[go: up one dir, main page]

CN112488563B - A method and device for determining computing power parameters - Google Patents

A method and device for determining computing power parameters Download PDF

Info

Publication number
CN112488563B
CN112488563B CN202011460037.4A CN202011460037A CN112488563B CN 112488563 B CN112488563 B CN 112488563B CN 202011460037 A CN202011460037 A CN 202011460037A CN 112488563 B CN112488563 B CN 112488563B
Authority
CN
China
Prior art keywords
computing power
parameters
service request
type
parameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011460037.4A
Other languages
Chinese (zh)
Other versions
CN112488563A (en
Inventor
李建飞
曹畅
何涛
李铭轩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China United Network Communications Group Co Ltd
Original Assignee
China United Network Communications Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China United Network Communications Group Co Ltd filed Critical China United Network Communications Group Co Ltd
Priority to CN202011460037.4A priority Critical patent/CN112488563B/en
Publication of CN112488563A publication Critical patent/CN112488563A/en
Application granted granted Critical
Publication of CN112488563B publication Critical patent/CN112488563B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0639Performance analysis of employees; Performance analysis of enterprise or organisation operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Strategic Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Economics (AREA)
  • Educational Administration (AREA)
  • Development Economics (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Mathematical Physics (AREA)
  • General Health & Medical Sciences (AREA)
  • Evolutionary Computation (AREA)
  • Data Mining & Analysis (AREA)
  • Computational Linguistics (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Computing Systems (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Game Theory and Decision Science (AREA)
  • Health & Medical Sciences (AREA)
  • Marketing (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

The application discloses a method and a device for determining a calculation force parameter, which relate to the field of network communication and are used for improving the efficiency of determining the calculation force parameter. The determining method comprises the following steps: acquiring a calculation service request of a user; determining the parameter type of the power calculation service request according to the power calculation service request; determining a computational power parameter based on the computational power service request and the current neural network model; the current neural network model corresponds to the type of parameters of the power calculation service request. Compared with the method for manually determining the calculation force parameters corresponding to the service requests in the prior art, the method for determining the calculation force parameters is low in efficiency and needs a certain professional ability of a user, and the method for determining the calculation force parameters is based on the neural network model, so that the user does not need a certain professional ability, and the efficiency of determining the calculation force parameters can be improved.

Description

一种算力参数的确定方法和装置A method and device for determining computing power parameters

技术领域Technical Field

本申请涉及网络通信领域,尤其涉及一种算力参数的确定方法和装置。The present application relates to the field of network communications, and in particular to a method and device for determining computing power parameters.

背景技术Background Art

近年来,人工智能(artificial intelligence,AI)已经成为当代社会一项通用的技术,也是将来智能社会必不可少的技术。算力,算法和数据是AI的三要素。算力作为AI的基础,直接影响着AI业务的应用与部署。目前已经兴起的AI行业以及潜在的智能业务都对算力提出了较高的要求。In recent years, artificial intelligence (AI) has become a universal technology in contemporary society and an indispensable technology for the future intelligent society. Computing power, algorithms, and data are the three elements of AI. Computing power, as the foundation of AI, directly affects the application and deployment of AI services. The currently emerging AI industry and potential intelligent services have put forward high requirements for computing power.

不同的业务请求对应的算力参数不同,而且业务请求的内容和形式多种多样。因此,在业务请求的描述比较抽象时,需要用户人工分析业务请求的内容,从而确定业务请求对应的算力参数。但是,该人工确定业务请求对应的算力参数的方法,需要用户具备一定的专业能力,而且效率较低。Different business requests correspond to different computing parameters, and the content and form of business requests vary. Therefore, when the description of the business request is relatively abstract, the user needs to manually analyze the content of the business request to determine the computing parameters corresponding to the business request. However, this method of manually determining the computing parameters corresponding to the business request requires the user to have certain professional capabilities and is inefficient.

发明内容Summary of the invention

本申请提供了一种算力参数的确定方法和装置,用于提高确定算力参数的效率。The present application provides a method and device for determining computing power parameters, which are used to improve the efficiency of determining computing power parameters.

为达到上述目的,本申请采用如下技术方案:In order to achieve the above purpose, this application adopts the following technical solutions:

第一方面,本申请提供了一种算力参数的确定方法。该确定方法包括:获取用户的算力业务请求。之后,根据该算力业务请求,确定该算力业务请求的类型,并基于该算力业务请求与该算力业务请求的类型相对应的当前的神经网络模型,确定目标算力参数。In a first aspect, the present application provides a method for determining a computing power parameter. The determination method includes: obtaining a computing power service request of a user. Then, according to the computing power service request, determining the type of the computing power service request, and determining a target computing power parameter based on the computing power service request and a current neural network model corresponding to the type of the computing power service request.

本申请提供的算力参数的确定方法,通过获取用户的算力业务请求,基于算力业务请求与当前的神经网络模型,确定算力参数。相比于现有技术中人工确定业务请求对应的算力参数的方法,需要用户具备一定的专业能力,而且效率较低,本申请提供的算力参数的确定方法是基于神经网络模型,确定算力参数,从而不需要用户具备一定的专业能力,进而能够提高确定算力参数的效率。The method for determining computing power parameters provided in the present application obtains the computing power service request of the user and determines the computing power parameters based on the computing power service request and the current neural network model. Compared with the method of manually determining the computing power parameters corresponding to the service request in the prior art, which requires the user to have certain professional capabilities and is inefficient, the method for determining the computing power parameters provided in the present application is based on the neural network model to determine the computing power parameters, thereby not requiring the user to have certain professional capabilities, and thus being able to improve the efficiency of determining the computing power parameters.

第二方面,本申请提供了一种算力参数的确定装置。该装置包括:获取单元,获取用户的算力业务请求;确定单元,用于根据上述获取单元获取的算力业务请求,确定该算力业务请求的类型;该确定单元,还用于基于上述获取单元获取的算力业务请求与当前的神经网络模型,确定算力参数;该当前的神经网络模型与上述算力业务请求的类型相对应。In the second aspect, the present application provides a device for determining computing power parameters. The device includes: an acquisition unit, which acquires a computing power service request of a user; a determination unit, which is used to determine the type of the computing power service request according to the computing power service request acquired by the acquisition unit; the determination unit is also used to determine the computing power parameters based on the computing power service request acquired by the acquisition unit and the current neural network model; the current neural network model corresponds to the type of the computing power service request.

第三方面,本申请提供一种算力参数的确定设备,该算力参数的确定设备包括存储器和处理器。存储器和处理器耦合。该存储器用于存储计算机程序代码,该计算机程序代码包括计算机指令。当处理器执行计算机指令时,该算力参数的确定设备执行如第一方面及其任一种可能的设计方式所述的算力参数的确定方法。In a third aspect, the present application provides a device for determining a computing power parameter, the device for determining a computing power parameter comprising a memory and a processor. The memory and the processor are coupled. The memory is used to store a computer program code, the computer program code comprising a computer instruction. When the processor executes the computer instruction, the device for determining a computing power parameter performs the method for determining a computing power parameter as described in the first aspect and any possible design thereof.

第四方面,本申请提供了一种计算机可读存储介质,计算机可读存储介质中存储有指令,当所述计算机可读存储介质在算力参数的确定装置上运行时,使得该装置执行如第一方面及其任一种可能的设计方式所述算力参数的确定方法。In a fourth aspect, the present application provides a computer-readable storage medium, which stores instructions. When the computer-readable storage medium is run on a device for determining computing power parameters, the device executes the method for determining computing power parameters as described in the first aspect and any possible design method thereof.

第五方面,本申请提供一种计算机程序产品,该计算机程序产品包括计算机指令,当所述计算机指令在算力参数的确定装置上运行时,使得所述算力参数的确定装置执行如第一方面及其任一种可能的设计方式所述的算力参数的确定方法。In a fifth aspect, the present application provides a computer program product, which includes computer instructions. When the computer instructions are run on a device for determining computing power parameters, the device for determining computing power parameters executes the method for determining computing power parameters as described in the first aspect and any possible design method thereof.

本申请中第二方面到第五方面及其各种实现方式的具体描述,可以参考第一方面及其各种实现方式中的详细描述;并且,第二方面到第五方面及其各种实现方式的有益效果,可以参考第一方面及其各种实现方式中的有益效果分析,此处不再赘述。For the specific description of the second to fifth aspects and their various implementations in this application, reference can be made to the detailed description in the first aspect and its various implementations; and for the beneficial effects of the second to fifth aspects and their various implementations, reference can be made to the beneficial effects analysis in the first aspect and its various implementations, which will not be repeated here.

本申请的这些方面或其他方面在以下的描述中会更加简明易懂。These and other aspects of the present application will become more apparent from the following description.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present application, the drawings required for use in the description of the embodiments will be briefly introduced below. Obviously, the drawings described below are only some embodiments of the present application. For ordinary technicians in this field, other drawings can be obtained based on these drawings without paying any creative work.

图1为本申请提供的算力参数的确定方法的流程示意图一;FIG1 is a flow chart of a method for determining a computing power parameter provided by the present application;

图2为本申请提供的第一神经网络专家系统的结构示意图;FIG2 is a schematic diagram of the structure of a first neural network expert system provided by the present application;

图3为本申请提供的第二神经网络专家系统的结构示意图;FIG3 is a schematic diagram of the structure of a second neural network expert system provided by the present application;

图4为本申请提供的算力参数的确定方法的流程示意图二;FIG4 is a second flow chart of a method for determining a computing power parameter provided by the present application;

图5为本申请实施例提供的算力参数的确定设备的硬件结构示意图;FIG5 is a schematic diagram of the hardware structure of a device for determining computing power parameters provided in an embodiment of the present application;

图6为本申请实施例提供的算力参数的确定装置的结构示意图。FIG6 is a schematic diagram of the structure of a device for determining computing power parameters provided in an embodiment of the present application.

具体实施方式DETAILED DESCRIPTION

下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。The following will be combined with the drawings in the embodiments of the present application to clearly and completely describe the technical solutions in the embodiments of the present application. Obviously, the described embodiments are only part of the embodiments of the present application, not all of the embodiments. Based on the embodiments in the present application, all other embodiments obtained by ordinary technicians in this field without creative work are within the scope of protection of this application.

术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。The terms "first" and "second" are used for descriptive purposes only and should not be understood as indicating or implying relative importance or implicitly indicating the number of the indicated technical features. Thus, a feature defined as "first" or "second" may explicitly or implicitly include one or more of the features. In the description of this application, unless otherwise specified, "plurality" means two or more.

近年来,人工智能(artificial intelligence,AI)已经成为当代社会一项通用的技术,也是将来智能社会必不可少的技术。算力,算法和数据是AI的三要素。算力作为AI的基础,直接影响着AI业务的应用与部署。目前已经兴起的AI行业以及潜在的智能业务都对算力提出了较高的要求。In recent years, artificial intelligence (AI) has become a universal technology in contemporary society and an indispensable technology for the future intelligent society. Computing power, algorithms, and data are the three elements of AI. Computing power, as the foundation of AI, directly affects the application and deployment of AI services. The currently emerging AI industry and potential intelligent services have put forward high requirements for computing power.

不同的业务请求对应的算力参数不同,而且业务请求的内容和形式多种多样。因此,在业务请求的描述比较抽象时,需要用户人工分析业务请求的内容,从而确定业务请求对应的算力参数。但是,该人工确定业务请求对应的算力参数的方法,需要用户具备一定的专业能力,而且效率较低。Different business requests correspond to different computing parameters, and the content and form of business requests vary. Therefore, when the description of the business request is relatively abstract, the user needs to manually analyze the content of the business request to determine the computing parameters corresponding to the business request. However, this method of manually determining the computing parameters corresponding to the business request requires the user to have certain professional capabilities and is inefficient.

针对上述问题,本申请提供了一种算力参数的确定方法,通过获取用户的算力业务请求,基于算力业务请求与当前的神经网络模型,确定算力参数。相比于现有技术中人工确定业务请求对应的算力参数的方法,需要用户具备一定的专业能力,而且效率较低,本申请提供的算力参数的确定方法是基于神经网络模型,确定算力参数,从而不需要用户具备一定的专业能力,进而能够提高确定算力参数的效率。In response to the above problems, the present application provides a method for determining computing power parameters, which obtains the computing power service request of the user and determines the computing power parameters based on the computing power service request and the current neural network model. Compared with the method of manually determining the computing power parameters corresponding to the service request in the prior art, which requires the user to have certain professional capabilities and is inefficient, the method for determining the computing power parameters provided by the present application is based on the neural network model to determine the computing power parameters, thereby eliminating the need for the user to have certain professional capabilities, and thus improving the efficiency of determining the computing power parameters.

本申请实施例提供的算力参数的确定方法的执行主体为算力参数的确定装置(后续简称为:确定装置)。该确定装置可以与算力网络系统集成在一起,也可以独立设置,本申请实施例对此不作限定。The execution subject of the method for determining computing power parameters provided in the embodiment of the present application is a computing power parameter determination device (hereinafter referred to as: determination device). The determination device can be integrated with the computing power network system or can be independently set, and the embodiment of the present application does not limit this.

算力网络系统是一种能够将当前的计算能力状况和网络状况作为路由信息发布到网络,网络将计算任务报文路由到相应的计算节点,实现用户体验最优、计算资源利用率最优、网络效率最优的网络系统。通过算力网络系统内建计算任务动态路由的能力,根据业务需求,基于实时的计算资源性能、网络性能、成本等多维因素,动态、灵活地调度计算任务,从而提高资源利用率,网络利用效率,提高业务用户体验。面向边缘计算场景,可通过算力网络系统实现边缘计算成网,实现边边协作,利用服务的多实例、多副本特性,实现用户的就近接入和服务的负载均衡,以解决其部署复杂、效率低、资源复用率低等问题,助力边缘计算规模部署。The computing power network system is a network system that can publish the current computing power status and network status as routing information to the network. The network routes the computing task message to the corresponding computing node to achieve the best user experience, optimal computing resource utilization, and optimal network efficiency. Through the built-in computing task dynamic routing capability of the computing power network system, computing tasks can be dynamically and flexibly scheduled according to business needs based on real-time computing resource performance, network performance, cost and other multi-dimensional factors, thereby improving resource utilization, network utilization efficiency, and business user experience. For edge computing scenarios, the computing power network system can be used to realize edge computing networking and edge-to-edge collaboration. The multi-instance and multi-copy characteristics of the service can be used to achieve user access nearby and service load balancing to solve problems such as complex deployment, low efficiency, and low resource reuse rate, and help scale deployment of edge computing.

下面对本申请实施例提供的算力参数的确定方法进行描述。The following describes a method for determining computing power parameters provided in an embodiment of the present application.

如图1所示,该算力参数的确定方法包括:As shown in FIG1 , the method for determining the computing power parameter includes:

S101、确定装置获取用户的算力业务请求。S101. A determination device obtains a computing power service request from a user.

可选的,确定装置可以接收用户输入的算力业务请求。Optionally, the determination device may receive a computing power service request input by a user.

可选的,算力业务请求可以包括渲染业务、训练任务、推理业务、视频播放、超算类或其他业务。Optionally, the computing power service request may include rendering service, training task, inference service, video playback, supercomputing or other services.

算力业务请求包括算力参数、用户的业务需求参数或者用户的抽象需求参数。The computing power service request includes computing power parameters, user business requirement parameters, or user abstract requirement parameters.

算力参数为算力网络系统满足算力业务所需要的底层硬件资源所对应的参数。The computing power parameters are the parameters corresponding to the underlying hardware resources required by the computing power network system to meet the computing power business.

可选的,算力参数可以包括中央处理器(central processing unit,CPU)的参数,图形处理器(graphics processing unit,GPU)的参数,存储的参数,网络指标的参数等。Optionally, the computing power parameters may include parameters of a central processing unit (CPU), parameters of a graphics processing unit (GPU), storage parameters, parameters of network indicators, etc.

用户的业务需求参数为用户对算力业务的具体需求。The user's business demand parameters are the user's specific demands for computing power services.

示例性的,用户的业务需求参数可以包括用户对业务的需求参数、对模型镜像的需求参数、对算法的需求参数、对时间的需求参数、对运行次数的需求参数。Exemplarily, the user's business requirement parameters may include the user's business requirement parameters, model image requirement parameters, algorithm requirement parameters, time requirement parameters, and running times requirement parameters.

用户的抽象需求参数为用户对算力业务请求的抽象描述。The user's abstract demand parameter is an abstract description of the user's request for computing power service.

示例性的,用户的抽象需求参数为训练一个人脸识别的神经网络模型,或,用户的抽象需求参数为对一部电影做后续渲染。Exemplarily, the user's abstract requirement parameter is to train a neural network model for face recognition, or the user's abstract requirement parameter is to perform subsequent rendering on a movie.

S102、确定装置根据算力业务请求,确定算力业务请求的类型。S102. The determining device determines the type of the computing power service request according to the computing power service request.

算力业务请求的类型包括算力参数类型、业务需求类型或抽象需求类型。The types of computing power service requests include computing power parameter types, service requirement types, or abstract requirement types.

可选的,确定装置可以根据算力业务请求中所包含的关键字,确定算力业务请求的类型。Optionally, the determining device may determine the type of the computing power service request based on keywords included in the computing power service request.

关键字包括算力参数关键字、业务需求关键字以及抽象需求关键字。Keywords include computing power parameter keywords, business requirement keywords, and abstract requirement keywords.

可选的,算力参数关键字包括CPU、GPU、张量运算、存储、编解码、网络指标。Optional, computing power parameter keywords include CPU, GPU, tensor operation, storage, codec, and network indicators.

例如,如表1所示,在算力业务请求中包含关键字CPU时,确定CPU的参数10每秒万亿次操作(tera operations per second,TOPS)为算力参数;在算力业务请求中包含关键字GPU时,确定GPU的参数12(floating point operations per second,TFLOPs)为算力参数;在算力业务请求中包含关键字张量运算时,确定张量运算嵌入式神经网络处理器(neural-networ k processing unit,NPU)/张量处理单元(tensor processing unit,TPU)的参数8TFLOPS为算力参数;在算力业务请求中包含关键字存储时,确定存储的参数10千兆为算力参数;在算力业务请求中包含关键字网络指标时,确定网络指标的参数时延小于50毫秒(millisecond,ms)为算力参数;在算力业务请求中包含关键字编解码时,确定编解码为满足标准为算力参数。For example, as shown in Table 1, when the computing power service request includes the keyword CPU, the parameter 10 tera operations per second (TOPS) of the CPU is determined as the computing power parameter; when the computing power service request includes the keyword GPU, the parameter 12 (floating point operations per second, TFLOPs) of the GPU is determined as the computing power parameter; when the computing power service request includes the keyword tensor operation, the parameter 8 TFLOPS of the tensor operation embedded neural network processor (neural-network processing unit, NPU)/tensor processing unit (tensor processing unit, TPU) is determined as the computing power parameter; when the computing power service request includes the keyword storage, the parameter 10 gigabytes of storage is determined as the computing power parameter; when the computing power service request includes the keyword network indicator, the parameter delay of the network indicator is less than 50 milliseconds (millisecond, ms) is determined as the computing power parameter; when the computing power service request includes the keyword codec, the codec is determined to meet the standard as the computing power parameter.

表1Table 1

Figure BDA0002831180590000051
Figure BDA0002831180590000051

在算力业务请求中包括的算力参数的个数大于或等于第一预设阈值,确定算力业务请求的类型为算力参数类型。If the number of computing power parameters included in the computing power service request is greater than or equal to a first preset threshold, it is determined that the type of the computing power service request is a computing power parameter type.

第一预设阈值可以根据实际情况确定,本申请对此并不进行限定。The first preset threshold can be determined according to actual conditions, and this application does not limit this.

进一步的,若算力业务请求中的关键算力参数的数量大于或等于第二预设阈值,则确定算力业务请求的类型为算力参数类型。Further, if the number of key computing power parameters in the computing power service request is greater than or equal to the second preset threshold, the type of the computing power service request is determined to be a computing power parameter type.

第二预设阈值可以根据实际情况确定,本申请对此并不进行限定。The second preset threshold can be determined according to actual conditions, and this application does not limit this.

关键算力参数为算力参数中满足算力业务所必须的算力参数。Key computing power parameters are the computing power parameters that are necessary to meet the computing power business.

示例性的,关键算力参数可以为CPU的参数,GPU的参数,存储的参数,网络指标的参数。Exemplarily, the key computing power parameters may be CPU parameters, GPU parameters, storage parameters, and network indicator parameters.

通过关键算力参数来判断算力业务请求的类型为算力参数类型,可以提高确定算力业务请求的类型为算力参数类型的准确性。By determining that the type of the computing power service request is a computing power parameter type through key computing power parameters, the accuracy of determining that the type of the computing power service request is a computing power parameter type can be improved.

可选的,业务需求关键字包括业务、模型镜像、算法、时间、运行次数以及数据量。Optionally, business requirement keywords include business, model image, algorithm, time, number of runs, and data volume.

例如,如表2所示,在确定算力业务请求中包含关键字业务时,确定对业务的需求参数视频渲染或模型训练为业务需求参数;在确定算力业务请求中包含关键字模型镜像时,确定对模型镜像的需求参数光线追踪与全域光渲染KeyShot或残差网络ResNet为业务需求参数;在确定算力业务请求中包含关键字算法时,确定对算法的需求参数分辨率1080逐行扫描(progressiv e scanning,p)或152层网络和6千个参数为业务需求参数;在确定算力业务请求中包含关键字时间时,确定对时间的需求参数一个月或一周为业务需求参数;在确定算力业务请求中包含关键字运行次数时,确定对运行次数的需求参数一次或十万次为业务需求参数;在确定算力业务请求中包含关键字数据量时,确定对数据量的需求参数10G视频或10G视频为业务需求参数。For example, as shown in Table 2, when it is determined that the computing power service request includes the keyword business, the demand parameter for the service, video rendering or model training, is determined as the business demand parameter; when it is determined that the computing power service request includes the keyword model image, the demand parameter for the model image, ray tracing and global light rendering KeyShot or residual network ResNet, is determined as the business demand parameter; when it is determined that the computing power service request includes the keyword algorithm, the demand parameter for the algorithm, resolution 1080 progressive scanning (progressive scanning, p) or 152-layer network and 6,000 parameters, are determined as the business demand parameters; when it is determined that the computing power service request includes the keyword time, the demand parameter for time, one month or one week, is determined as the business demand parameter; when it is determined that the computing power service request includes the keyword number of runs, the demand parameter for the number of runs, one time or one hundred thousand times, is determined as the business demand parameter; when it is determined that the computing power service request includes the keyword data volume, the demand parameter for the data volume, 10G video or 10G video, is determined as the business demand parameter.

表2Table 2

Figure BDA0002831180590000052
Figure BDA0002831180590000052

Figure BDA0002831180590000061
Figure BDA0002831180590000061

在确定算力业务请求中包括的业务需求参数的个数大于或等于第三预设阈值时,确定算力业务请求的类型为业务需求类型。When it is determined that the number of service requirement parameters included in the computing power service request is greater than or equal to the third preset threshold, the type of the computing power service request is determined to be a service requirement type.

第三预设阈值可以根据实际情况确定,本申请对此并不进行限定。The third preset threshold can be determined according to actual conditions, and this application does not limit this.

进一步的,若算力业务请求中的关键业务需求参数的数量大于或等于第四预设阈值,则确定算力业务请求的类型为业务需求参数类型。Further, if the number of key business requirement parameters in the computing power business request is greater than or equal to a fourth preset threshold, the type of the computing power business request is determined to be a business requirement parameter type.

第四预设阈值可以根据实际情况确定,本申请对此并不进行限定。The fourth preset threshold can be determined based on actual conditions, and this application does not limit this.

关键业务需求参数为算力参数中满足算力业务所必须的业务需求参数。Key business requirement parameters are the business requirement parameters in the computing power parameters that are necessary to meet the computing power business.

关键业务需求参数可以为对业务的需求参数、对模型镜像的需求参数、对算法的需求参数、对时间的需求、对运行次数的需求。The key business requirement parameters may be requirement parameters for business, requirement parameters for model images, requirement parameters for algorithms, requirement for time, and requirement for the number of runs.

通过关键业务需求参数来判断算力业务请求的类型为业务需求参数类型,可以提高确定算力业务请求的类型为业务需求参数类型的准确性。By determining that the type of the computing power business request is a business requirement parameter type through key business requirement parameters, the accuracy of determining that the type of the computing power business request is a business requirement parameter type can be improved.

在确定算力业务请求中所包括的算力参数的个数小于第一预设阈值,业务需求参数的个数小于第二预设阈值,且包括抽象需求参数时,确定算力业务请求的类型为抽象需求类型。When it is determined that the number of computing power parameters included in the computing power service request is less than the first preset threshold, the number of service requirement parameters is less than the second preset threshold, and abstract requirement parameters are included, the type of the computing power service request is determined to be an abstract requirement type.

抽象需求参数即为用户对算力业务请求的抽象描述。The abstract requirement parameter is an abstract description of the user's request for computing power service.

示例性的,用户的算力业务请求为训练一个人脸识别的神经网络模型,算力业务请求中不包括算力参数,也不包括业务需求参数,而且训练一个人脸识别的神经网络模型为抽象需求参数,则算力业务请求的类型为抽象需求类型。For example, the user's computing power service request is to train a neural network model for face recognition. The computing power service request does not include computing power parameters or service requirement parameters, and training a neural network model for face recognition is an abstract requirement parameter. In this case, the type of the computing power service request is an abstract requirement type.

需要说明的是,在算力业务请求中包括算力参数、业务需求参数以及抽象需求参数,且算力参数的个数大于或等于第一预设阈值、业务需求参数的个数大于或等于第三预设阈值时,算力业务请求的类型可以为算力参数类型,也可以为业务需求类型,还可以为抽象需求类型。It should be noted that when the computing power service request includes computing power parameters, business demand parameters and abstract demand parameters, and the number of computing power parameters is greater than or equal to the first preset threshold and the number of business demand parameters is greater than or equal to the third preset threshold, the type of the computing power service request can be a computing power parameter type, a business demand type, or an abstract demand type.

可选的,确定装置在获取用户的算力业务请求的类型为算力参数类型时,确定装置确定算力业务请求中所包含的算力参数为目标算力参数。在算力参数的类型为业务需求类型或抽象需求类型的情况下,继续执行S103。Optionally, when the type of the computing power service request of the user is a computing power parameter type, the determining device determines the computing power parameter included in the computing power service request as the target computing power parameter. When the computing power parameter type is a business requirement type or an abstract requirement type, continue to execute S103.

S103、确定装置基于算力业务请求与当前的神经网络模型,确定算力参数。S103. The determination device determines the computing power parameters based on the computing power service request and the current neural network model.

神经网络模型包括第一神经网络模型和第二神经网络模型。The neural network model includes a first neural network model and a second neural network model.

第一神经网络模型与算力业务请求的类型为业务需求类型相对应。即在算力业务请求的类型为业务需求类型时,当前的神经网络模型为第一神经网络模型。The first neural network model corresponds to the type of computing power service request being a business demand type. That is, when the type of computing power service request is a business demand type, the current neural network model is the first neural network model.

第一神经网络模型用于根据业务需求参数预测算力参数。The first neural network model is used to predict computing power parameters based on business demand parameters.

可选的,第一神经网络模型可以为第一神经网络专家系统中的神经网络模型。Optionally, the first neural network model may be a neural network model in a first neural network expert system.

如图2所示,第一神经网络专家系统20包括第一神经网络模型21、第一规则库22以及第一输出解释模块23。As shown in FIG. 2 , the first neural network expert system 20 includes a first neural network model 21 , a first rule base 22 and a first output interpretation module 23 .

第一神经网络专家系统20的输入为算力业务请求中的业务需求参数,第一神经网络专家系统20的输出为算力参数。The input of the first neural network expert system 20 is the business demand parameter in the computing power business request, and the output of the first neural network expert system 20 is the computing power parameter.

第一规则库22用于保存业务需求参数与算力参数对应的专家知识,并对第一神经网络模型21进行训练。The first rule base 22 is used to store expert knowledge corresponding to business demand parameters and computing power parameters, and to train the first neural network model 21.

可选的,第一规则库22可以保存从实际经验中获取的算力参数与业务需求参数对应的专家知识。专家知识可以是来自实际运行的大量实例集,也可以是从领域中的专家或文献资料中获取的大量规则,或者是二者的混合。Optionally, the first rule base 22 may store expert knowledge corresponding to computing power parameters and business demand parameters obtained from actual experience. Expert knowledge may be a large number of instance sets from actual operation, or a large number of rules obtained from experts or literature in the field, or a mixture of the two.

示例性的,如表3所示,第一规则库22包括业务需求参数为推荐经典AlexNet模型配置、80w节点、6096w参数、卷积层参数3.8%、全连接层参数96.2%、推荐存储为10G、推荐完成时间为1周、推荐网络配置为非实时,对应的算力参数为逻辑运算为10TOPS、矩阵运行为12TFLOPS、张量运算为8TFLOPS、存储为10G、网络为非实时;业务需求参数为8路视频、清晰度为1080p、存储为2T、网络为延迟<200ms、上行带宽为xxMB、下行带宽为xxMb、编解码能力为xxx标准,对应的算力参数为逻辑运算为3TO PS、矩阵运行为5TFLOPS、存储为25T、网络为延迟<200ms、上行带宽为xxMB、下行带宽为xxMb、编解码为2个解码引擎和4个编码引擎。Exemplarily, as shown in Table 3, the first rule base 22 includes business demand parameters such as recommended classic AlexNet model configuration, 80w nodes, 6096w parameters, convolution layer parameters 3.8%, fully connected layer parameters 96.2%, recommended storage of 10G, recommended completion time of 1 week, and recommended network configuration as non-real-time, and the corresponding computing power parameters are logical operation of 10TOPS, matrix operation of 12TFLOPS, tensor operation of 8TFLOPS, storage of 10G, and network as non-real-time; the business demand parameters are 8-channel video, clarity of 1080p, storage of 2T, network delay of <200ms, upstream bandwidth of xxMB, downstream bandwidth of xxMb, and encoding and decoding capability of xxx standard, and the corresponding computing power parameters are logical operation of 3TO PS, matrix operation of 5TFLOPS, storage of 25T, network delay of <200ms, upstream bandwidth of xxMB, downstream bandwidth of xxMb, and encoding and decoding of 2 decoding engines and 4 encoding engines.

表3Table 3

Figure BDA0002831180590000071
Figure BDA0002831180590000071

Figure BDA0002831180590000081
Figure BDA0002831180590000081

第一输出解释模块23用于对第一神经网络模型21得到预测的结果进行翻译,得到算力参数。The first output interpretation module 23 is used to translate the predicted result obtained by the first neural network model 21 to obtain the computing power parameter.

示例性的,在确定算力业务请求的类型为业务需求类型时,将算力业务请求中的业务需求参数代入到第一神经网络模型中,得到第一预测结果,通过第一输出解释机制对第一预测结果进行解释,得到算力参数。Exemplarily, when it is determined that the type of computing power business request is a business demand type, the business demand parameters in the computing power business request are substituted into the first neural network model to obtain a first prediction result, and the first prediction result is interpreted through a first output interpretation mechanism to obtain a computing power parameter.

第二神经网络模型与算力业务请求的类型为抽象需求类型相对应。即在算力业务请求的类型为抽象需求类型时,当前的神经网络模型为第二神经网络模型。The second neural network model corresponds to the type of computing power service request being an abstract demand type. That is, when the type of computing power service request is an abstract demand type, the current neural network model is the second neural network model.

第二神经网络模型用于根据抽象需求参数预测算力参数。The second neural network model is used to predict computing power parameters based on abstract demand parameters.

可选的,第二神经网络模型可以为第二神经网络专家系统中的神经网络模型。Optionally, the second neural network model may be a neural network model in a second neural network expert system.

如图3所示,第二神经网络专家系统30包括第二神经网络模型31、第二规则库32以及第二输出解释模块33。As shown in FIG. 3 , the second neural network expert system 30 includes a second neural network model 31 , a second rule base 32 and a second output interpretation module 33 .

第二神经网络专家系统30的输入为算力业务请求中的抽象需求参数,第二神经网络专家系统30的输出为算力参数。The input of the second neural network expert system 30 is the abstract demand parameter in the computing power service request, and the output of the second neural network expert system 30 is the computing power parameter.

第二规则库32用于保存抽象需求参数与算力参数对应的专家知识,并对第二神经网络模型31进行训练。The second rule base 32 is used to store expert knowledge corresponding to abstract demand parameters and computing power parameters, and to train the second neural network model 31.

可选的,第二规则库32可以保存从实际经验中获取的算力参数与业务需求参数对应的专家知识。专家知识可以是来自实际运行的大量实例集,也可以是从领域中的专家或文献资料中获取的大量规则,或者是二者的混合。Optionally, the second rule base 32 can store expert knowledge corresponding to computing power parameters and business demand parameters obtained from actual experience. Expert knowledge can be a large number of instance sets from actual operation, or a large number of rules obtained from experts or literature in the field, or a mixture of the two.

示例性的,如表4所示,第二规则库32包括抽象需求参数为训练一个图像识别的网络模型、训练数据8G以及模型不确定,对应的算力参数为逻辑运算为10TOPS、矩阵运行为12TFLOPS、张量运算为8TFLOPS、存储为10G、网络为非实时;抽象需求参数为云增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)游戏的部署,游戏全部内容200G,对应的算力参数为,对应的算力参数为逻辑运算为3TOPS、矩阵运行为5TFLOPS、存储为25T、网络为延迟<200ms、上行带宽为xxMB、下行带宽为xxMb、编解码为2个解码引擎和4个编码引擎。Exemplarily, as shown in Table 4, the second rule base 32 includes abstract requirement parameters for training a network model for image recognition, 8G of training data, and model uncertainty, and the corresponding computing power parameters are 10TOPS for logical operation, 12TFLOPS for matrix operation, 8TFLOPS for tensor operation, 10G for storage, and non-real-time network; the abstract requirement parameters are the deployment of cloud augmented reality (AR)/virtual reality (VR) games, 200G of all game content, and the corresponding computing power parameters are 3TOPS for logical operation, 5TFLOPS for matrix operation, 25T for storage, network with delay <200ms, xxMB for uplink bandwidth, xxMb for downlink bandwidth, and 2 decoding engines and 4 encoding engines for encoding and decoding.

表4Table 4

Figure BDA0002831180590000091
Figure BDA0002831180590000091

Figure BDA0002831180590000101
Figure BDA0002831180590000101

第二输出解释模块33用于将第二神经网络模型31得到预测的结果进行翻译,得到算力参数。The second output interpretation module 33 is used to translate the predicted results obtained by the second neural network model 31 to obtain computing power parameters.

示例性的,在确定算力业务请求的类型为抽象需求类型时,将算力业务请求中的抽象需求参数代入到第二神经网络模型中,得到第二预测结果,通过第二输出解释机制对第二预测结果进行解释,得到算力参数。Exemplarily, when it is determined that the type of computing power service request is an abstract demand type, the abstract demand parameters in the computing power service request are substituted into the second neural network model to obtain a second prediction result, and the second prediction result is interpreted through a second output interpretation mechanism to obtain the computing power parameters.

可选的,结合图1,如图4所示,在S103之后,该算力参数的确定方法还包括:Optionally, in combination with FIG1 , as shown in FIG4 , after S103 , the method for determining the computing power parameter further includes:

S104、确定装置确定算力参数与目标算力参数的差值小于或等于预设阈值。S104: The determining device determines that the difference between the computing power parameter and the target computing power parameter is less than or equal to a preset threshold.

目标算力参数为满足算力业务请求的算力参数。The target computing power parameters are the computing power parameters that meet the computing power service request.

可选的,在确定装置确定出算力参数之后,可以将算力参数与目标算力参数进行对比,在算力参数与目标算力参数的差值小于或等于预设阈值时,确定算力参数满足用户的算力业务请求。Optionally, after the determining device determines the computing power parameter, the computing power parameter can be compared with the target computing power parameter. When the difference between the computing power parameter and the target computing power parameter is less than or equal to a preset threshold, it is determined that the computing power parameter meets the user's computing power service request.

S105、基于算力参数和算力业务请求,优化当前的神经网络模型。S105. Optimize the current neural network model based on the computing power parameters and computing power business request.

一种可实现的方式,基于算力参数和算力业务请求中的业务需求参数,优化当前的神经网络模型。A feasible way is to optimize the current neural network model based on the computing power parameters and the business demand parameters in the computing power business request.

示例性的,在确定算力业务请求的类型为业务需求类型时,基于算力业务请求中的业务需求参数与第一神经网络模型,确定算力参数,且算力参数与目标算力参数的差值小于或等于预设阈值的时,根据确定出的算力参数以及算力业务请求中的业务需求参数,更新第一规则库。Exemplarily, when it is determined that the type of computing power business request is a business demand type, the computing power parameters are determined based on the business demand parameters in the computing power business request and the first neural network model, and when the difference between the computing power parameters and the target computing power parameters is less than or equal to a preset threshold, the first rule base is updated based on the determined computing power parameters and the business demand parameters in the computing power business request.

利用更新后的第一规则库,训练第一神经网络模型,得到训练后的第一神经网络模型。The first neural network model is trained using the updated first rule base to obtain a trained first neural network model.

例如,如表5所示,更新后的第一规则库包括用户的抽象需求参数为训练一个图像识别的网络模型训练数据8G,模型不确定,业务需求参数为推荐经典AlexNet模型配置、80w节点、6096w参数、卷积层参数3.8%、全连接层参数96.2%、推荐存储为10G、推荐完成时间为1周、推荐网络配置为非实时,对应的算力参数为逻辑运算为10TOPS、矩阵运行为12TFLOPS、张量运算为8TFLOPS、存储为10G、网络为非实时,且算力参数满足用户的需求。For example, as shown in Table 5, the updated first rule base includes the user's abstract requirement parameters of 8G training data for training an image recognition network model, uncertain model, and business requirement parameters of recommended classic AlexNet model configuration, 80w nodes, 6096w parameters, convolution layer parameters 3.8%, fully connected layer parameters 96.2%, recommended storage of 10G, recommended completion time of 1 week, and recommended network configuration as non-real-time. The corresponding computing power parameters are 10TOPS for logical operations, 12TFLOPS for matrix operations, 8TFLOPS for tensor operations, 10G for storage, and non-real-time network, and the computing power parameters meet the user's needs.

表5Table 5

Figure BDA0002831180590000111
Figure BDA0002831180590000111

在下一次确定装置基于算力业务请求中的业务需求参数与当前的神经网络模型,确定算力参数时,训练后的第一神经网络模型即为当前的神经网络模型。The next time the determination device determines the computing power parameters based on the business demand parameters in the computing power business request and the current neural network model, the first trained neural network model is the current neural network model.

另一种可实现的方式,基于算力参数和算力业务请求中的抽象需求参数,优化当前的神经网络模型。Another feasible approach is to optimize the current neural network model based on the computing power parameters and the abstract demand parameters in the computing power business request.

示例性的,在确定算力业务请求的类型为抽象需求类型时,基于算力业务请求中的抽象需求参数与第二神经网络模型,确定算力参数。Exemplarily, when it is determined that the type of the computing power service request is an abstract demand type, the computing power parameters are determined based on the abstract demand parameters in the computing power service request and the second neural network model.

算力参数与目标算力参数的差值小于或等于预设阈值。则根据确定出的算力参数以及算力业务请求中的抽象需求参数,更新第二规则库。If the difference between the computing power parameter and the target computing power parameter is less than or equal to the preset threshold, the second rule base is updated according to the determined computing power parameter and the abstract demand parameter in the computing power service request.

利用更新后的第二规则库,训练第二神经网络模型,得到训练后的第二神经网络模型。The second neural network model is trained using the updated second rule base to obtain a trained second neural network model.

在下一次确定装置基于算力业务请求中的抽象需求参数与当前的神经网络模型,确定算力参数时,训练后的第二神经网络模型即为当前的神经网络模型。The next time the determination device determines the computing power parameters based on the abstract demand parameters in the computing power service request and the current neural network model, the trained second neural network model is the current neural network model.

本申请提供的算力参数的确定方法,通过获取用户的算力业务请求,基于算力业务请求与当前的神经网络模型,确定算力参数。相比于现有技术中人工确定业务请求对应的算力参数的方法,需要用户具备一定的专业能力,而且效率较低,本申请提供的算力参数的确定方法是基于神经网络专家系统,确定算力参数,从而不需要用户具备一定的专业能力,进而能够提高确定算力参数的效率。The method for determining computing power parameters provided in the present application obtains the computing power service request of the user, and determines the computing power parameters based on the computing power service request and the current neural network model. Compared with the method of manually determining the computing power parameters corresponding to the service request in the prior art, which requires the user to have certain professional capabilities and has low efficiency, the method for determining the computing power parameters provided in the present application is based on a neural network expert system to determine the computing power parameters, so that the user does not need to have certain professional capabilities, thereby improving the efficiency of determining the computing power parameters.

上述主要从方法的角度对本申请实施例提供的方案进行了介绍。为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。The above mainly introduces the solution provided by the embodiment of the present application from the perspective of the method. In order to achieve the above functions, it includes hardware structures and/or software modules corresponding to the execution of each function. Those skilled in the art should easily realize that, in combination with the units and algorithm steps of each example described in the embodiments disclosed herein, the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is executed in the form of hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Professional and technical personnel can use different methods to implement the described functions for each specific application, but such implementation should not be considered to exceed the scope of the present application.

如图5所示,本申请实施例提供一种算力参数的确定设备500。该算力参数的确定设备可以包括至少一个处理器501,通信线路502,存储器503,通信接口504。As shown in FIG5 , an embodiment of the present application provides a computing power parameter determination device 500. The computing power parameter determination device may include at least one processor 501, a communication line 502, a memory 503, and a communication interface 504.

具体的,处理器501,用于执行存储器503中存储的计算机执行指令,从而实现终端的步骤或动作。Specifically, the processor 501 is used to execute the computer-executable instructions stored in the memory 503, so as to implement the steps or actions of the terminal.

处理器501可以是一个芯片。例如,可以是现场可编程门阵列(fieldprogrammable gate array,FPGA),可以是专用集成芯片(application spe cificintegrated circuit,ASIC),还可以是系统芯片(system on chip,So C),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital si gnal processor,DSP),还可以是微控制器(microcontroller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。The processor 501 may be a chip. For example, it may be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), a system on chip (SoC), a central processor unit (CPU), a network processor (NP), a digital signal processor (DSP), a microcontroller unit (MCU), a programmable logic device (PLD), or other integrated chips.

通信线路502,用于在上述处理器501与存储器503之间传输信息。The communication line 502 is used to transmit information between the processor 501 and the memory 503 .

存储器503,用于存储执行计算机执行指令,并由处理器501来控制执行。The memory 503 is used to store and execute computer-executable instructions, and the execution is controlled by the processor 501 .

存储器503可以是独立存在,通过通信线路502与处理器相连接。存储器503可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmableROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(e lectrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(randomaccess memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(st atic RAM,SRAM)、动态随机存取存储器(dynamicRAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)。应注意,本文描述的系统和设备的存储器旨在包括但不限于这些和任意其它适合类型的存储器。The memory 503 may be independent and connected to the processor via the communication line 502. The memory 503 may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memories. Among them, the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), an electrically erasable programmable read-only memory (EEPROM), or a flash memory. The volatile memory may be a random access memory (RAM), which is used as an external cache. By way of example but not limitation, many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (SDRAM), double data rate synchronous dynamic random access memory (DDR SDRAM), and enhanced synchronous dynamic random access memory (ESDRAM). It should be noted that memory of the systems and devices described herein is intended to comprise, without being limited to, these and any other suitable types of memory.

通信接口504,用于与其他设备或通信网络通信。其中,通信网络可以是以太网,无线接入网(radio access network,RAN),或无线局域网(w ireless local areanetworks,WLAN)等。The communication interface 504 is used to communicate with other devices or communication networks, where the communication network can be Ethernet, a radio access network (RAN), or a wireless local area network (WLAN).

需要指出的是,图5中示出的结构并不构成对该算力参数的确定设备的限定,除图5所示部件之外,该算力参数的确定设备可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。It should be pointed out that the structure shown in FIG5 does not constitute a limitation on the device for determining the computing power parameters. In addition to the components shown in FIG5, the device for determining the computing power parameters may include more or fewer components than shown in the figure, or a combination of certain components, or a different arrangement of components.

如图6所示,本申请实施例提供一种算力参数的确定装置60。该算力参数的确定装置可以包括获取单元61、确定单元62。As shown in FIG6 , an embodiment of the present application provides a computing power parameter determination device 60. The computing power parameter determination device may include an acquisition unit 61 and a determination unit 62.

获取单元61,用于获取用户的算力业务请求。例如,结合图1,获取单元61可以用于执行S101。The acquisition unit 61 is used to acquire the computing power service request of the user. For example, in conjunction with FIG1 , the acquisition unit 61 can be used to execute S101.

确定单元62,用于确定获取单元61获取的算力业务请求的类型。例如,结合图1,确定单元62可以用于执行S102。The determining unit 62 is configured to determine the type of the computing power service request obtained by the obtaining unit 61. For example, in conjunction with FIG1 , the determining unit 62 may be configured to execute S102.

确定单元62,还用于基于获取单元61获取的算力业务请求与当前的神经网络模型,确定算力参数。例如,结合图1,确定单元62可以用于执行S103。The determining unit 62 is further configured to determine the computing power parameter based on the computing power service request and the current neural network model acquired by the acquiring unit 61. For example, in conjunction with FIG1 , the determining unit 62 may be configured to execute S103.

应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。It should be understood that in the various embodiments of the present application, the size of the serial numbers of the above-mentioned processes does not mean the order of execution. The execution order of each process should be determined by its function and internal logic, and should not constitute any limitation on the implementation process of the embodiments of the present application.

在实际实现时,获取单元61以及确定单元62,可以由图5所示的处理器501调用存储器503中的程序代码来实现。其具体的执行过程可参考图1所示的算力参数的确定方法部分的描述,这里不再赘述。In actual implementation, the acquisition unit 61 and the determination unit 62 can be implemented by the processor 501 shown in Figure 5 calling the program code in the memory 503. The specific execution process can refer to the description of the determination method of the computing power parameter shown in Figure 1, which will not be repeated here.

本申请另一实施例还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机指令,当计算机指令在算力参数的确定装置上运行时,使得在算力参数的确定装置执行上述方法实施例所示的方法流程中在算力参数的确定装置执行的各个步骤。Another embodiment of the present application further provides a computer-readable storage medium, which stores computer instructions. When the computer instructions are executed on a device for determining computing power parameters, the device for determining computing power parameters executes each step executed by the device for determining computing power parameters in the method flow shown in the above method embodiment.

在本申请另一实施例中,还提供一种计算机程序产品,该计算机程序产品包括指令,当指令在算力参数的确定装置上运行时,使得在算力参数的确定装置执行上述方法实施例所示的方法流程中在算力参数的确定装置执行的各个步骤。In another embodiment of the present application, a computer program product is also provided. The computer program product includes instructions. When the instructions are executed on a device for determining computing power parameters, the device for determining computing power parameters executes each step executed by the device for determining computing power parameters in the method flow shown in the above method embodiment.

本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。Those of ordinary skill in the art will appreciate that the units and algorithm steps of each example described in conjunction with the embodiments disclosed herein can be implemented in electronic hardware, or a combination of computer software and electronic hardware. Whether these functions are performed in hardware or software depends on the specific application and design constraints of the technical solution. Professional and technical personnel can use different methods to implement the described functions for each specific application, but such implementation should not be considered to be beyond the scope of this application.

所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、设备和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。Those skilled in the art can clearly understand that, for the convenience and brevity of description, the specific working processes of the systems, devices and units described above can refer to the corresponding processes in the aforementioned method embodiments and will not be repeated here.

在本申请所提供的几个实施例中,应该理解到,所揭露的系统、设备和方法,可以通过其它的方式实现。例如,以上所描述的设备实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,设备或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。In the several embodiments provided in the present application, it should be understood that the disclosed systems, devices and methods can be implemented in other ways. For example, the device embodiments described above are only schematic, for example, the division of units is only a logical function division, and there may be other division methods in actual implementation, such as multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed. Another point is that the mutual coupling or direct coupling or communication connection shown or discussed can be through some interfaces, indirect coupling or communication connection of devices or units, which can be electrical, mechanical or other forms.

作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。The units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.

另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。In addition, each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.

以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。The above are only specific implementations of the present application, but the protection scope of the present application is not limited thereto. Any changes or substitutions that can be easily thought of by a person skilled in the art within the technical scope disclosed in the present application should be included in the protection scope of the present application. Therefore, the protection scope of the present application should be based on the protection scope of the claims.

Claims (10)

1.一种算力参数的确定方法,其特征在于,所述确定方法包括:1. A method for determining a computing power parameter, characterized in that the method for determining comprises: 获取用户的算力业务请求;Obtain the user's computing power service request; 根据所述算力业务请求,确定所述算力业务请求的类型;所述算力业务请求包括以下至少之一:算力参数、关键算力参数、业务需求参数、关键业务需求参数、抽象需求参数;所述算力业务请求的类型包括以下至少之一:算力参数类型、业务需求类型、以及抽象需求类型;所述关键算力参数为满足所述算力业务的算力参数;所述关键业务需求参数为满足所述算力业务的业务需求参数;According to the computing power service request, determine the type of the computing power service request; the computing power service request includes at least one of the following: computing power parameters, key computing power parameters, business demand parameters, key business demand parameters, abstract requirements parameter; the type of computing power service request includes at least one of the following: computing power parameter type, business requirement type, and abstract requirement type; the key computing power parameter is a computing power parameter satisfying the computing power business; the The key business demand parameters are business demand parameters that meet the computing power business; 其中,在所述算力参数的数量大于或等于第一预设阈值;或者所述关键算力参数的数量大于或等于第二预设阈值的情况下,确定所述算力业务请求的类型为所述算力参数类型;Wherein, when the number of the computing power parameters is greater than or equal to the first preset threshold; or the number of the key computing power parameters is greater than or equal to the second preset threshold, it is determined that the type of the computing power service request is The type of computing power parameter; 在所述业务需求参数的数量大于或等于第三预设阈值;或者所述关键业务需求参数的数量大于或等于第四预设阈值的情况下,确定所述算力业务请求的类型为所述业务需求类型;When the number of the business demand parameters is greater than or equal to the third preset threshold; or the number of the key business demand parameters is greater than or equal to the fourth preset threshold, it is determined that the type of the computing power business request is the Type of business requirement; 在所述算力参数的数量小于所述第一预设阈值,所述业务需求参数的数量小于所述第二预设阈值,以及所述算力业务请求中包括所述抽象需求参数的情况下,确定所述算力业务请求的类型为所述抽象需求类型;When the number of the computing power parameters is less than the first preset threshold, the number of the service demand parameters is less than the second preset threshold, and the computing power service request includes the abstract demand parameters , determining that the type of the computing power service request is the abstract demand type; 基于所述算力业务请求与当前的神经网络模型,确定算力参数;所述当前的神经网络模型与所述算力业务请求的类型相对应。A computing power parameter is determined based on the computing power service request and the current neural network model; the current neural network model corresponds to the type of the computing power service request. 2.根据权利要求1所述的确定方法,其特征在于,在所述算力参数的数量大于或等于所述第一预设阈值,所述业务需求参数的数量大于或等于所述第三预设阈值,以及所述算力业务请求中包括所述算力参数、所述业务需求参数、以及所述抽象需求参数的情况下,确定所述算力业务请求的类型为所述算力参数类型、所述业务需求类型、以及所述抽象需求类型中任意一种类型。2. The determination method according to claim 1, characterized in that, when the number of the computing power parameters is greater than or equal to the first preset threshold, the number of the business demand parameters is greater than or equal to the third preset threshold Set a threshold, and when the computing power service request includes the computing power parameter, the business demand parameter, and the abstract demand parameter, determine that the type of the computing power service request is the computing power parameter type , the business requirement type, and any one type of the abstract requirement type. 3.根据权利要求2所述的确定方法,其特征在于,所述确定所述算力业务请求的类型,包括:3. The determination method according to claim 2, wherein the determination of the type of the computing service request comprises: 根据所述算力业务请求中所包含的关键字,确定所述算力业务请求的类型。The type of the computing power service request is determined according to the keyword included in the computing power service request. 4.根据权利要求1所述的确定方法,其特征在于,所述方法还包括:4. The determination method according to claim 1, wherein the method further comprises: 确定所述算力参数与目标算力参数的差值小于或等于预设阈值;所述目标算力参数为满足所述算力业务请求的算力参数;determining that the difference between the computing power parameter and the target computing power parameter is less than or equal to a preset threshold; the target computing power parameter is a computing power parameter that satisfies the computing power service request; 基于所述算力参数和所述算力业务请求,优化所述当前的神经网络模型。Optimizing the current neural network model based on the computing power parameter and the computing power service request. 5.一种算力参数的确定装置,其特征在于,所述确定装置包括:5. A device for determining a computing power parameter, wherein the device for determining comprises: 获取单元,用于获取用户的算力业务请求;The obtaining unit is used to obtain the computing power service request of the user; 确定单元,用于根据所述获取单元获取的所述算力业务请求,确定所述算力业务请求的类型;所述算力业务请求包括以下至少之一:算力参数、关键算力参数、业务需求参数、关键业务需求参数、抽象需求参数;所述算力业务请求的类型包括以下至少之一:算力参数类型、业务需求类型、以及抽象需求类型;所述关键算力参数为满足所述算力业务的算力参数;所述关键业务需求参数为满足所述算力业务的业务需求参数;A determining unit, configured to determine the type of the computing power service request according to the computing power service request acquired by the acquiring unit; the computing power service request includes at least one of the following: computing power parameters, key computing power parameters, Business demand parameters, key business demand parameters, and abstract demand parameters; the type of computing power business request includes at least one of the following: computing power parameter type, business demand type, and abstract demand type; the key computing power parameter is to meet the required The computing power parameter of the computing power business; the key business demand parameter is a business demand parameter satisfying the computing power business; 其中,在所述算力参数的数量大于或等于第一预设阈值;或者所述关键算力参数的数量大于或等于第二预设阈值的情况下,确定所述算力业务请求的类型为所述算力参数类型;Wherein, when the number of the computing power parameters is greater than or equal to the first preset threshold; or the number of the key computing power parameters is greater than or equal to the second preset threshold, it is determined that the type of the computing power service request is The type of computing power parameter; 在所述业务需求参数的数量大于或等于第三预设阈值;或者所述关键业务需求参数的数量大于或等于第四预设阈值的情况下,确定所述算力业务请求的类型为所述业务需求类型;When the number of the business demand parameters is greater than or equal to the third preset threshold; or the number of the key business demand parameters is greater than or equal to the fourth preset threshold, it is determined that the type of the computing power business request is the Type of business requirement; 在所述算力参数的数量小于所述第一预设阈值,所述业务需求参数的数量小于所述第二预设阈值,以及所述算力业务请求中包括所述抽象需求参数的情况下,确定所述算力业务请求的类型为所述抽象需求类型;所述确定单元,还用于基于所述获取单元获取的所述算力业务请求与当前的神经网络模型,确定算力参数;所述当前的神经网络模型与所述算力业务请求的类型相对应。When the number of the computing power parameters is less than the first preset threshold, the number of the service demand parameters is less than the second preset threshold, and the computing power service request includes the abstract demand parameters determining that the type of the computing power service request is the abstract demand type; the determining unit is further configured to determine a computing power parameter based on the computing power service request obtained by the obtaining unit and the current neural network model; The current neural network model corresponds to the type of computing power service request. 6.根据权利要求5所述的确定装置,其特征在于,在所述算力参数的数量大于或等于所述第一预设阈值,所述业务需求参数的数量大于或等于所述第三预设阈值,以及所述算力业务请求中包括所述算力参数、所述业务需求参数、以及所述抽象需求参数的情况下,确定所述算力业务请求的类型为所述算力参数类型、所述业务需求类型、以及所述抽象需求类型中任意一种类型。6. The determining device according to claim 5, wherein when the number of the computing power parameters is greater than or equal to the first preset threshold, the number of the business demand parameters is greater than or equal to the third preset threshold. Set a threshold, and when the computing power service request includes the computing power parameter, the business demand parameter, and the abstract demand parameter, determine that the type of the computing power service request is the computing power parameter type , the business requirement type, and any one type of the abstract requirement type. 7.根据权利要求6所述的确定装置,其特征在于,所述确定单元具体用于:7. The determining device according to claim 6, wherein the determining unit is specifically used for: 根据所述算力业务请求包含的关键字,确定所述算力业务请求的类型。Determine the type of the computing power service request according to the keywords included in the computing power service request. 8.根据权利要求5所述的确定装置,其特征在于,所述确定单元还用于:8. The determining device according to claim 5, wherein the determining unit is further used for: 确定所述算力参数与目标算力参数的差值小于或等于预设阈值;所述目标算力参数为满足所述算力业务请求的算力参数;determining that the difference between the computing power parameter and the target computing power parameter is less than or equal to a preset threshold; the target computing power parameter is a computing power parameter that satisfies the computing power service request; 基于所述算力参数和所述算力业务请求,优化所述当前的神经网络模型。Optimizing the current neural network model based on the computing power parameter and the computing power service request. 9.一种算力参数的确定设备,其特征在于,所述算力参数的确定设备包括存储器和处理器;所述存储器和所述处理器耦合;所述存储器用于存储计算机程序代码,所述计算机程序代码包括计算机指令;当所述处理器执行所述计算机指令时,所述算力参数的确定设备执行如权利要求1-4中任意一项所述的算力参数的确定方法。9. A device for determining a computing power parameter, characterized in that the device for determining a computing power parameter includes a memory and a processor; the memory is coupled to the processor; the memory is used to store computer program codes, and the The computer program code includes computer instructions; when the processor executes the computer instructions, the computing power parameter determining device executes the computing power parameter determining method according to any one of claims 1-4. 10.一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当所述计算机可读存储介质在算力参数的确定设备上运行时,使得所述设备执行权利要求1-4任一项所述的算力参数的确定方法。10. A computer-readable storage medium, characterized in that, instructions are stored in the computer-readable storage medium, and when the computer-readable storage medium is run on a computing power parameter determination device, the device executes The method for determining computing power parameters described in any one of claims 1-4.
CN202011460037.4A 2020-12-11 2020-12-11 A method and device for determining computing power parameters Active CN112488563B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011460037.4A CN112488563B (en) 2020-12-11 2020-12-11 A method and device for determining computing power parameters

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011460037.4A CN112488563B (en) 2020-12-11 2020-12-11 A method and device for determining computing power parameters

Publications (2)

Publication Number Publication Date
CN112488563A CN112488563A (en) 2021-03-12
CN112488563B true CN112488563B (en) 2023-06-06

Family

ID=74916169

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011460037.4A Active CN112488563B (en) 2020-12-11 2020-12-11 A method and device for determining computing power parameters

Country Status (1)

Country Link
CN (1) CN112488563B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114062891A (en) * 2021-10-11 2022-02-18 深圳市德斯戈智能科技有限公司 Calculation force testing device based on AI chip
CN115511388B (en) * 2022-11-10 2023-04-07 浩鲸云计算科技股份有限公司 A Method for Measuring Business Demand Computing Power Based on Rule Calculation Model
CN116896591A (en) * 2023-07-17 2023-10-17 中国电信股份有限公司技术创新中心 Scheduling method and device for network data analysis model and computer equipment
CN119597457A (en) * 2024-11-14 2025-03-11 广州云硕科技发展有限公司 Multi-model collaboration-based power calculation scheduling method and system

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110532092A (en) * 2019-08-21 2019-12-03 云湾科技(嘉兴)有限公司 Reso urce matching method, device and equipment
CN110659134A (en) * 2019-09-04 2020-01-07 腾讯云计算(北京)有限责任公司 A data processing method and device applied to an artificial intelligence platform
CN110782343A (en) * 2018-07-30 2020-02-11 中移(苏州)软件技术有限公司 Calculation power circulation method and system based on block chain in distributed network
CN111126594A (en) * 2019-11-25 2020-05-08 北京邮电大学 Neural network model dynamic segmentation method and device based on edge calculation
CN111131516A (en) * 2019-12-31 2020-05-08 中国联合网络通信集团有限公司 Service configuration method and device
CN111144561A (en) * 2018-11-05 2020-05-12 杭州海康威视数字技术股份有限公司 Neural network model determining method and device
CN111401516A (en) * 2020-02-21 2020-07-10 华为技术有限公司 Neural network channel parameter searching method and related equipment
CN111818585A (en) * 2020-07-30 2020-10-23 中国联合网络通信集团有限公司 A user access method and access network equipment
CN111866775A (en) * 2020-07-28 2020-10-30 中国联合网络通信集团有限公司 A service arrangement method and device
CN112035247A (en) * 2020-08-12 2020-12-04 博泰车联网(南京)有限公司 Resource scheduling method, vehicle machine and computer storage medium

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017144939A1 (en) * 2016-02-22 2017-08-31 Orphanalytics Sa Method and device for detecting style within one or more symbol sequences

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110782343A (en) * 2018-07-30 2020-02-11 中移(苏州)软件技术有限公司 Calculation power circulation method and system based on block chain in distributed network
CN111144561A (en) * 2018-11-05 2020-05-12 杭州海康威视数字技术股份有限公司 Neural network model determining method and device
CN110532092A (en) * 2019-08-21 2019-12-03 云湾科技(嘉兴)有限公司 Reso urce matching method, device and equipment
CN110659134A (en) * 2019-09-04 2020-01-07 腾讯云计算(北京)有限责任公司 A data processing method and device applied to an artificial intelligence platform
CN111126594A (en) * 2019-11-25 2020-05-08 北京邮电大学 Neural network model dynamic segmentation method and device based on edge calculation
CN111131516A (en) * 2019-12-31 2020-05-08 中国联合网络通信集团有限公司 Service configuration method and device
CN111401516A (en) * 2020-02-21 2020-07-10 华为技术有限公司 Neural network channel parameter searching method and related equipment
CN111866775A (en) * 2020-07-28 2020-10-30 中国联合网络通信集团有限公司 A service arrangement method and device
CN111818585A (en) * 2020-07-30 2020-10-23 中国联合网络通信集团有限公司 A user access method and access network equipment
CN112035247A (en) * 2020-08-12 2020-12-04 博泰车联网(南京)有限公司 Resource scheduling method, vehicle machine and computer storage medium

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
A Cost-Based Resource Scheduling Paradigm in Cloud Computing;Zhi Yang 等;《2011 12th International Conference on Parallel and Distributed Computing, Applications and Technologies》;第417-422页 *
Optimization of lightweight task offloading strategy for mobile edge computing based on deep reinforcement learning;Haifeng Lu 等;《Future Generation Computer Systems》;第102卷;第847-861页 *
算力网络中面向业务体验的算力建模;李建飞 等;《中兴通讯技术》;第26卷(第5期);第34-38,52页 *

Also Published As

Publication number Publication date
CN112488563A (en) 2021-03-12

Similar Documents

Publication Publication Date Title
CN112488563B (en) A method and device for determining computing power parameters
WO2021142609A1 (en) Information reporting method, apparatus and device, and storage medium
CN110262901B (en) Data processing method and data processing system
CN104580396B (en) A kind of method for scheduling task, node and system
US11568269B2 (en) Scheduling method and related apparatus
CN111511028B (en) Multi-user resource allocation method, device, system and storage medium
CN114296924A (en) Edge calculation force sharing method, server and system
CN115550354B (en) A data processing method, device and computer readable storage medium
Fattah et al. Mixed-criticality run-time task mapping for noc-based many-core systems
CN116185578A (en) Scheduling method of computing task and executing method of computing task
Ju et al. eDeepSave: Saving DNN inference using early exit during handovers in mobile edge environment
CN119537040B (en) Task processing method, device and equipment running on cloud computing platform
CN117453386A (en) Memory bandwidth allocation in multi-entity systems
CN110719335A (en) Resource scheduling method, system and storage medium under space-based cloud computing architecture
CN116910568B (en) Training method and device of graph neural network model, storage medium and electronic device
CN115640113A (en) Multi-plane flexible scheduling method
US20240152393A1 (en) Task execution method and apparatus
WO2025044576A1 (en) Task processing method, question answering method, and task processing platform
WO2024198986A1 (en) Data processing method and corresponding apparatus
CN104424101B (en) The determination method and apparatus of program feature interference model
CN117651044A (en) Edge computing task scheduling method and device
CN116432754A (en) Artificial intelligence reasoning acceleration method and system
CN112817732A (en) Stream data processing method and system suitable for cloud-side collaborative multi-data-center scene
CN113535378A (en) A resource allocation method, storage medium and terminal device
CN117707797B (en) Task scheduling method and device based on distributed cloud platform and related equipment

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant