[go: up one dir, main page]

CN112481412B - Nucleic acid molecule for detecting corn plant ND4403 and detection method thereof - Google Patents

Nucleic acid molecule for detecting corn plant ND4403 and detection method thereof Download PDF

Info

Publication number
CN112481412B
CN112481412B CN202011565284.0A CN202011565284A CN112481412B CN 112481412 B CN112481412 B CN 112481412B CN 202011565284 A CN202011565284 A CN 202011565284A CN 112481412 B CN112481412 B CN 112481412B
Authority
CN
China
Prior art keywords
seq
sequence
dna
plant
nucleic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011565284.0A
Other languages
Chinese (zh)
Other versions
CN112481412A (en
Inventor
郝东云
柳青
刘相国
郭嘉
尹悦佳
刘洋
赵涵
宁丽华
陈子奇
韩四平
李毅丹
叶欣男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin Academy Of Agricultural Sciences China Agricultural Science And Technology Northeast Innovation Center
Original Assignee
Jilin Academy of Agricultural Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin Academy of Agricultural Sciences filed Critical Jilin Academy of Agricultural Sciences
Priority to CN202011565284.0A priority Critical patent/CN112481412B/en
Publication of CN112481412A publication Critical patent/CN112481412A/en
Application granted granted Critical
Publication of CN112481412B publication Critical patent/CN112481412B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8274Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for herbicide resistance
    • C12N15/8277Phosphinotricin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/01Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • C12Y203/01183Phosphinothricin acetyltransferase (2.3.1.183)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y306/00Hydrolases acting on acid anhydrides (3.6)
    • C12Y306/01Hydrolases acting on acid anhydrides (3.6) in phosphorus-containing anhydrides (3.6.1)
    • C12Y306/01001Inorganic diphosphatase (3.6.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/13Plant traits

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Immunology (AREA)
  • Mycology (AREA)
  • Botany (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The invention relates to a nucleic acid molecule for detecting corn plant ND4403 and a detection method thereof, wherein the nucleic acid molecule sequence of the corn plant comprises a sequence shown as SEQ ID NO. 1 or a complementary sequence thereof, or a sequence shown as SEQ ID NO. 2 or a complementary sequence thereof. The corn plant ND4403 has high yield and/or nitrogen deficiency tolerance, and the detection method can accurately and quickly identify whether the biological sample contains the DNA molecule of the transgenic corn event ND 4403.

Description

一种用于检测玉米植物ND4403的核酸分子及其检测方法A kind of nucleic acid molecule for detecting corn plant ND4403 and its detection method

技术领域Technical field

本发明涉及植物生物技术领域。具体的说,涉及一种用于检测玉米植物ND4403的核酸分子及其检测方法,特别是涉及一种具有高产和/或氮缺乏耐受性状的转基因玉米事件ND4403和用于检测生物样品中是否包含特定转基因玉米事件ND4403的核酸分子及其检测方法。The present invention relates to the field of plant biotechnology. Specifically, it relates to a nucleic acid molecule for detecting corn plant ND4403 and a detection method thereof, in particular to a transgenic corn event ND4403 with high yield and/or nitrogen deficiency tolerance traits and for detecting whether biological samples contain Nucleic acid molecules of specific transgenic maize event ND4403 and their detection methods.

背景技术Background technique

氮素是植物必须的矿质营养元素之一,是合成蛋白质、核酸和许多生物活性物质的必需组分。氮素缺乏通常导致植物生长迟缓,成熟叶片失绿并伴随着花青素的积累(DiazC,Saliba-Colombani V,Loudet O,et al.Leaf Yellowing and AnthocyaninAccumulation are Two Genetically Independent Strategies in Response toNitrogen Limitation in Arabidopsis thaliana[J].Plant&Cell Physiology,2006,47(1):74-83.)。氮肥在农业生产中的大量使用极大地提高了作物产量。当前全球每年施用大约8-9千万吨氮肥,经预测到2050年可增加至2.4亿吨(Tilman D.Global environmentalimpacts of agricultural expansion:the need for sustainable and efficientpractices[J].Proc Natl Acad Sci U S A.1999,96(11):5995-6000.)。能源费用的提高导致了氮肥价格的不断上涨,从而增加了农业生产成本,同时氮肥的流失也在逐步恶化生态环境。基于经济效益和环境保护的双重考虑,在现代农业生产中种植氮高效作物品种是解决氮肥利用率低,降低生产成本,减小环境污染的有效途径,也是农业可持续发展和增强产品国际竞争力的基本要求。传统选育新品种是个非常长期的过程,现如今基因工程的不断成熟使得我们有可能通过基因工程的手段快速获得氮高效品种。玉米ZmNRT1.1基因编码一种低亲和性的硝酸盐转运蛋白,能够影响植株根系对硝态氮的吸收,从而提高氮素的利用效率(Quaggiotti S,Ruperti B,Pizzeghello D,et al.Effect of low molecularsize humic substances on nitrate uptake and expression of genes involved innitrate transport in maize(Zea mays L.)[J].Journal of Experimental Botany,2004,55(398):816-823.),利用该基因可提高玉米在氮缺乏条件下的耐受性,并最终增加产量。Nitrogen is one of the essential mineral nutrients for plants and an essential component for the synthesis of proteins, nucleic acids and many biologically active substances. Nitrogen deficiency usually results in plant growth retardation and chlorosis of mature leaves accompanied by anthocyanin accumulation (DiazC, Saliba-Colombani V, Loudet O, et al. Leaf Yellowing and AnthocyaninAccumulation are Two Genetically Independent Strategies in Response to Nitrogen Limitation in Arabidopsis thaliana[J].Plant&Cell Physiology,2006,47(1):74-83.). The extensive use of nitrogen fertilizers in agricultural production has greatly increased crop yields. Currently, approximately 80-90 million tons of nitrogen fertilizer are applied globally every year, which is predicted to increase to 240 million tons by 2050 (Tilman D. Global environmental impacts of agricultural expansion: the need for sustainable and efficient practices[J]. Proc Natl Acad Sci U S A .1999,96(11):5995-6000.). The increase in energy costs has led to the continuous increase in the price of nitrogen fertilizer, thereby increasing the cost of agricultural production. At the same time, the loss of nitrogen fertilizer is also gradually deteriorating the ecological environment. Based on the dual considerations of economic benefits and environmental protection, planting nitrogen-efficient crop varieties in modern agricultural production is an effective way to solve the problem of low nitrogen fertilizer utilization, reduce production costs, and reduce environmental pollution. It is also an effective way to achieve sustainable agricultural development and enhance the international competitiveness of products. basic requirements. Traditionally, breeding new varieties is a very long-term process. Nowadays, the continuous maturity of genetic engineering makes it possible for us to quickly obtain nitrogen-efficient varieties through genetic engineering. The maize ZmNRT1.1 gene encodes a low-affinity nitrate transporter that can affect the absorption of nitrate nitrogen by plant roots, thereby improving nitrogen use efficiency (Quaggiotti S, Ruperti B, Pizzeghello D, et al. Effect of low molecularsize humic substances on nitrate uptake and expression of genes involved innitrate transport in maize(Zea mays L.)[J].Journal of Experimental Botany,2004,55(398):816-823.), using this gene can improve Tolerance of corn under nitrogen deficiency conditions and ultimately increased yield.

已知外源基因在植物体内的表达受到它们的染色体位置的影响,可能是由于染色质结构(如异染色质)或转录调节元件(如增强子)接近整合位点。为此,通常需要筛选大量的事件才有可能鉴定出可以商业化的事件(即导入的目标基因得到最优表达的事件)。例如,在植物和其他生物体中已经观察到导入基因的表达量在事件间可能有很大差异;在表达的空间或时间模式上可能也存在差异,如在不同植物组织之间转基因的相对表达存在差异,这种差异表现在实际的表达模式可能与根据导入的基因构建体中的转录调节元件所预期的表达模式不一致,从而导致了转化事件在性状表现上存在差异。因此,通常需要产生成百上千个不同的事件并从这些事件中筛选出具有以商业化为目的所预期的转基因表达量和表达模式的单一事件。具有预期的转基因表达量和表达模式的事件可用于采用常规育种方法通过有性异型杂交将转基因渗入到其他遗传背景中。通过这种杂交方式产生的后代保持了原始转化事件的转基因表达特征。应用这种策略模式可以确保在许多品种中具有可靠的基因表达,而这些品种能很好地适应当地的生长条件。因此,需要对更多的转化事件进行性状鉴定和筛选,以获得综合性状表现优异,具有商业化前景的优异转化事件。It is known that the expression of foreign genes in plants is affected by their chromosomal location, possibly due to the proximity of chromatin structure (e.g., heterochromatin) or transcriptional regulatory elements (e.g., enhancers) to the integration site. To this end, it is usually necessary to screen a large number of events before it is possible to identify events that can be commercialized (that is, events in which the introduced target gene is optimally expressed). For example, it has been observed in plants and other organisms that the amount of expression of an introduced gene can vary significantly between events; there may also be differences in the spatial or temporal patterns of expression, such as the relative expression of the transgene between different plant tissues. Differences exist, and this difference is manifested in the fact that the actual expression pattern may be inconsistent with the expression pattern expected based on the transcriptional regulatory elements in the introduced gene construct, resulting in differences in trait expression during the transformation event. Therefore, it is often necessary to generate hundreds or thousands of different events and screen these events for a single event with the desired transgene expression amount and expression pattern for commercialization purposes. Events with expected transgene expression amounts and expression patterns can be used to introgress the transgene into other genetic backgrounds via sexual outcrossing using conventional breeding methods. The progeny produced by this cross maintain the transgene expression characteristics of the original transformation event. Applying this strategic model can ensure reliable gene expression in many varieties that are well adapted to local growing conditions. Therefore, more transformation events need to be characterized and screened to obtain excellent transformation events with excellent comprehensive trait performance and commercial prospects.

能够检测特定事件的存在以确定有性杂交的后代是否包含目的基因将是有益的。此外,检测特定事件的方法还将有助于遵守相关法规,例如来源于重组农作物的食物在投入市场前需要获得正式批准和进行标记。通过任何熟知的多核苷酸检测方法来检测转基因的存在都是可能的,例如聚合酶链式反应(PCR)或利用多核苷酸探针的DNA杂交。这些检测方法通常集中于常用的遗传元件,例如启动子、终止子、标记基因等。因此,除非与插入的转基因DNA相邻的染色体DNA(“侧翼DNA”)的序列是己知的,上述这种方法就不能够用于区别不同的事件,特别是那些用相同的DNA构建体产生的事件。所以,目前常利用跨越了插入的转基因和侧翼DNA的接合部位的一对引物通过PCR来鉴定转基因特定事件,具体地说是包含侧翼序列的第一引物和包含插入序列的第二引物。It would be beneficial to be able to detect the presence of specific events to determine whether the progeny of a sexual cross contains the gene of interest. In addition, methods to detect specific events will help comply with regulations such as the need for formal approval and labeling of food derived from recombinant crops before being placed on the market. Detection of the presence of a transgene is possible by any of the well-known polynucleotide detection methods, such as polymerase chain reaction (PCR) or DNA hybridization using polynucleotide probes. These detection methods usually focus on commonly used genetic elements such as promoters, terminators, marker genes, etc. Therefore, unless the sequence of the chromosomal DNA adjacent to the inserted transgenic DNA ("flanking DNA") is known, this method cannot be used to distinguish between different events, especially those produced with the same DNA construct. event. Therefore, it is now common to identify transgene-specific events by PCR using a pair of primers spanning the junction of the inserted transgene and flanking DNA, specifically a first primer containing the flanking sequence and a second primer containing the inserted sequence.

发明内容Contents of the invention

本发明的目的是提供一种产量性状和/或氮缺乏耐受性状表现优异的玉米转化事件以及用于检测玉米植物ND4403的核酸分子及其检测方法。转基因玉米事件ND4403因具有较高的氮素利用效率而表现高产和/或氮缺乏耐受性状,且检测方法可以准确快速地鉴定生物样品中是否包含特定转基因玉米事件ND4403的DNA分子。The purpose of the present invention is to provide a corn transformation event with excellent yield traits and/or nitrogen deficiency tolerance traits and a nucleic acid molecule for detecting corn plant ND4403 and a detection method thereof. The genetically modified corn event ND4403 exhibits high yield and/or nitrogen deficiency tolerance due to its high nitrogen utilization efficiency, and the detection method can accurately and quickly identify whether biological samples contain DNA molecules of the specific genetically modified corn event ND4403.

为实现上述目的,本发明使用利用农杆菌侵染技术将pCAMBIA1301-ZmNRT1.1A表达载体转化玉米y822幼胚中,获得了转ZmNRT1.1A及bar基因玉米转化事件45个。其中,ND4403表现出稳定的世代遗传性,氮缺乏耐受性和产量性状突出,具有较好的应用前景。In order to achieve the above purpose, the present invention uses Agrobacterium infection technology to transform the pCAMBIA1301-ZmNRT1.1A expression vector into maize y822 immature embryos, and obtains 45 transformation events of ZmNRT1.1A and bar gene-transfected maize. Among them, ND4403 shows stable heritability from generation to generation, outstanding nitrogen deficiency tolerance and yield traits, and has good application prospects.

为了表征ND4403的身份特征,本发明提供了一种核酸分子,所述核酸分子包含SEQID NO:1和/或SEQ ID NO:2所示序列,或其互补序列。In order to characterize the identity characteristics of ND4403, the present invention provides a nucleic acid molecule comprising the sequence shown in SEQ ID NO: 1 and/or SEQ ID NO: 2, or its complementary sequence.

进一步地,所述核酸分子序列包含SEQ ID NO:3所示序列,或其互补序列。Further, the nucleic acid molecule sequence includes the sequence shown in SEQ ID NO: 3, or its complementary sequence.

进一步地,所述核酸分子序列包含SEQ ID NO:4所示序列,或其互补序列。Further, the nucleic acid molecule sequence includes the sequence shown in SEQ ID NO: 4, or its complementary sequence.

更进一步地,所述核酸分子序列包含SEQ ID NO:5所示序列或其互补序列。Furthermore, the nucleic acid molecule sequence includes the sequence shown in SEQ ID NO: 5 or its complementary sequence.

另一方面,本发明提供了用于检测玉米转化事件的探针,其特征在于,包括SEQ IDNO:1或SEQ ID NO:2或SEQ ID NO:3或SEQ ID NO:4或SEQ ID NO:5所示序列或其片段或其变体或其互补序列。On the other hand, the present invention provides a probe for detecting maize transformation events, which is characterized in that it includes SEQ ID NO: 1 or SEQ ID NO: 2 or SEQ ID NO: 3 or SEQ ID NO: 4 or SEQ ID NO: The sequence shown in 5 or its fragment or its variant or its complementary sequence.

本发明还提供了用于检测玉米转化事件的引物对,其特征在于,所述引物对包括:The present invention also provides a primer pair for detecting maize transformation events, which is characterized in that the primer pair includes:

特异性识别SEQ ID NO:5所示序列第1-647位核苷酸序列的一条引物和特异性识别SEQ ID NO:5所示序列第648-5737位核苷酸序列的一条引物;和/或A primer that specifically recognizes the nucleotide sequence at positions 1-647 of the sequence shown in SEQ ID NO:5 and a primer that specifically recognizes the nucleotide sequence at positions 648-5737 of the sequence shown in SEQ ID NO:5; and/ or

特异性识别SEQ ID NO:5所示序列第648-5737位核苷酸序列的一条引物和特异性识别SEQ ID NO:5所示序列第5738-6093位核苷酸序列的一条引物;A primer that specifically recognizes the nucleotide sequence at positions 648-5737 of the sequence shown in SEQ ID NO:5 and a primer that specifically recognizes the nucleotide sequence at positions 5738-6093 of the sequence shown in SEQ ID NO:5;

在一些实施方案中,所述引物对的扩增产物包含权利要求2所述的序列;In some embodiments, the amplification product of the primer pair comprises the sequence of claim 2;

在一些实施方案中,所述引物对为SEQ ID NO:6和SEQ ID NO:7所示的序列或其互补序列;或SEQ ID NO:8和SEQ ID NO:9所示的序列或其互补序列。In some embodiments, the primer pair is the sequence shown in SEQ ID NO:6 and SEQ ID NO:7 or its complement; or the sequence shown in SEQ ID NO:8 and SEQ ID NO:9 or its complement sequence.

本发明还提供了用于检测玉米转化事件的试剂盒或微阵列,其特征在于,包含上述的探针和/或上述的引物对。The present invention also provides a kit or microarray for detecting maize transformation events, which is characterized by comprising the above-mentioned probe and/or the above-mentioned primer pair.

本发明还提供了检测玉米转化事件的方法,其特征在于,包括利用上述的探针或上述的引物对或上述的探针和引物对或上述的试剂盒或微阵列来检测待测样品中是否存在所述转化事件。The present invention also provides a method for detecting corn transformation events, which is characterized in that it includes using the above-mentioned probe or the above-mentioned primer pair or the above-mentioned probe and primer pair or the above-mentioned kit or microarray to detect whether the sample to be tested is The conversion event exists.

本发明还提供了对玉米进行育种的方法,其特征在于,所述方法包括以下步骤:The present invention also provides a method for breeding corn, which is characterized in that the method includes the following steps:

1)获得包含上述核酸分子的玉米;1) Obtain corn containing the above nucleic acid molecules;

2)将步骤1)所获得的玉米通过花粉培养、未受精胚培养、加倍培养、细胞培养、组织培养、自交或杂交或以上的组合得到玉米植物、种子、植物细胞、后代植物或植物部分;以及任选地,2) Using the corn obtained in step 1) through pollen culture, unfertilized embryo culture, double culture, cell culture, tissue culture, selfing or hybridization or a combination thereof to obtain corn plants, seeds, plant cells, progeny plants or plant parts ; and optionally,

3)对步骤2)所获得的后代植物进行产量性状鉴定和/或氮缺乏耐受性鉴定,并利用上述的方法来检测其中是否存在所述转化事件。3) Conduct yield trait identification and/or nitrogen deficiency tolerance identification on the progeny plants obtained in step 2), and use the above method to detect whether the transformation event exists therein.

进一步的,本发明还提供了利用上述方法获得的玉米植物、种子、植物细胞、后代植物或植物部分制成的制品,包括食品、饲料或工业原料。Furthermore, the present invention also provides products made from corn plants, seeds, plant cells, progeny plants or plant parts obtained by the above method, including food, feed or industrial raw materials.

本发明中,所述核酸分子序列可以为所述SEQ ID NO:1或其互补序列中转基因插入序列的任何部分的至少11个或更多个连续多核苷酸(第一核酸分子),或者为所述SEQ IDNO:1或其互补序列中5’左侧翼玉米基因组DNA区域的任何部分的至少11个或更多个连续多核苷酸(第二核酸分子)。所述核酸分子进一步可以为同源于或互补于包含完整的所述SEQID NO:5的所述SEQ ID NO:3的一部分。当第一核酸分子和第二核酸分子一起使用时,这些核酸分子在产生扩增产物的DNA扩增方法中包括DNA引物对。使用DNA引物对在DNA扩增方法中产生的扩增产物是包括SEQ ID NO:1或SEQ ID NO:3或SEQ ID NO:5的扩增产物时,可以诊断转基因玉米事件ND4403或其后代的存在。In the present invention, the nucleic acid molecule sequence may be at least 11 or more consecutive polynucleotides (first nucleic acid molecule) of any part of the transgene insertion sequence in SEQ ID NO: 1 or its complementary sequence, or At least 11 or more contiguous polynucleotides (second nucleic acid molecules) of any part of the 5' left flanking maize genomic DNA region in SEQ ID NO: 1 or its complementary sequence. The nucleic acid molecule may further be homologous to or complementary to a portion of said SEQ ID NO:3 comprising the entirety of said SEQ ID NO:5. When a first nucleic acid molecule and a second nucleic acid molecule are used together, these nucleic acid molecules include a pair of DNA primers in a DNA amplification method that produces an amplification product. Transgenic maize event ND4403 or its progeny can be diagnosed when the amplification product generated in the DNA amplification method using a DNA primer pair is an amplification product including SEQ ID NO: 1 or SEQ ID NO: 3 or SEQ ID NO: 5. exist.

所述SEQ ID NO:1或其互补序列为转基因玉米事件ND4403中在插入序列的5’末端位于插入接合部位附近的一个长度为971个核苷酸的序列,所述SEQ ID NO:1或其互补序列由647个核苷酸的玉米左侧翼基因组DNA序列(SEQ ID NO:1的核苷酸1-647)、125个核苷酸的pCAMBIA1301-ZmNRT1.1A构建体左边界DNA序列(SEQ ID NO:1的核苷酸648-772)和199个核苷酸的耐草铵膦基因的第一表达盒DNA序列(SEQ ID NO:1的核苷酸773-971)组成,包含所述SEQ ID NO:1或其互补序列即可鉴定为转基因玉米事件ND4403的存在。The SEQ ID NO: 1 or its complementary sequence is a sequence of 971 nucleotides in length located near the insertion junction site at the 5' end of the inserted sequence in the transgenic maize event ND4403. The SEQ ID NO: 1 or its complementary sequence is The complementary sequence consists of the 647-nucleotide maize left flank genomic DNA sequence (nucleotides 1-647 of SEQ ID NO: 1) and the 125-nucleotide pCAMBIA1301-ZmNRT1.1A construct left border DNA sequence (SEQ ID NO: 1). It consists of nucleotides 648-772 of ID NO:1) and the first expression cassette DNA sequence of the glufosinate-resistant gene of 199 nucleotides (nucleotides 773-971 of SEQ ID NO:1), comprising the SEQ ID NO: 1 or its complementary sequence can identify the presence of transgenic maize event ND4403.

所述核酸分子序列可以为所述SEQ ID NO:2或其互补序列中转基因插入序列的任何部分的至少11个或更多个连续多核苷酸(第三核酸分子),或者为所述SEQ ID NO:2或其互补序列中3’右侧翼玉米基因组DNA区域的任何部分的至少11个或更多个连续多核苷酸(第四核酸分子)。当第三核酸分子和第四核酸分子一起使用时,这些核酸分子在产生扩增产物的DNA扩增方法中包括DNA引物组。使用DNA引物对在DNA扩增方法中产生的扩增产物是包括SEQ ID NO:2或SEQ ID NO:4或SEQ ID NO:5的扩增产物时,可以诊断转基因玉米事件ND4403或其后代的存在。The nucleic acid molecule sequence may be at least 11 or more contiguous polynucleotides (third nucleic acid molecule) of any part of the transgene insert sequence in SEQ ID NO:2 or its complementary sequence, or be the SEQ ID At least 11 or more contiguous polynucleotides (fourth nucleic acid molecule) of any part of the 3' right flanking maize genomic DNA region in NO:2 or its complementary sequence. When the third nucleic acid molecule and the fourth nucleic acid molecule are used together, these nucleic acid molecules include a set of DNA primers in a DNA amplification method that produces an amplification product. Transgenic maize event ND4403 or its progeny can be diagnosed when the amplification product generated in the DNA amplification method using a DNA primer pair is an amplification product including SEQ ID NO:2 or SEQ ID NO:4 or SEQ ID NO:5. exist.

所述SEQ ID NO:2或其互补序列为转基因玉米事件ND4403中在插入序列的3’末端位于插入接合部位附近的一个长度为1031个核苷酸的序列,所述SEQ ID NO:2或其互补序列由377个核苷酸的氮高效利用基因的第二表达盒的3’末端DNA序列(SEQ ID NO:2的核苷酸1-377)、298个核苷酸的pCAMBIA1301-ZmNRT1.1A构建体右边界DNA序列(SEQ ID NO:2的核苷酸378-675)和356个核苷酸的玉米整合位点右侧翼基因组DNA序列(SEQ ID NO:2的核苷酸676-1031)组成,包含所述SEQ ID NO:2或其互补序列即可鉴定为转基因玉米事件ND4403的存在。The SEQ ID NO: 2 or its complementary sequence is a sequence of 1031 nucleotides in length located near the insertion junction site at the 3' end of the inserted sequence in the transgenic maize event ND4403. The SEQ ID NO: 2 or its complementary sequence is The complementary sequence consists of the 3' end DNA sequence of the second expression cassette of the nitrogen efficient utilization gene of 377 nucleotides (nucleotides 1-377 of SEQ ID NO:2), and the 298 nucleotides of pCAMBIA1301-ZmNRT1.1A Construct right border DNA sequence (nucleotides 378-675 of SEQ ID NO:2) and 356 nucleotide right flanking genomic DNA sequence of the maize integration site (nucleotides 676-1031 of SEQ ID NO:2 ) composition, containing the SEQ ID NO: 2 or its complementary sequence can identify the presence of transgenic maize event ND4403.

所述SEQ ID NO:5或其互补序列为表征转基因玉米事件ND4403的长度为6093个核苷酸的序列,其具体包含的基因组和遗传元件如表1所示。包含所述SEQ ID NO:5或其互补序列即可鉴定为转基因玉米事件ND4403的存在。The SEQ ID NO: 5 or its complementary sequence is a sequence of 6093 nucleotides in length that characterizes the transgenic maize event ND4403. The specific genome and genetic elements it contains are shown in Table 1. The presence of the transgenic maize event ND4403 can be identified by including the SEQ ID NO:5 or its complementary sequence.

表1SEQ ID NO:5包含的基因组及遗传元件Table 1 Genome and genetic elements included in SEQ ID NO:5

1:单位bp。1: Unit bp.

本领域技术人员熟知的,第一和第二核酸分子或第三和第四核酸分子不必仅仅由DNA组成,也可包括RNA、DNA和RNA的混合物,或者DNA、RNA或其它不作为一种或多种聚合酶模板的核苷酸或其类似物的组合。此外,本发明中所述探针或引物应该是至少大约11、12、13、14、15、16、17、18、19、20、21或22个连续核苷酸的长度,其可以选自SEQ ID NO:1、SEQ IDNO:2、SEQ ID NO:3、SEQ ID NO:4或SEQ ID NO:5中所述的核苷酸。当选自SEQ ID NO:1、SEQID NO:2、SEQ ID NO:3、SEQ ID NO:4或SEQ ID NO:5所示的核苷酸时,所述探针和引物可以为长度是至少大约21个到大约50个或更多的连续核苷酸。It is well known to those skilled in the art that the first and second nucleic acid molecules or the third and fourth nucleic acid molecules need not consist solely of DNA, but may also include RNA, a mixture of DNA and RNA, or DNA, RNA or other molecules that are not one or Combinations of multiple polymerase template nucleotides or analogs thereof. In addition, the probe or primer described in the present invention should be at least about 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 or 22 consecutive nucleotides in length, which may be selected from The nucleotides described in SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4 or SEQ ID NO: 5. When selected from the nucleotides shown in SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4 or SEQ ID NO:5, the probe and primer may be at least approximately 21 to about 50 or more contiguous nucleotides.

本发明还提供了一种提高玉米产量和/或氮缺乏耐受性的方法,其特征在于,包括在土壤中种植至少一种转基因玉米植物,所述转基因玉米植物在其基因组中包含SEQ IDNO:5第2243-6093位核酸序列,或者所述转基因玉米植物的基因组中包含SEQ ID NO:5;所述转基因玉米植物具有高产和/或氮缺乏耐受性状。The present invention also provides a method for improving corn yield and/or nitrogen deficiency tolerance, which is characterized by comprising planting at least one transgenic corn plant in soil, the transgenic corn plant comprising SEQ ID NO: 5. The nucleic acid sequence at positions 2243-6093, or the genome of the transgenic corn plant contains SEQ ID NO: 5; the transgenic corn plant has high yield and/or nitrogen deficiency tolerance traits.

本发明还提供了提高玉米产量和/或氮缺乏耐受性的方法,其特征在于,将如SEQID NO:5的第2243-5439位核苷酸所示序列的表达氮高效利用基因的表达盒导入玉米基因组中The present invention also provides a method for improving corn yield and/or nitrogen deficiency tolerance, which is characterized by using an expression cassette expressing a nitrogen efficient utilization gene with a sequence shown in nucleotides 2243-5439 of SEQ ID NO:5. Imported into the maize genome

在本发明用于检测玉米植物的核酸分子及其检测方法中,以下定义和方法可以更好地定义本发明和指导本领域的普通技术人员实施本发明,除非另作说明,根据本领域普通技术人员的常规的用法来理解术语。In the nucleic acid molecules for detecting corn plants and their detection methods of the present invention, the following definitions and methods can better define the present invention and guide those of ordinary skill in the art to implement the present invention. Unless otherwise stated, according to ordinary skill in the art People understand the term in its conventional usage.

所述“玉米”是指玉蜀黍(Zea mays),并且包括可以与玉米交配的所有植物品种,包括野生玉米种。The "corn" refers to Zea mays and includes all plant species that can mate with corn, including wild corn species.

所述“包含”是指“包括但不限于”。The "include" means "including but not limited to".

术语“植物”包括整株植物、植物细胞、植物器官、植物原生质体、植物可以从中再生的植物细胞组织培养物、植物愈伤组织、植物丛(plant clumps)和植物或植物部分中完整的植物细胞,所述植物部分例如胚、花粉、胚珠、种子、叶、花、枝、果实、茎秆、根、根尖、花药等。应理解为本发明范围内的转基因植物的部分包括但不限于植物细胞、原生质体、组织、愈伤组织、胚以及花、茎、果实、叶和根,以上植物部分源自事先用本发明的DNA分子转化的并因此至少部分地由转基因细胞组成的转基因植物或其子代。The term "plant" includes whole plants, plant cells, plant organs, plant protoplasts, plant cell tissue cultures from which plants can be regenerated, plant callus, plant clumps and plants or plant parts intact. Cells, the plant parts such as embryos, pollen, ovules, seeds, leaves, flowers, branches, fruits, stems, roots, root tips, anthers, etc. It should be understood that parts of transgenic plants within the scope of the present invention include, but are not limited to, plant cells, protoplasts, tissues, callus, embryos, as well as flowers, stems, fruits, leaves and roots, and the above plant parts are derived from plants previously treated with the present invention. A transgenic plant or its progeny that has been transformed with a DNA molecule and thus consists at least in part of transgenic cells.

术语“基因”是指表达特定蛋白的核酸片段,包括编码序列前的调节序列(5’非编码序列)和编码序列后的调节序列(3’非编码序列)。“天然基因”是指天然发现具有其自身调节序列的基因。“嵌合基因”是指不是天然基因的任何基因,其包含非天然发现的调节和编码序列。“内源基因”是指天然基因,所述天然基因位于生物体基因组中它的天然位置。“外源基因”是现存在于生物的基因组中且原来不存在的外来基因,也指经转基因步骤导入受体细胞的基因。外源基因可以包含插入非天然生物体的天然基因或嵌合基因。“转基因”是通过转化程序已经被引入基因组的基因。植物基因组中重组DNA已被插入的位点可以称为“插入位点”或“靶位点”。The term "gene" refers to a nucleic acid fragment that expresses a specific protein, including regulatory sequences before the coding sequence (5' non-coding sequence) and regulatory sequences after the coding sequence (3' non-coding sequence). "Native gene" refers to a gene found naturally with its own regulatory sequences. A "chimeric gene" refers to any gene that is not native and contains regulatory and coding sequences not found in nature. An "endogenous gene" refers to a native gene located in its native location in the genome of an organism. "Exogenous genes" are foreign genes that are present in the genome of an organism and did not originally exist. They also refer to genes introduced into recipient cells through transgenic steps. Foreign genes may include native genes or chimeric genes inserted into a non-native organism. A "transgene" is a gene that has been introduced into the genome through a transformation procedure. The site in the plant genome where recombinant DNA has been inserted may be called an "insertion site" or a "target site".

“侧翼DNA”可以包含天然存在于例如植物的生物体中的基因组或通过转化过程引入的外源(异源)DNA,例如与转化事件相关的片段。因此,侧翼DNA可以包括天然和外源DNA的组合。在本发明中,“侧翼区”或“侧翼序列”或“基因组边界区”或“基因组边界序列”是指至少3、5、10、11、15、20、50、100、200、300、400、1000、1500、2000、2500或5000碱基对或更长的序列,其位于最初外源插入DNA分子的直接上游或下游并且与最初外源插入DNA分子相邻。当该侧翼区位于上游时,其也可以称为“左边界侧翼”或“5’侧翼”或“5’基因组侧翼区”或“基因组5’侧翼序列”等。当该侧翼区位于下游时,其也可以称为“右边界侧翼”或“3’侧翼”或“3’基因组侧翼区”或“基因组3’侧翼序列”等。"Flanking DNA" may comprise the genome naturally occurring in an organism such as a plant or foreign (heterologous) DNA introduced through a transformation process, such as fragments associated with a transformation event. Thus, flanking DNA may include a combination of native and exogenous DNA. In the present invention, "flanking region" or "flanking sequence" or "genome boundary region" or "genome boundary sequence" refers to at least 3, 5, 10, 11, 15, 20, 50, 100, 200, 300, 400 , 1000, 1500, 2000, 2500 or 5000 base pairs or longer sequences located directly upstream or downstream of and adjacent to the initial exogenously inserted DNA molecule. When the flanking region is located upstream, it may also be called the "left border flank" or "5' flanking" or "5' genome flanking region" or "genomic 5' flanking sequence", etc. When the flanking region is located downstream, it may also be called the "right border flanking" or "3' flanking" or "3' genome flanking region" or "genomic 3' flanking sequence", etc.

引起外源DNA的随机整合的转化程序会导致含有不同侧翼区的转化事件,所述不同侧翼区是每个转化事件所特异性含有的。当重组DNA通过传统杂交被引入植物时,其侧翼区通常不会改变。转化事件也会含有异源插入物DNA和基因组DNA的段之间或两段基因组DNA之间或两段异源DNA之间的独特的接合。“接合”是两个具体的DNA片段连接的点。例如,接合存在于插入物DNA连接侧翼DNA的位置。接合点还存在于转化的生物体中,其中两个DNA片段以修饰自天然生物体中发现的方式的连接在一起。“接合DNA”是指包含接合点的DNA。Transformation procedures that result in random integration of foreign DNA will result in transformation events containing different flanking regions that are specific to each transformation event. When recombinant DNA is introduced into a plant through traditional crossing, its flanking regions are usually not altered. Transformation events may also involve unique junctions between a heterologous insert DNA and a segment of genomic DNA, or between two segments of genomic DNA, or between two segments of heterologous DNA. A "junction" is the point where two specific DNA fragments join. For example, a junction exists where the insert DNA joins the flanking DNA. Junctions are also present in transformed organisms, where two DNA segments are joined together in a modified manner from that found in natural organisms. "Jog DNA" refers to DNA containing junction points.

本发明提供了称为ND4403的转基因玉米事件及其后代,所述转基因玉米事件ND4403即为玉米植物ND4403,其包括转基因玉米事件ND4403的植物和种子及其植物细胞或其可再生部分,所述转基因玉米事件ND4403的植物部分,包括但不限于细胞、花粉、胚珠、花、芽、根、茎、穗丝、花序、耳穗、叶和来自玉米植物ND4403的产物,例如玉米粉、玉米面、玉米油、玉米浆、玉米穗丝、玉米淀粉和留在玉米作物田间的生物量。The present invention provides a transgenic corn event called ND4403 and its progeny. The transgenic corn event ND4403 is a corn plant ND4403, which includes plants and seeds of the transgenic corn event ND4403 and its plant cells or regenerable parts thereof. The transgenic corn event ND4403 is a corn plant ND4403. Plant parts of the corn plant ND4403, including but not limited to cells, pollen, ovules, flowers, buds, roots, stems, silks, inflorescences, ears, leaves and products from the corn plant ND4403, such as corn meal, cornmeal, corn oil , corn steep liquor, corn silk, corn starch and biomass left in the corn crop field.

本发明转基因玉米事件ND4403包含了一个DNA构建体,当其在植物细胞内表达时,所述转基因玉米事件ND4403获得产量提升和/或氮缺乏耐受性状。所述DNA构建体包含一个表达盒,表达盒包含用于在植物中表达的适合的启动子和适合的多聚腺苷酸化信号序列,所述启动子可操作地连接编码玉米硝酸盐转运蛋白基因ZmNAR1.1A,所述ZmNAR1.1A的核酸分子对氮缺乏具有耐受性。所述DNA构建体包含另一个表达盒,表达盒包含用于在植物中表达的适合的启动子和适合的多聚腺苷酸化信号序列,所述启动子可操作地连接编码膦丝菌素乙酰转移酶(PAT)的基因bar,所述PAT蛋白的核酸分子对草铵膦除草剂具有耐受性,可以作为转化阶段的筛选标记使用。进一步地,所述启动子可以为从植物分离的适合启动子,包括组成型、诱导型和/或组织特异型启动子,所述适合启动子包括但不限于,花椰菜花叶病毒(CaMV)35S启动子、玄参花叶病毒(FMV)35S启动子、泛素蛋白(Ubiquitin)启动子、肌动蛋白(Actin)启动子、土壤农杆菌(Agrobacterium tumefaciens)胭脂碱合成酶(NOS)启动子、章鱼碱合成酶(OCS)启动子、夜香树属(Cestrum)黄叶卷曲病毒启动子、马铃薯块茎储藏蛋白(Patatin)启动子、核酮糖-1,5-二磷酸羧化酶/加氧酶(RuBisCO)启动子、谷胱甘肽硫转移酶(GST)启动子、E9启动子、GOS启动子、alcA/alcR启动子、毛根农杆菌(Agrobacteriumrhizogenes)RolD启动子和拟南芥属(Arabidopsis thaliana)Suc2启动子。所述多聚腺苷酸化信号序列可以为在植物中起作用的适合多聚腺苷酸化信号序列,所述适合多聚腺苷酸化信号序列包括但不限于,来源于土壤农杆菌(Agrobacterium tumefaciens)胭脂碱合成酶(NOS)基因的多聚腺苷酸化信号序列、来源于花椰菜花叶病毒(CaMV)35S终止子、来源于蛋白酶抑制剂Ⅱ(PINⅡ)基因的多聚腺苷酸化信号序列和来源于α-微管蛋白(α-tubulin)基因的多聚腺苷酸化信号序列。The transgenic maize event ND4403 of the present invention includes a DNA construct, and when expressed in plant cells, the transgenic maize event ND4403 obtains yield enhancement and/or nitrogen deficiency tolerance traits. The DNA construct comprises an expression cassette comprising a suitable promoter for expression in plants operably linked to a gene encoding a maize nitrate transporter and a suitable polyadenylation signal sequence. ZmNAR1.1A, the nucleic acid molecule of ZmNAR1.1A is tolerant to nitrogen deficiency. The DNA construct comprises another expression cassette comprising a suitable promoter for expression in plants and a suitable polyadenylation signal sequence operably linked to the promoter encoding phosphinothricin acetyl Transferase (PAT) gene bar. The nucleic acid molecule of the PAT protein is resistant to glufosinate herbicide and can be used as a screening marker in the transformation stage. Further, the promoter may be a suitable promoter isolated from a plant, including constitutive, inducible and/or tissue-specific promoters, and the suitable promoter includes, but is not limited to, Cauliflower Mosaic Virus (CaMV) 35S Promoter, FMV 35S promoter, Ubiquitin promoter, Actin promoter, Agrobacterium tumefaciens nopaline synthase (NOS) promoter, Octopine synthase (OCS) promoter, Cestrum yellow leaf curl virus promoter, potato tuber storage protein (Patatin) promoter, ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) promoter, glutathione sulfotransferase (GST) promoter, E9 promoter, GOS promoter, alcA/alcR promoter, Agrobacterium rhizogenes RolD promoter and Arabidopsis thaliana )Suc2 promoter. The polyadenylation signal sequence may be a suitable polyadenylation signal sequence that functions in plants, and the suitable polyadenylation signal sequence includes, but is not limited to, derived from Agrobacterium tumefaciens The polyadenylation signal sequence of the nopaline synthase (NOS) gene, the polyadenylation signal sequence derived from the cauliflower mosaic virus (CaMV) 35S terminator, and the polyadenylation signal sequence derived from the protease inhibitor II (PINII) gene and their sources The polyadenylation signal sequence of the α-tubulin gene.

此外,所述表达盒还可以包括其他的遗传元件,所述遗传元件包括但不限于,增强子和信号肽/转运肽。所述增强子可以增强基因的表达水平,所述增强子包括但不限于,烟草蚀刻病毒(TEV)翻译激活因子、CaMV35S增强子和FMV35S增强子。所述信号肽/转运肽可以引导EPSPS蛋白转运到细胞外或者细胞内特定的细胞器或区室,例如,利用编码叶绿体转运肽序列靶向叶绿体,或者利用‘KDEL’保留序列靶向内质网。In addition, the expression cassette may also include other genetic elements including, but not limited to, enhancers and signal peptides/transit peptides. The enhancer can enhance the expression level of the gene, and the enhancer includes, but is not limited to, tobacco etch virus (TEV) translation activator, CaMV35S enhancer and FMV35S enhancer. The signal peptide/transit peptide can guide the EPSPS protein to be transported to specific organelles or compartments outside the cell or within the cell, for example, targeting the chloroplast using a sequence encoding a chloroplast transit peptide, or targeting the endoplasmic reticulum using a 'KDEL' retention sequence.

所述DNA构建体采用转化方法被引入到植物中,所述转化方法包括但不限于,农杆菌(Agrobacterium)介导转化法、基因枪转化法和花粉管通道转化法。The DNA construct is introduced into the plant using a transformation method, which includes, but is not limited to, Agrobacterium-mediated transformation, biolistic transformation, and pollen tube channel transformation.

所述农杆菌介导转化法是植物转化的常用方法。将要引入到植物中的外源DNA克隆到载体的左和右边界共有序列之间,即T-DNA区。所述载体被转化到农杆菌细胞中,随后,所述农杆菌细胞用于感染植物组织,包含外源DNA的载体的所述T-DNA区被插入到植物基因组中。The Agrobacterium-mediated transformation method is a common method for plant transformation. The exogenous DNA to be introduced into the plant is cloned into the vector between the left and right border consensus sequences, that is, the T-DNA region. The vector is transformed into Agrobacterium cells, which are subsequently used to infect plant tissue, and the T-DNA region of the vector containing foreign DNA is inserted into the plant genome.

转化后,必须从转化的植物组织再生转基因植物,并且利用适合的标记选择具有外源DNA的后代。After transformation, transgenic plants must be regenerated from the transformed plant tissue and the progeny with foreign DNA selected using appropriate markers.

DNA构建体是DNA分子互相连接起来的组合,该组合提供了一个或多个表达盒。DNA构建体优选地是能够在细菌细胞内自我复制,而且含有不同的限制性内切酶位点的质粒,所含的限制性内切酶位点用于导入提供功能性基因元件,即启动子、内含子、前导序列、编码序列、3’终止子区域和其他序列的DNA分子。DNA构建体中所含有的表达盒包括提供信使RNA的转录所必需的基因元件,所述表达盒可以设计为在原核细胞或真核细胞中表达。本发明的表达盒被设计为最优选地在植物细胞内表达。A DNA construct is an assembly of DNA molecules interconnected to provide one or more expression cassettes. The DNA construct is preferably a plasmid that is capable of self-replication in bacterial cells and contains different restriction endonuclease sites for the introduction of a functional genetic element, that is, a promoter. , introns, leader sequences, coding sequences, 3' terminator regions and other sequences of DNA molecules. The expression cassette contained in the DNA construct includes the genetic elements necessary to provide for the transcription of the messenger RNA and can be designed for expression in prokaryotic or eukaryotic cells. The expression cassettes of the present invention are designed for expression most preferably within plant cells.

转基因“事件”是通过用异源DNA构建体转化植物细胞而得到的,即包括至少一个含有目标基因的核酸表达盒,通过转基因的方法插入到植物基因组中以产生植物群体,再生所述植物群体,和选择具有插入特定基因组位点特征的特定植株。术语“事件”指包括异源DNA的原始转化事件和该转化事件的后代。术语“事件”还指转化事件和含有异源DNA的其它品种个体之间进行有性杂交而得到的后代,即使在与回交亲本进行反复回交后,来自于转化事件亲本的插入DNA和侧翼基因组DNA也存在于杂交后代中的同一染色体位置。术语“事件”还指来自原始转化事件的DNA序列,该DNA序列包含插入DNA和与插入DNA紧密相邻的侧翼基因组序列,该DNA序列被预期转移到子代中,该子代由含有插入DNA的亲本系(例如原始转化事件和其自交产生的子代)与不含有插入DNA的亲本系进行有性杂交而产生,且该子代接受了包含目标基因的插入DNA。A transgenic "event" is obtained by transforming plant cells with a heterologous DNA construct, that is, including at least one nucleic acid expression cassette containing a target gene, which is inserted into the plant genome through a transgenic method to produce a plant population, and then regenerates the plant population. , and select specific plants with characteristics of insertion into specific genomic loci. The term "event" refers to the original transformation event including heterologous DNA and the progeny of that transformation event. The term "event" also refers to the offspring resulting from a sexual cross between a transformation event and an individual of another breed containing heterologous DNA, even after repeated backcrossing to the backcross parent, the inserted DNA and flanking DNA from the transformation event parent Genomic DNA is also present at the same chromosomal location in the hybrid offspring. The term "event" also refers to a DNA sequence from the original transformation event that contains the inserted DNA and flanking genomic sequences in close proximity to the inserted DNA, which DNA sequence is expected to be transferred into progeny consisting of progeny containing the inserted DNA A parent line (eg, the original transformation event and its progeny from selfing) is produced by sexual crossing with a parent line that does not contain the inserted DNA, and the progeny receives the inserted DNA containing the target gene.

本发明中“重组”是指通常不能在自然界中发现并且因此通过人工干预产生的DNA和/或蛋白和/或生物体的形式。这种人工干预可产生重组DNA分子和/或重组植物。所述“重组DNA分子”是通过人工组合两种在其它情况下是分离的序列区段而获得的,例如通过化学合成或通过遗传工程技术操作分离的核酸区段。进行核酸操作的技术是众所周知的。"Recombinant" in the present invention refers to forms of DNA and/or proteins and/or organisms that are not normally found in nature and are therefore produced by artificial intervention. This artificial intervention can produce recombinant DNA molecules and/or recombinant plants. The "recombinant DNA molecule" is obtained by artificially combining two otherwise separate sequence segments, such as by chemical synthesis or by manipulating isolated nucleic acid segments through genetic engineering techniques. Techniques for performing nucleic acid manipulations are well known.

术语“转基因”包括任何细胞、细胞系、愈伤组织、组织、植物部分或植物,以上的基因型由于异源核酸的存在而改变,所述“转基因”包括最初被这样改变的转基因体以及由最初的转基因体通过有性杂交或无性繁殖生成的子代个体。在本发明中,术语“转基因”不包括通过常规植物育种方法或天然发生事件的基因组的(染色体的或染色体外的)改变,所述天然发生事件例如随机异体受精、非重组病毒感染、非重组细菌转化、非重组转座或自发突变。The term "transgene" includes any cell, cell line, callus, tissue, plant part or plant whose genotype has been altered by the presence of a heterologous nucleic acid, including a transgene originally so altered as well as by The offspring individuals produced by the original transgenic body through sexual hybridization or asexual reproduction. In the present invention, the term "transgene" does not include changes in the genome (chromosomal or extrachromosomal) by conventional plant breeding methods or naturally occurring events such as random allogeneic fertilization, non-recombinant viral infection, non-recombinant Bacterial transformation, non-recombinant transposition, or spontaneous mutation.

本发明中“异源的”是指自然界中第一分子通常不被发现与第二分子组合。例如,分子可以源自第一物种并插入到第二物种的基因组中。因此这种分子对于宿主是异源的并被人工引入宿主细胞的基因组中。"Heterologous" as used herein means that the first molecule is not normally found in combination with the second molecule in nature. For example, a molecule can be derived from a first species and inserted into the genome of a second species. The molecule is therefore heterologous to the host and is artificially introduced into the genome of the host cell.

培养高产和/或对氮缺乏具有耐受性的转基因玉米事件ND4403,通过以下步骤:首先使第一亲本玉米植物与第二亲本玉米植物有性杂交,从而产生了多样的第一代子代植株,所述第一亲本玉米植物由培育自转基因玉米事件ND4403及其后代的玉米植物组成,该转基因玉米事件ND4403及其后代是通过利用本发明的氮高效利用表达盒进行转化而得到的,第二亲本玉米植物缺乏高产和/或氮缺乏耐受性;然后选择对氮缺乏具有耐受性或产量增加的子代植株,可以培育出对氮缺乏具有耐受性或产量提高的玉米植物。这些步骤可以进一步包括使高产和/或氮缺乏耐受性的子代植株与第二亲本玉米植物或第三亲本玉米植物进行回交,然后通过与性状相关的分子标记物(如包含转基因玉米事件ND4403中插入序列的5’端和3’端鉴定出的接合位点的DNA分子)的鉴定来选择子代,从而产生产量提高和/或氮缺乏具有耐受性的玉米植物。Transgenic corn event ND4403, which is high-yielding and/or tolerant to nitrogen deficiency, is cultivated by first sexually crossing a first parent corn plant with a second parent corn plant, thereby producing a diverse first generation of progeny plants , the first parent corn plant consists of corn plants cultivated from transgenic corn event ND4403 and its progeny, which are obtained by transformation using the nitrogen efficient utilization expression cassette of the present invention, and the second Parent corn plants lack high yields and/or nitrogen deficiency tolerance; then selecting progeny plants that are tolerant to nitrogen deficiency or have increased yields can produce corn plants that are tolerant to nitrogen deficiencies or have increased yields. These steps may further include backcrossing high-yielding and/or nitrogen-deficiency-tolerant progeny plants to a second parent corn plant or a third parent corn plant, and then identifying the trait-associated molecular markers (e.g., containing transgenic corn events). DNA molecules of the junction sites identified at the 5' and 3' ends of the inserted sequence in ND4403) to select progeny to produce corn plants with increased yield and/or tolerance to nitrogen deficiency.

还应理解的是,两种不同的转基因植物也可以杂交以产生含有两个独立的、分离式添加的外源基因的后代。适当后代的自交可以得到对两个添加的外源基因来说都是纯合子的后代植株。如前所述的对亲本植株的回交和与非转基因植物的异型杂交也是可以预期的,无性繁殖也是同样的。It will also be understood that two different transgenic plants can also be crossed to produce progeny containing two independent, discretely added foreign genes. Selfing of appropriate progeny can result in progeny plants that are homozygous for both added foreign genes. Backcrossing of parental plants and outcrossing with non-transgenic plants as described above is also contemplated, as is asexual propagation.

术语“探针”是一段分离的核酸分子,其上面结合有常规的可检测标记或报告分子,例如,放射性同位素、配体、化学发光剂或酶类。这种探针与目标核酸的一条链是互补的,在本发明中,探针与来自转基因玉米事件ND4403基因组的一条DNA链互补,不论该基因组DNA是来自转基因玉米事件ND4403或种子还是来源于转基因玉米事件ND4403的植物或种子或提取物。本发明的探针不仅包括脱氧核糖核酸或核糖核酸,还包括特异性地与目标DNA序列结合并可用于检测该目标DNA序列的存在的聚酰胺及其他探针材料。The term "probe" is an isolated nucleic acid molecule to which a conventional detectable label or reporter molecule is bound, such as a radioisotope, ligand, chemiluminescent agent, or enzyme. This probe is complementary to a strand of the target nucleic acid. In the present invention, the probe is complementary to a DNA strand from the genome of transgenic maize event ND4403, whether the genomic DNA is from transgenic maize event ND4403 or seeds or from transgenics. Plant or seed or extract of corn event ND4403. The probes of the present invention include not only deoxyribonucleic acid or ribonucleic acid, but also polyamide and other probe materials that specifically bind to a target DNA sequence and can be used to detect the presence of the target DNA sequence.

术语“引物”是一段分离的核酸分子,其通过核酸杂交,退火结合到互补的目标DNA链上,在引物和目标DNA链之间形成杂合体,然后在聚合酶(例如DNA聚合酶)的作用下,沿目标DNA链延伸。本发明的引物对涉及其在目标核酸分子扩增中的应用,例如,通过聚合酶链式反应(PCR)或其他常规的核酸扩增方法。The term "primer" is an isolated nucleic acid molecule that binds to a complementary target DNA strand through nucleic acid hybridization, annealing, and formation of a hybrid between the primer and target DNA strand, followed by the action of a polymerase (e.g., DNA polymerase) down, extending along the target DNA strand. The primer pairs of the present invention relate to their use in the amplification of target nucleic acid molecules, for example, by polymerase chain reaction (PCR) or other conventional nucleic acid amplification methods.

探针和引物的长度一般是11个多核苷酸或更多,优选的是18个多核苷酸或更多,更优选的是24个多核苷酸或更多,最优选的是30个多核苷酸或更多。这种探针和引物在高度严格杂交条件下与目标序列特异性地杂交。尽管不同于目标DNA序列且对目标DNA序列保持杂交能力的探针是可以通过常规方法设计出来的,但是,优选的,本发明中的探针和引物与目标序列的连续核酸具有完全的DNA序列同一性。The length of probes and primers is generally 11 polynucleotides or more, preferably 18 polynucleotides or more, more preferably 24 polynucleotides or more, and most preferably 30 polynucleotides Sour or more. Such probes and primers hybridize specifically to target sequences under highly stringent hybridization conditions. Although probes that are different from the target DNA sequence and maintain hybridization ability to the target DNA sequence can be designed by conventional methods, preferably, the probes and primers in the present invention have a complete DNA sequence with the continuous nucleic acid of the target sequence. Identity.

如本文所用,“试剂盒”或“微阵列”是指用于生物样品中玉米转化事件的鉴定和/或检测目的的试剂组或芯片。为质量控制(例如种子批次的纯度)、植物材料中或包含植物材料或来源于植物材料的材料例如但不限于食品或饲料产品中事件的检测的目的,可以使用试剂盒或芯片,并且其组分可以具体地调整。As used herein, "kit" or "microarray" refers to a reagent set or chip used for the purpose of identification and/or detection of maize transformation events in biological samples. Kits or chips may be used for the purpose of quality control (e.g. purity of seed lots), detection of events in or containing or derived from plant material such as, but not limited to, food or feed products, and their The components can be adjusted specifically.

基于本发明的侧翼基因组DNA和插入序列的引物和探针可以通过常规方法确定,例如,通过从来源于转基因玉米事件ND4403的植物材料中分离相应的DNA分子,并确定该DNA分子的核酸序列。所述DNA分子包含转基因插入序列和玉米基因组侧翼区域,所述DNA分子的片段可以用作引物或探针。Primers and probes based on the flanking genomic DNA and insert sequences of the present invention can be determined by conventional methods, for example, by isolating the corresponding DNA molecules from plant material derived from transgenic maize event ND4403 and determining the nucleic acid sequence of the DNA molecules. The DNA molecule contains the transgene insert sequence and the maize genome flanking regions, and fragments of the DNA molecule can be used as primers or probes.

本发明的核酸探针和引物在严格条件下与目标DNA序列杂交。任何常规的核酸杂交或扩增方法都可以用于鉴定样品中来源于转基因玉米事件ND4403的DNA的存在。核酸分子或其片段在一定情况下能够与其他核酸分子进行特异性杂交。如本发明使用的,如果两个核酸分子能形成反平行的双链核酸结构,就可以说这两个核酸分子彼此间能够进行特异性杂交。如果两个核酸分子显示出完全的互补性,则称其中一个核酸分子是另一个核酸分子的“互补物”。如本发明使用的,当一个核酸分子的每一个核苷酸都与另一个核酸分子的对应核苷酸互补时,则称这两个核酸分子显示出“完全互补性”。如果两个核酸分子能够以足够的稳定性相互杂交从而使它们在至少常规的“低度严格”条件下退火且彼此结合,则称这两个核酸分子为“最低程度互补”。类似地,如果两个核酸分子能够以足够的稳定性相互杂交从而使它们在常规的“高度严格”条件下退火且彼此结合,则称这两个核酸分子具有“互补性”。从完全互补性中偏离是可以允许的,只要这种偏离不完全阻止两个分子形成双链结构。为了使一个核酸分子能够作为引物或探针,仅需保证其在序列上具有充分的互补性,以使得在所采用的特定溶剂和盐浓度下能形成稳定的双链结构。The nucleic acid probes and primers of the present invention hybridize to target DNA sequences under stringent conditions. Any conventional nucleic acid hybridization or amplification method can be used to identify the presence of DNA derived from transgenic maize event ND4403 in a sample. Nucleic acid molecules or fragments thereof can specifically hybridize with other nucleic acid molecules under certain circumstances. As used in the present invention, if two nucleic acid molecules can form an antiparallel double-stranded nucleic acid structure, it can be said that the two nucleic acid molecules can specifically hybridize with each other. If two nucleic acid molecules show complete complementarity, one of the nucleic acid molecules is said to be the "complement" of the other. As used herein, two nucleic acid molecules are said to exhibit "complete complementarity" when each nucleotide of one nucleic acid molecule is complementary to the corresponding nucleotide of the other nucleic acid molecule. Two nucleic acid molecules are said to be "minimally complementary" if they are able to hybridize to each other with sufficient stability such that they anneal and bind to each other under at least conventional "low stringency" conditions. Similarly, two nucleic acid molecules are said to be "complementary" if they can hybridize to each other with sufficient stability such that they anneal and bind to each other under conventional "highly stringent" conditions. Deviations from perfect complementarity are permissible as long as such departures do not completely prevent the two molecules from forming a double-stranded structure. In order for a nucleic acid molecule to serve as a primer or probe, it is only necessary to ensure that it has sufficient sequence complementarity to form a stable double-stranded structure under the specific solvent and salt concentration used.

如本发明使用的,基本同源的序列是一段核酸分子,该核酸分子在高度严格条件下能够和相匹配的另一段核酸分子的互补链发生特异性杂交。促进DNA杂交的适合的严格条件,例如,大约在45℃条件下用6.0×氯化钠/柠檬酸钠(SSC)处理,然后在50℃条件下用2.0×SSC洗涤,这些条件对本领域技术人员是公知的。例如,在洗涤步骤中的盐浓度可以选自低度严格条件的约2.0×SSC、50℃到高度严格条件的约0.2×SSC、50℃。此外,洗涤步骤中的温度条件可以从低度严格条件的室温约22℃,升高到高度严格条件的约65℃。温度条件和盐浓度可以都发生改变,也可以其中一个保持不变而另一个变量发生改变。优选地,本发明的一个核酸分子可以在中度严格条件下,例如在约2.0×SSC和约65℃下与SEQ ID NO:1、SEQ ID NO:2、SEQ ID NO:3、SEQ ID NO:5、SEQ ID NO:5、SEQ ID NO:6和SEQ ID NO:7中一个或多个核酸分子或其互补序列,或者上述序列的任一片段发生特异性杂交。更优选地,本发明的一个核酸分子在高度严格条件下与SEQ ID NO:1、SEQ ID NO:2、SEQ ID NO:3和SEQ ID NO:5中一个或多个核酸分子或其互补序列,或者上述序列的任一片段发生特异性杂交。本发明中,优选的标记物核酸分子具有SEQ ID NO:1、SEQ ID NO:2、SEQ ID NO:3或SEQ ID NO:5或其互补序列,或者上述序列的任一片段。As used in the present invention, a substantially homologous sequence is a nucleic acid molecule that is capable of specifically hybridizing to a matching complementary strand of another nucleic acid molecule under highly stringent conditions. Suitable stringent conditions to promote DNA hybridization, for example, treatment with 6.0× sodium chloride/sodium citrate (SSC) at approximately 45°C, followed by washing with 2.0× SSC at 50°C, will be apparent to those skilled in the art. is publicly known. For example, the salt concentration in the wash step can be selected from low stringency conditions of about 2.0×SSC, 50°C to highly stringent conditions of about 0.2×SSC, 50°C. In addition, the temperature conditions in the washing step can be increased from about 22°C at room temperature for low stringency conditions to about 65°C for highly stringent conditions. Temperature conditions and salt concentration can both change, or one variable can remain constant while the other variable changes. Preferably, a nucleic acid molecule of the invention can be combined with SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: under moderately stringent conditions, such as at about 2.0×SSC and about 65°C. 5. Specific hybridization occurs between one or more nucleic acid molecules in SEQ ID NO:5, SEQ ID NO:6 and SEQ ID NO:7 or their complementary sequences, or any fragment of the above sequences. More preferably, a nucleic acid molecule of the present invention is in contact with one or more nucleic acid molecules of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 and SEQ ID NO: 5 or their complementary sequences under highly stringent conditions. , or any fragment of the above sequence specifically hybridizes. In the present invention, the preferred marker nucleic acid molecule has SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 or SEQ ID NO: 5 or its complementary sequence, or any fragment of the above sequence.

本发明另一优选的标记物核酸分子与SEQ ID NO:1、SEQ ID NO:2、SEQ ID NO:3、SEQ ID NO:4或SEQ ID NO:5或其互补序列,或者上述序列的任一片段具有80%到100%或90%到100%的序列同一性。SEQ ID NO:1、SEQ ID NO:2、SEQ ID NO:3、SEQ ID NO:4或SEQID NO:5可以用作植物育种方法中的标记物以鉴定遗传杂交的后代。探针与目标DNA分子的杂交可以通过任何一种为本领域技术人员所熟知的方法进行检测,这些方法包括但不限于,荧光标记、放射性标记、抗体类标记和化学发光标记。Another preferred marker nucleic acid molecule of the present invention is identical to SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4 or SEQ ID NO: 5 or their complementary sequence, or any of the above sequences. A fragment has 80% to 100% or 90% to 100% sequence identity. SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4 or SEQ ID NO:5 can be used as markers in plant breeding methods to identify the progeny of genetic crosses. Hybridization between the probe and the target DNA molecule can be detected by any method known to those skilled in the art, including but not limited to fluorescent labels, radioactive labels, antibody labels, and chemiluminescent labels.

关于使用特定的扩增引物对目标核酸分子进行的扩增(例如,通过PCR),“严格条件”指的是在DNA热扩增反应中仅允许引物对目标核酸分子发生杂交的条件,具有与目标核酸分子相应的序列(或其互补序列)的引物,能够与所述目标核酸分子结合,并且优选产生唯一的扩增产物,扩增产物即扩增子。With respect to the amplification of a target nucleic acid molecule using specific amplification primers (e.g., by PCR), "stringent conditions" refer to conditions that only allow hybridization of the primer to the target nucleic acid molecule in a thermal DNA amplification reaction, with the The primer of the corresponding sequence of the target nucleic acid molecule (or its complementary sequence) can bind to the target nucleic acid molecule, and preferably generates a unique amplification product, which is an amplicon.

术语“特异性结合(目标序列)”是指在严格杂交条件下探针或引物仅与包含目标分子的样品中的目标分子发生杂交。The term "specific binding (target sequence)" means that under stringent hybridization conditions the probe or primer hybridizes only to the target molecule in a sample containing the target molecule.

如本发明使用的,“经过扩增的DNA”或“扩增子”是指作为核酸模板一部分的目标核酸分子的核酸扩增产物。例如,为了确定玉米植物是否由含有本发明转基因玉米事件ND4403通过有性杂交方式产生,或采集自田地的玉米样品是否包含转基因玉米事件ND4403,或玉米提取物,例如粗粉、粉或油是否包含转基因玉米事件ND4403,从玉米植物组织样品或提取物提取的DNA可以通过使用引物对的核酸扩增方法以产生对于转基因玉米事件ND4403的DNA的存在是诊断性的扩增子。所述引物对包括一个来源于植物基因组中与插入的外源DNA插入位点相邻的侧翼序列的第一引物,和来源于插入的外源DNA的第二引物。扩增子具有一定长度和序列,所述序列对所述转基因玉米事件ND4403也是诊断性的。As used herein, "amplified DNA" or "amplicon" refers to the nucleic acid amplification product of a target nucleic acid molecule that is part of a nucleic acid template. For example, to determine whether a corn plant was produced by sexual crossing containing the transgenic corn event ND4403 of the present invention, or whether a corn sample collected from a field contains the transgenic corn event ND4403, or whether a corn extract, such as meal, meal or oil contains Genetically modified maize event ND4403, DNA extracted from maize plant tissue samples or extracts can be used by nucleic acid amplification methods using primer pairs to produce amplicons that are diagnostic for the presence of genetically modified maize event ND4403 DNA. The primer pair includes a first primer derived from a flanking sequence adjacent to the insertion site of the inserted exogenous DNA in the plant genome, and a second primer derived from the inserted exogenous DNA. The amplicons were of a length and sequence that were also diagnostic for the transgenic maize event ND4403.

扩增子的长度范围可以是引物对的结合长度加上一个核苷酸碱基对,优选加上约五十个核苷酸碱基对,更优选加上约两百五十个核苷酸碱基对,最优选加上约四百五十个核苷酸碱基对或更多。The length of the amplicon may range from the combined length of the primer pair plus one nucleotide base pair, preferably plus about fifty nucleotide base pairs, more preferably plus about two hundred fifty nucleotides base pairs, most preferably plus about four hundred and fifty nucleotide base pairs or more.

可选的,引物对可以来源于插入DNA两侧的侧翼基因组序列,以产生包括整个插入核苷酸序列的扩增子。来源于植物基因组序列的引物对中的一个可以位于距插入DNA序列一定距离处,该距离的范围可以为一个核苷酸碱基对到约两万个核苷酸碱基对。术语“扩增子”的使用特别排除了在DNA热扩增反应中形成的引物二聚体。Alternatively, primer pairs can be derived from flanking genomic sequences on both sides of the inserted DNA to generate amplicons that include the entire inserted nucleotide sequence. One of the primer pairs derived from the plant genomic sequence can be located at a distance from the inserted DNA sequence, which distance can range from one nucleotide base pair to about twenty thousand nucleotide base pairs. The use of the term "amplicon" specifically excludes primer dimers formed in thermal amplification reactions of DNA.

核酸扩增反应可以通过本领域已知的任何一种核酸扩增反应方法实现,包括聚合酶链式反应(PCR)。各种核酸扩增方法已是本领域技术人员所熟知的。PCR扩增方法已经发展到可扩增22kb的基因组DNA和42kb的噬菌体DNA。这些方法以及本领域的其他DNA扩增方法可以用于本发明。插入的外源DNA序列和来自转基因玉米事件ND4403的侧翼DNA序列可以通过利用所提供的引物序列对转基因玉米事件ND4403的基因组进行扩增,扩增后对PCR扩增子或克隆的DNA进行标准的DNA测序。Nucleic acid amplification reaction can be achieved by any nucleic acid amplification reaction method known in the art, including polymerase chain reaction (PCR). Various nucleic acid amplification methods are well known to those skilled in the art. PCR amplification methods have been developed to amplify 22 kb of genomic DNA and 42 kb of phage DNA. These methods, as well as other DNA amplification methods known in the art, can be used in the present invention. The inserted foreign DNA sequence and the flanking DNA sequence from the transgenic maize event ND4403 can be amplified by using the provided primer sequences to amplify the genome of the transgenic maize event ND4403. After amplification, the PCR amplicon or cloned DNA is subjected to standard DNA sequencing.

基于DNA扩增方法的DNA检测试剂盒含有DNA引物分子,它们在适当的反应条件下特异性杂交到目标DNA上并扩增诊断性扩增子。试剂盒可提供基于琼脂糖凝胶的检测方法或者现有技术已知的检测诊断性扩增子的许多方法。含有与SEQ ID NO:1或SEQ ID NO:2的玉米基因组区的任何部分同源或互补的以及与SEQ ID NO:5的转基因插入区的任何部分同源或互补的DNA引物的试剂盒是本发明所提供的。特别地鉴别在DNA扩增方法中有用的引物对是SEQ ID NO:6和SEQ ID NO:7,其扩增与转基因玉米事件ND4403的5’转基因/基因组区的一部分同源的诊断性扩增子,其中扩增子包括SEQ ID NO:3。鉴别在DNA扩增方法中有用的引物对还可以是SEQ ID NO:8和SEQ ID NO:9,其扩增与转基因玉米事件ND4403的3’转基因/基因组区的一部分同源的诊断性扩增子,其中扩增子包括SEQ ID NO:4。DNA detection kits based on DNA amplification methods contain DNA primer molecules that specifically hybridize to target DNA under appropriate reaction conditions and amplify diagnostic amplicons. Kits may provide agarose gel-based detection methods or any of the many methods known in the art for detecting diagnostic amplicons. A kit containing DNA primers that are homologous or complementary to any part of the maize genomic region of SEQ ID NO: 1 or SEQ ID NO: 2 and to any part of the transgene insert region of SEQ ID NO: 5 is provided by the present invention. A primer pair specifically identified as useful in DNA amplification methods is SEQ ID NO: 6 and SEQ ID NO: 7, which amplify diagnostic amplification homologous to a portion of the 5' transgene/genomic region of transgenic maize event ND4403 amplicon, wherein the amplicon includes SEQ ID NO:3. Identification of primer pairs useful in DNA amplification methods can also be SEQ ID NO:8 and SEQ ID NO:9, which amplify diagnostic amplification homologous to a portion of the 3' transgene/genomic region of transgenic maize event ND4403 amplicon, wherein the amplicon includes SEQ ID NO:4.

这些方法所产生的扩增子可以通过多种技术进行检测。其中一个方法是GeneticBit Analysis,该方法设计了一个跨越插入DNA序列和相邻的侧翼基因组DNA序列的DNA寡核苷酸链。将该寡核苷酸链固定在一个微孔板的微孔内,在对目标区域进行PCR扩增后(在插入序列内和相邻的侧翼基因组序列中各使用一个引物),单链PCR产物可与固定的寡核苷酸链进行杂交,并且作为单碱基延伸反应的模板,该延伸反应使用了DNA聚合酶和为下一个预期的碱基特定标记的ddNTPs。可以通过荧光或ELISA类方法得到结果。信号代表了插入/侧翼序列的存在,其说明扩增、杂交和单碱基延伸反应是成功的。Amplicons generated by these methods can be detected by a variety of techniques. One such method is GeneticBit Analysis, which designs a DNA oligonucleotide strand that spans both the inserted DNA sequence and adjacent flanking genomic DNA sequences. The oligonucleotide chain is fixed in the microwell of a microplate, and after PCR amplification of the target region (using one primer each within the insert sequence and the adjacent flanking genomic sequence), the single-stranded PCR product Hybridizes to an immobilized oligonucleotide strand and serves as a template for a single-base extension reaction using DNA polymerase and ddNTPs specifically labeled for the next expected base. Results can be obtained by fluorescence or ELISA-type methods. The signal represents the presence of insert/flanking sequences, indicating that the amplification, hybridization, and single-base extension reactions were successful.

另一种方法是Pyrosequencing(焦磷酸测序)技术。该方法设计了一个跨越插入DNA序列和相邻的基因组DNA结合部位的寡核苷酸链。将该寡核苷酸链和目标区域的单链PCR产物(在插入序列内和相邻的侧翼基因组序列中各使用一个引物)进行杂交,然后和DNA聚合酶、ATP、硫酰基酶、荧光素酶、三磷酸腺苷双磷酸酶、腺苷-5’-磷硫酸盐和萤光素一起进行温育。分别加入dNTPs,测量产生的光信号。光信号代表了插入/侧翼序列的存在,其说明扩增、杂交、和单碱基或多碱基延伸反应是成功的。Another method is Pyrosequencing (pyrosequencing) technology. This method designs an oligonucleotide strand that spans the inserted DNA sequence and the adjacent genomic DNA binding site. The oligonucleotide strand is hybridized to a single-stranded PCR product of the target region (using one primer each within the insert sequence and in the adjacent flanking genomic sequence), and then mixed with DNA polymerase, ATP, sulfonylase, and fluorescein. enzyme, apyrase, adenosine-5'-phosphosulfate and luciferin were incubated together. Add dNTPs respectively and measure the resulting optical signal. The optical signal represents the presence of insert/flanking sequences, indicating that amplification, hybridization, and single- or multi-base extension reactions were successful.

荧光偏振现象也是可以用于检测本发明扩增子的一种方法(Chen X,Levine L,and Kwok P Y.Fluorescence polarization in homogeneous nucleic acid analysis[J].Genome Res,1999,9(5):492-8.)。使用这种方法需要设计一个跨越插入DNA序列和相邻的基因组DNA结合部位的寡核苷酸链。将该寡核苷酸链和目标区域的单链PCR产物(在插入序列内和相邻的侧翼基因组序列中各使用一个引物)进行杂交,然后和DNA聚合酶以及一种荧光标记的ddNTP一起进行温育。单碱基延伸会导致插入ddNTP。这种插入可以利用荧光仪测量其偏振的改变。偏振的改变代表了插入/侧翼序列的存在,其说明扩增、杂交和单碱基延伸反应是成功的。Fluorescence polarization phenomenon is also a method that can be used to detect the amplicon of the present invention (Chen X, Levine L, and Kwok P Y. Fluorescence polarization in homogeneous nucleic acid analysis [J]. Genome Res, 1999, 9 (5): 492-8.). Using this approach requires designing an oligonucleotide strand that spans the inserted DNA sequence and the adjacent genomic DNA binding site. The oligonucleotide strand is hybridized to a single-stranded PCR product of the target region (using one primer within the insert and one primer in the adjacent flanking genomic sequence) and then combined with DNA polymerase and a fluorescently labeled ddNTP Incubate. Single base extension results in insertion of ddNTPs. This insertion allows a change in polarization to be measured using a fluorometer. Changes in polarization represent the presence of insert/flanking sequences, indicating that amplification, hybridization, and single-base extension reactions were successful.

Taqman被描述为一种检测和定量分析DNA序列存在的方法,该方法在制造商所提供的使用说明中有详细介绍。现简要举例说明如下,设计一个跨越插入DNA序列和相邻的基因组侧翼结合部位的FRET寡核苷酸探针。该FRET探针和PCR引物(在插入序列内和相邻的侧翼基因组序列中各使用一个引物)在热稳定聚合酶和dNTPs存在下进行循环反应。FRET探针的杂交导致FRET探针上荧光部分和淬灭部分的分裂以及荧光部分的释放。荧光信号的产生代表了插入/侧翼序列的存在,其说明扩增和杂交是成功的。Taqman is described as a method for detecting and quantifying the presence of DNA sequences and is detailed in the instructions for use provided by the manufacturer. A brief example is given below to design a FRET oligonucleotide probe that spans the inserted DNA sequence and adjacent genomic flanking binding sites. The FRET probe and PCR primers (one primer each within the insert sequence and adjacent flanking genomic sequences) are cycled in the presence of a thermostable polymerase and dNTPs. Hybridization of the FRET probe results in the splitting of the fluorescent and quenching moieties on the FRET probe and the release of the fluorescent moiety. The generation of a fluorescent signal represents the presence of insert/flanking sequences, indicating that amplification and hybridization were successful.

基于杂交原理,用于检测来源于转基因玉米事件ND4403的植物材料的适合技术还可以包括Southern印迹杂交、Northern印迹杂交和原位杂交。特别地,所述适合技术包括温育探针和样品,洗涤以移除未结合的探针和检测探针是否已经杂交。所述的检测方法取决于探针所附标记的类型,例如,通过X光片曝光和显影可以检测放射性标记的探针,或通过底物转化实现颜色变化可以检测酶标记的探针。Based on the principle of hybridization, suitable techniques for detecting plant material derived from transgenic maize event ND4403 may also include Southern blot hybridization, Northern blot hybridization and in situ hybridization. In particular, such suitable techniques include incubating the probe and sample, washing to remove unbound probe and detecting whether the probe has hybridized. The detection method depends on the type of label attached to the probe. For example, radioactively labeled probes can be detected by exposure and development of X-ray films, or enzyme-labeled probes can be detected by achieving color changes through substrate conversion.

也可应用分子标记对序列进行检测(Tyagi S and Kramer F R.Molecularbeacons:probes that fluoresce upon hybridization[J].Nat Biotechnol,1996,14(3):303-8.)。设计一个跨越插入DNA序列和相邻的基因组侧翼结合部位的FRET寡核苷酸探针。该FRET探针的独特结构导致其含有二级结构,该二级结构能够在近距离内保持荧光部分和淬灭部分。该FRET探针和PCR引物(在插入序列内和相邻的侧翼基因组序列中各使用一个引物)在热稳定聚合酶和dNTPs存在下进行循环反应。经过成功的PCR扩增,FRET探针和目标序列的杂交导致探针二级结构的丧失,从而使荧光部分和淬灭部分在空间上发生分离,产生荧光信号。荧光信号的产生代表了插入/侧翼序列的存在,其说明扩增和杂交是成功的。Molecular markers can also be used to detect sequences (Tyagi S and Kramer F R. Molecular beacons: probes that fluoresce upon hybridization [J]. Nat Biotechnol, 1996, 14(3): 303-8.). Design a FRET oligonucleotide probe that spans the inserted DNA sequence and adjacent genomic flanking binding sites. The unique structure of this FRET probe results in it containing a secondary structure that is able to maintain fluorescent and quenching moieties in close proximity. The FRET probe and PCR primers (one primer each within the insert sequence and adjacent flanking genomic sequences) are cycled in the presence of a thermostable polymerase and dNTPs. After successful PCR amplification, the hybridization of the FRET probe and the target sequence results in the loss of the secondary structure of the probe, resulting in the spatial separation of the fluorescent part and the quenching part, generating a fluorescent signal. The generation of a fluorescent signal represents the presence of insert/flanking sequences, indicating that amplification and hybridization were successful.

其他描述的方法,例如微流体(microfluidics)提供了分离和扩增DNA样品的方法和设备。光染料用于检测和测定特定的DNA分子。包含用于检测DNA分子的电子传感器或结合特定DNA分子的纳珠并因而可被检测的纳试管(nanotube)设备对于检测本发明的DNA分子是有用的。Other methods described, such as microfluidics, provide methods and devices for isolating and amplifying DNA samples. Photodyes are used to detect and measure specific DNA molecules. Nanotube devices containing electronic sensors for detecting DNA molecules or nanobeads that bind specific DNA molecules and thus can be detected are useful for detecting the DNA molecules of the present invention.

可以使用本发明所述的组合物和DNA检测领域描述的或已知的方法来开发DNA检测试剂盒。所述试剂盒有利于鉴定样品中是否存在转基因玉米事件ND4403的DNA,还可以用于培育含有转基因玉米事件ND4403的DNA的玉米植物。所述试剂盒可以含有DNA引物或探针,其同源于或互补于SEQ ID NO:1、2、3、4或5的至少一部分,或含有其它DNA引物或探针,其同源于或互补于DNA的转基因遗传元件中所含的DNA,这些DNA序列可以用于DNA扩增反应,或作为DNA杂交方法中的探针。在玉米基因组中含有的以及在表1中说明的转基因插入序列与玉米基因组结合部位的DNA结构包含:位于转基因插入序列5’末端的玉米ND4403左侧翼基因组区域,来自载体的左侧边界区域的一部分插入序列,第一个表达盒由花椰菜花叶病毒的35S启动子(CaMV 35S promoter),可操作地连接到草丁膦(草铵膦)抗性基因序列(bar)上,并可操作地连接到花椰菜花叶病毒的35S终止子(CaMV 35S polyA)上而组成;第二个表达盒由玉米ubiquitin基因启动子(ubiquitin promoter),可操作地连接到玉米硝酸盐转运蛋白基因ZmNAR1.1A上,并可操作地连接到胭脂碱合成酶基因终止子(nosterminator)上而组成,来自载体的右侧边界区域的一部分插入序列,以及位于转基因插入序列3’末端的玉米植物ND4403右侧翼基因组区域(SEQ ID NO:5)。在DNA扩增方法中,作为引物的DNA分子可以是来源于转基因玉米事件ND4403中转基因插入序列的任何部分,也可以是来源于转基因玉米事件ND4403中侧翼玉米基因组的DNA区域的任何部分。DNA detection kits can be developed using the compositions of the present invention and methods described or known in the field of DNA detection. The kit is useful for identifying whether the DNA of transgenic maize event ND4403 exists in a sample, and can also be used to cultivate corn plants containing the DNA of transgenic maize event ND4403. The kit may contain DNA primers or probes that are homologous to or complementary to at least a portion of SEQ ID NO: 1, 2, 3, 4 or 5, or other DNA primers or probes that are homologous to or Complementary to DNA contained in transgenic genetic elements, these DNA sequences can be used in DNA amplification reactions or as probes in DNA hybridization methods. The DNA structure of the site where the transgene insert sequence is combined with the maize genome contained in the maize genome and illustrated in Table 1 includes: the left flanking genomic region of maize ND4403 located at the 5' end of the transgene insert sequence, from the left border region of the vector Part of the inserted sequence, the first expression cassette consists of the 35S promoter of cauliflower mosaic virus (CaMV 35S promoter), operably linked to the glufosinate (glufosinate ammonium) resistance gene sequence (bar), and operably It is composed of the 35S terminator of cauliflower mosaic virus (CaMV 35S polyA); the second expression cassette consists of the maize ubiquitin gene promoter (ubiquitin promoter), operably linked to the maize nitrate transporter gene ZmNAR1.1A , and is operably linked to the nopaline synthase gene terminator (noterminator), consisting of a portion of the insert sequence from the right border region of the vector, and the right flank genomic region of the corn plant ND4403 located at the 3' end of the transgene insert sequence (SEQ ID NO:5). In the DNA amplification method, the DNA molecules used as primers can be any part of the transgene insertion sequence derived from the transgenic maize event ND4403, or any part of the DNA region derived from the flanking maize genome in the transgenic maize event ND4403.

转基因玉米事件ND4403可以与其他转基因玉米品种组合,例如除草剂(如草甘膦、麦草畏等)耐受性的玉米,或携带抗虫基因的转基因玉米品种。所有这些不同转基因事件的各种组合,与本发明的转基因玉米事件ND4403一起育种,可以提供多种性状的改良杂种转基因玉米品种。这些品种相比于非转基因品种和单性状的转基因品种可以表现出产量提升等更优异的特征。The transgenic corn event ND4403 can be combined with other transgenic corn varieties, such as herbicide (such as glyphosate, dicamba, etc.) tolerant corn, or transgenic corn varieties carrying insect-resistant genes. Various combinations of all these different transgenic events, bred together with the transgenic corn event ND4403 of the present invention, can provide improved hybrid transgenic corn varieties with a variety of traits. These varieties can show superior characteristics such as increased yield compared to non-GM varieties and single-trait GM varieties.

本发明提供了一种用于检测玉米植物的核酸分子及其检测方法,转基因玉米事件ND4403具有高产和/或氮缺乏耐受性状。该性状的玉米植株表达硝酸盐转运蛋白ZmNAR1.1A蛋白,其赋予植物氮素高效利用性状从而增加产量和/或氮缺乏耐受性状(除草剂抗性基因bar作为转化阶段的筛选标记)。同时本发明检测方法中SEQ ID NO:1或其互补序列、SEQ IDNO:2或其互补序列、SEQ ID NO:3或其互补序列、SEQ ID NO:4或其互补序列、SEQ ID NO:5或其互补序列的核酸分子可以作为DNA引物或探针以产生诊断为转基因玉米事件ND4403或其后代的扩增产物,且可以快速、准确、稳定的鉴定出来源于转基因玉米事件ND4403的植物材料的存在。The invention provides a nucleic acid molecule for detecting corn plants and a detection method thereof. The transgenic corn event ND4403 has high yield and/or nitrogen deficiency tolerance traits. The corn plants with this trait express the nitrate transporter ZmNAR1.1A protein, which imparts efficient nitrogen utilization to the plant, thereby increasing yield and/or nitrogen deficiency tolerance (the herbicide resistance gene bar is used as a screening marker in the transformation stage). At the same time, in the detection method of the present invention, SEQ ID NO: 1 or its complementary sequence, SEQ ID NO: 2 or its complementary sequence, SEQ ID NO: 3 or its complementary sequence, SEQ ID NO: 4 or its complementary sequence, SEQ ID NO: 5 Or nucleic acid molecules of its complementary sequence can be used as DNA primers or probes to produce amplification products diagnosed as transgenic maize event ND4403 or its progeny, and can quickly, accurately and stably identify plant materials derived from transgenic maize event ND4403. exist.

下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。The technical solution of the present invention will be further described in detail below through the accompanying drawings and examples.

附图说明Description of the drawings

图1重组表达载体pCAMBIA1301-ZmNRT1.1A的物理图谱。各元件英文及缩写含义列举如下:Figure 1 Physical map of the recombinant expression vector pCAMBIA1301-ZmNRT1.1A. The English and abbreviation meanings of each component are listed below:

T-Border(left) T-DNA左边界序列。T-Border(left) T-DNA left border sequence.

CaMV 35S polyA 花椰菜花叶病毒(CaMV)的35S终止子。CaMV 35S polyA 35S terminator of Cauliflower Mosaic Virus (CaMV).

bar 编码PAT蛋白,解除草铵膦毒性。bar encodes PAT protein, which relieves glufosinate-ammonium toxicity.

CaMV 35S promoter 花椰菜花叶病毒(CaMV)的35S启动子。CaMV 35S promoter 35S promoter of cauliflower mosaic virus (CaMV).

nos terminator 胭脂碱合成酶基因的终止子。nos terminator The terminator of the nopaline synthase gene.

ZmNAR1.1A AnVP1基因CDS。ZmNAR1.1A AnVP1 gene CDS.

ubiquitin promoter 玉米ubiquitin基因的启动子。ubiquitin promoter promoter of the maize ubiquitin gene.

nos terminator 胭脂碱合成酶基因的终止子。nos terminator The terminator of the nopaline synthase gene.

T-Border(right) T-DNA右边界序列。T-Border(right) T-DNA right border sequence.

PVS1 sta pVS1质粒的质粒稳定位点。PVS1 sta Plasmid stabilizing site for pVS1 plasmid.

PVS1 rep pVS1质粒的复制起始位点。PVS1 rep Replication origin site of pVS1 plasmid.

PBR322 bom pBR322质粒的bom位点。PBR322 bom bom site of pBR322 plasmid.

PBR322 ori pBR322质粒的复制起始位点。PBR322 ori Replication origin site of pBR322 plasmid.

kanamycin(R) 编码氨基糖苷磷酸转移酶蛋白,赋予细菌卡那霉素抗性。kanamycin(R) encodes an aminoglycoside phosphotransferase protein that confers kanamycin resistance to bacteria.

图2转化事件特异性PCR验证结果。A:5’端扩增结果,片段预期大小559bp(SEQ IDNO:3);B:3’端扩增结果,片段预期大小728bp(SEQ ID NO:4)。M:DL2000 DNAmarker;T:ND4403玉米材料;CK:非转基因玉米。Figure 2 Transformation event-specific PCR verification results. A: 5’ end amplification result, the expected fragment size is 559bp (SEQ ID NO: 3); B: 3’ end amplification result, the expected fragment size is 728 bp (SEQ ID NO: 4). M: DL2000 DNAmarker; T: ND4403 corn material; CK: non-GMO corn.

具体实施方式Detailed ways

本申请涉及的转化事件ND4403是指以玉米自交系Y822为受体经过遗传转化后得到在特定基因组序列之间插入外源基因插入物(T-DNA插入物)的玉米植株。在具体实施例中,转基因所用表达载体具有图1所示的物理图谱,所得到的T-DNA插入物具有SEQ ID NO:5的第648-5737位核苷酸所示序列。转化事件ND4403可以指这一转基因过程,也可以指由这一过程所得到的基因组内的T-DNA插入物与侧翼序列的组合,或可以指由这一转基因过程得到的玉米植株。在具体实例中,该事件也适用于同样的表达载体转化其他受体品种,从而将T-DNA插入物插入到同样基因组位置而获得的植物。转化事件ND4403还可以指由上述植物进行无性繁殖、有性繁殖、减倍或加倍繁殖或以上的组合而得到的后代植物。The transformation event ND4403 involved in this application refers to a corn plant in which a foreign gene insert (T-DNA insert) is inserted between specific genome sequences after genetic transformation using the corn inbred line Y822 as the recipient. In a specific embodiment, the expression vector used for transgene has the physical map shown in Figure 1, and the resulting T-DNA insert has the sequence shown in nucleotides 648-5737 of SEQ ID NO: 5. Transformation event ND4403 may refer to this transgenic process, or to the combination of a T-DNA insert and flanking sequences in the genome resulting from this process, or to the maize plant resulting from this transgenic process. In specific examples, this event also applies to plants obtained by transforming other recipient varieties with the same expression vector, thereby inserting the T-DNA insert into the same genomic position. Transformation event ND4403 may also refer to progeny plants obtained from the above-mentioned plants through asexual reproduction, sexual reproduction, redundant or double propagation, or a combination thereof.

实施例1转化事件的获得和筛选Example 1 Obtaining and screening transformation events

从玉米中克隆得到ZmNRT1.1A基因的cDNA序列,通过酶切连接插入中间载体pCAMBIA1301-Ubi,该中间载体已包含bar基因,最终构建成为pCAMBIA1301-ZmNRT1.1A表达载体,载体的物理图谱见图1。利用农杆菌侵染技术将重组质粒高效转化到吉林省农业科学院农业生物技术研究所自选系玉米y822幼胚中,获得了转ZmNRT1.1A及bar基因玉米转化事件45个。其中,转基因玉米事件ND4403含有外源基因ZmNRT1.1A和bar,表现出稳定的世代遗传性和突出的产量性状和氮缺乏耐受性,具有较好的应用前景。The cDNA sequence of the ZmNRT1.1A gene was cloned from maize and inserted into the intermediate vector pCAMBIA1301-Ubi through enzyme digestion. The intermediate vector already contains the bar gene and was finally constructed into the pCAMBIA1301-ZmNRT1.1A expression vector. The physical map of the vector is shown in Figure 1 . Agrobacterium infection technology was used to efficiently transform the recombinant plasmid into young embryos of maize y822, a self-selected line of the Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, and 45 transformation events of maize transfected with ZmNRT1.1A and bar genes were obtained. Among them, the transgenic corn event ND4403 contains exogenous genes ZmNRT1.1A and bar, which shows stable generation heritability and outstanding yield traits and nitrogen deficiency tolerance, and has good application prospects.

其中外源ZmNRT1.1A和bar基因的检测方法为:以玉米的基因组DNA为模板,利用ZmNRT1.1A和bar的特异性引物对进行PCR扩增,分别获得452bp大小(ZmNRT1.1A基因)和441bp大小(bar基因)条带的材料为含有ZmNRT1.1A基因和bar基因的植株。The detection method of exogenous ZmNRT1.1A and bar genes is as follows: using corn genomic DNA as a template, using the specific primer pairs of ZmNRT1.1A and bar for PCR amplification, and obtaining 452bp size (ZmNRT1.1A gene) and 441bp respectively. The materials for the large and small (bar gene) bands are plants containing ZmNRT1.1A gene and bar gene.

表2ZmNRT1.1A基因和bar基因PCR检测引物序列Table 2 Primer sequences for PCR detection of ZmNRT1.1A gene and bar gene

实施例2转化事件ND4403的氮高效利用和产量性状鉴定Example 2 Efficient nitrogen utilization and identification of yield traits of transformation event ND4403

玉米ZmNRT1.1A蛋白具有促进硝酸盐吸收功能。本发明采用组成型表达方式在玉米中表达ZmNRT1.1A蛋白,通过提高玉米硝酸盐吸收的能力,进而提高玉米氮素利用效率,最终提高产量。本发明对ND4403植株大田生长形态及生理性状在不同的氮肥梯度下进行了鉴定。Corn ZmNRT1.1A protein has the function of promoting nitrate absorption. The present invention uses a constitutive expression method to express the ZmNRT1.1A protein in corn, thereby improving the corn's nitrate absorption capacity, thereby improving the nitrogen utilization efficiency of the corn, and ultimately increasing the yield. The present invention identifies the field growth morphology and physiological traits of ND4403 plants under different nitrogen fertilizer gradients.

试验地点在吉林省四平市公主岭市吉林省农业科学院转基因试验基地。试验土壤为沙壤土,地势平坦,耕层(20cm)土壤碱解氮含量125.94mg/kg,速效磷含量23.96mg/kg,速效钾含量149.24mg/kg,有机质含量25.22g/kg。小区行长5m,行距0.60m,株距0.25m,每个小区6行。The test location is the genetically modified test base of the Jilin Academy of Agricultural Sciences in Gongzhuling City, Siping City, Jilin Province. The test soil is sandy loam with flat terrain. The soil alkali-hydrolyzable nitrogen content in the cultivated layer (20cm) is 125.94mg/kg, the available phosphorus content is 23.96mg/kg, the available potassium content is 149.24mg/kg, and the organic matter content is 25.22g/kg. The row length of the plot is 5m, the row spacing is 0.60m, the plant spacing is 0.25m, and each plot has 6 rows.

测试条件:参照农业农村部发布的《小麦、玉米、水稻三大粮食作物区域大配方与施肥建议(2013)》,高氮处理(HN)按照正常耕作的施肥量施入配方肥38kg/亩;中氮处理(MN):施70%的配方肥,补充磷肥和钾肥与高氮处理相同;低氮处理(LN)不施配方肥,补充磷肥和钾肥与高氮处理相同。Test conditions: Referring to the "Regional Formula and Fertilization Recommendations for the Three Major Food Crops of Wheat, Corn, and Rice (2013)" issued by the Ministry of Agriculture and Rural Affairs, the high nitrogen treatment (HN) applied 38kg/acre of formula fertilizer according to the amount of fertilizer used in normal farming; Medium nitrogen treatment (MN): apply 70% formula fertilizer, supplement phosphorus fertilizer and potash fertilizer and the same as the high nitrogen treatment; low nitrogen treatment (LN) do not apply formula fertilizer, supplement phosphorus fertilizer and potash fertilizer and the same as the high nitrogen treatment.

实验设计:试验采用随机区组设计,每小区取长势大致相同的10株玉米,测定相关形态及生理指标,具体指标包括:穗重、穗长、穗行、百粒重、植株地上部全氮含量。Experimental design: The experiment adopts a random block design. 10 corn plants with roughly the same growth status are selected from each plot to measure relevant morphological and physiological indicators. Specific indicators include: ear weight, ear length, ear row, 100-kernel weight, and total nitrogen above the ground of the plant. content.

结果发现,玉米ND4403阳性植株在各种氮素供应条件下,穗重、穗长均显著高于阴性植株,增产效果显著。具体表现为低氮条件下穗重增加3.1%。在中氮条件下穗重增加17.2%、穗长增加5.0%、穗行数增加约1行。在高氮条件下穗重增加28.8%、穗长增加4.2%(详见表3)。这表明ND4403阳性植株对氮缺乏条件的耐受性好且具有增产特性。The results showed that under various nitrogen supply conditions, the ear weight and ear length of corn ND4403-positive plants were significantly higher than that of negative plants, and the yield increase effect was significant. The specific performance is that the ear weight increases by 3.1% under low nitrogen conditions. Under medium nitrogen conditions, ear weight increased by 17.2%, ear length increased by 5.0%, and the number of ear rows increased by about 1 row. Under high nitrogen conditions, ear weight increased by 28.8% and ear length increased by 4.2% (see Table 3 for details). This shows that ND4403-positive plants have good tolerance to nitrogen deficiency conditions and have yield-increasing properties.

表3ND4403和对照的农艺性状鉴定比较Table 3 Comparison of agronomic trait identification between ND4403 and control

在不同氮素条件下的植株茎秆全氮含量结果来看,ND4403在不同氮素条件下植株全氮含量均低于受体对照材料。尤其在高氮条件下,对照的茎秆全氮含量为3.00g/kg,而ND4403的全氮含量仅为2.00g/kg(表4)。这表明ND4403的氮素利用效率比野生型对照高,而这也是ND4403产量更高的原因。Judging from the total nitrogen content of plant stems under different nitrogen conditions, the total nitrogen content of ND4403 plants under different nitrogen conditions was lower than that of the recipient control material. Especially under high nitrogen conditions, the total nitrogen content of the control stems was 3.00g/kg, while the total nitrogen content of ND4403 was only 2.00g/kg (Table 4). This indicates that the nitrogen utilization efficiency of ND4403 is higher than that of the wild-type control, which is also the reason for the higher yield of ND4403.

表4ND4403和受体对照的植株茎秆全氮含量测定Table 4 Determination of total nitrogen content of plant stems of ND4403 and recipient control

实施例3转化事件ND4403外源序列的侧翼序列及玉米基因组插入位置Example 3 Transformation event ND4403 flanking sequences of foreign sequences and maize genome insertion positions

为了明确转化事件ND4403的身份特征,本发明进一步鉴定了ND4403外源序列在玉米基因组上的插入位点。In order to clarify the identity of the transformation event ND4403, the present invention further identified the insertion site of the ND4403 exogenous sequence in the maize genome.

本发明采用第三代测序方法定位转基因玉米ND4403的T-DNA插入位置。第三代测序技术利用英国牛津纳米孔公司(Oxford Nanopore Technologies,简称ONT)的纳米孔测序技术对转化体ND4403进行重测序,测序深度10倍,数据平均读长为20kb,最长读长60kb,准确率为85%。The present invention uses the third generation sequencing method to locate the T-DNA insertion position of transgenic maize ND4403. The third generation sequencing technology uses the nanopore sequencing technology of Oxford Nanopore Technologies (ONT) in the UK to resequence the transformant ND4403. The sequencing depth is 10 times, the average read length of the data is 20kb, and the longest read length is 60kb. The accuracy is 85%.

利用T-DNA外源序列对三代测序结果进行BLAST检索比对,发现一条读长约为10kb的contg含有目标序列,这说明ND4403中的外源序列为单拷贝插入。测序获得的外源序列5’端647bp和3’端356bp基因组旁侧序列,分别在玉米公开基因组数据库(http://ensembl.gramene.org/Zea_mays/Info/Annotation/#assembly)进行BLAST核酸-核酸比对,发现外源序列整合在玉米第3号染色体7866623-7866705位置处。Using T-DNA exogenous sequences to conduct BLAST search and comparison of third-generation sequencing results, it was found that a contg with a read length of about 10 kb contained the target sequence, which indicated that the exogenous sequence in ND4403 was a single copy insertion. The 5'-end 647bp and 3'-end 356bp genomic flanking sequences of the exogenous sequences obtained by sequencing were subjected to BLAST nucleic acid- Nucleic acid comparison showed that the foreign sequence was integrated into maize chromosome 3 at positions 7866623-7866705.

在插入位点的左边界,选取基因组上的647bp及外源插入序列设计引物对,使得F引物可结合基因组序列,R引物可结合外源插入序列,扩增产物融合一部分玉米基因组序列和一部分外源插入序列。或者在插入位点的右边界,选取基因组上的356bp及外源插入序列设计引物对,使得F引物可结合外源插入序列,R引物可结合基因组序列,扩增产物融合一部分外源插入序列和一部分玉米基因组序列。利用设计好的引物对ND4403进行PCR检测。以转基因玉米株系基因组DNA为模板,进行PCR扩增。PCR反应在20μL体系中进行。扩增循环程序为:94℃预变性3min;94℃变性30s,Tm退火30s,72℃延伸一定时间(按产物片段大小设置),35个循环;72℃延伸5min。At the left border of the insertion site, select 647 bp on the genome and the exogenous insertion sequence to design a primer pair, so that the F primer can combine with the genome sequence, the R primer can combine with the exogenous insertion sequence, and the amplification product fuses a part of the maize genome sequence and a part of the foreign insertion sequence. Source insertion sequence. Or at the right edge of the insertion site, select 356 bp on the genome and the exogenous insertion sequence to design a primer pair, so that the F primer can combine with the exogenous insertion sequence, the R primer can combine with the genome sequence, and the amplification product fuses a part of the exogenous insertion sequence and Part of the maize genome sequence. Use the designed primers to perform PCR detection on ND4403. PCR amplification was performed using the genomic DNA of transgenic corn lines as template. The PCR reaction was performed in a 20 μL system. The amplification cycle program is: pre-denaturation at 94°C for 3 min; denaturation at 94°C for 30 s, Tm annealing for 30 s, extension at 72°C for a certain time (set according to the size of the product fragment), 35 cycles; extension at 72°C for 5 min.

根据侧翼序列和插入位置的结果分别利用基因组上游引物(SEQ ID NO:6)与载体左边界引物(SEQ ID NO:7)以及载体右边界引物(SEQ ID NO:8)与基因组下游引物(SEQ IDNO:9)对ND4403转化事件进行PCR扩增,以验证外源片段插入位置。结果见图2。结果证明ND4403外源片段稳定插入到第3号染色体7866623-7866705位置处。According to the results of the flanking sequence and insertion position, the genome upstream primer (SEQ ID NO: 6) and the vector left border primer (SEQ ID NO: 7) and the vector right border primer (SEQ ID NO: 8) and the genome downstream primer (SEQ IDNO: 9) PCR amplification of the ND4403 transformation event was performed to verify the insertion position of the exogenous fragment. The results are shown in Figure 2. The results proved that the ND4403 exogenous fragment was stably inserted into chromosome 3 at positions 7866623-7866705.

实施例4转化事件ND4403的检测方法Example 4 Detection method of transformation event ND4403

可由转基因玉米事件ND4403进行育种,并用育成的新品种生产诸如农产品或商品。如果在所述农产品或商品中检测到足够的量,所述农产品或商品预期含有能够诊断转基因玉米事件ND4403材料在所述农产品或商品中存在的核苷酸序列。所述农产品或商品包括但不限于玉米油、玉米粗粉、玉米面、玉米面筋、玉米饼、玉米淀粉、以及将要作为食物源供动物消费的任何其它食品、或者另外作为膨大剂或化妆组合物中的成分用于化妆用途等。基于探针或引物对的核酸检测方法和/或试剂盒可以被开发以检测生物样品中是否含有转基因玉米事件ND4403的核酸分析,其中探针序列或引物扩增序列选自如SEQ ID NO:1、SEQ ID NO:2、SEQ ID NO:3、SEQ ID NO:4或SEQ ID NO:5中所示的序列,以诊断转基因玉米事件ND4403的存在。Genetically modified corn event ND4403 can be used for breeding, and the new varieties can be used to produce agricultural products or commodities. If detected in sufficient amounts in the agricultural product or commodity, the agricultural product or commodity is expected to contain a nucleotide sequence capable of diagnosing the presence of transgenic corn event ND4403 material in the agricultural product or commodity. Such agricultural products or commodities include, but are not limited to, corn oil, corn meal, cornmeal, corn gluten, corn tortillas, cornstarch, and any other food product that is to be used as a food source for animal consumption, or otherwise as a bulking agent or in cosmetic compositions The ingredients are used for cosmetic purposes etc. Nucleic acid detection methods and/or kits based on probes or primer pairs can be developed to detect whether biological samples contain nucleic acid analysis of genetically modified maize event ND4403, wherein the probe sequence or primer amplification sequence is selected from the group consisting of SEQ ID NO: 1, The sequence shown in SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4 or SEQ ID NO:5 to diagnose the presence of transgenic maize event ND4403.

其中一个检测方法为:One of the detection methods is:

采用普通CTAB法提取玉米样品的基因组DNA,具体操作过程按农业部1485号公告-4-2010,转基因植物及其产品成分检测DNA提取和纯化实施。其中,所述玉米样品包括待转基因玉米ND4403和非转基因玉米y822。利用PCR方法对ND4403植株中的特异性边界序列进行检测,所用的PCR引物对分别为SEQ ID NO:6和SEQ ID NO:7以及SEQ ID NO:8和SEQ IDNO:9,PCR反应体系:The common CTAB method was used to extract genomic DNA from corn samples. The specific operation process was implemented in accordance with the Ministry of Agriculture Announcement No. 1485-4-2010, DNA extraction and purification for detection of genetically modified plants and product components. Wherein, the corn samples include the corn to be transgenic ND4403 and the non-transgenic corn y822. Use PCR method to detect specific border sequences in ND4403 plants. The PCR primer pairs used are SEQ ID NO: 6 and SEQ ID NO: 7 and SEQ ID NO: 8 and SEQ ID NO: 9 respectively. The PCR reaction system:

反应程序为:The reaction procedure is:

第2~4步:循环35次Steps 2 to 4: Loop 35 times

取PCR产物于1%(w/v)1×TAE琼脂糖凝胶中电泳检测,结果见图2。ND4403转化事件中可以扩增得到预期的目标条带(SEQ ID NO:3和SEQ ID NO:4)。而且该PCR方法能够追踪转化事件的存在,从而应用于育种工作。The PCR product was electrophoresed in 1% (w/v) 1×TAE agarose gel and the results are shown in Figure 2. The expected target bands (SEQ ID NO:3 and SEQ ID NO:4) can be amplified in the ND4403 transformation event. Moreover, this PCR method can track the presence of transformation events and thus be applied to breeding efforts.

综上所述,本发明转基因玉米事件ND4403具有较高的产量和/或对氮缺乏的耐受性,且检测方法可以准确快速的鉴定生物样品中是否包含转基因玉米事件ND4403的DNA分子。In summary, the transgenic maize event ND4403 of the present invention has higher yield and/or tolerance to nitrogen deficiency, and the detection method can accurately and quickly identify whether biological samples contain DNA molecules of the transgenic maize event ND4403.

最后所应说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention and are not limiting. Although the present invention has been described in detail with reference to the preferred embodiments, those of ordinary skill in the art will understand that the technical solutions of the present invention can be modified. The solution may be modified or equivalently substituted without departing from the spirit and scope of the technical solution of the present invention.

序列表sequence list

<110> 吉林省农业科学院<110> Jilin Academy of Agricultural Sciences

<120> 一种用于检测玉米植物ND4403的核酸分子及其检测方法<120> A nucleic acid molecule for detecting corn plant ND4403 and its detection method

<130> 1<130> 1

<160> 9<160> 9

<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0

<210> 1<210> 1

<211> 971<211> 971

<212> DNA<212> DNA

<213> 人工 合成(unknown)<213> Artificial synthesis (unknown)

<400> 1<400> 1

tctttatcag ctataagttt cgctgaaggc ttgagtccgt tactactatc aaaacagcag 60tctttatcag ctataagttt cgctgaaggc ttgagtccgt tactactatc aaaacagcag 60

cagcagtaac aacaacaaga tgtttagatc tttcaggaag ggagtaatgc catttctagg 120cagcagtaac aacaacaaga tgtttagatc tttcaggaag ggagtaatgc catttctagg 120

agacaaaagt aaaaggcgat ctatggcgct gtgttgtcgt ctgttacagg gaagacgtag 180agacaaaagt aaaaggcgat ctatggcgct gtgttgtcgt ctgttacagg gaagacgtag 180

ccttttcccc tatatctgct gcagttttcc ataacggatt cgtacaacgc tacccggccg 240ccttttcccc tatatctgct gcagttttcc ataacggatt cgtacaacgc tacccggccg 240

ttagctacga attgtgacga tgcccctgct ttagcaaaag ctagcggaat tattgagttc 300ttagctacga attgtgacga tgcccctgct ttagcaaaag ctagcggaat tattgagttc 300

tggcaccgtc ggtttgtcgg tcgatctctc aacgtaattg ctgttcctcg cggaattgcg 360tggcaccgtc ggtttgtcgg tcgatctctc aacgtaattg ctgttcctcg cggaattgcg 360

cgatgatatg aagtgaagct agctgtcacg aatagcttga gctcagacct gcagcacgcc 420cgatgatatg aagtgaagct agctgtcacg aatagcttga gctcagacct gcagcacgcc 420

tgcatctgtt cctcgcagat agattcagct cgcctgccgg ccggtgacaa caattagtat 480tgcatctgtt cctcgcagat agattcagct cgcctgccgg ccggtgacaa caattagtat 480

gtgttgcaat ttgcaagtga ggtgacgatc gacgtgcagt gcagagagag atgcatggaa 540gtgttgcaat ttgcaagtga ggtgacgatc gacgtgcagt gcagagagag atgcatggaa 540

ttaatgggtg atgcatcatc gctagtcaaa gtgtggctgg cccaatgtgg ggagggctcg 600ttaatgggtg atgcatcatc gctagtcaaa gtgtggctgg cccaatgtgg ggagggctcg 600

aattttgttt ctttccgccg cgcgccactc gatcgtcttg tcatgtctgt acctagacta 660aattttgttt ctttccgccg cgcgccactc gatcgtcttg tcatgtctgt acctagacta 660

gtagggctgg ttgctagaga gtgcttggtg taaacaaatt gacgcttaga caacttaata 720gtagggctgg ttgctagaga gtgcttggtg taaacaaatt gacgcttaga caacttaata 720

acacattgcg gacgttttta atgtactgaa ttaacgccga attaattcgg gggatctgga 780acacattgcg gacgttttta atgtactgaa ttaacgccga attaattcgg gggatctgga 780

ttttagtact ggattttggt tttaggaatt agaaatttta ttgatagaag tattttacaa 840ttttagtact ggattttggt tttaggaatt agaaatttta ttgatagaag tattttacaa 840

atacaaatac atactaaggg tttcttatat gctcaacaca tgagcgaaac cctataggaa 900atacaaatac atactaaggg tttcttatat gctcaacaca tgagcgaaac cctataggaa 900

ccctaattcc cttatctggg aactactcac acattattat ggagaaactc gagtcaaatc 960ccctaattcc cttatctggg aactactcac acattattat ggagaaactc gagtcaaatc 960

tcggtgacgg g 971tcggtgacgg g 971

<210> 2<210> 2

<211> 1031<211> 1031

<212> DNA<212> DNA

<213> 人工合成(unknown)<213> Artificial synthesis (unknown)

<400> 2<400> 2

gacccgacaa acaagtgcac ggcatatatt gaaataaagg aaaagggcaa accaaaccct 60gacccgacaa acaagtgcac ggcatatatt gaaataaagg aaaagggcaa accaaaccct 60

atgcaacgaa acaaaaaaaa tcatgaaatc gatcccgtct gcggaacggc tagagccatc 120atgcaacgaa acaaaaaaaa tcatgaaatc gatcccgtct gcggaacggc tagagccatc 120

ccaggattcc ccaaagagaa acactggcaa gttagcaatc agaacgtgtc tgacgtacag 180ccaggattcc ccaaagagaa acactggcaa gttagcaatc agaacgtgtc tgacgtacag 180

gtcgcatccg tgtacgaacg ctagcagcac ggatctaaca caaacacgga tctaacacaa 240gtcgcatccg tgtacgaacg ctagcagcac ggatctaaca caaacacgga tctaacacaa 240

acatgaacag aagtagaact accgggccct aaccatggac cggaacgccg atctagagaa 300acatgaacag aagtagaact accgggccct aaccatggac cggaacgccg atctagagaa 300

ggtagagagg gggggggggg gaggacgagc ggcgtacctt gaagcggagg tgccgacggg 360ggtagagagg gggggggggg gaggacgagc ggcgtacctt gaagcggagg tgccgacggg 360

tggatttggg ggagatcgtg accagctcga atttccccga tcgttcaaac atttggcaat 420tggatttggg ggagatcgtg accagctcga atttccccga tcgttcaaac atttggcaat 420

aaagtttctt aagattgaat cctgttgccg gtcttgcgat gattatcata taatttctgt 480aaagtttctt aagattgaat cctgttgccg gtcttgcgat gattatcata taatttctgt 480

tgaattacgt taagcatgta ataattaaca tgtaatgcat gacgttattt atgagatggg 540tgaattacgt taagcatgta ataattaaca tgtaatgcat gacgttattt atgagatggg 540

tttttatgat tagagtcccg caattataca tttaatacgc gatagaaaac aaaatatagc 600tttttatgat tagagtcccg caattataca tttaatacgc gatagaaaac aaaatatagc 600

gcgcaaacta ggataaatta tcgcgcgcgg tgtcatctat gttactagat cgggaattaa 660gcgcaaacta ggataaatta tcgcgcgcgg tgtcatctat gttatactagat cgggaattaa 660

actatcagtg ttgatggcat gaggcgatgg atctggatca aaccgaaata ggaacaggat 720actatcagtg ttgatggcat gaggcgatgg atctggatca aaccgaaata ggaacaggat 720

ggacggcatc cccaatcgcc acgcaacggt tgactttatt tggctaaaga caaaagaaac 780ggacggcatc cccaatcgcc acgcaacggt tgactttatttggctaaaga caaaagaaac 780

tagaatagca tattgatctc tgtcaaatat ttaaaatgaa gctttcgtta cttcaaaaat 840tagaatagca tattgatctc tgtcaaatat ttaaaatgaa gctttcgtta cttcaaaaat 840

catgttttag ttgttaaaat tagttgtagg catctaaaca gtttagctaa tagttcaact 900catgttttag ttgttaaaat tagttgtagg catctaaaca gtttagctaa tagttcaact 900

attacctact tttagcaaaa cggctaatag ttagccaact atttgttagc tacctaatta 960attacctact tttagcaaaa cggctaatag ttagccaact atttgttagc tacctaatta 960

cattagtaac tttttagcca acttagagca actctaaaag aagccctaaa ctatcccaaa 1020cattagtaac tttttagcca acttagagca actctaaaag aagccctaaa ctatcccaaa 1020

attaatatta g 1031attaatatta g 1031

<210> 3<210> 3

<211> 559<211> 559

<212> DNA<212> DNA

<213> 人工合成(unknown)<213> Artificial synthesis (unknown)

<400> 3<400> 3

agcacgcctg catctgttcc tcgcagatag attcagctcg cctgccggcc ggtgacaaca 60agcacgcctg catctgttcc tcgcagatag attcagctcg cctgccggcc ggtgacaaca 60

attagtatgt gttgcaattt gcaagtgagg tgacgatcga cgtgcagtgc agagagagat 120attagtatgt gttgcaattt gcaagtgagg tgacgatcga cgtgcagtgc agagagat 120

gcatggaatt aatgggtgat gcatcatcgc tagtcaaagt gtggctggcc caatgtgggg 180gcatggaatt aatgggtgat gcatcatcgc tagtcaaagt gtggctggcc caatgtgggg 180

agggctcgaa ttttgtttct ttccgccgcg cgccactcga tcgtcttgtc atgtctgtac 240agggctcgaa ttttgtttct ttccgccgcg cgccactcga tcgtcttgtc atgtctgtac 240

ctagactagt agggctggtt gctagagagt gcttggtgta aacaaattga cgcttagaca 300ctagactagt agggctggtt gctagagagt gcttggtgta aacaaattga cgcttagaca 300

acttaataac acattgcgga cgtttttaat gtactgaatt aacgccgaat taattcgggg 360acttaataac acattgcgga cgtttttaat gtactgaatt aacgccgaat taattcgggg 360

gatctggatt ttagtactgg attttggttt taggaattag aaattttatt gatagaagta 420gatctggatt ttagtactgg attttggttt taggaattag aaattttat gatagaagta 420

ttttacaaat acaaatacat actaagggtt tcttatatgc tcaacacatg agcgaaaccc 480ttttacaaat acaaatacat actaagggtt tcttatatgc tcaacacatg agcgaaaccc 480

tataggaacc ctaattccct tatctgggaa ctactcacac attattatgg agaaactcga 540tataggaacc ctaattccct tatctgggaa ctactcacac attattatgg agaaactcga 540

gtcaaatctc ggtgacggg 559gtcaaatctc ggtgacggg 559

<210> 4<210> 4

<211> 728<211> 728

<212> DNA<212> DNA

<213> 人工合成(unknown)<213> Artificial synthesis (unknown)

<400> 4<400> 4

gacccgacaa acaagtgcac ggcatatatt gaaataaagg aaaagggcaa accaaaccct 60gacccgacaa acaagtgcac ggcatatatt gaaataaagg aaaagggcaa accaaaccct 60

atgcaacgaa acaaaaaaaa tcatgaaatc gatcccgtct gcggaacggc tagagccatc 120atgcaacgaa acaaaaaaaa tcatgaaatc gatcccgtct gcggaacggc tagagccatc 120

ccaggattcc ccaaagagaa acactggcaa gttagcaatc agaacgtgtc tgacgtacag 180ccaggattcc ccaaagagaa acactggcaa gttagcaatc agaacgtgtc tgacgtacag 180

gtcgcatccg tgtacgaacg ctagcagcac ggatctaaca caaacacgga tctaacacaa 240gtcgcatccg tgtacgaacg ctagcagcac ggatctaaca caaacacgga tctaacacaa 240

acatgaacag aagtagaact accgggccct aaccatggac cggaacgccg atctagagaa 300acatgaacag aagtagaact accgggccct aaccatggac cggaacgccg atctagagaa 300

ggtagagagg gggggggggg gaggacgagc ggcgtacctt gaagcggagg tgccgacggg 360ggtagagagg gggggggggg gaggacgagc ggcgtacctt gaagcggagg tgccgacggg 360

tggatttggg ggagatcgtg accagctcga atttccccga tcgttcaaac atttggcaat 420tggatttggg ggagatcgtg accagctcga atttccccga tcgttcaaac atttggcaat 420

aaagtttctt aagattgaat cctgttgccg gtcttgcgat gattatcata taatttctgt 480aaagtttctt aagattgaat cctgttgccg gtcttgcgat gattatcata taatttctgt 480

tgaattacgt taagcatgta ataattaaca tgtaatgcat gacgttattt atgagatggg 540tgaattacgt taagcatgta ataattaaca tgtaatgcat gacgttattt atgagatggg 540

tttttatgat tagagtcccg caattataca tttaatacgc gatagaaaac aaaatatagc 600tttttatgat tagagtcccg caattataca tttaatacgc gatagaaaac aaaatatagc 600

gcgcaaacta ggataaatta tcgcgcgcgg tgtcatctat gttactagat cgggaattaa 660gcgcaaacta ggataaatta tcgcgcgcgg tgtcatctat gttatactagat cgggaattaa 660

actatcagtg ttgatggcat gaggcgatgg atctggatca aaccgaaata ggaacaggat 720actatcagtg ttgatggcat gaggcgatgg atctggatca aaccgaaata ggaacaggat 720

ggacggca 728ggacggca 728

<210> 5<210> 5

<211> 6093<211> 6093

<212> DNA<212> DNA

<213> 人工 合成(unknown)<213> Artificial synthesis (unknown)

<400> 5<400> 5

tctttatcag ctataagttt cgctgaaggc ttgagtccgt tactactatc aaaacagcag 60tctttatcag ctataagttt cgctgaaggc ttgagtccgt tactactatc aaaacagcag 60

cagcagtaac aacaacaaga tgtttagatc tttcaggaag ggagtaatgc catttctagg 120cagcagtaac aacaacaaga tgtttagatc tttcaggaag ggagtaatgc catttctagg 120

agacaaaagt aaaaggcgat ctatggcgct gtgttgtcgt ctgttacagg gaagacgtag 180agacaaaagt aaaaggcgat ctatggcgct gtgttgtcgt ctgttacagg gaagacgtag 180

ccttttcccc tatatctgct gcagttttcc ataacggatt cgtacaacgc tacccggccg 240ccttttcccc tatatctgct gcagttttcc ataacggatt cgtacaacgc tacccggccg 240

ttagctacga attgtgacga tgcccctgct ttagcaaaag ctagcggaat tattgagttc 300ttagctacga attgtgacga tgcccctgct ttagcaaaag ctagcggaat tattgagttc 300

tggcaccgtc ggtttgtcgg tcgatctctc aacgtaattg ctgttcctcg cggaattgcg 360tggcaccgtc ggtttgtcgg tcgatctctc aacgtaattg ctgttcctcg cggaattgcg 360

cgatgatatg aagtgaagct agctgtcacg aatagcttga gctcagacct gcagcacgcc 420cgatgatatg aagtgaagct agctgtcacg aatagcttga gctcagacct gcagcacgcc 420

tgcatctgtt cctcgcagat agattcagct cgcctgccgg ccggtgacaa caattagtat 480tgcatctgtt cctcgcagat agattcagct cgcctgccgg ccggtgacaa caattagtat 480

gtgttgcaat ttgcaagtga ggtgacgatc gacgtgcagt gcagagagag atgcatggaa 540gtgttgcaat ttgcaagtga ggtgacgatc gacgtgcagt gcagagagag atgcatggaa 540

ttaatgggtg atgcatcatc gctagtcaaa gtgtggctgg cccaatgtgg ggagggctcg 600ttaatgggtg atgcatcatc gctagtcaaa gtgtggctgg cccaatgtgg ggagggctcg 600

aattttgttt ctttccgccg cgcgccactc gatcgtcttg tcatgtctgt acctagacta 660aattttgttt ctttccgccg cgcgccactc gatcgtcttg tcatgtctgt acctagacta 660

gtagggctgg ttgctagaga gtgcttggtg taaacaaatt gacgcttaga caacttaata 720gtagggctgg ttgctagaga gtgcttggtg taaacaaatt gacgcttaga caacttaata 720

acacattgcg gacgttttta atgtactgaa ttaacgccga attaattcgg gggatctgga 780acacattgcg gacgttttta atgtactgaa ttaacgccga attaattcgg gggatctgga 780

ttttagtact ggattttggt tttaggaatt agaaatttta ttgatagaag tattttacaa 840ttttagtact ggattttggt tttaggaatt agaaatttta ttgatagaag tattttacaa 840

atacaaatac atactaaggg tttcttatat gctcaacaca tgagcgaaac cctataggaa 900atacaaatac atactaaggg tttcttatat gctcaacaca tgagcgaaac cctataggaa 900

ccctaattcc cttatctggg aactactcac acattattat ggagaaactc gagtcaaatc 960ccctaattcc cttatctggg aactactcac acattattat ggagaaactc gagtcaaatc 960

tcggtgacgg gcaggaccgg acggggcggt accggcaggc tgaagtccag ctgccagaaa 1020tcggtgacgg gcaggaccgg acggggcggt accggcaggc tgaagtccag ctgccagaaa 1020

cccacgtcat gccagttccc gtgcttgaag ccggccgccc gcagcatgcc gcggggggca 1080cccacgtcat gccagttccc gtgcttgaag ccggccgccc gcagcatgcc gcggggggca 1080

tatccgagcg cctcgtgcat gcgcacgctc gggtcgttgg gcagcccgat gacagcgacc 1140tatccgagcg cctcgtgcat gcgcacgctc gggtcgttgg gcagcccgat gacagcgacc 1140

acgctcttga agccctgtgc ctccagggac ttcagcaggt gggtgtagag cgtggagccc 1200acgctcttga agccctgtgc ctccagggac ttcagcaggt gggtgtagag cgtggagccc 1200

agtcccgtcc gctggtggcg gggggagacg tacacggtcg actcggccgt ccagtcgtag 1260agtcccgtcc gctggtggcg gggggagacg tacacggtcg actcggccgt ccagtcgtag 1260

gcgttgcgtg ccttccaggg gcccgcgtag gcgatgccgg cgacctcgcc gtccacctcg 1320gcgttgcgtg ccttccaggg gcccgcgtag gcgatgccgg cgacctcgcc gtccacctcg 1320

gcgacgagcc agggatagcg ctcccgcaga cggacgaggt cgtccgtcca ctcctgcggt 1380gcgacgagcc agggatagcg ctcccgcaga cggacgaggt cgtccgtcca ctcctgcggt 1380

tcctgcggct cggtacggaa gttgaccgtg cttgtctcga tgtagtggtt gacgatggtg 1440tcctgcggct cggtacggaa gttgaccgtg cttgtctcga tgtagtggtt gacgatggtg 1440

cagaccgccg gcatgtccgc ctcggtggca cggcggatgt cggccgggcg tcgttctggg 1500cagaccgccg gcatgtccgc ctcggtggca cggcggatgt cggccgggcg tcgttctggg 1500

ctcatggtag actcgagaga gatagatttg tagagagaga ctggtgattt cagcgtgtcc 1560ctcatggtag actcgagaga gatagatttg tagagagaga ctggtgattt cagcgtgtcc 1560

tctccaaatg aaatgaactt ccttatatag aggaaggtct tgcgaaggat agtgggattg 1620tctccaaatg aaatgaactt ccttatatag aggaaggtct tgcgaaggat agtgggattg 1620

tgcgtcatcc cttacgtcag tggagatatc acatcaatcc acttgctttg aagacgtggt 1680tgcgtcatcc cttacgtcag tggagatatc acatcaatcc acttgctttg aagacgtggt 1680

tggaacgtct tctttttcca cgatgctcct cgtgggtggg ggtccatctt tgggaccact 1740tggaacgtct tctttttcca cgatgctcct cgtgggtggg ggtccatctt tgggaccact 1740

gtcggcagag gcatcttgaa cgatagcctt tcctttatcg caatgatggc atttgtaggt 1800gtcggcagag gcatcttgaa cgatagcctt tcctttatcg caatgatggc atttgtaggt 1800

gccaccttcc ttttctactg tccttttgat gaagtgacag atagctgggc aatggaatcc 1860gccaccttcc ttttctactg tccttttgat gaagtgacag atagctgggc aatggaatcc 1860

gaggaggttt cccgatatta ccctttgttg aaaagtctca atagcccttt ggtcttctga 1920gaggaggttt cccgatatta ccctttgttg aaaagtctca atagcccttt ggtcttctga 1920

gactgtatct ttgatattct tggagtagac gagagtgtcg tgctccacca tgttggcaag 1980gactgtatct ttgatattct tggagtagac gagagtgtcg tgctccacca tgttggcaag 1980

ctgctctagc caatacgcaa accgcctctc cccgcgcgtt ggccgattca ttaatgcagc 2040ctgctctagc caatacgcaa accgcctctc cccgcgcgtt ggccgattca ttaatgcagc 2040

tggcacgaca ggtttcccga ctggaaagcg ggcagtgagc gcaacgcaat taatgtgagt 2100tggcacgaca ggtttcccga ctggaaagcg ggcagtgagc gcaacgcaat taatgtgagt 2100

tagctcactc attaggcacc ccaggcttta cactttatgc ttccggctcg tatgttgtgt 2160tagctcactc attaggcacc ccaggcttta cactttatgc ttccggctcg tatgttgtgt 2160

ggaattgtga gcggataaca atttcacaca ggaaacagct atgacatgat tacgaattct 2220ggaattgtga gcggataaca atttcacaca ggaaacagct atgacatgat tacgaattct 2220

catgtttgac agcttatcat cggatctagt aacatagatg acaccgcgcg cgataattta 2280catgtttgac agcttatcat cggatctagt aacatagatg acaccgcgcg cgataattta 2280

tcctagtttg cgcgctatat tttgttttct atcgcgtatt aaatgtataa ttgcgggact 2340tcctagtttg cgcgctatat tttgttttct atcgcgtatt aaatgtataa ttgcgggact 2340

ctaatcataa aaacccatct cataaataac gtcatgcatt acatgttaat tattacatgc 2400ctaatcataa aaacccatct cataaataac gtcatgcatt acatgttaat tattacatgc 2400

ttaacgtaat tcaacagaaa ttatatgata atcatcgcaa gaccggcaac aggattcaat 2460ttaacgtaat tcaacagaaa ttatatgata atcatcgcaa gaccggcaac aggattcaat 2460

cttaagaaac tttattgcca aatgtttgaa cgatcgatcc actagtcaat cactagtgaa 2520cttaagaaac tttattgcca aatgtttgaa cgatcgatcc actagtcaat cactagtgaa 2520

ttcgagctct cagtggagcg tgggctcgtc ggccatctcg acgccgttga cgctgccgtc 2580ttcgagctct cagtggagcg tgggctcgtc ggccatctcg acgccgttga cgctgccgtc 2580

ggcgccgggg cggcccgcct tgtacttgta ccagcgggcg gcgacgaggt agactagtag 2640ggcgccgggg cggcccgcct tgtacttgta ccagcgggcg gcgacgaggt agactagtag 2640

gttggcgagg cagacggcgg cgagcagcca gtagaagttg tcgaggcggc ccttgttgag 2700gttggcgagg cagacggcgg cgagcagcca gtagaagttg tcgaggcggc ccttgttgag 2700

gtcgttggcg atccaggggt ggcggtcgcc cgtgaccctg tgcacggcgg cgacgagcgc 2760gtcgttggcg atccaggggt ggcggtcgcc cgtgaccctg tgcacggcgg cgacgagcgc 2760

ggagctgacg aagaatccca gcgacagggt gctgaggaac agccccgtgc tcatggtctt 2820ggagctgacg aagaatccca gcgacagggt gctgaggaac agccccgtgc tcatggtctt 2820

catccccttg gggcactcgc gcaggaagaa gtcgagctgg ccgatgtacg tgaacgcctc 2880catccccttg gggcactcgc gcaggaagaa gtcgagctgg ccgatgtacg tgaacgcctc 2880

gcccgccccc acgaggaaga actgcgggat gagccagaac acggacatgg gcacgacgcc 2940gcccgccccc acgaggaaga actgcggggat gagccagaac acggacatgg gcacgacgcc 2940

tccggaggcg gactcggagg aatcgcgcgc gacgcggagg cggcggacct ccgtgagcgc 3000tccggaggcg gactcggagg aatcgcgcgc gacgcggagg cggcggacct ccgtgagcgc 3000

ggcgcccgcc atggcgacga cggagagcgc gaggccgacg gcgatccgct gcagcggggt 3060ggcgcccgcc atggcgacga cggagagcgc gaggccgacg gcgatccgct gcagcggggt 3060

gaggccgtgc gggttgccgc tgacgcggcg cgcgacgggc accaccaggc ggtcgtagac 3120gaggccgtgc gggttgccgc tgacgcggcg cgcgacgggc accaccaggc ggtcgtagac 3120

gggcacggtg agcaggatgg agccgacgaa gaagacggtg agggagcccg cggggatctg 3180gggcacggtg agcaggatgg agccgacgaa gaagacggtg agggagcccg cggggatctg 3180

gaacgagccc ccgacgcggc ggtccatggt ggtggcctgc gacaccgaga aggtggtcat 3240gaacgagccc ccgacgcggc ggtccatggt ggtggcctgc gacaccgaga aggtggtcat 3240

ctgcgcgtac accgtccaga acatgatcgt ggtcgcccag atcggcagca tccgcgccac 3300ctgcgcgtac accgtccaga acatgatcgt ggtcgcccag atcggcagca tccgcgccac 3300

cgtcttcacc tcctccacgt ccgtcagcgt cgccagccgc cacttgctgc tgctgctcgc 3360cgtcttcacc tcctccacgt ccgtcagcgt cgccagccgc cacttgctgc tgctgctcgc 3360

ccccgccgcc ggatcctcgt tgatcgccgc gtggtccagg aagcggaact ggtcggtgtg 3420ccccgccgcc ggatcctcgt tgatcgccgc gtggtccagg aagcggaact ggtcggtgtg 3420

ggggaggcgc tccttgcgct tgctcttctt gctggaggac ccatcctcga cggcggcggc 3480ggggaggcgc tccttgcgct tgctcttctt gctggaggac ccatcctcga cggcggcggc 3480

cttgccgacg tcgacgtcgt agagcatggc ggggtcggcg gggagaggga ggcggcgctt 3540cttgccgacg tcgacgtcgt agagcatggc ggggtcggcg gggagaggga ggcggcgctt 3540

gcgccaggcg gcgacgacga cggcggcgat ctgcgtgagg gggctgccgg ccagcttctt 3600gcgccaggcg gcgacgacga cggcggcgat ctgcgtgagg gggctgccgg ccagcttctt 3600

gaagcggtac ctgcgtgtgc cggccaggaa gacgaggagg cccgcggcga tggcgcaggc 3660gaagcggtac ctgcgtgtgc cggccaggaa gacgaggagg cccgcggcga tggcgcaggc 3660

gcaggcgccg tagccccagc gcctgcccag gttgtcctgg acgtacacca gcacggtgac 3720gcaggcgccg tagccccagc gcctgcccag gttgtcctgg acgtacacca gcacggtgac 3720

ggccagcagc gaccccagcg agatgaagaa gaagaaccag ttgaagaagc gcatcatctg 3780ggccagcagc gaccccagcg agatgaagaa gaagaaccag ttgaagaagc gcatcatctg 3780

ccgcttctcc ccgccgtccg actcgtcgaa ctggtccgac ccgaaccccg acacgctcga 3840ccgcttctcc ccgccgtccg actcgtcgaa ctggtccgac ccgaaccccg acacgctcga 3840

ctttagccca cccgtgccca gcgccgtcag gtacagcgcc aggtacagca cccccagctg 3900ctttagccca cccgtgccca gcgccgtcag gtacagcgcc aggtacagca cccccagctg 3900

cgcccccgac gcccgcgcgc actccccgac gacgcctccg ccggtcgcgg agcaggacgc 3960cgcccccgac gcccgcgcgc actccccgac gacgcctccg ccggtcgcgg agcaggacgc 3960

cggccgtagc cccggcgccg ccgtcgagat cgtcaggatc gtcacgcccg aggcctggac 4020cggccgtagc cccggcgccg ccgtcgagat cgtcaggatc gtcacgcccg aggcctggac 4020

ggcggtgaag atggcgatgg tgaggtagcg gccgaggaag gagtcggcga cgaagccgcc 4080ggcggtgaag atggcgatgg tgaggtagcg gccgaggaag gagtcggcga cgaagccgcc 4080

gaggaggcag agcatgaagg aggtgcccat gaagttggtg acgacgttgg cggactcggc 4140gaggaggcag agcatgaagg aggtgcccat gaagttggtg acgacgttgg cggactcggc 4140

gttgcccagg tgcatggtgc ccgtcaggta cgtcaccagg ttcacggcga tgcccagcgt 4200gttgcccagg tgcatggtgc ccgtcaggta cgtcaccagg ttcacggcga tgcccagcgt 4200

cgtcagccgc tcgttcagct ccgccactag gatcatggcg gcggcgcccc agcggccggt 4260cgtcagccgc tcgttcagct ccgccactag gatcatggcg gcggcgcccc agcggccggt 4260

ggtggcgcgc ggggccggcc ggcccttgaa gtcccaggcg tcgaggagga cgtccgtctc 4320ggtggcgcgc ggggccggcc ggcccttgaa gtcccaggcg tcgaggagga cgtccgtctc 4320

cgccgcggca ttggtctcgg ggaggagtcc gaccatgagc tcggtacccg gggatcctct 4380cgccgcggca ttggtctcgg ggaggagtcc gaccatgagc tcggtacccg gggatcctct 4380

agagtcgacc tgcagaagta acaccaaaca acagggtgag catcgacaaa agaaacagta 4440agagtcgacc tgcagaagta acaccaaaca acagggtgag catcgacaaa agaaacagta 4440

ccaagcaaat aaatagcgta tgaaggcagg gctaaaaaaa tccacatata gctgctgcat 4500ccaagcaaat aaatagcgta tgaaggcagg gctaaaaaaa tccacatata gctgctgcat 4500

atgccatcat ccaagtatat caagatcaaa ataattataa aacatacttg tttattataa 4560atgccatcat ccaagtatat caagatcaaa ataattataa aacatacttg tttattataa 4560

tagataggta ctcaaggtta gagcatatga atagatgctg catatgccat catgtatatg 4620tagataggta ctcaaggtta gagcatatga atagatgctg catatgccat catgtatatg 4620

catcagtaaa acccacatca acatgtatac ctatcctaga tcgatatttc catccatctt 4680catcagtaaa acccacatca acatgtatac ctatcctaga tcgatatttc catccatctt 4680

aaactcgtaa ctatgaagat gtatgacaca cacatacagt tccaaaatta ataaatacac 4740aaactcgtaa ctatgaagat gtatgacaca cacatacagt tccaaaatta ataaatacac 4740

caggtagttt gaaacagtat tctactccga tctagaacga atgaacgacc gcccaaccac 4800caggtagttt gaaacagtat tctactccga tctagaacga atgaacgacc gcccaaccac 4800

accacatcat cacaaccaag cgaacaaaaa gcatctctgt atatgcatca gtaaaacccg 4860accacatcat cacaaccaag cgaacaaaaa gcatctctgt atatgcatca gtaaaacccg 4860

catcaacatg tatacctatc ctagatcgat atttccatcc atcatcttca attcgtaact 4920catcaacatg tatacctatc ctagatcgat atttccatcc atcatcttca attcgtaact 4920

atgaatatgt atggcacaca catacagatc caaaattaat aaatccacca ggtagtttga 4980atgaatatgt atggcacaca catacagatc caaaattaat aaatccacca ggtagtttga 4980

aacagaattc tactccgatc tagaacgacc gcccaaccag accacatcat cacaaccaag 5040aacagaattc tactccgatc tagaacgacc gcccaaccag accacatcat cacaaccaag 5040

acaaaaaaaa gcatgaaaag atgacccgac aaacaagtgc acggcatata ttgaaataaa 5100acaaaaaaaa gcatgaaaag atgacccgac aaacaagtgc acggcatata ttgaaataaa 5100

ggaaaagggc aaaccaaacc ctatgcaacg aaacaaaaaa aatcatgaaa tcgatcccgt 5160ggaaaagggc aaaccaaacc ctatgcaacg aaacaaaaaa aatcatgaaa tcgatcccgt 5160

ctgcggaacg gctagagcca tcccaggatt ccccaaagag aaacactggc aagttagcaa 5220ctgcggaacg gctagagcca tcccaggatt ccccaaagag aaacactggc aagttagcaa 5220

tcagaacgtg tctgacgtac aggtcgcatc cgtgtacgaa cgctagcagc acggatctaa 5280tcagaacgtg tctgacgtac aggtcgcatc cgtgtacgaa cgctagcagc acggatctaa 5280

cacaaacacg gatctaacac aaacatgaac agaagtagaa ctaccgggcc ctaaccatgg 5340cacaaacacg gatctaacac aaacatgaac agaagtagaa ctaccgggcc ctaaccatgg 5340

accggaacgc cgatctagag aaggtagaga gggggggggg gggaggacga gcggcgtacc 5400accggaacgc cgatctagag aaggtagaga gggggggggg gggaggacga gcggcgtacc 5400

ttgaagcgga ggtgccgacg ggtggatttg ggggagatcg tgaccagctc gaatttcccc 5460ttgaagcgga ggtgccgacg ggtggatttg ggggagatcg tgaccagctc gaatttcccc 5460

gatcgttcaa acatttggca ataaagtttc ttaagattga atcctgttgc cggtcttgcg 5520gatcgttcaa acatttggca ataaagtttc ttaagattga atcctgttgc cggtcttgcg 5520

atgattatca tataatttct gttgaattac gttaagcatg taataattaa catgtaatgc 5580atgattatca tataatttct gttgaattac gttaagcatg taataattaa catgtaatgc 5580

atgacgttat ttatgagatg ggtttttatg attagagtcc cgcaattata catttaatac 5640atgacgttat ttatgagatg ggtttttatg attagagtcc cgcaattata catttaatac 5640

gcgatagaaa acaaaatata gcgcgcaaac taggataaat tatcgcgcgc ggtgtcatct 5700gcgatagaaa acaaaatata gcgcgcaaac taggataaat tatcgcgcgc ggtgtcatct 5700

atgttactag atcgggaatt aaactatcag tgttgatggc atgaggcgat ggatctggat 5760atgttactag atcgggaatt aaactatcag tgttgatggc atgaggcgat ggatctggat 5760

caaaccgaaa taggaacagg atggacggca tccccaatcg ccacgcaacg gttgacttta 5820caaaccgaaa taggaacagg atggacggca tccccaatcg ccacgcaacg gttgacttta 5820

tttggctaaa gacaaaagaa actagaatag catattgatc tctgtcaaat atttaaaatg 5880tttggctaaa gacaaaagaa actagaatag catattgatc tctgtcaaat atttaaaatg 5880

aagctttcgt tacttcaaaa atcatgtttt agttgttaaa attagttgta ggcatctaaa 5940aagctttcgt tacttcaaaa atcatgtttt agttgttaaa attagttgta ggcatctaaa 5940

cagtttagct aatagttcaa ctattaccta cttttagcaa aacggctaat agttagccaa 6000cagtttagct aatagttcaa ctattaccta cttttagcaa aacggctaat agttagccaa 6000

ctatttgtta gctacctaat tacattagta actttttagc caacttagag caactctaaa 6060ctatttgtta gctacctaat tacattagta actttttagc caacttagag caactctaaa 6060

agaagcccta aactatccca aaattaatat tag 6093agaagcccta aactatccca aaattaatat tag 6093

<210> 6<210> 6

<211> 17<211> 17

<212> DNA<212> DNA

<213> Zea mays<213> Zea mays

<400> 6<400> 6

agcacgcctg catctgt 17agcacgcctg catctgt 17

<210> 7<210> 7

<211> 17<211> 17

<212> DNA<212> DNA

<213> 人工合成(unknown)<213> Artificial synthesis (unknown)

<400> 7<400> 7

cccgtcaccg agatttg 17cccgtcaccg agatttg 17

<210> 8<210> 8

<211> 18<211> 18

<212> DNA<212> DNA

<213> 人工合成(unknown)<213> Artificial synthesis (unknown)

<400> 8<400> 8

gacccgacaa acaagtgc 18gacccgacaa acaagtgc 18

<210> 9<210> 9

<211> 17<211> 17

<212> DNA<212> DNA

<213> Zea mays<213> Zea mays

<400> 9<400> 9

tgccgtccat cctgttc 17tgccgtccat cctgttc 17

Claims (10)

1. A nucleic acid molecule, characterized in that the sequence comprises any one of the following:
i) Comprises the sequence shown in SEQ ID NO. 1 and/or SEQ ID NO. 2, or the complementary sequence thereof;
ii) comprises the sequence shown in SEQ ID NO. 3, or a complement thereof;
ii) comprises the sequence shown in SEQ ID NO. 4, or a complement thereof;
iii) Comprising the sequence shown in SEQ ID No. 5, or the complementary sequence thereof.
2. A probe for detecting corn transformation event, characterized in that the sequence is SEQ ID NO. 1 or SEQ ID NO. 2 or SEQ ID NO. 3 or SEQ ID NO. 4.
3. A primer pair for detecting a maize transformation event, said primer pair comprising:
a primer specifically recognizing nucleotide sequences 1-647 of the sequence shown in SEQ ID NO. 5 and a primer specifically recognizing nucleotide sequences 648-5737 of the sequence shown in SEQ ID NO. 5; and/or
One primer specifically recognizing the 648-5737 th nucleotide sequence of the sequence shown in SEQ ID NO. 5 and one primer specifically recognizing the 5738-6093 th nucleotide sequence of the sequence shown in SEQ ID NO. 5.
4. A primer pair according to claim 3, wherein the amplification product of the primer pair comprises the sequence of claim 2.
5. The primer pair of claim 4, wherein the primer pair is a sequence shown as SEQ ID NO. 6 and SEQ ID NO. 7; or the sequences shown in SEQ ID NO. 8 and SEQ ID NO. 9.
6. Kit or microarray for detecting maize transformation events, characterized in that it comprises a probe according to claim 2 and/or a primer pair according to any one of claims 3 to 5.
7. A method for detecting a maize transformation event comprising detecting the presence or absence of said transformation event in a test sample using:
i) The probe of claim 2;
ii) a primer pair according to any one of claims 3 to 5;
iii) The probe of claim 2 and the primer pair of any one of claims 3 to 5; or alternatively
iv) the kit or microarray of claim 6.
8. A method of breeding maize, the method comprising the steps of:
1) Obtaining corn comprising the nucleic acid molecule of claim 1;
2) Obtaining a maize plant, seed, plant cell, progeny plant or plant part from the maize obtained in step 1) by pollen culture, unfertilized embryo culture, doubling culture, cell culture, tissue culture, selfing or crossing or a combination thereof; optionally, the composition may be in the form of a gel,
3) Performing nitrogen deficiency tolerance identification and/or yield trait identification on the progeny plants obtained in step 2) and detecting the presence or absence of said transformation event using the method of claim 7.
9. Use of a maize plant, seed, plant cell, progeny plant or plant part obtained by the method of claim 8 for the preparation of a product comprising a food, feed or industrial feedstock.
10. A method for increasing corn yield and/or nitrogen deficiency tolerance comprising planting at least one transgenic corn plant comprising SEQ ID NO 5 in the genome of said transgenic corn plant in soil; the transgenic maize plants have high yield and/or nitrogen deficiency tolerance traits.
CN202011565284.0A 2020-12-25 2020-12-25 Nucleic acid molecule for detecting corn plant ND4403 and detection method thereof Active CN112481412B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011565284.0A CN112481412B (en) 2020-12-25 2020-12-25 Nucleic acid molecule for detecting corn plant ND4403 and detection method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011565284.0A CN112481412B (en) 2020-12-25 2020-12-25 Nucleic acid molecule for detecting corn plant ND4403 and detection method thereof

Publications (2)

Publication Number Publication Date
CN112481412A CN112481412A (en) 2021-03-12
CN112481412B true CN112481412B (en) 2024-01-26

Family

ID=74915734

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011565284.0A Active CN112481412B (en) 2020-12-25 2020-12-25 Nucleic acid molecule for detecting corn plant ND4403 and detection method thereof

Country Status (1)

Country Link
CN (1) CN112481412B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014164074A1 (en) * 2013-03-13 2014-10-09 Pioneer Hi-Bred International, Inc. Enhanced nitrate uptake and nitrate translocation by over-expressing maize functional low-affinity nitrate transporters in transgenic maize
CN111206031A (en) * 2020-03-11 2020-05-29 中国农业科学院生物技术研究所 Nucleic acid sequence for detecting corn plant NAZ-4 and detection method thereof
CN111518941A (en) * 2020-05-13 2020-08-11 四川农业大学 Nucleic acid sequence for detecting corn plant AN1 and detection method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014164074A1 (en) * 2013-03-13 2014-10-09 Pioneer Hi-Bred International, Inc. Enhanced nitrate uptake and nitrate translocation by over-expressing maize functional low-affinity nitrate transporters in transgenic maize
CN111206031A (en) * 2020-03-11 2020-05-29 中国农业科学院生物技术研究所 Nucleic acid sequence for detecting corn plant NAZ-4 and detection method thereof
CN111518941A (en) * 2020-05-13 2020-08-11 四川农业大学 Nucleic acid sequence for detecting corn plant AN1 and detection method thereof

Also Published As

Publication number Publication date
CN112481412A (en) 2021-03-12

Similar Documents

Publication Publication Date Title
Bragg et al. Generation and characterization of the Western Regional Research Center Brachypodium T-DNA insertional mutant collection
JP5685228B2 (en) Corn event DAS-59122-7 and method for its detection
EP3054764B1 (en) Transgenic corn event mon87403 and methods for detection thereof
DK2602325T3 (en) The corn plant MON87460 Event and compositions and methods for the detection thereof
JP6393478B2 (en) Soybean plant and seed corresponding to transgenic event MON87712 and method for detecting it
RU2352638C2 (en) Plant transformants of pv-zmir13 (mon863) maize and compositions and methods of identifying them
CN112105722B (en) Gene, construct and maize event DP-202216-6
WO2024060732A1 (en) Transgenic zea mays l. event lp026-2 and detection method therefor
CN111206031A (en) Nucleic acid sequence for detecting corn plant NAZ-4 and detection method thereof
CN104830845A (en) Nucleic acid sequence used for detecting herbicide-tolerant corn plant DBN9878 and detection method thereof
CN104878092A (en) Nucleic acid sequence for detecting corn plant DBN9953 and detecting method thereof
CN110195122A (en) It is a kind of for detecting the nucleic acid sequence and its detection method of corn plant T anti-4
CN112662799B (en) Nucleic acid molecule for detecting corn plant ND4401 and detection method thereof
CN112430684B (en) Nucleic acid sequence for detecting rice plant H23 and detection method thereof
CN116287384B (en) Nucleic acid molecules, detection methods and applications of insect-resistant and herbicide-tolerant maize transformation event LD05
CN108329383A (en) A kind of and not affine relevant albumen of corn hybridization and its encoding gene and application
CN114514330A (en) Compositions and methods for detecting chromosomal translocations in Brassica napus
CN112481412B (en) Nucleic acid molecule for detecting corn plant ND4403 and detection method thereof
CN112574987B (en) A kind of nucleic acid molecule for detecting corn plant ND6603 and its detection method
CN114525277B (en) Nucleic acid sequence for detecting 17L397-1 in cotton and detection method thereof
US20230365985A1 (en) PROTEINS AND BIOLOGICAL MATERIALS RELATED TO RICE (Oryza sativa L.) YIELD, AND USE THEREOF IN RICE YIELD INCREASE
CN112795571B (en) Herbicide-resistant corn transformant and preparation method thereof
CN110129471A (en) A nucleic acid sequence for detecting rice plant ZUPM01 and its detection method
CN116200529B (en) Nucleic acid sequence of maize transformation event LG11 and its detection method
CN104650204A (en) Protein related to rice ATP transportation and chloroplast development, as well as encoding gene and applications thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address

Address after: No.130033 ecological street, Changchun City, Jilin Province

Patentee after: Jilin Academy of Agricultural Sciences (China Agricultural Science and Technology Northeast Innovation Center)

Country or region after: China

Address before: No. 1363 Ecological Street, Jingyue High tech Development Zone, Changchun City, Jilin Province

Patentee before: Jilin Academy of Agricultural Sciences

Country or region before: China

CP03 Change of name, title or address