CN112480452B - 各向异性织构/金属离子注入改性聚合物表面的方法 - Google Patents
各向异性织构/金属离子注入改性聚合物表面的方法 Download PDFInfo
- Publication number
- CN112480452B CN112480452B CN202011356147.6A CN202011356147A CN112480452B CN 112480452 B CN112480452 B CN 112480452B CN 202011356147 A CN202011356147 A CN 202011356147A CN 112480452 B CN112480452 B CN 112480452B
- Authority
- CN
- China
- Prior art keywords
- polymer
- texture
- ion implantation
- vacuum
- anisotropic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229920000642 polymer Polymers 0.000 title claims abstract description 69
- 229910021645 metal ion Inorganic materials 0.000 title claims abstract description 16
- 238000000034 method Methods 0.000 title claims abstract description 13
- 238000005468 ion implantation Methods 0.000 title claims description 20
- -1 polytetrafluoroethylene Polymers 0.000 claims abstract description 17
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims abstract description 17
- 239000004810 polytetrafluoroethylene Substances 0.000 claims abstract description 17
- 239000004642 Polyimide Substances 0.000 claims abstract description 16
- 229920001721 polyimide Polymers 0.000 claims abstract description 16
- 238000005516 engineering process Methods 0.000 claims abstract description 10
- 239000008367 deionised water Substances 0.000 claims description 12
- 229910021641 deionized water Inorganic materials 0.000 claims description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 12
- 239000000463 material Substances 0.000 claims description 11
- 238000004140 cleaning Methods 0.000 claims description 9
- 239000003344 environmental pollutant Substances 0.000 claims description 6
- 231100000719 pollutant Toxicity 0.000 claims description 6
- 229910001220 stainless steel Inorganic materials 0.000 claims description 4
- 239000010935 stainless steel Substances 0.000 claims description 4
- 238000004506 ultrasonic cleaning Methods 0.000 claims description 3
- 238000010891 electric arc Methods 0.000 claims description 2
- 150000002500 ions Chemical class 0.000 abstract description 11
- 230000001276 controlling effect Effects 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 229910000831 Steel Inorganic materials 0.000 description 5
- 239000010959 steel Substances 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 239000002783 friction material Substances 0.000 description 4
- 230000001050 lubricating effect Effects 0.000 description 4
- 239000002131 composite material Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 239000002608 ionic liquid Substances 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 241000196324 Embryophyta Species 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 2
- 239000011664 nicotinic acid Substances 0.000 description 2
- 229920006254 polymer film Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- KYWMCFOWDYFYLV-UHFFFAOYSA-N 1h-imidazole-2-carboxylic acid Chemical compound OC(=O)C1=NC=CN1 KYWMCFOWDYFYLV-UHFFFAOYSA-N 0.000 description 1
- SJECZPVISLOESU-UHFFFAOYSA-N 3-trimethoxysilylpropan-1-amine Chemical compound CO[Si](OC)(OC)CCCN SJECZPVISLOESU-UHFFFAOYSA-N 0.000 description 1
- 235000005273 Canna coccinea Nutrition 0.000 description 1
- 240000008555 Canna flaccida Species 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000007306 functionalization reaction Methods 0.000 description 1
- 229910001425 magnesium ion Inorganic materials 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000002715 modification method Methods 0.000 description 1
- 238000005232 molecular self-assembly Methods 0.000 description 1
- 239000002120 nanofilm Substances 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 229920001690 polydopamine Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/06—Coating with compositions not containing macromolecular substances
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/02—Pretreatment of the material to be coated
- C23C14/021—Cleaning or etching treatments
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/02—Pretreatment of the material to be coated
- C23C14/028—Physical treatment to alter the texture of the substrate surface, e.g. grinding, polishing
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/04—Coating on selected surface areas, e.g. using masks
- C23C14/042—Coating on selected surface areas, e.g. using masks using masks
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/20—Metallic material, boron or silicon on organic substrates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
- C23C14/32—Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
- C23C14/325—Electric arc evaporation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2327/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
- C08J2327/02—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
- C08J2327/12—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
- C08J2327/18—Homopolymers or copolymers of tetrafluoroethylene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2379/00—Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
- C08J2379/04—Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
- C08J2379/08—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Physical Vapour Deposition (AREA)
- Treatments Of Macromolecular Shaped Articles (AREA)
Abstract
本发明公开了一种各向异性表面织构/金属离子改性聚合物表面的方法,是利用纳米压印技术对聚合物(聚酰亚胺或聚四氟乙烯)表面进行织构处理,再进一步采用Mevva‑V•Ru真空电弧离子源离子,在聚合物注入金属离子Mg或/和Ta,获得具有各向异性的聚合物表面,在降低聚合物摩擦系数(降低至0.2~0.5之间)的同时提高了其耐磨性,可用于航空、航天、轴承、垫圈等部件。
Description
技术领域
本发明涉及一种聚合物表面改性方法,尤其涉及一种1、各向异性织构/金属离子注入改性聚合物表面的方法,以改善聚合物的摩擦性能和耐磨性能,属于聚合物表面改性领域。
背景技术
聚合物,成为工程机械部件轻量化的首选材料,其功能化和服役寿命成为当前的迫切要求。尤其是在摩擦学和耐磨寿命方面,有时候同时要求其具有高阻力和低阻力,如使用聚酰亚胺或聚四氟乙烯作为轴套材料,就要求在运动方向向低阻力,但是在非运动方向上是高阻力,以保证设备运行的稳定性。表面织构是实现摩擦学各项异性的有效手段。ZL201610579008.7 公开了一种微织构化三层复合润滑薄膜的制备方法,在单晶硅表面刻蚀获得具有规则正六边形阵列形貌的微观粗糙结构,然后通过分子自组装、聚合物和离子液体技术,在微织构硅片表面依次获得(3-氨丙基)三甲氧基硅烷(APS)基底固定薄膜层、聚多巴胺(PDA)中间连接薄膜层和羧基咪唑类离子液体(IL-COOH)固定/流动两相润滑薄膜层,形成微织构化三层复合润滑薄膜。该发明所制备的微织构化三层复合润滑薄膜合理地将表面织构、自组装分子膜、聚合物薄膜和离子液体薄膜结合起来,有效改善了单晶硅表面的摩擦学性能。ZL 201911233637.4公开了一种基于表面织构的超声电机用增摩结构,包括摩擦材料基底,所述摩擦材料基底的材质为聚合物基复合材料,设置在超声电机的转子外端面,摩擦材料基底的表面设置有表面织构,表面织构的结构为微凸体或微凹坑的一种或两种,微凸体包括正六边形微凸体、方形微凸体、圆形微凸体,微凹坑包括正六边形微凹坑、方形微凹坑、圆形微凹坑。本发明在超声电机的摩擦材料进行表面织构,在干摩擦的条件下,表面织构的存在会增大摩擦系数,从而增大超声电机的输出力矩;表面织构形成的空隙能有效的捕获并容纳磨屑,减少了磨粒磨损和犁沟,提高了超声电机的使用寿命。ZL201810892248.1公开了一种具有优异力学、摩擦学表现的聚合物仿生织构薄膜及其制备方法,以美人蕉、鸢尾等植物叶片为模板,选用磺化的聚醚醚酮为基体材料,获得具有优异力学和摩擦学性能的聚醚醚酮仿生织构薄膜。该聚合物薄膜表面成功复制了植物叶片表面的微观纳米结构,增强了材料的力学和摩擦学性能。但是,如何在制备摩擦学各向异性的聚合物表面成为一项技术挑战。
发明内容
本发明的目的是提供一种各向异性织构/金属离子注入改性聚合物表面的方法,以获得特殊性能的聚合物表面,使聚合物具有各向异性、低摩擦、高耐磨性能。
一、各向异性表面织构/金属离子改性聚合物表面
本发明利用纳米压印技术对聚合物(聚酰亚胺或聚四氟乙烯)表面进行织构处理,再进一步采用Mevva-V·Ru真空电弧离子源离子,在聚合物注入单金属或双金属离子,进而获得的改性聚合物。
本发明各向异性的表面织构/金属离子注入改性聚合物表面的具体方法如下:
(1)将聚合物(聚酰亚胺或聚四氟乙烯)在去离子水中分别超声清洗5~10min,重复2~4次,去除表面的污染物;
(2)利用纳米压印技术对清洗后的聚合物表面进行织构处理,获得表面条状织构;在去离子水中超声清洗5~10min,重复2~4次,
(3)将压印织构处理后的聚合物放入真空腔,真空腔真空抽至1×10-7 Pa;真空腔中预先安置了Mg靶、Ta靶材作为离子注入材料;
(4)将织构处理后聚合物表面非刻蚀部分用不锈钢掩模版遮盖,打开电弧电源,调节电流18~38 A,占空比为62%,产生束电流密度为0.25~0.38 A/100 cm2·s;控制加速电压-22 kV,采用真空电弧离子源离子,对聚合物表面刻蚀部分注入Mg;或无需对织构处理后的聚合物表面进行遮盖,同时注入Mg和Ta;离子注入时间180~420 s,待真空腔腔体冷却后取出,即得改性聚合物表面。
上述真空电弧离子源采用Mevva-V.Ru真空电弧离子源。电弧电源采用直流脉冲弧电源。
通过上述表面条状织构化及单金属(Mg)或双金属离子(Mg和Ta)注入,获得的改性聚合物具有各向异性、低摩擦、高耐磨性能。
本发明对聚合物表面进行了改性处理,单金属注入时,Mg离子的注入改变聚合物表面物理化学性能,使得摩擦系数降低,聚合物表面形成如图1所示成分不同的条状区域,横向纵向摩擦时分别呈现除不同的摩擦系数。同理,对聚合物表面的条状织构化处理为其带来摩擦各向异性,双金属离子Mg、Ta的注入降低摩擦系数提高耐磨损性能。
二、各向异性表面织构/金属离子注入改性聚合物的摩擦性能
测试方法:在往复摩擦试验机上检测表面改性聚合物的摩擦系数。选择直径为ø6mm 的GCr15钢球作为对偶球。具体参数如下:摩擦载荷为5 N,频率为5 Hz,振幅为5 mm,湿度28 %,测试时间为50 min。
测试结果:聚合物摩擦系数从0.64降低至0.2~0.5之间,摩擦后聚合物表面几乎无磨损痕迹。
综上所述,本发明先利同纳米压印技术对聚合物表面进行条状织构化处理,再在聚合物表面注入金属离子Mg 或/和Ta,获得具有各向异性的聚合物表面,在降低聚合物摩擦系数的同时提高了其耐磨性,可用于航空、航天、轴承、垫圈等部件。
附图说明
图1为实施例1、3中制备的改性聚合物的微观形貌,其中1为条状刻蚀织构区域,2为聚合物表面条状刻蚀织构区外区域。
图2为实施例2、4中制备的改性聚合物的微观形貌,其中1为条状刻蚀织构区域,2为聚合物表面条状织构刻蚀区外区域。
具体实施方式
下面通过具体实施例对本发明各向异性表面织构/金属离子注入改性聚合物表面的方法及摩擦性能作进一步说明。
实施例1
(1)将聚酰亚胺在去离子水中分别超声清洗8 min,重复3次,去除表面的污染物;
(2)对清洗后的聚酰亚胺采用纳米压印技术进行条状织构化处理,获得表面条状织构;在去离子水中超声清洗5 min,重复3次;
(3)将处理后的聚酰亚胺放入真空腔,对表面非刻蚀部分用不锈钢掩模版进行遮盖,并将真空腔真空抽至1×10-4 Pa;真空腔中预先安置了Mg靶材作为离子注入材料;
(4)打开电弧电源,调节Mg靶电流为18 A,占空比为62%,产生束电流密度为0.25A/100 cm2·s,控制加速电压-22 kV,采用真空电弧离子源注入Mg,注入时间420s,待腔体冷却后取出,即得改性聚酰亚胺,其结构如图1所示;
(5)在往复摩擦试验机上检测改性聚酰亚胺的摩擦性能。选择直径为ø6 mm 的GCr15钢球作为对偶球。具体参数如下:摩擦载荷为5N,频率为5Hz,振幅为5 mm,湿度28 %,测试时间为50 min。横向摩擦系数为:0.36,纵向摩擦系数为:0.43,具有摩擦系数各向异性,几乎看不到磨损痕迹,具有良好的耐磨损性能。
实施例2
(1)将聚酰亚胺在去离子水中分别超声清洗8 min,重复3次,去除表面的污染物;
(2)对清洗后的聚酰亚胺采用纳米压印技术进行条状织构化处理,获得表面条状织构;在去离子水中超声清洗5 min,重复3次;
(3)将处理后的聚酰亚胺放入真空腔,并将真空腔真空抽至1×10-4 Pa;真空腔中预先安置了Mg靶、Ta靶作为离子注入材料;
(4)打开电弧电源,调节Mg和Ta的靶电流均为31 A,占空比为62%,产生束电流密度为0.31A/100 cm2·s,控制加速电压-22 kV,采用真空电弧离子源同时注入Mg和Ta,注入时间330s。待腔体冷却后取出,即得改性聚酰亚胺,其结构如图2所示;
(5)在往复摩擦试验机上检测表面改性处理后的聚合物,选择直径为ø6 mm 的GCr15钢球作为对偶球。具体参数如下:摩擦载荷为5 N,频率为5 Hz,振幅为5 mm,湿度28%,测试时间为50 min。横向摩擦系数为:0.26,纵向摩擦系数为:0.36,具有摩擦系数各向异性,几乎看不到磨损痕迹,具有良好的耐磨损性能。
实施例3
(1)将聚四氟乙烯在去离子水中分别超声清洗8 min,重复3次,去除表面的污染物;
(2)对清洗后的聚四氟乙烯采用纳米压印技术进行条状织构化处理,获得表面条状织构;在去离子水中超声清洗5 min,重复3次;
(3)将处理后的聚四氟乙烯放入真空腔,对表面非刻蚀部分用不锈钢掩模版进行遮盖,并将真空腔真空抽至1×10-4 Pa;真空腔中预先安置了Mg靶作为离子注入材料;
(4)打开电弧电源,调节Mg靶电流为38 A,占空比为62%,产生束电流密度为0.38A/100 cm2·s,控制加速电压-22 kV,离子注入处理180 s,待腔体冷却后取出,即得改性聚四氟乙烯,其结构如图1所示;
(5)在往复摩擦试验机上检测表面改性聚四氟乙烯的摩擦性能。选择直径为ø6 mm的GCr15钢球作为对偶球。具体参数如下:摩擦载荷为5 N,频率为5 Hz,振幅为5 mm,湿度28%,测试时间为50 min。横向摩擦系数为:0.32,纵向摩擦系数为:0.40,具有摩擦系数各向异性,几乎看不到磨损痕迹,具有良好的耐磨损性能。
实施例4
(1)将聚四氟乙烯在去离子水中分别超声清洗8 min,重复3次,去除表面的污染物;
(2)对清洗后的聚四氟乙烯采用纳米压印技术进行条状织构化处理,获得表面条状织构;再在去离子水中超声清洗5 min,重复3次;
(3)将处理后的聚四氟乙烯放入真空腔,并将真空腔真空抽至1×10-4 Pa;真空腔中预先安置了Mg靶、Ta靶作为离子注入材料;
(4)打开电弧电源,调节Mg和Ta的靶电流为26 A,占空比为62%,产生束电流密度为0.29 A/100 cm2·s,控制加速电压-22 kV,离子注入处理280 s,待腔体冷却后取出,即得改性聚四氟乙烯,其结构如图2所示;
(5)在往复摩擦试验机上检测改性聚四氟乙烯的摩擦性能。选择直径为ø6 mm 的GCr15钢球作为对偶球。具体参数如下:摩擦载荷为5 N,频率为5 Hz,振幅为5mm,湿度28 %,测试时间为50 min。横向摩擦系数为:0.21,纵向摩擦系数为:0.32,具有摩擦系数各向异性,几乎看不到磨损痕迹,具有良好的耐磨损性能。
Claims (3)
1.一种各向异性的表面织构/金属离子注入改性聚合物表面的方法,包括以下步骤:
(1)将聚合物在去离子水中分别超声清洗5~10min,重复2~4次,去除表面的污染物;所述聚合物为聚酰亚胺或聚四氟乙烯;
(2)利用纳米压印技术对清洗后的聚合物表面进行织构处理,获得表面条状图案织构;在去离子水中超声清洗5~10min,重复2~4次,
(3)将压印织构处理后的聚合物放入真空腔,真空腔真空抽至1×10-7 Pa;真空腔中预先安置了Mg靶、Ta靶材作为离子注入材料;
(4)将织构处理后聚合物表面非刻蚀部分用不锈钢掩模版遮盖,打开电弧电源,调节电流18~38 A,占空比为62%,产生束电流密度为0.25~0.38 A/100 cm2·s;控制加速电压-22kV,采用真空电弧离子源离子,对聚合物表面刻蚀部分注入Mg;或无需对织构处理后的聚合物表面进行遮盖,同时注入Mg和Ta;离子注入时间180~420 s,待真空腔腔体冷却后取出,即得改性聚合物表面。
2.如权利要求1所述一种各向异性的表面织构/金属离子注入改性聚合物表面的方法,其特征在于:上述真空电弧离子源采用Mevva-V·Ru真空电弧离子源。
3.如权利要求1所述一种各向异性的表面织构/金属离子注入改性聚合物表面的方法,其特征在于:电弧电源采用直流脉冲弧电源。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011356147.6A CN112480452B (zh) | 2020-11-27 | 2020-11-27 | 各向异性织构/金属离子注入改性聚合物表面的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011356147.6A CN112480452B (zh) | 2020-11-27 | 2020-11-27 | 各向异性织构/金属离子注入改性聚合物表面的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112480452A CN112480452A (zh) | 2021-03-12 |
CN112480452B true CN112480452B (zh) | 2021-08-24 |
Family
ID=74936030
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011356147.6A Active CN112480452B (zh) | 2020-11-27 | 2020-11-27 | 各向异性织构/金属离子注入改性聚合物表面的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112480452B (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101748370A (zh) * | 2008-12-19 | 2010-06-23 | 中国科学院兰州化学物理研究所 | 用于水润滑的织构化类金刚石复合薄膜的制备方法 |
CN103089479A (zh) * | 2013-01-21 | 2013-05-08 | 南京理工大学 | 带有硬软复合涂层与织构化表面的耐磨活塞环及制备方法 |
CN105556347A (zh) * | 2013-09-18 | 2016-05-04 | 三菱丽阳株式会社 | 结构体及其制造方法,以及具有该结构体的物品 |
CN111704787A (zh) * | 2020-07-06 | 2020-09-25 | 中国科学院兰州化学物理研究所 | 一种摩擦性能智能响应的热固性形状记忆聚合物及其制备方法和应用 |
CN111961837A (zh) * | 2020-08-13 | 2020-11-20 | 大连理工大学 | 一种激光冲击与涂层润滑复合改性的抗微动疲劳防护方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8110242B2 (en) * | 2006-03-24 | 2012-02-07 | Zimmer, Inc. | Methods of preparing hydrogel coatings |
US9469083B2 (en) * | 2012-07-09 | 2016-10-18 | Massachusetts Institute Of Technology | Inverted nanocone structures for multifunctional surface and its fabrication process |
-
2020
- 2020-11-27 CN CN202011356147.6A patent/CN112480452B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101748370A (zh) * | 2008-12-19 | 2010-06-23 | 中国科学院兰州化学物理研究所 | 用于水润滑的织构化类金刚石复合薄膜的制备方法 |
CN103089479A (zh) * | 2013-01-21 | 2013-05-08 | 南京理工大学 | 带有硬软复合涂层与织构化表面的耐磨活塞环及制备方法 |
CN105556347A (zh) * | 2013-09-18 | 2016-05-04 | 三菱丽阳株式会社 | 结构体及其制造方法,以及具有该结构体的物品 |
CN111704787A (zh) * | 2020-07-06 | 2020-09-25 | 中国科学院兰州化学物理研究所 | 一种摩擦性能智能响应的热固性形状记忆聚合物及其制备方法和应用 |
CN111961837A (zh) * | 2020-08-13 | 2020-11-20 | 大连理工大学 | 一种激光冲击与涂层润滑复合改性的抗微动疲劳防护方法 |
Non-Patent Citations (1)
Title |
---|
表面织构化聚酰亚胺薄膜超声电机摩擦材料性能研究;王丰等;《应用化工》;20170930;第46卷(第9期);第1859-1862页 * |
Also Published As
Publication number | Publication date |
---|---|
CN112480452A (zh) | 2021-03-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Golgoon et al. | Corrosion and wear properties of nanoclay-polyester nanocomposite coatings fabricated by electrostatic method | |
CN112376030B (zh) | 激光织构圆形凹坑阵列金属离子注入改性聚酰亚胺表面的方法 | |
Sun et al. | Controlling the triboelectric properties and tribological behavior of polyimide materials via plasma treatment | |
Ikushima et al. | PEDOT/PSS bending actuators for autofocus micro lens applications | |
CN112480452B (zh) | 各向异性织构/金属离子注入改性聚合物表面的方法 | |
Chen et al. | Improvement of dimensional uniformity on micro-dimple arrays generated by electrochemical micro-machining with an auxiliary electrode | |
Yu et al. | Rapid hydrophobicity recovery of contaminated silicone rubber using low-power microwave plasma in ambient air | |
Yan et al. | Plasma polymer-coated on nanoparticles to improve dielectric and electrical insulation properties of nanocomposites | |
Chen et al. | Cellulose-based slippery covalently attached liquid surfaces for synergistic rain and solar energy harvesting | |
Ishikawa et al. | Development of four-probe microscopy for electric conductivity measurement | |
CN112342499B (zh) | 通过表面刻蚀覆膜金属离子注入改善聚酰亚胺/高分子量聚乙烯摩擦学性能的方法 | |
CN112321880B (zh) | 双金属离子注入改性聚醚醚酮表面的方法 | |
CN102766271A (zh) | 一种利用氧化溶液对丁腈橡胶表面化学改性的方法 | |
CN112376033B (zh) | C、Al双元素注入制备低摩擦氟硅橡胶表面的方法 | |
Zhao et al. | Micro/nano-texture design for improving tribological properties of DLC-IL composite films | |
JP2000319784A (ja) | 摺動部品及びその製造方法 | |
Panda et al. | Synthesis and development of gold polypyrrole actuator for underwater application | |
Da Silva et al. | Electrical characterization of platinum thin films deposited by focused ion beam | |
CN102636429B (zh) | 磁性微纳织构表面的摩擦控制方法及装置 | |
Luo et al. | Enhancing power density in D-mode GaN HEMT direct-current triboelectric nanogenerators through ICP-etched surface engineering | |
Peng et al. | Effect of ambient temperature on hydrophobic recovery behavior of silicone rubber composites | |
Singh et al. | Bio-inspired advanced materials for reducing friction & wear in MEMS devices | |
Manting et al. | Enhancing surface adhesion of polytetrafluoroethylene induced by two-step in-situ treatment with radiofrequency capacitively coupled Ar/Ar+ CH4+ NH3 plasma | |
CN1108337C (zh) | 高耐磨工程塑料的离子注入表面改性方法 | |
CN109778117A (zh) | 基体的表面涂层及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |