网络拓扑为叶脊网络系统的全局网络拓扑,则根据至少一个叶节点的网络性能指标,对至少一个叶节点进行网络拥塞控制。
通过实施本申请实施例,能够依据叶脊网络系统中每个叶节点的网络性能指标来反映该叶节点的网络流量变化,进而依据系统中每个叶节点的网络性能指标来实现相应叶节点的网络拥塞控制,这样能够解决现有技术基于QCDCN网络拥塞控制由于网络流量动态变化从而无法满足网络传输对高吞吐、低时延等网络性能要求的问题,从而有利于满足网络传输对高吞吐、低时延等网络性能的要求,有利于提升网络拥塞控制的可靠性。
结合第一方面,在一些可能的实施例中,脊节点调用场景识别模型对目标性能指标进行处理,得到该至少一个叶节点对应的网络流量场景,其中该目标性能指标为至少一个叶节点的网络性能指标,或者对至少一个叶节点的网络性能指标进行预处理后获得的网络性能指标。该场景识别模型为预先根据叶脊网络系统中每个节点的初始网络性能及初始流量场景训练得到的。进一步脊节点可根据该网络流量场景对至少一个叶节点进行网络拥塞控制。
通过实施本步骤,脊节点可调用场景识别模型对上个周期内的目标性能指标(例如上个周期内至少一个叶节点的网络性能指标)进行处理,预测得到叶脊网络系统当前所处的网络流量场景。进而依据该网络流量场景,对一个或多个叶节点进行网络拥塞控制。这样有利于自适应网络流量动态变化的场景,能够解决现有DCQCN网络拥塞控制方案中由于网络流量动态变化而无法满足网络传输对高吞吐、低时延等网络性能要求的问题。
结合第一方面,在一些可能的实施例中,场景控制表维护在脊节点中。脊节点获取场景控制表,该场景控制表中记录有场景和拥塞控制信息的映射关系,该映射关系为拥塞控制信息对应至少一个场景。脊节点从场景控制表中查询与网络流量场景对应的目标控制信息,然后将该目标控制信息发送给至少一个叶节点,以便叶节点按照该目标控制信息对自身节点进行网络拥塞控制。
通过实施本步骤,场景控制表维护在脊节点侧,便于拥塞控制信息的统一管理,进而从场景控制表中获取与网络流量场景对应的目标控制信息,以下发给叶节点进行相应网络拥塞控制。这样有利于提升网络拥塞控制的便捷性。
结合第一方面,在一些可能的实施例中,场景控制表维护在各叶节点中。脊节点将网络流量场景发送给至少一个叶节点。相应地叶节点获取场景控制表,该场景控制表中记录有场景和拥塞控制信息的映射关系,该映射关系为拥塞控制信息对应至少一个场景。叶节点从场景控制表中查询与网络流量场景对应的目标控制信息,进而按照目标控制信息对自身节点进行网络拥塞控制。
通过实施本步骤,场景控制表维护在叶节点侧,有利于减轻脊节点的负载和节省脊节点的存储资源,同时还提升了脊节点的处理效率。
结合第一方面,在一些可能的实施例中,若网络性能指标包括叶节点在上个周期内传输的显示拥塞通知ECN报文数,则该目标控制信息可为ECN标记水线,包括目标ECN标记参数,用于反映ECN标记概率跟随报文队列长度变化的概率,该ECN标记概率为所述叶节点的报文队列中的传输报文进行ECN标记的概率,该报文队列长度为叶节点的报文队列的长度。相应地,至少一个叶节点可根据目标ECN标记参数和该至少一个叶节点中每个叶节点的报文队列的长度,计算得到该至少一个叶节点对应的目标ECN标记概率。进而按照对应的目标ECN标记概率对至少一个叶节点的报文队列中的传输报文进行ECN标记,以通知与该叶节点通信的源节点降低报文传输的速率或停止报文传输。
通过实施本步骤,脊节点将目标ECN标记参数(即目标ECN标记水线)下发给各叶节点,便于叶节点基于该参数和当前时刻节点自身的报文队列长度计算得到目标ECN标记概率,进而按照该目标ECN标记概率进行相应网络拥塞控制。这样能够基于不同时刻叶节点的报文队列长度获得相应目标ECN标记概率,以准确、可靠地对该叶节点实现网络拥塞控制。从而有利于提升网络拥塞控制的精确性和可靠性。
结合第一方面,在一些可能的实施例中,若网络性能指标包括叶节点在上个周期内传输的显示拥塞通知ECN报文数,则该目标控制信息包括目标ECN标记概率,用于指示对所述叶节点的报文队列中的传输报文进行ECN标记的概率。相应地,至少一个叶节点根据至少一个叶节点对应的目标ECN标记概率,对应对至少一个叶节点的报文队列中的传输报文进行ECN标记,以通知与该至少一个叶节点通信的源节点降低报文传输的速率或停止报文传输。
通过实施本步骤,在不考虑网络拥塞控制精确度的情况下,脊节点可通过场景识别模型直接计算获得至少一个叶节点对应的目标ECN标记概率,以发给叶节点按照该目标ECN标记概率进行网络拥塞控制。有利于减轻叶节点的计算负荷,提升叶节点网络拥塞控制的效率。
结合第一方面,在一些可能的实施例中,若网络性能指标包括叶节点在上个周期内传输的基于优先级的流量控制PFC报文数,则目标控制信息包括目标PFC反馈参数,用于反映叶节点发送的PFC通知消息跟随叶节点的报文队列长度的变化情况。若该至少一个叶节点的报文队列的长度大于或等于目标PFC反馈参数中的第一参数阈值,则该至少一个叶节点向与该至少一个叶节点通信的源节点发送第一PFC通知消息,用于通知源节点停止第一PFC通知消息所指示的优先级报文的传输。或者,若该至少一个叶节点的报文队列的长度小于或等于目标PFC反馈参数中的第二参数阈值,则至少一个叶节点向与该至少一个叶节点通信的源节点发送第二PFC通知消息,用于通知源节点继续第二PFC通知消息所指示的优先级报文的传输。
通过实施本步骤,脊节点将目标PFC反馈参数(即目标PFC反馈水线)下发给各叶节点,便于叶节点基于该参数和当前时刻节点自身的报文队列长度,以实时确定与该至少一个叶节点通信的源节点当前是否允许进行相应优先级报文的传输,进而有效、准确地控制或缓解至少一个叶节点的网络拥塞。这样有利于网络拥塞控制的准确性和可靠性。
结合第一方面,在一些可能的实施例中,若网络性能指标包括叶节点在上个周期内传输的基于优先级的流量控制PFC报文数,则目标控制信息为PFC反馈控制信息,用于指示与所述叶节点通信的源节点是否允许进行所述PFC反馈控制信息所指示的优先级报文的传输。若所述PFC反馈控制消息用于指示不允许进行所述PFC反馈控制信息所指示的优先级报文的传输,则至少一个叶节点向与所述至少一个叶节点通信的源节点发送第一PFC通知消息,该第一PFC通知消息用于通知源节点停止进行所述第一PFC通知消息所指示的优先级报文的传输。或者,若该PFC反馈控制消息用于指示允许进行所述PFC反馈控制信息所指示的优先级报文的传输,则至少一个叶节点向与该至少一个叶节点通信的源节点发送第二PFC通知消息,该第二PFC通知消息用于通知与所述源节点允许进行所述第二PFC通知消息所指示的优先级报文的传输。
通过实施本步骤,在不考虑网络拥塞控制精确度的情况下,脊节点可通过场景识别模型直接获得PFC反馈控制信息,用于指示与该至少一个叶节点通信的源节点是否允许进行相应优先级报文的传输。进而将该PFC反馈控制信息下发给至少一个叶节点,以实现该叶节点的网络拥塞控制。这样有利于减少叶节点的处理流程,提升叶节点网络拥塞控制的效率。
结合第一方面,在一些可能的实施例中,该网络拓扑信息用于指示节点通信半径内存在的邻居节点,脊节点依据至少一个叶节点的网络拓扑信息和脊节点的网络拓扑信息,确定叶脊网络系统中每个节点各自的邻居节点是否均位于组合网络拓扑中,若均位于在,额确定组合网络拓扑为叶脊网络系统的全局网络拓扑。
通过实施本步骤,脊节点可根据叶脊网络系统中每个节点的邻居节点来识别组合网络拓扑是否为全局网络拓扑,便于后续利用全局网络拓扑中每个叶节点的网络性能指标对至少一个叶节点进行网络拥塞控制。这样能够提升系统组网的泛化能力,支持系统网络拓扑动态变化,提升全局网络拓扑识别的便捷性。
第二方面,本申请实施例提供了一种脊节点,该节点包括用于执行如上第一方面或第一方面的任意可能的实施方式中所描述的方法的功能器件,例如模块或单元等。
第三方面,本申请实施例提供了一种脊节点,该节点包括:处理器,存储器,通信接口和总线;处理器、通信接口、存储器通过总线相互通信;通信接口,用于接收和发送数据;存储器,用于存储指令;处理器,用于调用存储器中的指令,执行上述第一方面或第一方面的任意可能的实施方式中所描述的方法。
第四方面,本申请实施例提供了一种叶脊网络系统,包括脊节点和与该脊节点通信的至少一个叶节点;
至少一个叶节点,分别用于向脊节点发送该至少一个叶节点的网络信息,
脊节点,用于接收所述至少一个叶节点发送的网络信息,所述网络信息包括所述叶节点的网络拓扑信息和所述叶节点的网络性能指标;根据所述至少一个叶节点的网络拓扑信息,对所述至少一个叶节点和所述脊节点进行组网,得到组合网络拓扑;若所述组合网络拓扑为所述叶脊网络系统的全局网络拓扑,则根据所述至少一个叶节点的网络性能指标,对所述至少一个叶节点进行网络拥塞控制。
关于本申请未示出或未描述的内容具体可参见前述第一方面所描述的内容,这里不再赘述。
第五方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储了用于网络拥塞控制的程序代码。所述程序代码包括用于执行上述第一方面或第一方面的任意可能的实施方式中所描述的方法的指令。
第六方面,提供了一种芯片产品,以执行上述第一方面或第一方面的任意可能的实施方式中的方法。
本申请在上述各方面提供的实现方式的基础上,还可以进行进一步组合以提供更多实现方式。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。
图1是现有技术提供的一种DCQCN拥塞控制的场景示意图。
图2是现有技术提供的一种报文ECN标记水线示意图。
图3是现有技术提供的一种不同报文队列出速率下ECN标记的场景示意图。
图4A是现有技术提供的一种IO数据大小随时间变化的动态示意图。
图4B是现有技术提供的一种数据读写比例随时间变化的动态示意图。
图5A和图5B是现有技术提供的两种采用不同ECN标记水线对网络性能指标影响的示意图。
图6是本申请实施例提供的一种叶脊网络系统的结构示意图。
图7是本申请实施例提供的一种叶节点104的结构示意图。
图8是本申请实施例提供的一种脊节点102的结构示意图。
图9是本申请实施例提供的一种网络拥塞控制方法的流程示意图。
图10是本申请实施例提供的另一种叶脊网络系统的结构示意图。
图11是本申请实施例提供的一种场景识别模型应用的示意图。
图12是本申请实施例提供的一种场景识别模型的结构示意图。
图13是本申请实施例提供的另一种网络拥塞控制方法的流程示意图。
图14是本申请实施例提供的另一种网络拥塞控制方法的流程示意图。
图15是本申请实施例提供的另一种网络拥塞控制方法的流程示意图。
图16A-图16B是本申请实施例提供的两种网络拥塞控制的场景示意图。
图17是本申请实施例提供的另一种叶脊网络系统的结构示意图。
图18是本申请实施例提供的另一种叶脊网络系统的结构示意图。
具体实施方式
下面将结合本申请的附图,对本申请实施例中的技术方案进行详细描述。
请参见图2,是现有技术提供的一种报文ECN标记水线的示意图。如图2中,横轴表示报文队列的长度(简称为队列长度或队列深度),纵轴表示ECN标记概率,即对报文队列中报文进行ECN标记的概率。如图1,现有DCQCN网络拥塞方案中,交换机利用报文的网际协议(internet protocol,IP)头中ECN标志位来指示是否发生网络拥塞,或网络拥塞程度。例如将ECN标志位置为11,表示当前网络发生拥塞等。交换机依据出端口处的报文队列长度决定如何对报文队列中的报文进行ECN标记。该出端口指交换机与接收端设备通信所使用的端口。具体地:
如图2,当报文队列长度小于或等于Kmin,表示当前网络不拥塞、交换机无需对报文队列中的报文打ECN标记。当报文队列长度大于Kmin,且小于Kmax时,表示当前网络拥塞,但拥塞程度不严重、交换机依据图示报文队列长度所对应的ECN标记概率,对报文队列中的报文随机打ECN标记。如图Pmax为报文队列长度为Kmax时ECN标记的概率。当报文队列长度大于或等于Kmax时,表示当前网络拥塞很严重、交换机对报文队列中的每个报文打ECN标记。相应地,接收端设备接收交换机发送的携带ECN标记的报文后,可生成CNP报文反馈给发送端设备,通知发送端设备降低报文的发送速率、避免网络拥塞。
可以看出,图1和图2提出一种基于静态ECN标记的拥塞控制方案。但在实际应用中,该方案应用于网络流量随时动态变化的数据中心网络中,难以保障网络传输对高吞吐、低时延等性能指标的要求。具体体现于如下几个方面:
报文队列的出速率不相同。在并行处理场景中,交换机侧支持存在多个报文队列等待处理,若仍采用现有基于静态ECN标记的拥塞控制方案来进行网络拥塞控制,难以保障高吞吐、低时延等网络性能要求。由此可知,报文队列的出速率不同时,为保障网络高吞吐、低时延等性能指标要求,报文队列中报文的ECN标记也应不同。
参见图3,示出一种不同报文队列出速率下ECN标记的示意图。如图3,白色矩形部分表示存储空间buffer为空,未存储报文。黑色矩形部分表示存储空间中以报文队列的形式存储有报文。图示以报文队列的出速率分别为25Gbps(千兆比特每秒)和100Gbps为例,不同报文队列出速率下,交换机采用不同的ECN标记水线(具体可为ECN标记概率)对报文队列中的报文进行ECN标记。如图所示,不同报文队列出速率下,报文队列中进行ECN标记的报文也存在不同。
第二、网络流量随着时间动态变化。在数据存储业务中,承载该业务的数据中心网络的网络流量与数据读写比例及输入输出(input output,IO)数据大小等指标有关。然而数据读写比例和IO数据大小会随着时间的变化而变化,导致网络流量也会随着时间而动态变化。具体参见图4A和4B分别示出IO数据大小和数据读写比例随时间变化的动态示意图。
第三、相同网络流量情况下,即同一网络流量场景中,不同ECN标记方案带来的业务性能(网络性能)差异较为明显。以网络性能指标包括网络每秒传输的IO数据量(IOPS)和网络数据传输的平均时延(average latency)为例,参见图5A和图5B分别示出同一网络流量场景下不同ECN标记方案对网络性能指标影响的示意图。如图5A所示,横纵表示ECN标记涉及的三个ECN标记参数(Kmin,Kmax,Pmax)。纵轴表示每秒传输的IO数据量。图5B所示,横轴表示ECN标记涉及的三个ECN标记参数(Kmin,Kmax,Pmax),纵轴表示网络传输的平均时延。如图5A和5B可知,在同一网络流量场景下,交换机选用(7K,6M,1%)的ECN标记方案比选用(33K,0.3M,25%)的ECN标记方案具备更好地低时延、高吞吐等网络性能。
从上述三方面的描述可知,现有基于静态ECN标记的拥塞控制方案无法适应网络流量动态变化的场景,难以有效保障高吞吐、低时延等网络性能要求。
为解决上述问题,本申请提出一种网络拥塞控制方法、所述方法适用的系统框架、装置及设备。请参见图6,是本申请实施提供的一种叶脊(leaf-spine)网络系统的框架示意图。如图6所示的叶脊网络系统100中包括脊节点102、与该脊节点102通信的至少两个叶节点104。可选地,该叶脊网络系统100中还包括支持与每个叶节点104通信的至少一个源节点106。其中,脊节点102的数量不做限定,图示以一个脊节点102为例示出,但并不构成限定。与脊节点102通信的叶节点104的数量也不做限定,图示以N个叶节点为例示出,图示分别为叶节点1~叶节点N。且每个叶节点104支持与一个或多个源节点106通信。
如图叶脊网络系统100采用两层网络拓扑框架:接入层-汇聚层。其中,汇聚层中部署脊节点102,接入层中部署与脊节点102通信的叶节点104,与叶节点104通信的源节点106部署在接入层之下。该源节点106也可称为主机节点106。叶脊网络系统100中脊节点102和叶节点104均用于转发数据流量,一个源节点106通过与该源节点通信的叶节点102和脊节点与另一个叶节点下的源节点通信。
叶脊网络系统100对应的网络拓扑可称为全局网络拓扑,即由叶脊网络系统100中所有节点组成的网络拓扑称为该叶脊网络系统100的全局网络拓扑。例如图6中,全局网络拓扑包括脊节点102及与该脊节点102通信的N个叶节点104。可选地,若叶脊网络系统100中还包括有每个叶节点104支持通信的至少一个源节点106,则该全局网络拓扑还可包括N个叶节点104各自通信的至少一个源节点106。
相应地,由叶脊网络系统100中部分节点组成的网络拓扑称为该叶脊网络系统100的局部网络拓扑。例如图6中,由一个叶节点104和与该叶节点通信的至少一个源节点106组成的网络拓扑称为一个局部网络拓扑。
在实际应用中,脊节点102和叶节点104均可部署为具备数据转发功能的网络设备,例如交换机、路由器等设备。源节点106可部署为终端设备,其包括但不限于手机、平板电脑(table personal computer)、个人数字助理(personal digital assistant,PDA)、移动上网装置(mobile internet device,MID)、可穿戴式设备(wearable device)、车载设备以及其他支持和网络通信的设备。
请参见图7,是本申请示出的一种可能的叶节点104的内部结构示意图。如图7所示的叶节点104包括拓扑采集模块1041、指标采集模块1043和信息发送模块1045。可选地,叶节点还可包括拓扑处理模块1042、指标处理模块1044、信息接收模块1046、信息处理模块1047及控制下发模块1048。其中:
拓扑采集模块1041用于采集该叶节点104的网络拓扑信息。该网络拓扑信息用于反映该叶节点104在叶脊网络系统100中的网络布局,其可包括但不限于叶节点的上下行端口角色、端口连接信息及端口宽带等信息。其中,上下行端口角色用于反映叶节点104通信的端口为上行端口还是下行端口。端口连接关系用于反映与该叶节点通信的至少一个源节点106及叶节点104与源节点106的连接关系。可选地,该端口连接关系还用于反映与该叶节点通信的邻居节点及叶节点与邻居节点的连接关系等。该邻居节点是指位于叶节点104通信半径内的节点,其具体可为脊节点、叶节点或源节点等。该邻居节点的数量并不做限定,其可为一个或多个。该通信半径可为系统自定义设置的,例如根据用户经验设置的经验值、或者根据一些列统计数据计算得到的数值等。
拓扑处理模块1042用于对采集的网络拓扑信息进行处理,具体可采用第一预设格式对网络拓扑信息进行封装,得到第一封装信息。便于拓扑处理模块1042将该第一封装信息发送给信息发送模块1045。其中,第一预设格式为系统自定义设置的数据封装格式,其可包括但不限于预先配置的结构体、IP包格式等。
指标采集模块1043用于从叶节点104的转发芯片中周期性地采集叶节点104的网络性能指标(key performance indication,KPI),也可称为网络状态信息或网络性能参数。该网络性能指标是指用于描述叶节点104网络性能的指标参数,其可包括但不限于叶节点104端口的上下行角色,具体划分有上行端口和下行端口、叶节点104端口(具体可为上行端口或下行端口)的利用率、转发字节数、转发报文数、报文队列的长度(简称为队列深度)、端口传输的基于优先级的流量控制(priority-based flow control,PFC)报文数、携带ECN标记的报文数(简称为ECN标记报文数)、网络时延、网络带宽或其他影响网络性能的参数等。
指标处理模块1044用于对采集的网络性能指标进行处理,具体可采用第二预设格式对网络性能指标进行封装,得到第二封装信息。便于指标处理模块1044将第二封装信息发送给信息发送模块1045。
信息发送模块1045用于发送信息。具体地,若叶节点104包括拓扑处理模块1042和指标处理模块1044,则信息发送模块1046将接收的第一封装信息和第二封装信息作为网络信息发送给其他节点,例如发送给与该叶节点104通信的脊节点102。
反之,若叶节点104中没包括拓扑处理模块1042和指标处理模块1044,则拓扑采集模块1041可将采集的网络拓扑信息直接发送给信息发送模块1045。指标采集模块1043可将采集的网络性能指标直接发送给信息发送模块1045。相应地,信息发送模块1045可采用第三预设格式对网络拓扑信息和网络性能指标进行封装得到网络信息,进而将网络信息发送给其他节点,例如与该叶节点104通信的脊节点102。便于脊节点102依据该网络信息进行相应地网络拥塞控制,具体在本申请下文进行详述。
在实际应用中,本申请涉及的第一预设格式、第二预设格式及第三预设格式均可为系统自定义设置的数据封装格式,例如预先配置的结构体、IP包格式等。在实际应用中,第一预设格式、第二预设格式及第三预设格式中的任意两个预设格式可以相同,也可不相同,本申请不做限定。
信息接收模块1046用于接收信息。具体地,信息接收模块1046可接收脊节点102发送的网络流量场景,具体可为该场景的标识,用于区分网络流量场景。该标识具体可为场景的索引号、编号、身份标识等等,不做限定。或者,信息接收模块1046可接收脊节点102发送的目标控制信息,用于指示对该叶节点104进行网络拥塞控制,具体在本申请下文详述。
信息处理模块1047用于对信息接收模块1046接收的信息进行处理。例如以接收信息为网络流量场景为例,信息处理模块1047具体可依据该网络流量场景获取到相应地目标控制信息,该目标控制信息用于指示对叶节点104进行网络拥塞控制,关于信息处理模块1047的处理及目标控制信息如何实现网络拥塞控制具体在本申请下文详述。
控制下发模块1048用于下发目标控制信息到叶节点104的转发芯片。该信息具体可为信息接收模块1046接收的目标控制信息,或者信息处理模块1047处理后的目标控制信息。便于叶节点104的转发芯片依据该目标控制信息对该叶节点进行网络拥塞控制。
关于本申请实施例中未描述或未详细介绍的内容,可对应参见下文图10所述方法实施例中的相关介绍,这里不做详述。
请参见图8,是本申请实施例提供的一种脊节点102的内部结构示意图。如图8所示的脊节点102中包括信息接收模块1021、拓扑组网模块1022、信息处理模块1023、场景识别模块1024及信息发送模块1025。其中:
信息接收模块1021用于接收各个叶节点104发送的网络信息,该网络信息中携带有该叶节点的网络拓扑信息和网络性能指标。
拓扑组网模块1022用于根据各个叶节点104的网络拓扑信息,对各个叶节点104进和脊节点102进行组网,得到组合网络拓扑。具体地,拓扑组网模块1022接收网络信息后,对网络信息解封装,从而获取网络信息中包括的该节点的网络拓扑信息。相应地,拓扑组网模块1022可接收一个或多个节点104的网络拓扑信息,进而依据各个节点的网络拓扑信息构建得到一个组合网络拓扑。若该组合网络拓扑为叶脊网络系统100的全局网络拓扑,即组合网络拓扑中包括叶脊网络系统100中的所有节点,则表示该组合网络拓扑为全局网络拓扑。则拓扑组网模块1022可向信息处理模块1023发送处理通知消息,用于通知信息处理模块1023启动处理。
信息处理模块1023用于从信息接收模块1021中获取全局网络拓扑中每个叶节点104的网络性能指标,进而对每个叶节点的网络性能指标进行预处理,得到目标性能指标。该预处理可为系统自定义设置的处理,例如其可包括但不限于以下中的任一项或多项的组合:数据筛选处理(如筛选下行端口的网络性能指标、或剔除异常值等)、数据转换处理(例如格式转换、取均值处理)及归一化处理等等。以预处理为归一化处理为例,在实际应用中由于网络性能指标可能包括多个指标,例如报文长度、网络时延等,这些网络性能指标不处于同一维度或同一数量级上。信息处理模块1023获取每个叶节点的网络性能指标后,需进行归一化处理,将其转换至同一维度上,得到相应地目标性能指标。
又如以数据转换处理为例,若叶节点104的网络性能指标中包括转发字节数和转发报文数,则信息处理模块1023可依据转发字节数和转发报文数,计算获得叶节点104的平均报文长度。具体可采用如下公式(1)计算得到平均报文长度:
场景识别模块1024用于对目标性能指标进行场景识别,得到识别信息。该识别信息具体可为叶脊网络系统100当前所处的网络流量场景,也可为基于该网络流量场景获得与该网络流量场景对应的目标控制信息,该目标控制信息用于指示对叶脊网络系统100中至少一个叶节点104进行网络拥塞控制。
信息发送模块1025用于将场景识别模块1024识别得到的识别信息发送给叶脊网络系统100中任一个或多个叶节点104。便于叶节点104基于该识别信息获得相应地目标控制信息,进而根据该目标控制信息的指示对该叶节点104进行相应地网络拥塞控制。
关于本申请实施例中未阐述或未详细介绍的内容,可对应参见如下图10所述方法实施例中的相关介绍,这里不做详述。
下面介绍数据存储业务的几种典型应用场景及每种应用场景下细分的网络流量场景。目前,数据存储业务中的典型应用场景包括联机事务处理过程(on-linetransaction processing,OLTP)、联机分析处理(online analytical processing,OLAP)、虚拟桌面基础框架(virtual desktop infrastructure,VDI)、电子邮件(exchangeserver)、文件服务(file server)及视频(video)等。在实际应用中,系统可依据数据存储过程中涉及的一些可变参数来确定系统所处的应用场景及应用场景下细分的网络流量场景。该可变参数为系统自定义设置的参数,其可包括但不限于数据读写的随机性(RWmode)、读写比例、数据块大小(block size)及并发数(iodepth)等。其中,读写的随机性用于指示数据的操作方式,例如顺序读写、随机读写、只读不写、只写不读等等。读写比例用于指示系统支持写数据与读数据的比例,一定程度上可反映网络拥塞。数据块大小用于指示数据传输采用的最小单位大小,例如其具体可为固定块大小或随机块大小等。并发数用于指示系统支持数据并发处理的数据量,也可理解为任务数量。如下表1示出几种典型应用场景的具体示意表。
表1
如上表1,OLTP应用场景按照数据处理的类型划分有数据联机事务处理过程OLTP-DATA和日志联机事务处理过程OLTP-LOG。且每个应用场景下依据并发数的不同细分对应有相应不同的网络流量场景。例如上表1中,以OLTP-DATA应用场景为例,系统将读写比例randrw为7:3、数据块大小bsrange处于8K-64K范围内、并发数iodepth为8,且支持随机读写(RWmode为写W+读R)所对应的网络流量场景定义为场景1。系统将将读写比例randrw为7:3、数据块大小bsrange处于8K-64K范围内、并发数iodepth为16,且支持随机读写(RWmode为写W+读R)所对应的网络流量场景定义为场景2。以此类推,OLTP-DATA应用场景下具体细分包括有6个网络流量场景,这6个网络流量场景支持的读写比例、数据块大小所处范围及读写随机性都相同,区别在于网络流量场景支持的并发数不相同。
相应地,每种存储业务场景可根据自身需求划分为更小粒度的细分应用场景。例如图示中,虚拟桌面基础框架VDI可划分为上电和日常,文件服务可划分为网络文件服务(web file server)和网络服务日志(web server log),视频划分为视频发布、互联网备份及视频点播(video on demand,VOD)等应用场景,参见前文所述,每个应用场景下包括的网络流量场景不再赘述。
请参见图9,是本申请实施例提供的一种网络拥塞控制方法的流程示意图。如图9所示的方法应用于如上图6所示的叶脊网络系统中,所述方法包括如下实施步骤:
S901、叶脊网络系统中的任一叶节点104向脊节点102发送网络信息,所述网络信息包括所述叶节点的网络拓扑信息和所述叶节点的网络性能指标。相应地,脊节点102接收该叶节点104发送的网络信息。
本申请叶脊网络系统100中的任意一个或多个叶节点104可周期性采集该叶节点104的网络拓扑信息及网络性能指标。然后,叶节点104将采集的网络拓扑信息和网络性能指标封装为网络信息,周期性地发送给脊节点102。具体实施如下:
在一个示例中,为保障数据传输的安全性,叶节点104可对信息进行两次封装。具体地,叶节点104可单独分别对该叶节点104的网络拓扑信息和该叶节点104的网络性能指标进行封装,对应得到第一封装信息和第二封装信息。进而再将第一封装信息和第二封装信息封装为网络信息,发送给脊节点102。
再一个示例中,为节省计算量、减轻节点负荷,叶节点104可直接对采集的网络拓扑信息和网络性能指标进行一次封装得到网络信息,发送给脊节点102。关于信息封装的具体实施可参考前述图8所述实施例中的相关介绍,这里不再赘述。此外,关于本申请网络拓扑信息及网络性能指标的介绍,也可参考图7所述实施例中的相关介绍,这里不再赘述。
本申请涉及的网络信息也可称为网络消息,为方便描述本申请统一以网络信息为例进行相关内容的阐述。在叶节点104将网络信息发送给脊节点102时,该网络信息对应的封装格式为叶节点104和脊节点102相互通信时采用的数据传输格式。即叶节点104将节点的网络拓扑信息和网络性能指标封装为支持与脊节点102通信的节点间消息或信息(即网络信息),以将该网络信息直接发送给脊节点102。或者,叶节点104可采用远程过程调用(google remote procedure vall protocol,gRPC)通道将网络信息发送给脊节点102等,本申请不做限定。
S902、脊节点102根据接收的至少一个叶节点104的网络拓扑信息,对至少一个叶节点104和脊节点102进行组网,得到组合网络拓扑。
脊节点102可接收叶脊网络系统100中至少一个叶节点104发送的网络信息。然后,对接收的每个叶节点104的网络信息进行解封装,得到该叶节点104的网络拓扑信息和网络性能指标。具体地:
在一个示例中,若叶节点104采用两次封装得到网络信息,则脊节点102也需对应采用两次解封装得到该叶节点104的网络拓扑信息和网络性能指标。具体地,脊节点102对网络信息进行首次解封装,可得到第一封装信息和第二封装信息。然后再分别对第一封装信息和第二封装信息进行解封装,对应可得到该叶节点104的网络拓扑信息和该叶节点的网络性能指标。
再一个示例中,若叶节点104采用一次封装得到网络信息,则脊节点102也对应采用一次解封装即可得到该叶节点104的网络拓扑信息和网络性能指标。具体地,脊节点102直接对网络信息进行解封装,得到网络信息中包括的该叶节点104的网络拓扑信息和网络性能指标。
脊节点102在获得至少一个叶节点104的网络拓扑信息后,可依据该至少一个叶节点104的网络拓扑信息,对该至少一个叶节点104及脊节点102进行组网,得到组合网络拓扑。具体可依据每个叶节点104的网络拓扑信息(例如节点连接关系等)及脊节点102的网络拓扑信息来组建该至少一个叶节点104构成的组合网络拓扑。
S903、在所述组合网络拓扑为叶脊网络系统的全局网络拓扑时,根据全局网络拓扑中每个叶节点104的网络性能指标对至少一个叶节点104进行网络拥塞控制。
脊节点102获得组合网络拓扑后,可进一步判断该组合网络拓扑是否为叶脊网络系统100的全局网络拓扑,具体实施如下:
在一个示例中,在组建叶脊网络系统100时,脊节点102中存储有叶脊网络系统100中每个节点的信息,具体地存储有脊节点102的信息及与该脊节点102通信的所有叶节点104的,例如叶节点104的ID号等。在实际应用中,每个节点的信息在脊节点102中的存储形式并不做限定,例如以配置文件、表格等形式存储于脊节点102中。相应地,脊节点102获得组合网络拓扑后,通过判断组合网络拓扑中是否全部包括有叶脊网络系统100中的所有节点,若全部包括,则确定该组合网络拓扑为叶脊网络系统100的全局网络拓扑。否则,确定该组合网络拓扑为叶脊网络系统100的局部网络拓扑。
再一个示例中,叶脊网络系统中每个节点的网络拓扑信息均包括该节点的邻居节点。该邻居节点指位于该节点通信半径内的一个或多个节点。换句话说,每个节点的网络拓扑信息指示有该节点通信半径内存在的邻居节点。相应地,脊节点102在获得组合网络拓扑后,判断组合网络拓扑中是否全部包括叶脊网络系统100中每个节点的邻居节点,或者判断组合网络拓扑中是否全部包括有脊节点102的邻居节点。若全部包括,则确定该组合网络拓扑为叶脊网络系统100的全局网络拓扑。否则,确定该组合网络拓扑为叶脊网络系统100的局部网络拓扑。
举例来说,参见图10示出另一种叶脊网络系统的结构示意图。如图10,该叶脊网络系统中部分示出脊节点1及与该脊节点1通信的10个叶节点,图示分别为叶节点1~叶节点10。本例中假设叶节点1的邻居节点有脊节点1和与叶节点1相连的所有源节点。叶节点2的邻居节点有脊节点1和与叶节点2相连的所有源节点。
若脊节点1接收到叶节点1和叶节点2发送的网络信息,并从中解析获得叶节点1和叶节点2的网络拓扑信息。然后依据叶节点1和叶节点2的网络拓扑信息,构成出由脊节点1、叶节点1和叶节点2形成的组合网络拓扑。由于脊节点1的邻居节点并未全部在组合网络拓扑中,则脊节点1可确定该组合网络拓扑为叶脊网络系统的局部网络拓扑,并非全局网络拓扑。
脊节点102在判断到组合网络拓扑为叶脊网络系统的全局网络拓扑后,可根据全局网络拓扑中每个叶节点104的网络性能指标对全局网络拓扑中的任一个或多个叶节点104进行网络拥塞控制,例如针对网络流量发生变化的叶节点进行网络拥塞控制等。具体实施时,步骤S903包括如下实施步骤:
S9031、脊节点102调用场景识别模型对目标性能指标进行处理,得到叶脊网络系统100所处的网络流量场景。该目标性能指标可为全局网络拓扑中每个叶节点104的网络性能指标,或者对全局网络拓扑中每个叶节点104的网络性能指标进行预处理后得到的网络性能指标。
在一个示例中,在不考虑模型计算精度的情况下,脊节点102可直接将全局网络拓扑中每个叶节点104的网络性能指标作为目标性能指标,输入场景识别模型中进行处理,得到全局网络拓扑(即叶脊网络系统100)当前所处的网络流量场景,具体可为该网络流量场景的标识用于表示该网络流量场景,例如网络流量场景的序号、索引号或身份标识ID等。
再一个示例中,在考虑模型计算精度的情况下,脊节点102可先对全局网络拓扑中每个叶节点104的网络性能指标进行预处理,例如剔除异常值、归一化处理等,得到目标性能指标。关于预处理的具体实施具体可参见前述图7所述实施例中的相关介绍,这里不再赘述。进一步脊节点102将目标性能指标输入场景识别模型中处理,得到全局网络拓扑当前所处的网络流量场景,具体可为该网络流量场景的标识。
下面介绍场景识别模型相关的实施例。该场景识别模型可为预先训练好部署于脊节点102中的,便于后续脊节点102直接调用该场景识别模型对目标性能指标进行处理。具体地,训练平台可采集训练样本,该训练样本中包括有任一叶脊网络系统(例如图6中叶脊网络系统100)的全局网络拓扑、叶脊网络系统中每个节点的初始性能指标及对应的初始流量场景。进而利用该训练样本对初始模型进行训练,得到训练好的场景识别模型。进而,脊节点102可从训练平台中获得该场景识别模型,以部署到自身节点中,具体地脊节点102通过消息请求从训练平台获取该场景识别模型,或者训练平台主动将该场景识别模型推送给脊节点102。
本申请初始模型用于场景识别,其可包括但不限于前馈神经网络模型、反馈神经网络模型、自组织神经网络模型、随机神经网络模型、或其他自定义用于场景识别的数学模型。该初始性能指标与叶节点104的网络性能指标相同,具体可参见前述图7中的相关介绍,这里不再赘述。该初始流量场景指每个节点的初始性能指标对应所反映的叶脊网络系统当前所处的流量场景,关于流量场景的划分及确定具体可参见前述表1相关实施例的介绍,这里不再赘述。
本申请场景识别模型的实施形式并不做限定,例如配置文件等。以配置文件为例,该配置文件的格式并不做限定,例如tensorflow官方定义的tensorflow格式等。若训练平台训练得到的场景识别模型对应的文件格式不支持脊节点102调用,则脊节点102需进行格式转换,便于脊节点102(具体为脊节点102中的中央处理器CPU)调用。具体地,脊节点102可调用模型转换工具将tensorflow格式的场景识别模型文件转换为目标格式的场景识别模型文件,便于脊节点102的CPU调用。该目标格式为CPU支持调用的格式,例如X86、ARM及外挂芯片支持的文件格式等等。
请参见图11,是本申请提供的一种场景识别模型应用的具体示意图。如图11,叶脊网络系统中每个叶节点104(图示以一个叶节点104为例示出)可采集该叶节点104的网络拓扑信息及初始性能指标发送给训练平台108中。训练平台108可接收叶脊网络系统中每个叶节点的信息,从而获得该叶脊网络系统的全局网络拓扑及每个叶节点104的初始性能指标。训练平台108将上述信息加载到初始模型中,对初始模型进行训练,从而获得训练好的场景识别模型。图示中,场景识别模型具体以tensorflow定义的官方tensorflow格式的场景识别模型文件部署,不支持脊节点102调用。则模型转换工具可将tensorflow格式的场景识别模型文件转换为目标格式的场景识别模型文件,该目标格式可包括但不限于X86、ARM及外挂芯片所支持处理的文件格式等。然后,脊节点102将该目标格式的场景识别模型文件配置到自身节点中,以实现场景识别模型的部署。
相应在场景识别模型的使用过程中,脊节点102可调用场景识别模型对目标性能指标进行处理,得到网络流量场景。以场景识别模型为神经网络模型为例,如图12示出一种神经网络模型的结构示意图。如图12,该神经网络模型中包括输入层、多个全连接层、分类softmax层及输出层。具体地,脊节点102将目标性能指标输入场景识别模型的输入层,然后利用模型中的多个全连接层依次对目标性能指标进行全连接处理,再通过softmax层进行场景分类,得到每个场景的概率。输出层最后选择输出概率最大的场景作为网络流量场景。
S9032、脊节点102根据网络流量场景,对叶脊网络系统100中的至少一个叶节点104进行网络拥塞控制。
在一个示例中,步骤S9032包括如下实施步骤S1301~S1303,具体如图13所示。
S1301、脊节点102获取场景控制表,该场景控制表中记录有场景和拥塞控制信息的映射关系。该映射关系为一个拥塞控制信息对应至少一个场景,一个场景对应一个拥塞控制信息。
本申请场景控制表维护或存储在脊节点102中。相应地,脊节点102可从本地数据库中获取场景控制表。该场景控制表中记录有场景和拥塞控制信息的映射关系,具体地一个场景对应一个拥塞控制信息,一个拥塞控制信息可对应一个或多个场景。如下表2示出一种可能的场景控制表。
表2
场景 | 拥塞控制信息 |
场景1 | 拥塞控制信息1 |
场景2 | 拥塞控制信息2 |
场景3 | 拥塞控制信息3 |
...... | ...... |
S1302、脊节点102从场景控制表中查询与网络流量场景对应的目标控制信息。
S1303、脊节点102将目标控制信息发送给全局网络拓扑中的至少一个叶节点104,以按照该目标控制信息对至少一个叶节点进行网络拥塞控制。相应地,叶节点104接收目标控制信息。
S1304、叶节点104按照该目标控制信息进行相应网络拥塞控制。
脊节点102获得网络流量场景后,通过查询场景控制表可获得该网络流量场景所对应的目标控制信息。然后,脊节点102可将该目标控制信息发送给全局网络拓扑中的任一个或多个叶节点104。具体地在一个示例中,脊节点102获得目标控制信息后,可主动将该目标控制信息发送给全局网络拓扑中的任一个或多个叶节点104。可选地,该任一个或多个叶节点104可指全局网络拓扑中发生了网络流量变化的叶节点。例如,叶节点104中报文队列的入速率和出速率不相同,将会导致该叶节点104的报文队列长度发生变化,即该叶节点104的网络流量随着时间动态变化。
再一个示例中,全局网络拓扑中的任一叶节点104可向脊节点102发送信息获取请求,用于请求从脊节点102中获取该目标控制信息。例如,在该任一叶节点104发生网络拥塞后,可主动向脊节点102发送信息控制请求,用于请求获取相应地目标控制信息对该叶节点104进行网络拥塞控制,以缓解该叶节点104的网络拥塞。相应地,脊节点102接收该叶节点104的信息获取请求后,可响应该请求将目标控制信息发送给叶节点104。便于叶节点104按照该目标控制信息对自身节点进行相应地网络拥塞控制。
本申请S1304中网络拥塞控制涉及两种具体实施场景,分别为:基于ECN标记的网络拥塞控制和基于PFC反馈的网络拥塞控制,下面分别进行详述。
在一个示例中,叶节点104按照目标控制信息对该叶节点104进行基于ECN标记的网络拥塞控制。该场景下,本申请上文叶节点104的网络性能指标中至少需包括该叶节点104在上个周期内传输的ECN标记报文数,则S1302场景控制表中具体记录有场景和ECN标记控制信息的映射关系。该ECN标记控制信息用于指示或确定叶节点在当前周期内对叶节点104的传输报文进行ECN标记的概率。
在一种实施方式中,该ECN标记控制信息可直接用于指示叶节点在当前周期内对叶节点104的报文队列中的传输报文进行ECN标记的概率,也可称为ECN标记概率。举例来说,如下表3示出一种可能的场景控制表。
表3
场景 | ECN标记控制信息(ECN标记概率) |
场景1 | 概率1 |
场景2 | 概率2 |
场景3 | 概率3 |
... | ... |
相应地若ECN标记控制信息用ECN标记概率表示,则脊节点102从场景控制表中获得网络流量场景对应的目标控制信息为目标ECN标记概率,用于指示叶节点104在当前周期内对叶节点的报文队列中的传输报文进行ECN标记的概率。进而,该叶节点104按照目标ECN标记概率,对自身报文队列中的传输报文进行ECN标记。
再一种实施方式中,该ECN标记控制信息也可用于确定叶节点在当前周期内对叶节点104的传输报文进行ECN标记的概率,具体可为图2所述实施例所示的ECN标记水线,采用ECN标记参数(Kmin,Kmax,Pmax)表示。如图2所示,该ECN标记水线用于反映ECN标记概率随报文队列长度变化的斜率,该ECN标记概率为在当前周期内对叶节点104的报文队列中的传输报文进行ECN标记的概率。该报文队列长度为叶节点104用于存储传输报文的报文队列的长度。举例来说,如下表4示出一种可能的记录有场景和ECN标记控制信息映射关系在内的场景控制表。
表4
场景 | ECN标记控制信息(ECN标记参数) |
场景1 | (K1min,K1max,P1max) |
场景2 | (K2min,K2max,P2max) |
场景3 | (K3min,K3max,P3max) |
...... | ...... |
相应地若ECN标记控制信息用ECN标记参数表示,则脊节点102从场景控制表中获得网络流量场景对应的目标控制信息包括目标ECN标记参数(KDmin,KDmax,PDmax),用于反映ECN标记概率随叶节点的报文队列长度变化的斜率。相应地,叶节点104根据该目标ECN标记参数(KDmin,KDmax,PDmax)及自身节点的报文队列长度,计算得到目标ECN标记概率,具体可对应参考图2所述实施例的相关介绍。进而,该叶节点104按照目标ECN标记概率,对自身报文队列中的传输报文进行ECN标记。
下面以拥塞控制信息为ECN标记水线为例,请参见图16A示出本申请一种可能的网络拥塞控制的场景示意图。如图16A所示,叶脊网络系统100中的N个叶节点104均向脊节点102发送网络信息,该网络信息中包括该叶节点104的网络拓扑信息及网络性能指标。相应地,脊节点102接收N个叶节点的网络信息后,依据网络信息中的网络拓扑信息,确定N个叶节点组成的网络拓扑为叶脊网络系统100的全局网络拓扑。进而,脊节点102将N个叶节点的网络性能指标输入场景识别模型中进行处理,得到网络流量场景(具体可为网络流量场景的标识ID)。该脊节点102中维护有一个场景控制表,该场景控制表中记录有m组场景和ECN标记水线的映射关系,具体如图所示。进一步脊节点102从该场景控制表中查询与该网络流量场景对应的目标ECN水线(KDmin,KDmax,PDmax),进而将该目标ECN水线下发给N个叶节点中的至少一个叶节点104。
相应地,叶节点104接收该目标ECN水线后,将其下发给自身的转发芯片。进而转发芯片依据该目标ECN水线及芯片出端口处的报文队列长度,确定目标ECN标记概率,具体对应参考图2所述实施例中的相关介绍。进一步叶节点104的转发芯片按照该目标ECN标记概率,对报文队列中的传输报文进行ECN标记,以通知与该叶节点104通信的源节点106停止报文传输或降低报文传输的速率。
再一个示例中,叶节点104按照目标控制信息对该叶节点104进行基于PFC反馈的网络拥塞控制。该场景下,本申请上文叶节点104的网络性能指标中至少需包括该叶节点104在上个周期内传输的基于优先级的流量控制PFC报文数,则S1302场景控制表中具体记录有场景和PFC反馈控制信息的映射关系。该PFC反馈控制信息用于指示或确定当前周期内与叶节点104通信的源节点是否允许进行该PFC反馈控制信息所指示优先级报文的传输。
在一种实施方式中,该PFC反馈控制信息直接用于指示当前周期内与该叶节点104通信的源节点是否允许进行该PFC反馈控制信息所指示优先级报文的传输。在实际应用中,本申请PFC反馈控制信息的具体表现形式不做限定,例如可用预设字符串表示等等。例如当PFC反馈信息为“13”时,表示允许进行该PFC反馈信息信息所指示的优先级为3的传输报文的传输。当PFC反馈信息为“03”时,表示不允许或停止进行该PFC反馈信息所指示的优先级为3的传输报文的传输等等。
相应地,若该PFC反馈控制信息用于指示不允许进行所述PFC反馈控制信息所指示的优先级报文的传输。则叶节点104可依据该PFC反馈控制信息,向与该叶节点104通信的所有或部分源节点106发送第一PFC通知消息。用于通知该源节点106停止该第一PFC通知消息所指示优先级报文的传输,以缓解叶节点104的网络拥塞。
反之,若该PFC反馈控制信息用于指示允许进行所述PFC反馈控制信息所指示的优先级报文的传输。则叶节点104可依据该PFC反馈控制信息,向与该叶节点104通信的所有或部分源节点106发送第二PFC通知消息。用以通知该源节点106继续该第二PFC通知消息所指示优先级报文的传输。
再一种实施方式中,该PFC反馈控制信息用于确定当前周期内与该叶节点104通信的源节点是否允许进行该PFC反馈控制信息所指示优先级报文的传输。具体的该PFC反馈控制信息具体可为PFC反馈水线,用于反映叶节点发送的PFC通知消息跟随报文队列长度的变化情况。其中PFC反馈水线采用PFC反馈参数(Xon,Xoff,Hdrm)表示。如下表5示出一种可能的记录有场景和PFC反馈控制信息映射关系在内的场景控制表。
表5
场景 | ECN标记控制信息(PFC反馈参数) |
场景1 | (X1on,X1off,H1drm) |
场景2 | (X2on,X2off,H2drm) |
场景3 | (X3on,X3off,H3drm) |
...... | ...... |
相应地,叶节点104获得网络流量场景对应的目标PFC反馈控制信息后,该目标PFC反馈控制信息包括目标PFC反馈参数(XDon,XDoff,HDdrm),叶节点104可根据自身节点的报文队列长度及目标PFC反馈参数(XDon,XDoff,HDdrm),对自身节点104进行网络拥塞控制。具体地,若叶节点104的报文队列长度超过第一阈值XDoff,则叶节点104向与该叶节点104通信的所有或部分源节点106发送第一PFC通知消息,具体可以Xoff报文形式发送,该Xoff报文携带有报文优先级priority,用于通知该源节点106停止该第一PFC通知消息所指示优先级报文的传输,以缓解叶节点104的报文队列的网络拥塞。其中,HDdrm是对XDoff的缓冲,具体指叶节点104向与该叶节点104通信的源节点106发送第一PFC通知消息的时间,该时间内源节点106仍继续向叶节点104发送相应优先级报文。
当叶节点104的报文队列长度小于或等于第二阈值XDon,则叶节点104向与该叶节点104通信的所有或部分源节点106发送二PFC通知消息,具体可以Xon报文形式发送,该Xon报文携带有报文优先级priority。以通知该源节点106继续该第二PFC通知消息所指示优先级报文的传输。
需要说明的是,在考虑节点计算量的情况下,本申请叶脊网络系统100可采用周期处理方式来进行网络拥塞控制。例如,S901中叶脊网络系统100的任一叶节点104可周期性地采集并上报包括该叶节点104的网络拓扑信息及网络性能指标在内的网络信息,然后发给脊节点102处理,以对该叶节点104进行网络拥塞控制。其中,每个周期的时长可为系统自定义设置的,例如1s、或5s等。
在实际应用中,叶脊网络系统100可利用上个周期叶节点104的网络信息来对该叶节点104进行当前周期内的网络拥塞控制。示例性地,请参见图14示出一种信息采集场景示意图。如图14中,假设每个周期的时长为T。图示,叶节点104在T1时刻开始采集该叶节点104的网络拓扑信息及网络性能指标,后续每等待时长T采集并上报一次该叶节点104的网络拓扑信息及网络性能指标。叶节点104可将T1时刻采集的网络拓扑信息及网络性能指标,作为上个周期内的信息数据,发送给脊节点102。便于脊节点102依据上个周期各个叶节点104的网络拓扑信息及网络性能指标,在当前周期内(即T1时刻后,T2时刻前的任意时刻)对任意叶节点104进行网络拥塞控制。
再一个示例中,步骤S9032包括如下实施步骤S1501~S1503,具体如图15所示。
S1501、脊节点102将网络流量场景发送给全局网络拓扑中的任一个或多个叶节点104。相应地,该叶节点104接收网络流量场景。
本申请场景控制表维护在单个叶节点104中,则脊节点102在S9031获得网络流量场景后,可将该网络流量场景下发给全局网络拓扑中的任一个或多个叶节点104。相应地,该一个或多个叶节点104可依据网络流量场景进行相应地网络拥塞控制,本申请下面以一个叶节点104为例进行详述。其中,每个叶节点104各自维护的场景控制表可以相同,也可不相同,并不做限定。
S1502、叶节点104获取场景控制表,该场景控制表中记录有场景和拥塞控制信息的映射关系,该映射关系为一个拥塞控制信息对应至少一个场景,一个场景对应一个拥塞控制信息。
S1503、叶节点104从场景控制表中查询获得与该网络流量场景对应的目标控制信息。
S1504、叶节点104按照该目标控制信息进行网络拥塞控制。
叶节点104可从本地数据库中获取场景控制表,从中查询得到网络流量场景对应的目标控制信息,进而依据该目标控制信息对叶节点104进行网络拥塞控制。具体地叶节点104可将目标控制信息下发到节点转发芯片的出端口,以对该叶节点104的出端口进行网络拥塞控制。关于本申请未示出或未描述的内容可对应参见图13所述实施例中的相关介绍,这里不再赘述。
下面以拥塞控制信息为ECN标记水线为例,请参见图16B示出本申请一种可能的网络拥塞控制的场景示意图。参考图16A中的相关介绍,脊节点102在计算获得网络流量场景后,可将该网络流量场景下发给N个叶节点中的至少一个叶节点104。每个叶节点104中维护有场景控制表,该场景控制表中记录有m组场景和ECN标记水线的映射关系,例如图示中场景i对应ECN标记水线i(图示简写为ECN i)。
相应地,叶节点104接收网络流量场景后,可从场景控制表中查询与该网络流量场景对应的目标ECN标记水线(KDmin,KDmax,PDmax)。参考图2所示实施例的介绍,该叶节点104通过转发芯片依据目标ECN标记水线和芯片出端口处的报文队列长度确定出目标ECN标记概率。进而依据该目标ECN标记概率对报文队列中的传输报文进行ECN标记,从而通知与该叶节点104通信的源节点106停止报文传输或降低报文传输的速率。
通过实施本申请实施例,能够依据整个叶脊网络系统中每个叶节点的网络性能指标对网络流量动态变化的叶节点进行网络拥塞控制,既能够解决现有技术中存在的网络流量动态变化而无法满足低时延、高吞吐等网络性能要求,还能对系统组网的变化具备一定程度上的泛化能力,支持系统网络拓扑的变化。尤其地,在数据存储业务中,本方案能有效提升数据存储性能。
基于前述实施例中的相关介绍,下面介绍本申请适用的相关装置及系统。请参见图17,是本申请实施例提供的一种叶脊网络系统的结构示意图。如图17所示的叶脊网络系统100中包括脊节点102和至少一个叶节点104。如图17,该脊节点102中包括通信模块10、组网模块11及控制模块12。叶节点104中包括通信模块20和控制模块22。可选地,该叶节点104中还包括获取模块21。其中,
所述通信模块10,用于接收至少一个叶节点104发送的网络信息,所述网络信息包括所述叶节点的网络拓扑信息和所述叶节点的网络性能指标;
所述组网模块11,用于根据所述至少一个叶节点的网络拓扑信息,对所述至少一个叶节点和所述脊节点进行组网,得到组合网络拓扑;
所述控制模块12,用于若所述组合网络拓扑为所述叶脊网络系统的全局网络拓扑,则根据所述至少一个叶节点的网络性能指标,对所述至少一个叶节点进行网络拥塞控制。
在实际应用中,本申请通信模块10具体可包括如上图8所示的信息接收模块1021及信息发送模块1025等功能模块。即,通信模块10具体可由信息接收模块1021及信息发送模块1025等功能模块实现。组网模块11具体可由图8所示的拓扑组网模块1022实现。控制模块12具体可包括如上图8所示的信息处理模块1023及场景识别模块1024等功能模块,即该控制模块12具体由图8所示的信息处理模块1023及场景识别模块1024等功能模块实现。
在一些可能的实施例中,所述控制模块12具体用于调用场景识别模型对目标性能指标进行处理,得到所述至少一个叶节点对应的网络流量场景;其中,所述目标性能指标为所述至少一个叶节点的网络性能指标,或者对所述至少一个叶节点的网络性能指标进行预处理后获得的网络性能指标,所述场景识别模型为预先根据所述叶脊网络系统中每个节点的初始性能指标及初始流量场景训练得到的;根据所述网络流量场景,对所述至少一个叶节点进行网络拥塞控制。
在一些可能的实施例中,所述控制模块12具体用于获取场景控制表,所述场景控制表中记录有场景和拥塞控制信息的映射关系,所述映射关系为所述拥塞控制信息对应至少一个场景;从所述场景控制表中查询所述网络流量场景对应的目标控制信息;将所述目标控制信息发送给所述至少一个叶节点104,以便所述叶节点104的控制模块22按照所述目标控制信息对所述至少一个叶节点104进行网络拥塞控制。
在一些可能的实施例中,所述控制模块12具体用于调用所述通信模块10将所述网络流量场景发送给所述至少一个叶节点104。相应地,所述至少一个叶节点104的通信模块20接收所述网络流量场景。所述至少一个叶节点104的获取模块21用于获取场景控制表,所述场景控制表中记录有场景和拥塞控制信息的映射关系,所述映射关系为所述拥塞控制信息对应至少一个场景;从所述场景控制表中查询所述网络流量场景对应的目标控制信息。所述至少一个叶节点104的控制模块22用于按照所述目标控制信息对所述至少一个叶节点进行网络拥塞控制。
在一些可能的实施例中,则所述目标控制信息包括目标ECN标记参数,用于反映ECN标记概率跟随报文队列长度变化的斜率,所述ECN标记概率为对所述叶节点的报文队列中的传输报文进行ECN标记的概率,所述报文队列长度为所述叶节点的报文队列的长度。所述至少一个叶节点104的控制模块22具体用于根据所述目标ECN标记参数及所述至少一个叶节点中每个叶节点的报文队列的长度,计算得到对应的ECN标记概率;按照所述对应的ECN标记概率,对所述至少一个叶节点的报文队列中的传输报文进行ECN标记,以通知与所述叶节点通信的源节点降低报文传输的速率或停止报文传输。
在一些可能的实施例中,若所述网络性能指标包括所述叶节点在上个周期内传输的显示拥塞通知ECN标记报文数,则所述目标控制信息包括ECN标记概率,用于指示对所述叶节点的报文队列中的传输报文进行ECN标记的概率。所述至少一个叶节点104的控制模块22具体用于根据所述至少一个叶节点的ECN标记概率,对应对所述至少一个叶节点的报文队列中的传输报文进行ECN标记,以通知与所述至少一个叶节点通信的源节点降低报文传输的速率或停止报文传输。
在一些可能的实施例中,若所述网络性能指标包括所述叶节点在上个周期内传输的基于优先级的流量控制PFC报文数,则所述目标控制信息包括目标PFC反馈参数,用于反映所述叶节点发送的PFC通知消息跟随所述叶节点的报文队列长度的变化情况。所述至少一个叶节点104的控制模块22具体用于若所述至少一个叶节点的报文队列的长度大于或等于所述目标PFC反馈参数中的第一阈值,则调用所述至少一个叶节点104的通信模块20向与所述至少一个叶节点通信的源节点发送第一PFC通知消息,用于通知所述源节点停止所述第一PFC通知消息所指示的优先级报文的传输;或者,若所述至少一个叶节点的报文队列的长度小于或等于所述目标PFC反馈参数中的第二阈值,则调用所述至少一个叶节点104的通信模块20向与所述至少一个叶节点通信的源节点发送第二PFC通知消息,用于通知所述源节点继续所述第二PFC通知消息所指示的优先级报文的传输。
在一些可能的实施例中,若所述网络性能指标包括所述叶节点在上个周期内传输的基于优先级的流量控制PFC报文数,则所述目标控制信息为PFC反馈控制信息,用于指示与所述叶节点通信的源节点是否允许进行所述PFC反馈控制信息所指示的优先级报文的传输。所述至少一个叶节点104的控制模块22具体用于若所述PFC反馈控制消息用于指示不允许进行所述PFC反馈控制信息所指示的优先级报文的传输,则调用所述至少一个叶节点104的通信模块20向与所述至少一个叶节点通信的源节点发送第一PFC通知消息,所述第一PFC通知消息用于通知所述源节点停止进行所述第一PFC通知消息所指示的优先级报文的传输;或者,若所述PFC反馈控制消息用于指示允许进行所述PFC反馈控制信息所指示的优先级报文的传输,则调用所述至少一个叶节点104的通信模块20向与所述至少一个叶节点通信的源节点发送第二PFC通知消息,所述第二PFC通知消息用于通知与所述源节点允许进行所述第二PFC通知消息所指示的优先级报文的传输。
在一些可能的实施例中,所述网络拓扑信息用于指示与所述叶节点通信半径内存在的邻居节点。所述控制模块12还用于根据所述至少一个叶节点的网络拓扑信息和所述脊节点的网络拓扑信息,确定所述叶脊网络系统中每个节点各自的邻居节点是否均位于所述组合网络拓扑中;在所述每个节点各自的邻居节点均位于所述组合网络拓扑时,确定所述组合网络拓扑为所述叶脊网络系统的全局网络拓扑。
应理解的是,本申请实施例的节点可以通过专用集成电路(application-specific integrated circuit,ASIC)实现,或可编程逻辑器件(programmable logicdevice,PLD)实现,上述PLD可以是复杂程序逻辑器件(complex programmable logicaldevice,CPLD),现场可编程门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。也可以通过软件实现上述方法实施例的相关描述,该节点中的各个模块也可以为软件单元。
需要说明的,图17仅仅是本申请实施例的一种可能的实现方式,实际应用中,叶脊网络系统中各节点还可以包括更多或更少的部件,这里不作限制。关于本申请实施例中未示出或未描述的内容,可参见前述图1-图16B各方法实施例中的相关阐述,这里不再赘述。
请参见图18,是本申请实施例提供的另一种叶脊网络系统100的结构示意图。如图18所示的叶脊网络系统100中包括脊节点102及至少一个叶节点104。其中,该脊节点102中包括有一个或多个处理器201、通信接口202和存储器203,处理器201、通信接口202和存储器203可通过总线方式连接,也可通过无线传输等其他手段实现通信。本申请实施例以通过总线204连接为例其中,该存储器203用于存储指令,该处理器201用于执行该存储器203存储的指令。该存储器203存储程序代码,且处理器201可以调用存储器203中存储的程序代码执行以下操作:
接收所述至少一个叶节点104发送的网络信息,所述网络信息包括所述叶节点104的网络拓扑信息和所述叶节点的网络性能指标;
根据所述至少一个叶节点104的网络拓扑信息,对所述至少一个叶节点104和所述脊节点102进行组网,得到组合网络拓扑;
若所述组合网络拓扑为所述叶脊网络系统的全局网络拓扑,则根据所述至少一个叶节点104的网络性能指标,对所述至少一个叶节点104进行网络拥塞控制。
可选地,本申请实施例中处理器201可以调用存储器203中存储的程序代码用以执行如上图1-图17中任一方法实施例中以脊节点102为执行主体所描述的所有或部分步骤,和/或文本中描述的其他内容等,这里不再赘述。
应理解,处理器201可以由一个或者多个通用处理器构成,例如中央处理器(Central Processing Unit,CPU)。处理器201可用于运行相关的程序代码中以下功能模块的程序。该功能模块具体可包括但不限于上文所述的通信模块10、组网模块11、控制模块12、信息接收模块1021、拓扑组网模块1022、信息处理模块1023、场景识别模块1024及信息发送模块1025等功能模块中的任一项或多项的组合。也就是说,处理器201执行程序代码可以上述功能模块中的任一项或多项的功能。其中,关于这里提及的各个功能模块具体可参见前述实施例中的相关阐述,这里不再赘述。
通信接口202可以为有线接口(例如以太网接口)或无线接口(例如蜂窝网络接口或使用无线局域网接口),用于与其他单元/设备进行通信。例如,本申请实施例中通信接口202具体可用于接收叶节点104发送的网络信息等。
存储器203可以包括易失性存储器(Volatile Memory),例如随机存取存储器(Random Access Memory,RAM);存储器也可以包括非易失性存储器(Non-VolatileMemory),例如只读存储器(Read-Only Memory,ROM)、快闪存储器(Flash Memory)、硬盘(Hard Disk Drive,HDD)或固态硬盘(Solid-State Drive,SSD);存储器203还可以包括上述种类的存储器的组合。存储器203可用于存储一组程序代码,以便于处理器201调用存储器203中存储的程序代码以实现本申请实施例中涉及的上述各功能模块的功能,或实现本申请如上图1-图17中任一方法实施例中记载以脊节点102为执行主体的技术内容。
相应地,任一叶节点104中包括有一个或多个处理器401、通信接口402和存储器403,处理器401、通信接口402和存储器403可通过总线方式连接,也可通过无线传输等其他手段实现通信。本申请实施例以通过总线404连接为例其中,该存储器403用于存储指令,该处理器401用于执行该存储器403存储的指令。该存储器403存储程序代码,且处理器401可以调用存储器403中存储的程序代码执行以下操作:
向脊节点102发送叶节点102的网络信息,所述网络信息包括所述叶节点的网络拓扑信息和所述叶节点的网络性能指标;
按照目标控制信息对所述至少一个叶节点进行网络拥塞控制,所述目标控制信息为所述脊节点102对所述至少一个叶节点102的网络信息处理后下发的,或者所述目标控制信息为根据所述脊节点102下发的网络流量场景,从场景控制表中查询获得的,所述场景控制表中记录有场景和拥塞控制信息的映射关系,该映射关系为一个拥塞控制信息对应至少一个场景。
可选地,本申请实施例中处理器401可以调用存储器403中存储的程序代码用以执行如上图1-图17中任一方法实施例中以叶节点104为执行主体所描述的所有或部分步骤,和/或文本中描述的其他内容等,这里不再赘述。
应理解,处理器401可以由一个或者多个通用处理器构成,例如中央处理器(Central Processing Unit,CPU)。处理器401可用于运行相关的程序代码中以下功能模块的程序。该功能模块具体可包括但不限于上文所述的通信模块20、获取模块21、控制模块22、拓扑采集模块1041、拓扑处理模块1042、指标采集模块1043、指标处理模块1044、信息发送模块1045、信息接收模块1046、信息处理模块1047及控制下发模块1048等功能模块中的任一项或多项的组合。也就是说,处理器401执行程序代码可以上述功能模块中的任一项或多项的功能。其中,关于这里提及的各个功能模块具体可参见前述实施例中的相关阐述,这里不再赘述。
通信接口402可以为有线接口(例如以太网接口)或无线接口(例如蜂窝网络接口或使用无线局域网接口),用于与其他单元/设备进行通信。例如,本申请实施例中通信接口402具体可用于接收脊节点102发送的目标控制信息或网络流量场景等。
存储器403可以包括易失性存储器(Volatile Memory),例如随机存取存储器(Random Access Memory,RAM);存储器也可以包括非易失性存储器(Non-VolatileMemory),例如只读存储器(Read-Only Memory,ROM)、快闪存储器(Flash Memory)、硬盘(Hard Disk Drive,HDD)或固态硬盘(Solid-State Drive,SSD);存储器403还可以包括上述种类的存储器的组合。存储器403可用于存储一组程序代码,以便于处理器401调用存储器403中存储的程序代码以实现本申请实施例中涉及的上述各功能模块的功能,或实现本申请如上图1-图17中任一方法实施例中记载以叶节点104为执行主体的技术内容。
需要说明的,图18仅仅是本申请实施例的一种可能的实现方式,实际应用中,叶脊网络系统中每个节点还可以包括更多或更少的部件,这里不作限制。关于本申请实施例中未示出或未描述的内容,可参见前述图1-图17所述实施例中的相关阐述,这里不再赘述。
本申请实施例还提供一种计算机非瞬态存储介质,所述计算机非瞬态存储介质中存储有指令,当其在处理器上运行时,图9、图13及图15中任一所示方法实施例中所描述的方法流程得以实现。
本申请实施例还提供一种计算机程序产品,当所述计算机程序产品在处理器上运行时,图9、图13及图15中任一所示方法实施例中所描述的方法流程得以实现。
结合本申请实施例公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(英文:Random Access Memory,RAM)、闪存、只读存储器(英文:Read Only Memory,ROM)、可擦除可编程只读存储器(英文:ErasableProgrammable ROM,EPROM)、电可擦可编程只读存储器(英文:Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于节点中。当然,处理器和存储介质也可以作为分立组件存在于节点设备中。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
Claims (24)
1.一种网络拥塞控制方法,其特征在于,应用于叶脊网络系统中,所述叶脊网络系统包括脊节点和与所述脊节点通信的至少一个叶节点,所述方法包括:
所述脊节点接收所述至少一个叶节点发送的网络信息,所述网络信息包括所述叶节点的网络拓扑信息和所述叶节点的网络性能指标;
根据所述至少一个叶节点的网络拓扑信息,对所述至少一个叶节点和所述脊节点进行组网,得到组合网络拓扑;
若所述组合网络拓扑为所述叶脊网络系统的全局网络拓扑,则根据所述至少一个叶节点的网络性能指标,对所述至少一个叶节点进行网络拥塞控制。
2.如权利要求1所述的方法,其特征在于,所述根据所述至少一个叶节点的网络性能指标,对所述至少一个叶节点进行网络拥塞控制包括:
调用场景识别模型对目标性能指标进行处理,得到所述至少一个叶节点对应的网络流量场景;其中,所述目标性能指标为所述至少一个叶节点的网络性能指标,或者对所述至少一个叶节点的网络性能指标进行预处理后获得的网络性能指标,所述场景识别模型为预先根据所述叶脊网络系统中每个节点的初始性能指标及初始流量场景训练得到的;
根据所述网络流量场景,对所述至少一个叶节点进行网络拥塞控制。
3.如权利要求2所述的方法,其特征在于,所述根据所述网络流量场景,对所述至少一个叶节点进行网络拥塞控制包括:
获取场景控制表,所述场景控制表中记录有场景和拥塞控制信息的映射关系,所述映射关系为所述拥塞控制信息对应至少一个场景;
从所述场景控制表中查询所述网络流量场景对应的目标控制信息;
将所述目标控制信息发送给所述至少一个叶节点,以按照所述目标控制信息对所述至少一个叶节点进行网络拥塞控制。
4.如权利要求2所述的方法,其特征在于,所述根据所述网络流量场景,对所述至少一个叶节点进行网络拥塞控制包括:
所述脊节点将所述网络流量场景发送给所述至少一个叶节点;
所述至少一个叶节点获取场景控制表,所述场景控制表中记录有场景和拥塞控制信息的映射关系,所述映射关系为所述拥塞控制信息对应至少一个场景;
所述至少一个叶节点从所述场景控制表中查询所述网络流量场景对应的目标控制信息;
所述至少一个叶节点按照所述目标控制信息对所述至少一个叶节点进行网络拥塞控制。
5.如权利要求3或4所述的方法,其特征在于,若所述网络性能指标包括所述叶节点在上个周期内传输的显示拥塞通知ECN标记报文数,则所述目标控制信息包括目标ECN标记参数,用于反映ECN标记概率跟随报文队列长度变化的斜率,所述ECN标记概率为对所述叶节点的报文队列中的传输报文进行ECN标记的概率,所述报文队列长度为所述叶节点的报文队列的长度;
所述按照所述目标控制信息对所述至少一个叶节点进行网络拥塞控制包括:
所述至少一个叶节点根据所述目标ECN标记参数及所述至少一个叶节点中每个叶节点的报文队列的长度,计算得到所述至少一个叶节点对应的目标ECN标记概率;
所述至少一个叶节点按照所述对应的目标ECN标记概率,对所述至少一个叶节点的报文队列中的传输报文进行ECN标记,以通知与所述叶节点通信的源节点降低报文传输的速率或停止报文传输。
6.如权利要求3或4所述的方法,其特征在于,若所述网络性能指标包括所述叶节点在上个周期内传输的显示拥塞通知ECN标记报文数,则所述目标控制信息包括目标ECN标记概率,用于指示对所述叶节点的报文队列中的传输报文进行ECN标记的概率,
所述按照所述目标控制信息对所述至少一个叶节点进行网络拥塞控制包括:
所述至少一个叶节点根据所述至少一个叶节点对应的目标ECN标记概率,对应对所述至少一个叶节点的报文队列中的传输报文进行ECN标记,以通知与所述至少一个叶节点通信的源节点降低报文传输的速率或停止报文传输。
7.如权利要求3或4所述的方法,其特征在于,若所述网络性能指标包括所述叶节点在上个周期内传输的基于优先级的流量控制PFC报文数,则所述目标控制信息包括目标PFC反馈参数,用于反映所述叶节点发送的PFC通知消息跟随所述叶节点的报文队列长度的变化情况,
所述按照所述目标拥塞控制信息对所述至少一个叶节点进行网络拥塞控制包括:
若所述至少一个叶节点的报文队列的长度大于或等于所述目标PFC反馈参数中的第一参数阈值,则所述至少一个叶节点向与所述至少一个叶节点通信的源节点发送第一PFC通知消息,用于通知所述源节点停止所述第一PFC通知消息所指示的优先级报文的传输;或者,
若所述至少一个叶节点的报文队列的长度小于或等于所述目标PFC反馈参数中的第二参数阈值,则所述至少一个叶节点向与所述至少一个叶节点通信的源节点发送第二PFC通知消息,用于通知所述源节点继续所述第二PFC通知消息所指示的优先级报文的传输。
8.如权利要求3或4所述的方法,其特征在于,若所述网络性能指标包括所述叶节点在上个周期内传输的基于优先级的流量控制PFC报文数,则所述目标控制信息为PFC反馈控制信息,用于指示与所述叶节点通信的源节点是否允许进行所述PFC反馈控制信息所指示的优先级报文的传输;
所述按照所述目标拥塞控制信息对所述至少一个叶节点进行网络拥塞控制包括:
若所述PFC反馈控制消息用于指示不允许进行所述PFC反馈控制信息所指示的优先级报文的传输,则所述至少一个叶节点向与所述至少一个叶节点通信的源节点发送第一PFC通知消息,所述第一PFC通知消息用于通知所述源节点停止进行所述第一PFC通知消息所指示的优先级报文的传输;或者,
若所述PFC反馈控制消息用于指示允许进行所述PFC反馈控制信息所指示的优先级报文的传输,则所述至少一个叶节点向与所述至少一个叶节点通信的源节点发送第二PFC通知消息,所述第二PFC通知消息用于通知与所述源节点允许进行所述第二PFC通知消息所指示的优先级报文的传输。
9.如权利要求1-8中任一项所述的方法,其特征在于,所述网络拓扑信息用于指示与所述叶节点通信半径内存在的邻居节点,所述根据所述至少一个叶节点的网络性能指标,对所述至少一个叶节点和所述脊节点进行网络拥塞控制之前,所述方法还包括:
根据所述至少一个叶节点的网络拓扑信息和所述脊节点的网络拓扑信息,确定所述叶脊网络系统中每个节点各自的邻居节点是否均位于所述组合网络拓扑中;
在所述每个节点各自的邻居节点均位于所述组合网络拓扑时,确定所述组合网络拓扑为所述叶脊网络系统的全局网络拓扑。
10.一种脊节点,其特征在于,包括通信模块、组网模块和控制模块,其中,
所述通信模块用于接收所述至少一个叶节点发送的网络信息,所述网络信息包括所述叶节点的网络拓扑信息和所述叶节点的网络性能指标;
所述组网模块用于根据所述至少一个叶节点的网络拓扑信息,对所述至少一个叶节点和所述脊节点进行组网,得到组合网络拓扑;
所述控制模块用于若所述组合网络拓扑为所述叶脊网络系统的全局网络拓扑,则根据所述至少一个叶节点的网络性能指标,对所述至少一个叶节点进行网络拥塞控制。
11.如权利要求10所述的脊节点,其特征在于,
所述控制模块,具体用于调用场景识别模型对目标性能指标进行处理,得到所述至少一个叶节点对应的网络流量场景;其中,所述目标性能指标为所述至少一个叶节点的网络性能指标,或者对所述至少一个叶节点的网络性能指标进行预处理后获得的网络性能指标,所述场景识别模型为预先根据所述叶脊网络系统中每个节点的初始性能指标及初始流量场景训练得到的;根据所述网络流量场景,对所述至少一个叶节点进行网络拥塞控制。
12.如权利要求11所述的脊节点,其特征在于,
所述控制模块,具体用于获取场景控制表,所述场景控制表中记录有场景和拥塞控制信息的映射关系,所述映射关系为所述拥塞控制信息对应至少一个场景;从所述场景控制表中查询所述网络流量场景对应的目标控制信息;
所述通信模块,还用于将所述目标控制信息发送给所述至少一个叶节点,以按照所述目标控制信息对所述至少一个叶节点进行网络拥塞控制。
13.如权利要求11所述的脊节点,其特征在于,
所述控制模块,还用于调用所述通信模块将所述网络流量场景发送给所述至少一个叶节点,以便所述至少一个叶节点获取场景控制表,所述场景控制表中记录有场景和拥塞控制信息的映射关系,所述映射关系为所述拥塞控制信息对应至少一个场景;所述至少一个叶节点从所述场景控制表中查询所述网络流量场景对应的目标控制信息;所述至少一个叶节点按照所述目标控制信息对所述至少一个叶节点进行网络拥塞控制。
14.一种叶脊网络系统,其特征在于,包括脊节点和与所述脊节点通信的至少一个叶节点,其中,
所述至少一个叶节点,用于向所述脊节点发送所述至少一个叶节点的网络信息,所述叶节点的网络信息包括所述叶节点的网络拓扑信息和所述叶节点的网络性能指标;
所述脊节点,用于接收所述至少一个叶节点发送的网络信息,根据所述至少一个叶节点的网络拓扑信息对所述至少一个叶节点和所述脊节点进行组网,得到组合网络拓扑;若所述组合网络拓扑为所述叶脊网络系统的全局网络拓扑,则根据所述至少一个叶节点的网络性能指标,对所述至少一个叶节点进行网络拥塞控制。
15.如权利要求14所述的系统,其特征在于,
所述脊节点,具体用于调用场景识别模型对目标性能指标进行处理,得到所述至少一个叶节点对应的网络流量场景;其中,所述目标性能指标为所述至少一个叶节点的网络性能指标,或者对所述至少一个叶节点的网络性能指标进行预处理后获得的网络性能指标,所述场景识别模型为预先根据所述叶脊网络系统中每个节点的初始性能指标及初始流量场景训练得到的;根据所述网络流量场景,对所述至少一个叶节点进行网络拥塞控制。
16.如权利要求15所述的系统,其特征在于,
所述脊节点,具体用于获取场景控制表,所述场景控制表中记录有场景和拥塞控制信息的映射关系,所述映射关系为所述拥塞控制信息对应至少一个场景;从所述场景控制表中查询所述网络流量场景对应的目标控制信息;将所述目标控制信息发送给所述至少一个叶节点,以便所述至少一个叶节点按照所述目标控制信息对所述至少一个叶节点进行网络拥塞控制。
17.如权利要求15所述的系统,其特征在于,
所述脊节点,用于将所述网络流量场景发送给所述至少一个叶节点;
所述至少一个叶节点,用于接收所述网络流量场景,获取场景控制表,所述场景控制表中记录有场景和拥塞控制信息的映射关系,所述映射关系为所述拥塞控制信息对应至少一个场景;从所述场景控制表中查询所述网络流量场景对应的目标控制信息;按照所述目标控制信息对所述至少一个叶节点进行网络拥塞控制。
18.如权利要求16或17所述的系统,其特征在于,若所述网络性能指标包括所述叶节点在上个周期内传输的显示拥塞通知ECN标记报文数,则所述目标控制信息包括目标ECN标记参数,用于反映ECN标记概率跟随报文队列长度变化的斜率,所述ECN标记概率为对所述叶节点的报文队列中的传输报文进行ECN标记的概率,所述报文队列长度为所述叶节点的报文队列的长度;
所述至少一个叶节点,具体用于根据所述目标ECN标记参数及所述至少一个叶节点中每个叶节点的报文队列的长度,计算得到所述至少一个叶节点对应的目标ECN标记概率;按照所述对应的目标ECN标记概率,对所述至少一个叶节点的报文队列中的传输报文进行ECN标记,以通知与所述叶节点通信的源节点降低报文传输的速率或停止报文传输。
19.如权利要求16或17所述的系统,其特征在于,若所述网络性能指标包括所述叶节点在上个周期内传输的显示拥塞通知ECN标记报文数,则所述目标控制信息包括目标ECN标记概率,用于指示对所述叶节点的报文队列中的传输报文进行ECN标记的概率,
所述至少一个叶节点,具体用于根据所述至少一个叶节点对应的目标ECN标记概率,对应对所述至少一个叶节点的报文队列中的传输报文进行ECN标记,以通知与所述至少一个叶节点通信的源节点降低报文传输的速率或停止报文传输。
20.如权利要求16或17所述的系统,其特征在于,若所述网络性能指标包括所述叶节点在上个周期内传输的基于优先级的流量控制PFC报文数,则所述目标控制信息包括目标PFC反馈参数,用于反映所述叶节点发送的PFC通知消息跟随所述叶节点的报文队列长度的变化情况,
所述至少一个叶节点,具体用于若所述至少一个叶节点的报文队列的长度大于或等于所述目标PFC反馈参数中的第一参数阈值,则所述至少一个叶节点向与所述至少一个叶节点通信的源节点发送第一PFC通知消息,用于通知所述源节点停止所述第一PFC通知消息所指示的优先级报文的传输;或者,若所述至少一个叶节点的报文队列的长度小于或等于所述目标PFC反馈参数中的第二参数阈值,则所述至少一个叶节点向与所述至少一个叶节点通信的源节点发送第二PFC通知消息,用于通知所述源节点继续所述第二PFC通知消息所指示的优先级报文的传输。
21.如权利要求16或17所述的系统,其特征在于,若所述网络性能指标包括所述叶节点在上个周期内传输的基于优先级的流量控制PFC报文数,则所述目标控制信息包括目标PFC反馈参数,用于反映所述叶节点发送的PFC通知消息跟随所述叶节点的报文队列长度的变化情况,
所述至少一个叶节点,具体用于若所述PFC反馈控制消息用于指示不允许进行所述PFC反馈控制信息所指示的优先级报文的传输,则所述至少一个叶节点向与所述至少一个叶节点通信的源节点发送第一PFC通知消息,所述第一PFC通知消息用于通知所述源节点停止进行所述第一PFC通知消息所指示的优先级报文的传输;或者,若所述PFC反馈控制消息用于指示允许进行所述PFC反馈控制信息所指示的优先级报文的传输,则所述至少一个叶节点向与所述至少一个叶节点通信的源节点发送第二PFC通知消息,所述第二PFC通知消息用于通知与所述源节点允许进行所述第二PFC通知消息所指示的优先级报文的传输。
22.如权利要求14-21中任一项所述的系统,其特征在于,所述脊节点用于根据所述至少一个叶节点的网络性能指标,对所述至少一个叶节点和所述脊节点进行网络拥塞控制之前,
所述脊节点,还用于根据所述至少一个叶节点的网络拓扑信息和所述脊节点的网络拓扑信息,确定所述叶脊网络系统中每个节点各自的邻居节点是否均位于所述组合网络拓扑中;在所述每个节点各自的邻居节点均位于所述组合网络拓扑时,确定所述组合网络拓扑为所述叶脊网络系统的全局网络拓扑。
23.一种脊节点,其特征在于,包括:处理器,存储器,通信接口和总线;所述处理器、所述通信接口、所述存储器通过总线相互通信;所述通信接口,用于接收和发送数据;所述存储器,用于存储指令;所述处理器,用于调用所述存储器中的指令,执行如上权利要求1-9中任一项所述的方法。
24.一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1-9中任一项所述的方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210187500.5A CN114553779A (zh) | 2019-09-16 | 2019-09-16 | 网络拥塞控制方法、节点、系统及存储介质 |
CN201910874378.7A CN112511325B (zh) | 2019-09-16 | 2019-09-16 | 网络拥塞控制方法、节点、系统及存储介质 |
PCT/CN2020/115665 WO2021052374A1 (zh) | 2019-09-16 | 2020-09-16 | 网络拥塞控制方法、节点、系统及存储介质 |
EP20865407.9A EP4024763A4 (en) | 2019-09-16 | 2020-09-16 | NETWORK CONGESTION CONTROL METHOD, NODE, SYSTEM AND INFORMATION MEDIA |
US17/696,643 US11888744B2 (en) | 2019-09-16 | 2022-03-16 | Spin-leaf network congestion control method, node, system, and storage medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910874378.7A CN112511325B (zh) | 2019-09-16 | 2019-09-16 | 网络拥塞控制方法、节点、系统及存储介质 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210187500.5A Division CN114553779A (zh) | 2019-09-16 | 2019-09-16 | 网络拥塞控制方法、节点、系统及存储介质 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112511325A true CN112511325A (zh) | 2021-03-16 |
CN112511325B CN112511325B (zh) | 2022-03-11 |
Family
ID=74884321
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910874378.7A Active CN112511325B (zh) | 2019-09-16 | 2019-09-16 | 网络拥塞控制方法、节点、系统及存储介质 |
CN202210187500.5A Pending CN114553779A (zh) | 2019-09-16 | 2019-09-16 | 网络拥塞控制方法、节点、系统及存储介质 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210187500.5A Pending CN114553779A (zh) | 2019-09-16 | 2019-09-16 | 网络拥塞控制方法、节点、系统及存储介质 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11888744B2 (zh) |
EP (1) | EP4024763A4 (zh) |
CN (2) | CN112511325B (zh) |
WO (1) | WO2021052374A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114598825A (zh) * | 2022-02-22 | 2022-06-07 | 中央广播电视总台 | 视音频信号调度方法、装置、计算机设备及可读存储介质 |
CN115002032A (zh) * | 2022-05-13 | 2022-09-02 | 中国工商银行股份有限公司 | 网络流量的控制方法、装置、处理器及电子设备 |
CN116489106A (zh) * | 2023-06-21 | 2023-07-25 | 新华三技术有限公司 | 一种拥塞控制方法、装置、转发芯片及客户端 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113779739B (zh) * | 2021-09-15 | 2023-08-22 | 成都四方伟业软件股份有限公司 | 一种多层拓扑图智能布局方法及装置 |
CN114095364B (zh) * | 2021-11-29 | 2024-02-27 | 新华三大数据技术有限公司 | 网络拥塞控制方法及装置 |
CN114513409B (zh) * | 2022-01-05 | 2023-09-15 | 新华三技术有限公司 | 一种ecn门限配置方法及装置 |
CN116886622B (zh) * | 2023-09-08 | 2023-11-24 | 合肥综合性国家科学中心人工智能研究院(安徽省人工智能实验室) | 网络拥塞控制方法、装置、设备及存储介质 |
CN117395198B (zh) * | 2023-12-11 | 2024-02-20 | 国网浙江省电力有限公司 | 一种电力通信网络拥塞报警方法及系统 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103414650A (zh) * | 2013-07-29 | 2013-11-27 | 上海华为技术有限公司 | 一种避免拥塞的路由方法和装置 |
US20140376373A1 (en) * | 2013-06-24 | 2014-12-25 | Cisco Technology, Inc. | Congestion notification in leaf and spine networks |
CN106911584A (zh) * | 2015-12-23 | 2017-06-30 | 华为技术有限公司 | 一种基于叶-脊拓扑结构的流量负载分担方法、装置及系统 |
CN109510768A (zh) * | 2017-09-14 | 2019-03-22 | 华为技术有限公司 | 链路状态通告lsa发送方法、装置和系统 |
CN110022264A (zh) * | 2018-01-08 | 2019-07-16 | 华为技术有限公司 | 控制网络拥塞的方法、接入设备和计算机可读存储介质 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10070328B2 (en) * | 2015-08-20 | 2018-09-04 | International Business Mahcines Corporation | Predictive network traffic management |
US10374956B1 (en) * | 2015-09-25 | 2019-08-06 | Amazon Technologies, Inc. | Managing a hierarchical network |
US10735268B2 (en) * | 2017-04-21 | 2020-08-04 | System73 Ltd. | Predictive overlay network architecture |
US10326663B2 (en) * | 2017-06-02 | 2019-06-18 | Cisco Technology, Inc. | Fabric-wide bandth management |
CN114615198B (zh) * | 2018-01-12 | 2023-06-06 | 华为技术有限公司 | 内部网关协议洪泛最小化的洪泛链路状态消息方法和节点 |
US10938722B2 (en) * | 2018-10-12 | 2021-03-02 | Dell Products L.P. | In-band telemetry congestion control system |
CN109802879B (zh) * | 2019-01-31 | 2021-05-28 | 新华三技术有限公司 | 一种数据流路由方法及装置 |
-
2019
- 2019-09-16 CN CN201910874378.7A patent/CN112511325B/zh active Active
- 2019-09-16 CN CN202210187500.5A patent/CN114553779A/zh active Pending
-
2020
- 2020-09-16 EP EP20865407.9A patent/EP4024763A4/en active Pending
- 2020-09-16 WO PCT/CN2020/115665 patent/WO2021052374A1/zh unknown
-
2022
- 2022-03-16 US US17/696,643 patent/US11888744B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140376373A1 (en) * | 2013-06-24 | 2014-12-25 | Cisco Technology, Inc. | Congestion notification in leaf and spine networks |
CN103414650A (zh) * | 2013-07-29 | 2013-11-27 | 上海华为技术有限公司 | 一种避免拥塞的路由方法和装置 |
CN106911584A (zh) * | 2015-12-23 | 2017-06-30 | 华为技术有限公司 | 一种基于叶-脊拓扑结构的流量负载分担方法、装置及系统 |
CN109510768A (zh) * | 2017-09-14 | 2019-03-22 | 华为技术有限公司 | 链路状态通告lsa发送方法、装置和系统 |
CN110022264A (zh) * | 2018-01-08 | 2019-07-16 | 华为技术有限公司 | 控制网络拥塞的方法、接入设备和计算机可读存储介质 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114598825A (zh) * | 2022-02-22 | 2022-06-07 | 中央广播电视总台 | 视音频信号调度方法、装置、计算机设备及可读存储介质 |
CN114598825B (zh) * | 2022-02-22 | 2024-05-17 | 中央广播电视总台 | 视音频信号调度方法、装置、计算机设备及可读存储介质 |
CN115002032A (zh) * | 2022-05-13 | 2022-09-02 | 中国工商银行股份有限公司 | 网络流量的控制方法、装置、处理器及电子设备 |
CN116489106A (zh) * | 2023-06-21 | 2023-07-25 | 新华三技术有限公司 | 一种拥塞控制方法、装置、转发芯片及客户端 |
CN116489106B (zh) * | 2023-06-21 | 2023-09-19 | 新华三技术有限公司 | 一种拥塞控制方法、装置、转发芯片及客户端 |
Also Published As
Publication number | Publication date |
---|---|
WO2021052374A1 (zh) | 2021-03-25 |
CN112511325B (zh) | 2022-03-11 |
EP4024763A4 (en) | 2022-10-26 |
US20220210071A1 (en) | 2022-06-30 |
CN114553779A (zh) | 2022-05-27 |
US11888744B2 (en) | 2024-01-30 |
EP4024763A1 (en) | 2022-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112511325B (zh) | 网络拥塞控制方法、节点、系统及存储介质 | |
WO2019033857A1 (zh) | 报文控制方法及网络装置 | |
US11272396B2 (en) | Frame aggregation method, network setting frame sending method, and device | |
JP7451689B2 (ja) | ネットワーク輻輳処理方法、モデル更新方法、および関連装置 | |
WO2018019184A1 (zh) | 网络切片方法和系统 | |
US20220191140A1 (en) | Data transmission control method, apparatus, and storage medium | |
US20210359952A1 (en) | Technologies for protocol-agnostic network packet segmentation | |
CN113328953B (zh) | 网络拥塞调整的方法、装置和存储介质 | |
CN103929377B (zh) | 一种有线网络与无线网络联合调度方法、相关设备及系统 | |
US20230042747A1 (en) | Message Processing Method and Device, Storage Medium, and Electronic Device | |
WO2020192397A1 (zh) | 一种发送设备的调整方法和通信装置 | |
CN108206787A (zh) | 一种拥塞避免方法和装置 | |
Said | Performance evaluation of WSN management system for QoS guarantee | |
WO2024012065A1 (zh) | 数据传输控制方法、装置、计算机可读存储介质、计算机设备及计算机程序产品 | |
WO2014015665A1 (zh) | 数据处理方法、装置和系统 | |
WO2021027047A1 (zh) | 异构链路数据转译和分发方法、系统、设备和存储介质 | |
WO2022152230A1 (zh) | 信息流识别方法、网络芯片及网络设备 | |
CN110351202A (zh) | 5g核心网流量分组方法、装置、设备和计算机存储介质 | |
WO2023280004A1 (zh) | 一种网络配置方法、设备和系统 | |
CN115277504A (zh) | 一种网络流量监控方法、装置和系统 | |
CN116155811A (zh) | 网络拥塞数据处理方法、装置、系统和计算机设备 | |
CN116938723A (zh) | 一种切片带宽的规划方法及装置 | |
WO2024098757A1 (zh) | 网络集群系统、报文传输方法及网络设备 | |
CN106506434B (zh) | 业务数据传输方法及装置 | |
CN116567088A (zh) | 数据传输方法、装置、计算机设备、存储介质和程序产品 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |