CN112484864B - Polarization modulation Hartmann-shack wavefront detection device - Google Patents
Polarization modulation Hartmann-shack wavefront detection device Download PDFInfo
- Publication number
- CN112484864B CN112484864B CN202011307242.7A CN202011307242A CN112484864B CN 112484864 B CN112484864 B CN 112484864B CN 202011307242 A CN202011307242 A CN 202011307242A CN 112484864 B CN112484864 B CN 112484864B
- Authority
- CN
- China
- Prior art keywords
- polarization
- light
- hartmann
- detection
- wave plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000010287 polarization Effects 0.000 title claims abstract description 120
- 238000001514 detection method Methods 0.000 title claims abstract description 74
- 238000000034 method Methods 0.000 claims abstract description 10
- 230000007246 mechanism Effects 0.000 claims description 10
- 229940125730 polarisation modulator Drugs 0.000 claims description 10
- 238000003384 imaging method Methods 0.000 claims description 9
- 238000005259 measurement Methods 0.000 claims description 9
- 239000011159 matrix material Substances 0.000 claims description 5
- 239000013078 crystal Substances 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 4
- 230000009286 beneficial effect Effects 0.000 claims description 3
- 230000008569 process Effects 0.000 claims description 3
- 239000012237 artificial material Substances 0.000 claims description 2
- 230000008859 change Effects 0.000 claims description 2
- 230000000694 effects Effects 0.000 claims description 2
- 239000004973 liquid crystal related substance Substances 0.000 claims description 2
- 230000002401 inhibitory effect Effects 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 claims 1
- 230000004075 alteration Effects 0.000 abstract description 4
- 238000005516 engineering process Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 5
- 230000004927 fusion Effects 0.000 description 4
- 238000003491 array Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J9/00—Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J9/00—Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
- G01J2009/002—Wavefront phase distribution
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
Abstract
本发明公开了一种偏振调制哈特曼‑夏克波前探测装置,利用波前探测目标光与背景杂散光之间偏振特性差异,通过在微透镜阵列前增加可旋转的波片和检偏器,对入射光束进行偏振调制,获取不同偏振调制状态下的强度分布阵列,并利用偏振复原方法得到单个微透镜对应区域光束偏振信息,最终计算波前斜率并复原波前像差,实现对入射光束波前探测。相对于传统哈特曼‑夏克波前探测装置,本发明专利将波前探测从强度探测维度变换到偏振探测维度,利用目标光与背景杂散光偏振特性差异,将目标光从背景杂散光中分离出来,极大提升信背比,实现强背景下波前探测。本发明特别适合强背景条件下波前探测应用领域,拓展应用范围,提升探测能力,结构简单。
The invention discloses a polarization modulation Hartmann-Shack wavefront detection device, which utilizes the difference in polarization characteristics between the wavefront detection target light and background stray light, and adds a rotatable wave plate and an analyzer in front of a microlens array, Perform polarization modulation on the incident beam to obtain the intensity distribution array under different polarization modulation states, and use the polarization restoration method to obtain the beam polarization information of the corresponding area of a single microlens, finally calculate the wavefront slope and restore the wavefront aberration, and realize the detection of the incident beam wave. front detection. Compared with the traditional Hartmann-Shack wavefront detection device, the patent of the present invention transforms the wavefront detection from the intensity detection dimension to the polarization detection dimension, and separates the target light from the background stray light by using the difference in the polarization characteristics of the target light and the background stray light. , greatly improving the signal-to-background ratio and realizing wavefront detection under strong background. The invention is particularly suitable for the application field of wavefront detection under strong background conditions, expands the application range, improves the detection capability, and has a simple structure.
Description
技术领域technical field
本发明属于波前像差测量技术领域,特别涉及一种偏振调制哈特曼-夏克波前探测装置。The invention belongs to the technical field of wavefront aberration measurement, in particular to a polarization modulation Hartmann-Shack wavefront detection device.
背景技术Background technique
哈特曼-夏克波前探测技术是一种通用的经典波前相位检测技术,其广泛应用于自适应光学、天文、光学检测、生物医学等重要领域。当背景杂散光不强时,哈特曼-夏克波前探测技术不仅可以应用于点源目标探测,还可以应用于扩展目标探测,并分别采用质心算法和互相关算法获取高精度波前相位信息。当目标探测的信背比较低或背景杂散光较强时,点源目标或扩展目标在哈特曼-夏克传感器微透镜阵列子孔径中的成像信息就会被淹没,对比度极大下降,无法以来传统质心算法或互相关算法有效提取成像强度信息在单个子孔径中的位置偏移,并导致波前探测精度降低甚至失效。因此,传统哈特曼-夏克波前探测技术无法应用于强背景杂散光条件下进行波前探测,应用领域和探测能力均受到极大限制。减固定阈值(姜文汉等,夏克-哈特曼波前传感器的探测误差[J].量子电子学报,02:218,1998)、窄带光谱滤波(J.Beckers et al.,Using laser beacons for daytimeadaptive optics[J].Experimental Astronomy,11(2):133,2001)、视场偏移(C.Li etal.,Field of view shifted Shack-Hartmann wavefront sensor for daytimeadaptive optics system[J].Optics Letters,31(19):2821,2006)等方法虽然在一定程度上能够提升波前探测信背比,但依然无法实现强背景杂散光波前探测应用场景。Hartmann-Shack wavefront detection technology is a general classical wavefront phase detection technology, which is widely used in adaptive optics, astronomy, optical detection, biomedicine and other important fields. When the background stray light is not strong, the Hartmann-Shack wavefront detection technology can be applied not only to point source target detection, but also to extended target detection. When the signal-to-background ratio of the target detection is low or the background stray light is strong, the imaging information of the point source target or extended target in the sub-aperture of the Hartmann-Shack sensor microlens array will be submerged, and the contrast will be greatly reduced. Since then, the traditional centroid algorithm or cross-correlation algorithm can effectively extract the position offset of imaging intensity information in a single sub-aperture, which leads to the reduction of wavefront detection accuracy or even failure. Therefore, the traditional Hartmann-Shack wavefront detection technology cannot be used for wavefront detection under the condition of strong background stray light, and the application fields and detection capabilities are greatly limited. Minus fixed threshold (Jiang Wenhan et al., Detection error of Shack-Hartmann wavefront sensor [J]. Acta Quantum Electronics, 02:218, 1998), narrow-band spectral filtering (J.Beckers et al., Using laser beacons for daytimeadaptive optics[J].Experimental Astronomy,11(2):133,2001), Field of view shifted Shack-Hartmann wavefront sensor for daytimeadaptive optics system[J].Optics Letters, 31(19):2821, 2006) and other methods can improve the signal-to-background ratio of wavefront detection to a certain extent, but still cannot realize the application scenarios of strong background stray light wavefront detection.
上述问题的根源在于传统哈特曼-夏克波前探测技术,其波前误差信息提取均停留在强度维度,目标信号光与背景杂散光融为一体,虽然通过减固定阈值等手段可一定程度上减弱背景杂散光影响,但无法从根本上对二者进行区分。偏振是光的固有属性,它反映了光的横波特性。相对于传统强度成像技术,偏振成像技术能够同时获取目标物体空间分布信息和理化信息,大大提高了目标信息量,具有传统强度成像所不具备的能力和特点。The root of the above problems lies in the traditional Hartmann-Shack wavefront detection technology. The extraction of wavefront error information stays in the intensity dimension, and the target signal light is integrated with the background stray light, although it can be weakened to a certain extent by reducing the fixed threshold and other means. Background stray light affects, but cannot fundamentally distinguish between the two. Polarization is an inherent property of light, which reflects the transverse wave properties of light. Compared with the traditional intensity imaging technology, the polarization imaging technology can simultaneously obtain the spatial distribution information and physical and chemical information of the target object, which greatly improves the amount of target information, and has the capabilities and characteristics that the traditional intensity imaging does not have.
基于以上背景,本发明一种偏振调制哈特曼-夏克波前探测装置,其利用目标信号光与背景杂散光的偏振特性差异,在偏振维度对入射的目标信号光和背景杂散光进行区分,改变传统哈特曼-夏克波前探测装置在强度维度无法区分的状态,显著提升信背比,拓展哈特曼-夏克波前探测装置的应用领域和探测精度。Based on the above background, the present invention is a polarization-modulated Hartmann-Shack wavefront detection device, which utilizes the difference in the polarization characteristics of target signal light and background stray light to distinguish the incident target signal light and background stray light in the polarization dimension, changing the The traditional Hartmann-Shack wavefront detection device is indistinguishable in the intensity dimension, which significantly improves the signal-to-background ratio and expands the application field and detection accuracy of the Hartmann-Shack wavefront detection device.
发明内容SUMMARY OF THE INVENTION
本发明要解决的技术问题是:如何在偏振维度对入射的目标信号光和背景杂散光进行区分,从而提高哈特曼-夏克波前探测信背比,拓展应用领域和探测精度。The technical problem to be solved by the present invention is: how to distinguish the incident target signal light and background stray light in the polarization dimension, so as to improve the Hartmann-Shack wavefront detection signal-to-background ratio, and expand the application field and detection accuracy.
本发明解决上述技术问题采用的技术方案是:一种偏振调制哈特曼-夏克波前探测装置,通过对入射光束进行偏振调制,获取不同偏振调制状态下的强度分布阵列,并利用偏振复原方法得到单个微透镜对应区域光束偏振信息,最终计算波前斜率并复原波前像差,实现对入射光束波前探测。相比于传统哈特曼-夏克波前探测装置,本发明利用入射目标光与背景杂散光偏振特性差异,在偏振维度进行波前探测,特别有利于区分入射目标光与背景杂散光,提升波前探测信背比,拓展波前探测应用领域和探测精度。The technical scheme adopted by the present invention to solve the above-mentioned technical problems is: a polarization modulation Hartmann-Shack wavefront detection device, which obtains intensity distribution arrays under different polarization modulation states by polarization modulation of an incident beam, and obtains a polarization recovery method by using a polarization recovery method. A single microlens corresponds to the regional beam polarization information, and finally calculates the wavefront slope and restores the wavefront aberration to realize the detection of the incident beam wavefront. Compared with the traditional Hartmann-Shack wavefront detection device, the present invention utilizes the difference in the polarization characteristics of the incident target light and the background stray light to detect the wavefront in the polarization dimension, which is particularly beneficial to distinguish the incident target light from the background stray light and improve the wavefront. The detection signal-to-background ratio expands the application field and detection accuracy of wavefront detection.
本发明装置由波片1、波片旋转机构2、检偏器3、微透镜阵列4、光强探测器5、数据处理器6组成。含目标光和背景杂散光在内的入射光进入波片1和检偏器3共同组成的偏振调制器中,对入射光的偏振态进行调制;经过偏振调制后的入射光继续向前传播,并进入微透镜阵列4中,并被分割为M×N个子区域,每个子区域为一个微透镜,其将分割后的入射光成像与光强探测器5的光敏面上,获得对应子区域的成像强度分布I(m,n).The device of the present invention is composed of a
其中,波片1安装于波片旋转机构2上,其可以随波片旋转机构2共同转动,且转动至不同位置,偏振调制器对入射光偏振调制状态也不同。The
其中,M和N分别为微透镜阵列的行数和列数,I(m,n)为序号为(m,n)的微透镜对应光强探测器5区域探测到强度分布。Among them, M and N are the number of rows and columns of the microlens array, respectively, and I(m,n) is the intensity distribution detected by the microlens with the serial number (m,n) corresponding to the area of the
在不同调制状态下的入射光经波片1、检偏器3、微透镜阵列4,最终到达光强探测器5后的光强分布被记录下来,并输出至数据处理器6中。数据处理过程如下:The incident light in different modulation states passes through the
单个子孔径区域可以看成一个偏振成像微系统,在不同调制状态下测量得到的光强分别记为I(m,n,1),I(m,n,2),…,I(m,n,N),1,2,…,N为偏振调制状态序号。波片1和检偏器3共同组成的偏振调制器对入射光束偏振态的调制作用由下式表示:A single sub-aperture area can be regarded as a polarization imaging micro-system, and the measured light intensities under different modulation states are denoted as I(m,n,1), I(m,n,2),...,I(m, n,N),1,2,…,N is the polarization modulation state number. The modulation effect of the polarization modulator composed of the
其中,Sin和Si out分别表示入射光偏振态和偏振调制后的初设光束偏振态,MP(θ)为检偏方向与水平方向夹角为θ的检偏器3穆勒矩阵,MR(αi,δ)为快轴方向与水平方向夹角为αi、延迟量为δ的波片1穆勒矩阵,i为单次测量中偏振调制序号。Sin、Si out、MP(θ)及MR(αi,δ)表达式如下:Among them, S in and S i out represent the polarization state of the incident light and the initial beam polarization state after polarization modulation, respectively, and M P (θ) is the analyzer 3-Mueller matrix whose angle between the analyzer direction and the horizontal direction is θ, MR (α i ,δ) is the 1-Mueller matrix of the wave plate with the fast axis direction and the horizontal direction at an angle of α i and a retardation of δ, and i is the polarization modulation serial number in a single measurement. S in , S i out , MP (θ) and MR (α i ,δ) are expressed as follows:
由于光强探测器5能够探测光束强度信息,因此联立公式(1)~(4)后可得到如下入射光偏振态求解的线性方程:Since the
其中,in,
利用(5)式求解入射光的偏振态后,可以进一步获取入射光的偏振度、偏振相位角等信息,如下式所示:After solving the polarization state of the incident light by formula (5), the information such as the degree of polarization and the polarization phase angle of the incident light can be further obtained, as shown in the following formula:
至此,经过偏振调制后的哈特曼-夏克子孔径图像已经从传统的强度维度变换为偏振维度,偏振度和偏振相位角等是子孔径图像信息在偏振维度的部分表征形式。利用单一的偏振参数或多项偏振参数融合后的偏振特征参数(记为P),应用质心算法或互相关算法等即可获取单个子孔径内位置偏移及斜率,并最终复原入射光束的波前误差。So far, the Hartmann-Shack sub-aperture image after polarization modulation has been transformed from the traditional intensity dimension to the polarization dimension. The degree of polarization and the polarization phase angle are the partial representation forms of the sub-aperture image information in the polarization dimension. Using a single polarization parameter or a polarization characteristic parameter (denoted as P) after fusion of multiple polarization parameters, the position offset and slope in a single sub-aperture can be obtained by applying a centroid algorithm or a cross-correlation algorithm, and finally the wave of the incident beam can be recovered. previous error.
其中,本发明不改变哈特曼-夏克波前探测的基本原理,但将波前探测信标从传统强度维度变换到偏振维度,从而将传统强度维度不能区分的目标光与背景杂散光在偏振维度进行区分,提升信背比和探测精度。Among them, the present invention does not change the basic principle of Hartmann-Shack wavefront detection, but transforms the wavefront detection beacon from the traditional intensity dimension to the polarization dimension, so that the target light and the background stray light that cannot be distinguished by the traditional intensity dimension are in the polarization dimension. Differentiate, improve the signal-to-background ratio and detection accuracy.
所述偏振调制器由波片和检偏器组成,其中波片主要用于引入不同偏振相位,其可以采用1/4波片或其他波片,制作材料可以采用天然晶体,也可以采用液晶等人工材料;检偏器主要用于输出线偏振光,其可以采用线栅型也可以采用晶体等其他类型材料制作。The polarization modulator is composed of a wave plate and an analyzer. The wave plate is mainly used to introduce different polarization phases. It can use a 1/4 wave plate or other wave plates. The material can be made of natural crystals or liquid crystals. Artificial material; the analyzer is mainly used to output linearly polarized light, which can be made of wire grid type or other types of materials such as crystal.
所述波片需要进行多次旋转形成对入射光的多次调制,其参数选择需要使系数矩阵满秩,测量次数至少为4次,更多测量引入的数据冗余有利于抑制系统噪声,提升测量精度。The wave plate needs to be rotated multiple times to form multiple modulations on the incident light. The parameter selection needs to make the coefficient matrix full rank, and the number of measurements should be at least 4 times. The data redundancy introduced by more measurements is conducive to suppressing system noise and improving measurement accuracy.
所述偏振调制哈特曼-夏克波前探测装置可以应用于不同哈特曼-夏克波前探测场景,探测对象可以是点目标,也可以是扩展目标。The polarization modulation Hartmann-Shack wavefront detection device can be applied to different Hartmann-Shack wavefront detection scenarios, and the detection object can be a point target or an extended target.
所述偏振度和偏振相位角仅为表征入射光偏振信息的常用参数,也可以根据实际需要采用线偏振度、圆偏振度、椭偏角或其他可以表征偏振特性的参数,或是上述偏振特征参数的融合。The polarization degree and polarization phase angle are only common parameters to characterize the polarization information of incident light, and linear polarization degree, circular polarization degree, ellipticity angle or other parameters that can characterize polarization characteristics can also be used according to actual needs, or the above-mentioned polarization characteristics Fusion of parameters.
所述光强探测器6能够探测入射光束的强度,其可以采用CCD相机、CMOS相机、EMCCD相机,只要满足光强探测和采集功能即可。The
本发明的原理在于:利用入射的目标信号光与背景杂散光偏振特性差异,在偏振维度进行波前探测,获取不同偏振调制状态下的强度分布阵列,并利用偏振复原方法得到单个微透镜对应区域光束偏振信息,最终计算波前斜率并复原波前像差,实现对入射光束波前探测。本发明装置特别有利于区分入射目标光与背景杂散光,提升波前探测信背比,拓展波前探测应用领域和探测精度The principle of the present invention is: using the difference in polarization characteristics between the incident target signal light and the background stray light, performing wavefront detection in the polarization dimension, obtaining intensity distribution arrays under different polarization modulation states, and using the polarization restoration method to obtain the corresponding area of a single microlens Beam polarization information, and finally calculate the wavefront slope and restore the wavefront aberration to realize the detection of the incident beam wavefront. The device of the invention is particularly beneficial to distinguish the incident target light from the background stray light, improve the signal-to-background ratio of wavefront detection, and expand the application field and detection accuracy of wavefront detection
本发明与现有技术相比有如下优点:Compared with the prior art, the present invention has the following advantages:
本发明提供的新型波前探测装置,利用入射的目标信号光与背景杂散光偏振特性差异,将传统哈特曼-夏克波前探测技术在强度维度无法区分的目标信号光和背景杂散光,变换到偏振维度进行区分。相对传统哈特曼-夏克波前探测器,本发明提供装置波前探测信背比更高,特别适用于背景杂散光较强的场合,提升波前探测精度。The novel wavefront detection device provided by the invention utilizes the difference in the polarization characteristics of the incident target signal light and the background stray light to transform the target signal light and the background stray light, which cannot be distinguished in the intensity dimension by the traditional Hartmann-Shack wavefront detection technology, into a Polarization dimension to distinguish. Compared with the traditional Hartmann-Shack wavefront detector, the device provided by the present invention has a higher signal-to-background ratio for wavefront detection, which is especially suitable for occasions with strong background stray light, and improves the wavefront detection accuracy.
附图说明Description of drawings
图1为一种偏振调制哈特曼-夏克波前探测装置示意图。其中,1为波片,2为波片旋转机构,3为检偏器,4为微透镜阵列,5为光强探测器,6为数据处理器;FIG. 1 is a schematic diagram of a polarization-modulated Hartmann-Shack wavefront detection device. Among them, 1 is a wave plate, 2 is a wave plate rotation mechanism, 3 is an analyzer, 4 is a microlens array, 5 is a light intensity detector, and 6 is a data processor;
图2为一种19单元偏振调制哈特曼-夏克波前传感器子孔径排布示意图;FIG. 2 is a schematic diagram of sub-aperture arrangement of a 19-unit polarization-modulated Hartmann-Shack wavefront sensor;
图3为含较强背景杂散光的点源目标在19单元传统哈特曼-夏克波前探测装置(左图)和本发明的19单元偏振调制哈特曼-夏克波前探测装置(右图)图像对比示意图;Figure 3 is the image of the point source target with strong background stray light in the 19-element traditional Hartmann-Shack wavefront detection device (left picture) and the 19-element polarization modulation Hartmann-Shack wavefront detection device (right picture) of the present invention comparison diagram;
图4为含较强背景杂散光的扩展目标在19单元传统哈特曼-夏克波前探测装置(左图)和本发明的19单元偏振调制哈特曼-夏克波前探测装置(右图)图像对比示意图。Figure 4 shows the image comparison between the 19-element traditional Hartmann-Shack wavefront detection device (left picture) and the 19-element polarization modulation Hartmann-Shack wavefront detection device of the present invention (right picture) for an extended target with strong background stray light Schematic.
具体实施方式Detailed ways
下面结合附图以及具体实例进一步说明本发明。The present invention is further described below in conjunction with the accompanying drawings and specific examples.
如图1所示,一种偏振调制哈特曼-夏克波前探测装置由波片1、波片旋转机构2、检偏器3、微透镜阵列4、光强探测器5、数据处理器6组成。含目标光和背景杂散光在内的入射光进入波片1和检偏器3共同组成的偏振调制器中,对入射光的偏振态进行调制;经过偏振调制后的入射光继续向前传播,并进入微透镜阵列4中,并被分割为M×N个子区域,每个子区域为一个微透镜,其将分割后的入射光成像与光强探测器5的光敏面上,获得对应子区域的成像强度分布。其中,波片1安装于波片旋转机构2上,其可以随波片旋转机构2共同转动,且转动至不同位置,偏振调制器对入射光偏振调制状态也不同。在不同调制状态下的入射光经波片1、检偏器3、微透镜阵列4,最终到达光强探测器5后的光强分布被记录下来,并输出至数据处理器6中。数据处理过程分别由公式(1)~(7)所示。As shown in Figure 1, a polarization modulation Hartmann-Shack wavefront detection device is composed of a
至此,经过偏振调制后的哈特曼-夏克子孔径图像已经从传统的强度维度变换为偏振维度,偏振度和偏振相位角等是子孔径图像信息在偏振维度的部分表征形式。利用单一的偏振参数或多项偏振参数融合后的偏振特征参数(记为P),应用质心算法或互相关算法等即可获取单个子孔径内位置偏移及斜率,并最终复原入射光束的波前误差。So far, the Hartmann-Shack sub-aperture image after polarization modulation has been transformed from the traditional intensity dimension to the polarization dimension. The degree of polarization and the polarization phase angle are the partial representation forms of the sub-aperture image information in the polarization dimension. Using a single polarization parameter or a polarization characteristic parameter (denoted as P) after fusion of multiple polarization parameters, the position offset and slope in a single sub-aperture can be obtained by applying a centroid algorithm or a cross-correlation algorithm, and finally the wave of the incident beam can be recovered. previous error.
图2给出了本发明提出的偏振调制哈特曼-夏克波前探测装置一种可能的微透镜阵列子孔径布局方式(19单元)。图3和图4分别显示了含较强背景杂散光的点源目标和扩展目标在19单元传统哈特曼-夏克波前探测装置(左图)和本发明的19单元偏振调制哈特曼-夏克波前探测装置(右图)图像对比示意图。从示意图中可以看出,采用本发明的偏振调制哈特曼-夏克波前探测装置,其单个子孔径内点源目标和扩展目标相对背景杂散光的信背比得到显著增强,波前探测信标提取精度更高,波前探测更准确。FIG. 2 shows a possible arrangement of sub-apertures of the microlens array (19 units) of the polarization-modulated Hartmann-Shack wavefront detection device proposed by the present invention. Figures 3 and 4 show the point source target and the extended target with strong background stray light in the 19-element traditional Hartmann-Shack wavefront detection device (left picture) and the 19-element polarization-modulated Hartmann-Shack wave of the present invention, respectively. Schematic diagram of image comparison of the front detection device (right image). It can be seen from the schematic diagram that using the polarization modulation Hartmann-Shack wavefront detection device of the present invention, the signal-to-background ratio of the point source target and the extended target in a single sub-aperture relative to the background stray light is significantly enhanced, and the wavefront detection beacon The extraction accuracy is higher, and the wavefront detection is more accurate.
需要指出的是,图2仅给出了点源目标和扩展目标单一偏振度信息,在实际应用中还可以给出点源目标和扩展目标的偏振相位角信息、偏振椭圆度信息及其他可以表征偏振状态的参数及其融合,在偏振信息表达上存在较多中可能。It should be pointed out that Figure 2 only gives the single polarization information of the point source target and the extended target, and in practical applications, the polarization phase angle information, polarization ellipticity information and other information that can be characterized can also be given. The parameters of the polarization state and their fusion have many possibilities in the expression of polarization information.
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉该技术的人在本发明所揭示的技术范围内,可理解到的替换或增减,都应涵盖在本发明的包含范围之内,因此,本发明的保护范围应该以权利要求书的保护范围为准。The above is only a specific embodiment of the present invention, but the protection scope of the present invention is not limited to this, any person familiar with the technology can understand the replacement or increase or decrease within the technical scope disclosed by the present invention, All should be included within the scope of the present invention, therefore, the protection scope of the present invention should be subject to the protection scope of the claims.
本发明为详细阐述的部分属于本领域公知技术。The part to which the present invention is described in detail belongs to the known art in the art.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011307242.7A CN112484864B (en) | 2020-11-20 | 2020-11-20 | Polarization modulation Hartmann-shack wavefront detection device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011307242.7A CN112484864B (en) | 2020-11-20 | 2020-11-20 | Polarization modulation Hartmann-shack wavefront detection device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112484864A CN112484864A (en) | 2021-03-12 |
CN112484864B true CN112484864B (en) | 2022-07-19 |
Family
ID=74932291
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011307242.7A Active CN112484864B (en) | 2020-11-20 | 2020-11-20 | Polarization modulation Hartmann-shack wavefront detection device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112484864B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114966967B (en) * | 2022-06-15 | 2023-04-25 | 兰州大学 | Space light field regulation and control device based on super structure surface of guided wave drive |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2343679A1 (en) * | 2000-05-08 | 2001-11-08 | Alcon Universal Ltd. | Apparatus and method for objective measurements of optical systems using wavefront analysis |
CN1428597A (en) * | 2001-12-27 | 2003-07-09 | 中国科学院光电技术研究所 | Annular eccentric Hartmann shack wavefront sensor |
CN101211008A (en) * | 2006-12-29 | 2008-07-02 | 中国科学院长春光学精密机械与物理研究所 | White Light Liquid Crystal Adaptive Optics System |
CN101551517A (en) * | 2009-05-11 | 2009-10-07 | 长春理工大学 | Coherent laser communication system based on wavefront correction |
CN102967380A (en) * | 2012-12-09 | 2013-03-13 | 中国科学院光电技术研究所 | Hartmann wavefront sensor based on unit photosensitive detector array |
EP2650661A1 (en) * | 2012-04-13 | 2013-10-16 | National University of Ireland, Galway | Vectorial polarimetry apparatus with phase and polarization spatial control |
CN104848945A (en) * | 2015-04-01 | 2015-08-19 | 电子科技大学 | Coherent scanning wavefront detection method and system |
CN109520625A (en) * | 2019-01-09 | 2019-03-26 | 中国科学技术大学 | A kind of Wavefront sensor |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101413789B (en) * | 2007-10-18 | 2010-09-29 | 鸿富锦精密工业(深圳)有限公司 | Surface profile detection device and detection method thereof |
CN104501972B (en) * | 2015-01-15 | 2017-09-12 | 中国科学院光电技术研究所 | Composite shack-Hartmann wavefront sensor |
-
2020
- 2020-11-20 CN CN202011307242.7A patent/CN112484864B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2343679A1 (en) * | 2000-05-08 | 2001-11-08 | Alcon Universal Ltd. | Apparatus and method for objective measurements of optical systems using wavefront analysis |
CN1428597A (en) * | 2001-12-27 | 2003-07-09 | 中国科学院光电技术研究所 | Annular eccentric Hartmann shack wavefront sensor |
CN101211008A (en) * | 2006-12-29 | 2008-07-02 | 中国科学院长春光学精密机械与物理研究所 | White Light Liquid Crystal Adaptive Optics System |
CN101551517A (en) * | 2009-05-11 | 2009-10-07 | 长春理工大学 | Coherent laser communication system based on wavefront correction |
EP2650661A1 (en) * | 2012-04-13 | 2013-10-16 | National University of Ireland, Galway | Vectorial polarimetry apparatus with phase and polarization spatial control |
CN102967380A (en) * | 2012-12-09 | 2013-03-13 | 中国科学院光电技术研究所 | Hartmann wavefront sensor based on unit photosensitive detector array |
CN104848945A (en) * | 2015-04-01 | 2015-08-19 | 电子科技大学 | Coherent scanning wavefront detection method and system |
CN109520625A (en) * | 2019-01-09 | 2019-03-26 | 中国科学技术大学 | A kind of Wavefront sensor |
Non-Patent Citations (2)
Title |
---|
Comparison of the eye’s wave-front aberration measured psychophysically and with the Shack–Hartmann wave-front sensor;Thomas O. Salmon 等;《J. Opt. Soc. Am. A》;19980930;全文 * |
哈特曼波前探测及波前校正的仿真与误差分析;吴毅 等;《光学学报》;19950430;全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN112484864A (en) | 2021-03-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112484865B (en) | A real-time polarization-modulated Hartmann-Shack wavefront detection device | |
CN103777206B (en) | A kind of single pixel imaging system based on polarization relevance imaging | |
US7894058B2 (en) | Single-lens computed tomography imaging spectrometer and method of capturing spatial and spectral information | |
CN102564575B (en) | Laser far-field focal spot measuring method based on orthogonal optical wedge light splitting characteristics and focal spot reconstruction algorithm | |
CN111366557B (en) | A Phase Imaging Method Based on Thin Scattering Medium | |
JP2019513976A (en) | 3D imaging system and method | |
CN105300523B (en) | A Polarization Calibration Method for Light Field Polarization Imaging System | |
CN102967380B (en) | Hartmann wavefront sensor based on unit photosensitive detector array | |
US20210333150A1 (en) | Polarimetric imaging camera | |
CN102426061B (en) | Adjusting method of Hartmann wavefront sensor with adjustable dynamic range | |
CN111458045A (en) | Large-view-field wavefront detection method based on focal plane Hartmann wavefront sensor | |
CN109520625B (en) | Wavefront sensor | |
CN103712573A (en) | Method for correcting space matching of area array imaging sensors in two-channel interferometry | |
CN108007575A (en) | Miniaturized full-Stokes vector polarization imaging device based on binary digital coding birefringent crystal | |
CN108107003A (en) | Fast illuminated light field-polarization imager and imaging method based on microlens array | |
CN109342025B (en) | Method for testing polarization transmittance of infrared polarization imaging camera with split-focus plane | |
CN110146180A (en) | A kind of big view field image sharpening device and method based on focal plane Hartmann wave front sensor | |
CN114323310B (en) | High-resolution Hartmann wavefront sensor | |
CN112484864B (en) | Polarization modulation Hartmann-shack wavefront detection device | |
Baek et al. | Lensless polarization camera for single-shot full-Stokes imaging | |
CN108801475A (en) | A kind of wavefront sensing methods based on spatial frequency domain reference | |
CN109211790B (en) | Single-pixel phase imaging method based on Fourier power spectrum detection | |
Guan et al. | Integrated real-time polarization image sensor based on UV-NIL and calibration method | |
CN104239740A (en) | Mode wavefront restoration method based on Hartmann wavefront sensor | |
Garcia et al. | A 1300× 800, 700 mW, 30 fps spectral polarization imager |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |