CN112453071B - Method for predicting rolling force and thickness of each layer of cold-rolled metal composite plate - Google Patents
Method for predicting rolling force and thickness of each layer of cold-rolled metal composite plate Download PDFInfo
- Publication number
- CN112453071B CN112453071B CN202011284055.1A CN202011284055A CN112453071B CN 112453071 B CN112453071 B CN 112453071B CN 202011284055 A CN202011284055 A CN 202011284055A CN 112453071 B CN112453071 B CN 112453071B
- Authority
- CN
- China
- Prior art keywords
- rolling
- thickness
- metal slab
- slab
- rolling force
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005096 rolling process Methods 0.000 title claims abstract description 156
- 238000000034 method Methods 0.000 title claims abstract description 40
- 239000002905 metal composite material Substances 0.000 title abstract description 4
- 229910052751 metal Inorganic materials 0.000 claims abstract description 111
- 239000002184 metal Substances 0.000 claims abstract description 111
- 238000004364 calculation method Methods 0.000 claims abstract description 20
- 239000002131 composite material Substances 0.000 claims abstract description 9
- 238000004519 manufacturing process Methods 0.000 claims abstract description 9
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 15
- 229910052782 aluminium Inorganic materials 0.000 description 15
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 13
- 229910052802 copper Inorganic materials 0.000 description 13
- 239000010949 copper Substances 0.000 description 13
- JRBRVDCKNXZZGH-UHFFFAOYSA-N alumane;copper Chemical compound [AlH3].[Cu] JRBRVDCKNXZZGH-UHFFFAOYSA-N 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 201000004569 Blindness Diseases 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004100 electronic packaging Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B37/00—Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
- B21B37/58—Roll-force control; Roll-gap control
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B37/00—Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
- B21B37/16—Control of thickness, width, diameter or other transverse dimensions
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Control Of Metal Rolling (AREA)
Abstract
Description
技术领域technical field
本发明涉及复合板轧制技术领域,具体涉及一种冷轧金属复合板的轧制力和各层厚度预测方法。The invention relates to the technical field of clad plate rolling, in particular to a method for predicting the rolling force and the thickness of each layer of a cold-rolled metal clad plate.
背景技术Background technique
金属层状复合材料不仅可以节约大量稀有贵重金属,而且兼有基、复层材料各自的优良特性,可以满足不同环境和使用条件的特殊要求,被广泛应用于电子封装、石油化工、海洋工程、航空航天等各个领域。轧制复合法是一种典型的层状金属复合技术,轧制复合法的生产效率高、易于实现批量生产、能生产较大长度和宽度的制品,所得产品一致性好、性能稳定,因此轧制复合法得到广泛应用。Metal layered composite materials can not only save a lot of rare and precious metals, but also have the excellent characteristics of base and clad materials, and can meet the special requirements of different environments and conditions of use. They are widely used in electronic packaging, petrochemical, marine engineering, aerospace and other fields. The rolling composite method is a typical layered metal composite technology. The rolling composite method has high production efficiency, is easy to achieve mass production, and can produce products with large length and width. The obtained products have good consistency and stable performance. The compound method is widely used.
复合板轧制过程中轧制力的确定可以对轧制辊缝设定和板形控制等提供依据,同时也可以指导设备的设计、强度的校核,这对生产安全和延长设备使用寿命具有重要意义。金属复合板的板厚精度是评价产品质量的主要性能之一,复合板轧后各层的厚度直接影响产品的后续深加工性能和最终综合性能。对金属复合板轧制过程中的轧制力和轧后各层厚度进行预测不仅可以指导生产组坯和轧制规程设定,而且可以最大限度的节约材料、合理利用轧制设备。The determination of rolling force in the process of clad plate rolling can provide a basis for rolling gap setting and shape control, etc., and can also guide equipment design and strength checking, which is of great importance to production safety and prolonging equipment service life. important meaning. The thickness accuracy of the metal clad plate is one of the main properties for evaluating product quality. The thickness of each layer of the clad plate after rolling directly affects the subsequent deep processing performance and final comprehensive performance of the product. Predicting the rolling force and the thickness of each layer after rolling of the metal clad plate can not only guide the production of billets and the setting of rolling schedules, but also save materials to the greatest extent and make rational use of rolling equipment.
目前,针对金属冷轧复合板的轧制力和各层厚度研究常采用的方法有物理实验法和有限元方法。但是物理实验法的试验时间长、经济损失大,具有一定的盲目性且灵活性较差。有限元方法计算时间长,每次计算只能对具体工艺的结果进行显示而且不便于工程应用。因此迫切需要一种成本低、精度高、计算时间短、适用范围广的冷轧金属复合板的轧制力和各层厚度预测方法。At present, the methods commonly used in the research on the rolling force and the thickness of each layer of metal cold-rolled clad sheet include physical experiment method and finite element method. However, the physical experiment method has long test time, large economic loss, certain blindness and poor flexibility. The finite element method takes a long time to calculate, and each calculation can only display the results of a specific process, which is not convenient for engineering applications. Therefore, there is an urgent need for a method for predicting the rolling force and the thickness of each layer of the cold-rolled metal clad plate with low cost, high precision, short calculation time and wide application range.
发明内容SUMMARY OF THE INVENTION
针对现有技术中的不足,本发明的目的在于提供一种冷轧金属复合板的轧制力和各层厚度预测方法。In view of the deficiencies in the prior art, the purpose of the present invention is to provide a method for predicting the rolling force and the thickness of each layer of a cold-rolled metal clad sheet.
为实现上述目的,本发明采用了以下技术方案:To achieve the above object, the present invention has adopted the following technical solutions:
一种冷轧金属复合板的轧制力和各层厚度预测方法,包括以下步骤:A method for predicting rolling force and thickness of each layer of a cold-rolled metal clad plate, comprising the following steps:
步骤1:按照某道次轧制工艺规程数据分别获取复合板轧制工艺参数,包括软金属板坯的入口厚度h1i,硬金属板坯的入口厚度h2i,板坯宽度b,复合板的成品目标总厚度ho,软金属板坯和与之接触的一号轧辊之间的摩擦系数μ1、硬金属板坯和与之接触的二号轧辊之间的摩擦系数μ2,与软金属板坯接触的一号轧辊和与硬金属板坯接触的二号轧辊的原始半径R0;其中,板坯宽度与软金属板坯、硬金属板坯的宽度相等;一号轧辊和二号轧辊的原始半径相等。Step 1: Obtain the clad plate rolling process parameters according to the data of a certain pass of rolling process, including the entrance thickness h 1i of the soft metal slab, the entrance thickness h 2i of the hard metal slab, the slab width b, the thickness of the clad plate The target total thickness h o of the finished product, the friction coefficient μ 1 between the soft metal slab and the No. 1 roll in contact with it, the friction coefficient μ 2 between the hard metal slab and the No. 2 roll in contact with it, and the soft metal The original radius R 0 of the No. 1 roll in contact with the slab and the No. 2 roll in contact with the hard metal slab; the width of the slab is equal to the width of the soft metal slab and the hard metal slab; the No. 1 roll and the No. 2 roll are equal to the original radius.
步骤2:设定软金属板坯和硬金属板坯在各自等效单板轧制的轧制力计算中所用的轧辊半径R1和R2,第一次计算所用的轧辊半径R1和R2为轧辊原始半径R0,即R1=R0,R2=R0;Step 2: Set the roll radii R 1 and R 2 used in the calculation of the rolling force of the respective equivalent veneer rolling for the soft metal slab and the hard metal slab, and the roll radii R 1 and R used in the first calculation 2 is the original radius R 0 of the roll, that is, R 1 =R 0 , R 2 =R 0 ;
步骤3:根据板坯的入口厚度h1i和h2i以及成品目标总厚度ho,计算复合轧制总压下率ε;Step 3: Calculate the total reduction ratio ε of clad rolling according to the entrance thickness h 1i and h 2i of the slab and the target total thickness h o of the finished product;
步骤4:设定复合板轧制中软金属板坯的压下率ε1=ε;Step 4: Set the reduction ratio ε 1 =ε of the soft metal slab in the clad plate rolling;
步骤5:计算复合板轧制中硬金属板坯的压下率ε2;Step 5: Calculate the reduction ratio ε 2 of the hard metal slab in the clad plate rolling;
步骤6:计算软金属板坯和硬金属板坯分别在压下率ε1和ε2下的出口厚度h1o和h2o;Step 6: Calculate the outlet thickness h 1o and h 2o of the soft metal slab and the hard metal slab at the reduction ratios ε 1 and ε 2 , respectively;
步骤7:计算在等效单板轧制中将软金属板坯从h1i轧到h1o时的轧制力Pd1;Step 7: Calculate the rolling force P d1 when rolling the soft metal slab from h 1i to h 1o in the equivalent veneer rolling;
步骤8:计算在等效单板轧制中将硬金属板坯从h2i轧到h2o时的轧制力Pd2;Step 8: Calculate the rolling force P d2 when rolling the hard metal slab from h 2i to h 2o in equivalent veneer rolling;
步骤9:计算软金属板坯和硬金属板坯在等效单板轧制中各自的等效轧辊压扁半径R'1和R'2;Step 9: Calculate the respective equivalent roll flattening radii R' 1 and R' 2 of the soft metal slab and the hard metal slab in the equivalent veneer rolling;
步骤10:判断轧制力Pd1和Pd2是否满足收敛条件如不满足,重新计算软金属板坯的压下率ε1,重新设定轧制力计算过程中所需的轧辊半径R1和R2,重复步骤5至步骤10的操作,直至满足收敛条件为止;Step 10: Determine whether the rolling forces P d1 and P d2 satisfy the convergence condition If not, recalculate the reduction ratio ε 1 of the soft metal slab, reset the roll radii R 1 and R 2 required in the rolling force calculation process, and repeat steps 5 to 10 until the convergence conditions are met until;
步骤11:得到双金属冷轧复合板生产时的轧制力 Step 11: Obtain the rolling force during the production of the bimetallic cold-rolled clad plate
步骤12:得到ε1和ε2的最佳值ε1 *和ε2 *,计算复合轧制时软金属板坯和硬金属板坯的最终出口厚度h1o *和h2o *。Step 12: Obtain the optimal values ε 1 * and ε 2 * of ε 1 and ε 2 , and calculate the final exit thicknesses h 1o * and h 2o * of the soft metal slab and the hard metal slab during clad rolling.
进一步地,所述步骤3:根据板坯的入口厚度h1i和h2i以及成品目标总厚度ho,计算复合轧制总压下率ε,具体按照式(1)计算:Further, in the step 3: according to the entrance thickness h 1i and h 2i of the slab and the target total thickness h o of the finished product, calculate the total reduction ratio ε of the clad rolling, specifically according to formula (1):
再进一步地,所述步骤5:计算复合板轧制中硬金属板坯的压下率ε2,具体按照式(2)计算:Still further, the step 5: calculate the reduction ratio ε 2 of the hard metal slab in the clad plate rolling, specifically according to formula (2):
更进一步的,所述步骤6:计算软金属板坯和硬金属板坯分别在压下率ε1和ε2下的出口厚度h1o和h2o,分别按照式(3)和(4)计算:Further, the step 6: calculate the outlet thickness h 1o and h 2o of the soft metal slab and the hard metal slab under the reduction ratios ε 1 and ε 2 , respectively, according to formulas (3) and (4) respectively. :
h1o=(1-ε1)h1i (3)h 1o = (1-ε 1 )h 1i (3)
h2o=(1-ε2)h2i (4)。h 2o =(1-ε 2 )h 2i (4).
更进一步的,所述步骤7:计算在等效单板轧制中将软金属板坯从h1i轧到h1o时的轧制力Pd1;具体为:Further, the step 7: calculate the rolling force P d1 when rolling the soft metal slab from h 1i to h 1o in the equivalent veneer rolling; specifically:
步骤7.1:计算软金属板坯的变形抗力σ1;Step 7.1: Calculate the deformation resistance σ 1 of the soft metal slab;
步骤7.2:按照式(5)计算在等效单板轧制中将软金属板坯从h1i轧到h1o时变形区的等效接触弧长l1;Step 7.2: Calculate the equivalent contact arc length l 1 of the deformation zone when rolling the soft metal slab from h 1i to h 1o in the equivalent veneer rolling according to formula (5);
步骤7.3:按照式(6)计算软金属板坯在等效单板轧制中的轧制力Pd1;Step 7.3: Calculate the rolling force P d1 of the soft metal slab in the equivalent veneer rolling according to formula (6);
更进一步的,所述步骤8:计算在等效单板轧制中将硬金属板坯从h2i轧到h2o时的轧制力Pd2;具体为:Further, the step 8: calculate the rolling force P d2 when rolling the hard metal slab from h 2i to h 2o in the equivalent veneer rolling; specifically:
步骤8.1:计算硬金属板坯的变形抗力σ2;Step 8.1: Calculate the deformation resistance σ 2 of the hard metal slab;
步骤8.2:按照式(7)计算在等效单板轧制中将硬金属板坯从h2i轧到h2o时变形区的等效接触弧长l2;Step 8.2: Calculate the equivalent contact arc length l 2 of the deformation zone when rolling the hard metal slab from h 2i to h 2o in the equivalent veneer rolling according to formula (7);
步骤8.3:计算硬金属板坯在等效单板轧制中的轧制力Pd2。Step 8.3: Calculate the rolling force P d2 of the hard metal slab in the equivalent veneer rolling.
更进一步的,所述步骤8.3:计算硬金属板坯在等效单板轧制中的轧制力Pd2,具体按照式(8)计算:Further, the step 8.3: Calculate the rolling force P d2 of the hard metal slab in the equivalent veneer rolling, specifically calculated according to formula (8):
更进一步的,所述步骤9:计算软金属板坯和硬金属板坯在等效单板轧制中各自的等效轧辊压扁半径R'1和R'2;R'1和R'2分别按照式(9)和(10)计算:由于轧制时轧制力较大,轧辊产生弹性压扁现象,增加了接触弧的实际长度,所以为了提高接触弧长和轧制力的计算精度,计算过程中考虑轧辊压扁。等效轧辊压扁半径R'1和R'2为:Further, the step 9: Calculate the respective equivalent roll flattening radii R' 1 and R' 2 of the soft metal slab and the hard metal slab in the equivalent veneer rolling; R' 1 and R' 2 Calculate according to formulas (9) and (10) respectively: due to the large rolling force during rolling, the roll produces elastic flattening phenomenon, which increases the actual length of the contact arc, so in order to improve the calculation accuracy of the contact arc length and rolling force , roll flattening is considered in the calculation process. The equivalent roll flattening radii R'1 and R'2 are:
更进一步的,所述步骤10:判断轧制力Pd1和Pd2是否满足收敛条件如不满足,重新计算软金属板坯的压下率ε1,重新设定轧制力计算过程中所需的轧辊半径R1和R2,重复步骤5至步骤10的操作,直至满足收敛条件为止,具体如下:Further, the step 10: judging whether the rolling forces P d1 and P d2 satisfy the convergence condition If not, recalculate the reduction ratio ε 1 of the soft metal slab, reset the roll radii R 1 and R 2 required in the rolling force calculation process, and repeat steps 5 to 10 until the convergence conditions are met So far, as follows:
ε1=ε+0.001n,n为循环计算次数,取正整数1、2、3……,且依次增大。ε 1 =ε+0.001n, n is the number of loop computations, which is a positive integer of 1, 2, 3... and increases sequentially.
每次循环到步骤7和步骤8的轧制力计算时,所用轧辊半径都采用重新计算后的轧辊压扁半径,即令R1=R1′,R2=R2′。When the rolling force is calculated in each cycle to step 7 and step 8, the used roll radius adopts the recalculated roll flattening radius, that is, R 1 =R 1 ′, R 2 =R 2 ′.
更进一步的,所述步骤12:得到ε1和ε2的最佳值ε1 *和ε2 *,计算复合轧制时软金属板坯和硬金属板坯的最终出口厚度h1o *和h2o *,具体按照式(11)和(12)计算:Further, the step 12: obtain the optimal values of ε 1 and ε 2 ε 1 * and ε 2 * , calculate the final exit thickness h 1o * and h of the soft metal slab and the hard metal slab during clad rolling 2o * , which is calculated according to formulas (11) and (12):
h1o *=(1-ε1 *)h1i (11),h 1o * = (1-ε 1 * )h 1i (11),
h2o *=(1-ε2 *)h2i (12)。h 2o * = (1-ε 2 * )h 2i (12).
与现有技术相比,本发明具有以下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
本发明对冷轧金属复合板的轧制力和各层厚度进行预测,计算得到的轧制力和各层厚度值基本接近实际值。本发明的方法安全可靠,能简捷、方便、准确地预测不同轧制规程下的铜/铝、镁/铝等多种金属冷轧复合板的轧制力和各层厚度预报,在节约生产投资成本的同时,方便了轧制规程设定和设备选取,提高了复合板产品厚度控制的精度。The invention predicts the rolling force and the thickness of each layer of the cold-rolled metal clad plate, and the calculated rolling force and the thickness of each layer are basically close to the actual value. The method of the invention is safe and reliable, can simply, conveniently and accurately predict the rolling force and the thickness of each layer of cold-rolled clad plates of copper/aluminum, magnesium/aluminum and other metals under different rolling schedules, and saves production investment. At the same time, it facilitates the setting of rolling schedule and the selection of equipment, and improves the precision of thickness control of clad plate products.
附图说明Description of drawings
图1为本发明提供的冷轧金属复合板的轧制力和各层厚度预测方法流程示意图;1 is a schematic flowchart of a method for predicting rolling force and thickness of each layer of a cold-rolled metal clad sheet provided by the present invention;
图2为本发明提供的冷轧金属复合板轧制示意图。FIG. 2 is a schematic diagram of the rolling of the cold-rolled metal clad plate provided by the present invention.
图中,1-软金属板坯、2-硬金属板坯、3-一号轧辊、4-二号轧辊。In the figure, 1-soft metal slab, 2-hard metal slab, 3-No.1 roll, 4-No.2 roll.
具体实施方式Detailed ways
下面结合附图并通过具体实施例来进一步说明本发明的技术方案。本领域技术人员应该明了,所述具体实施方式仅仅是帮助理解本发明,不应视为对本发明的具体限制。The technical solutions of the present invention will be further described below with reference to the accompanying drawings and through specific embodiments. It should be understood by those skilled in the art that the specific embodiments are only for helping the understanding of the present invention, and should not be regarded as a specific limitation of the present invention.
图1展示了本发明提供的冷轧金属复合板的轧制力和各层厚度预测方法流程示意图,本实施例中软金属板坯1为铝板坯,硬金属板坯2为铜板坯,如图1所示,本实施例的方法如下所述。Figure 1 shows a schematic flowchart of the method for predicting the rolling force and thickness of each layer of a cold-rolled metal clad sheet provided by the present invention. In this embodiment, the soft metal slab 1 is an aluminum slab, and the
步骤1:按照某道次轧制工艺规程数据分别获取复合板轧制工艺参数,包括软金属板坯1的入口厚度h1i=2mm,硬金属板坯2的入口厚度h2i=1mm,板坯宽度b=30mm,铜铝复合板的出口总厚度ho=1.51mm,铝板坯与轧辊3之间的摩擦系数μ1=0.4、铜板坯和轧辊4之间的摩擦系数μ2=0.35,轧辊原始半径R0=75mm。Step 1: Obtain the rolling process parameters of the clad plate according to the rolling process specification data of a certain pass, including the entrance thickness of the soft metal slab 1 h 1i = 2 mm, the entrance thickness of the hard metal slab 2 h 2i = 1 mm, and the slab thickness h 2i = 1 mm. The width b=30mm, the total thickness h o =1.51mm at the outlet of the copper-aluminum composite plate, the friction coefficient between the aluminum slab and the
步骤2:设定铝板坯和铜板坯在各自等效单板轧制的轧制力计算中所用的轧辊半径R1和R2,第一次计算所用的轧辊半径R1和R2为轧辊原始半径R0,即R1=R0=75mm,R2=R0=75mm。Step 2: Set the roll radii R 1 and R 2 used in the calculation of the rolling force of the respective equivalent veneer rolling for the aluminum slab and the copper slab, and the roll radii R 1 and R 2 used in the first calculation are the original rolls. Radius R 0 , ie R 1 =R 0 =75mm, R 2 =R 0 =75mm.
步骤3:根据板坯的入口厚度h1i和h2i以及成品目标总厚度ho,计算复合轧制总压下率ε。Step 3: Calculate the total reduction ratio ε of the clad rolling according to the entrance thicknesses h 1i and h 2i of the slab and the target total thickness h o of the finished product.
步骤4:设定复合板轧制中铝板坯的压下率ε1=ε=49.7%。Step 4: Set the reduction ratio ε 1 =ε = 49.7% of the aluminum slab in the clad plate rolling.
步骤5:计算复合板轧制中铜板坯的压下率ε2。Step 5: Calculate the reduction ratio ε 2 of the copper slab in the clad plate rolling.
步骤6:计算铝板坯和铜板坯分别在压下率ε1和ε2下的出口厚度h1o和h2o。h1o=(1-ε1)h1i=0.503×2=1.006mm,h2o=(1-ε2)h2i=0.503×1=0.503mm。Step 6: Calculate the outlet thickness h 1o and h 2o of the aluminum slab and the copper slab at the reduction ratios ε 1 and ε 2 , respectively. h 1o =(1-ε 1 )h 1i =0.503×2=1.006 mm, h 2o =(1-ε 2 )h 2i =0.503×1=0.503 mm.
步骤7:计算在等效单板轧制中将铝板坯从h1i轧到h1o时轧制力Pd1。Step 7: Calculate the rolling force P d1 when rolling the aluminum slab from h 1i to h 1o in equivalent veneer rolling.
步骤7.1:计算铝的变形抗力σ1;Step 7.1: Calculate the deformation resistance σ 1 of aluminum;
步骤7.2:计算在等效单板轧制中将铝板坯从h1i轧到h1o时变形区的等效接触弧长l1;Step 7.2: Calculate the equivalent contact arc length l 1 of the deformation zone when the aluminum slab is rolled from h 1i to h 1o in the equivalent veneer rolling;
步骤7.3:计算铝板坯在等效单板轧制中的轧制力Pd1;Step 7.3: Calculate the rolling force P d1 of the aluminum slab in the equivalent veneer rolling;
步骤8:计算在等效单板轧制中将铜板坯从h2i轧到h2o时的轧制力Pd2。Step 8: Calculate the rolling force P d2 when rolling the copper slab from h 2i to h 2o in the equivalent veneer rolling.
步骤8.1:计算铜的变形抗力σ2;Step 8.1: Calculate the deformation resistance σ 2 of copper;
步骤8.2:计算在等效单板轧制中将铜板坯从h2i轧到h2o时变形区的等效接触弧长l2;Step 8.2: Calculate the equivalent contact arc length l 2 of the deformation zone when the copper slab is rolled from h 2i to h 2o in the equivalent veneer rolling;
步骤8.3:计算铜板坯在等效单板轧制中的轧制力Pd2;Step 8.3: Calculate the rolling force P d2 of the copper slab in the equivalent veneer rolling;
步骤9:计算铝板坯和铜板坯在等效单板轧制中各自的等效轧辊压扁半径R'1和R'2。Step 9: Calculate the respective equivalent roll flattening radii R' 1 and R' 2 of the aluminum slab and the copper slab in the equivalent veneer rolling.
步骤10:判断轧制力Pd1和Pd2是否满足收敛条件如不满足,重新计算铝板坯的压下率ε1,重新设定轧制力计算过程中所需的轧辊半径R1和R2,重复步骤5至步骤10的操作,直至满足收敛条件为止。Step 10: Determine whether the rolling forces P d1 and P d2 satisfy the convergence condition If not, recalculate the reduction ratio ε 1 of the aluminum slab, reset the roll radii R 1 and R 2 required in the rolling force calculation process, and repeat the operations from steps 5 to 10 until the convergence conditions are met.
本次计算n=1,即ε1=ε+0.001n=0.497+0.001×1=49.8%。In this calculation, n=1, that is, ε 1 =ε+0.001n=0.497+0.001×1=49.8%.
后续第一次循环计算时,在步骤7和步骤8中所用到的轧辊半径都采用压扁后的轧辊半径进行计算,即令R1=R1′=81.863mm,R2=R2′=88.726mm。In the subsequent first cycle calculation, the roll radii used in steps 7 and 8 are calculated using the roll radius after flattening, that is, R 1 =R 1 ′=81.863mm, R 2 =R 2 ′=88.726 mm.
重复步骤5至步骤10的操作,再计算94次,可满足收敛条件,停止循环,循环计算过程部分数据如下表所示。Repeat the operations from step 5 to step 10, and calculate 94 times again, the convergence condition can be satisfied, and the loop is stopped. Some data of the loop calculation process are shown in the following table.
步骤11:得到冷轧铜铝复合板生产时的轧制力 Step 11: Obtain the rolling force during the production of the cold-rolled copper-aluminum clad plate
步骤12:得到ε1和ε2的最佳值ε1 *和ε2 *,ε1 *=0.59,ε2 *=0.311,计算复合轧制时铝板和铜板的最终出口厚度h1o *和h2o *,h1o *=(1-ε1 *)h1i=0.82mm,h2o *=(1-ε2 *)h2i=0.689mm。Step 12: Obtain the optimal values of ε 1 and ε 2 ε 1 * and ε 2 * , ε 1 * = 0.59, ε 2 * = 0.311, calculate the final exit thickness h 1o * and h of the aluminum plate and copper plate during clad rolling 2o * , h 1o * = (1-ε 1 * )h 1i = 0.82 mm, h 2o * = (1-ε 2 * )h 2i = 0.689 mm.
本实施例以铝为软金属板坯1,铜为硬金属板坯2为例进一步说明本发明的技术方案,并非对本发明的软金属和硬金属材料的限定。This embodiment further illustrates the technical solution of the present invention by taking aluminum as the soft metal slab 1 and copper as the
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。The above are only specific embodiments of the present invention, but the protection scope of the present invention is not limited to this. Any person skilled in the art can easily think of changes or substitutions within the technical scope disclosed by the present invention. should be included within the protection scope of the present invention. Therefore, the protection scope of the present invention should be based on the protection scope of the claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011284055.1A CN112453071B (en) | 2020-11-17 | 2020-11-17 | Method for predicting rolling force and thickness of each layer of cold-rolled metal composite plate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011284055.1A CN112453071B (en) | 2020-11-17 | 2020-11-17 | Method for predicting rolling force and thickness of each layer of cold-rolled metal composite plate |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112453071A CN112453071A (en) | 2021-03-09 |
CN112453071B true CN112453071B (en) | 2022-07-01 |
Family
ID=74836267
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011284055.1A Active CN112453071B (en) | 2020-11-17 | 2020-11-17 | Method for predicting rolling force and thickness of each layer of cold-rolled metal composite plate |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112453071B (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113465476B (en) * | 2021-06-15 | 2022-09-06 | 太原理工大学 | Method for evaluating deformation coordination of multilayer metal rolling composite plate |
CN116020885A (en) * | 2021-10-26 | 2023-04-28 | 宝山钢铁股份有限公司 | Prediction method for hot continuous rolling finish rolling force of composite plate |
CN114178321B (en) * | 2021-11-17 | 2024-05-10 | 首钢智新迁安电磁材料有限公司 | Method for reducing cold rolling force |
CN114169152B (en) * | 2021-11-19 | 2025-05-16 | 太原理工大学 | A method for predicting rolling force of metal composite plates rolled by corrugated rollers |
CN116371941B (en) * | 2023-06-05 | 2023-08-18 | 太原理工大学 | Method and device for predicting rolling force and thickness of each layer of metal composite plate and electronic equipment |
CN116393529B (en) * | 2023-06-07 | 2023-08-18 | 太原理工大学 | Method, device and electronic equipment for determining rolling force during hot rolling of metal laminates |
CN116984393B (en) * | 2023-09-25 | 2024-01-02 | 太原理工大学 | A method, device, equipment and medium for predicting rolling force and thickness of each layer |
CN118287511B (en) * | 2024-06-05 | 2024-08-16 | 太原理工大学 | Method and device for determining the roll gap of dynamic rolling with reduced thickness of cold strip |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3561237A (en) * | 1967-11-29 | 1971-02-09 | Westinghouse Electric Corp | Predictive gauge control method and apparatus for metal rolling mills |
CN1263483A (en) * | 1997-07-11 | 2000-08-16 | 西门子公司 | Process and installation for rolling metal strip |
KR20080059885A (en) * | 2006-12-26 | 2008-07-01 | 주식회사 포스코 | Rough Rolling Horizontal Rolling Load Prediction Method |
JP2010196156A (en) * | 2009-01-30 | 2010-09-09 | Jfe Steel Corp | Thick, high tensile-strength hot-rolled steel sheet having excellent low temperature toughness and manufacturing method therefor |
CN102294364A (en) * | 2010-06-22 | 2011-12-28 | 宝山钢铁股份有限公司 | Method for presetting rolling force of extremely-thin board temper mill |
JP2012081493A (en) * | 2010-10-08 | 2012-04-26 | Sumitomo Metal Ind Ltd | Metal plate thickness control method and metal plate manufacturing method |
CN103769417A (en) * | 2013-10-30 | 2014-05-07 | 燕山大学 | Device and method for thermometal composite board strip cast-rolling in double flow and continuous mode through single machine |
CN105022923A (en) * | 2015-07-19 | 2015-11-04 | 湖南城市学院 | Rolling force and rolling temperature mutual iteration calculating method |
JP2016137504A (en) * | 2015-01-27 | 2016-08-04 | 株式会社神戸製鋼所 | Plate thickness control method and plate thickness control device of rolling mill |
JP2016155166A (en) * | 2015-02-26 | 2016-09-01 | 株式会社神戸製鋼所 | Rolling method of clad sheet material |
CN107552564A (en) * | 2017-08-04 | 2018-01-09 | 无锡银荣板业有限公司 | The hot-rolled production process of copper-aluminum composite board |
CN108971236A (en) * | 2017-05-31 | 2018-12-11 | 宝山钢铁股份有限公司 | A kind of draught pressure forecast method of hot continuous rolling composite strip |
CN109719138A (en) * | 2019-01-04 | 2019-05-07 | 北京首钢自动化信息技术有限公司 | A kind of resistance of deformation phenomenological model calculation method based on data mining |
CN110252806A (en) * | 2019-05-13 | 2019-09-20 | 太原理工大学 | A rolling method for improving the bonding strength of bimetal clad plates |
CN110516312A (en) * | 2019-07-31 | 2019-11-29 | 北京首钢自动化信息技术有限公司 | A kind of no roller cut deal end stage plate shape lock regulation distribution method |
CN110802114A (en) * | 2019-10-30 | 2020-02-18 | 中冶陕压重工设备有限公司 | Rolling force method for cold-rolled plate strip |
-
2020
- 2020-11-17 CN CN202011284055.1A patent/CN112453071B/en active Active
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3561237A (en) * | 1967-11-29 | 1971-02-09 | Westinghouse Electric Corp | Predictive gauge control method and apparatus for metal rolling mills |
CN1263483A (en) * | 1997-07-11 | 2000-08-16 | 西门子公司 | Process and installation for rolling metal strip |
KR20080059885A (en) * | 2006-12-26 | 2008-07-01 | 주식회사 포스코 | Rough Rolling Horizontal Rolling Load Prediction Method |
JP2010196156A (en) * | 2009-01-30 | 2010-09-09 | Jfe Steel Corp | Thick, high tensile-strength hot-rolled steel sheet having excellent low temperature toughness and manufacturing method therefor |
CN102294364A (en) * | 2010-06-22 | 2011-12-28 | 宝山钢铁股份有限公司 | Method for presetting rolling force of extremely-thin board temper mill |
JP2012081493A (en) * | 2010-10-08 | 2012-04-26 | Sumitomo Metal Ind Ltd | Metal plate thickness control method and metal plate manufacturing method |
CN103769417A (en) * | 2013-10-30 | 2014-05-07 | 燕山大学 | Device and method for thermometal composite board strip cast-rolling in double flow and continuous mode through single machine |
JP2016137504A (en) * | 2015-01-27 | 2016-08-04 | 株式会社神戸製鋼所 | Plate thickness control method and plate thickness control device of rolling mill |
JP2016155166A (en) * | 2015-02-26 | 2016-09-01 | 株式会社神戸製鋼所 | Rolling method of clad sheet material |
CN105022923A (en) * | 2015-07-19 | 2015-11-04 | 湖南城市学院 | Rolling force and rolling temperature mutual iteration calculating method |
CN108971236A (en) * | 2017-05-31 | 2018-12-11 | 宝山钢铁股份有限公司 | A kind of draught pressure forecast method of hot continuous rolling composite strip |
CN107552564A (en) * | 2017-08-04 | 2018-01-09 | 无锡银荣板业有限公司 | The hot-rolled production process of copper-aluminum composite board |
CN109719138A (en) * | 2019-01-04 | 2019-05-07 | 北京首钢自动化信息技术有限公司 | A kind of resistance of deformation phenomenological model calculation method based on data mining |
CN110252806A (en) * | 2019-05-13 | 2019-09-20 | 太原理工大学 | A rolling method for improving the bonding strength of bimetal clad plates |
CN110516312A (en) * | 2019-07-31 | 2019-11-29 | 北京首钢自动化信息技术有限公司 | A kind of no roller cut deal end stage plate shape lock regulation distribution method |
CN110802114A (en) * | 2019-10-30 | 2020-02-18 | 中冶陕压重工设备有限公司 | Rolling force method for cold-rolled plate strip |
Non-Patent Citations (4)
Title |
---|
Analysis of deformation mechanism in corrugated rolling of composite;Wenli Liu;《ScienceDirect》;20200905;第552-557页 * |
双金属复合板轧制力的工程法计算;李玉刚等;《天津冶金》;20000815(第04期);第32-34页 * |
宽厚复合板热轧成形轧制力模型;金贺荣等;《北京工业大学学报》;20141231;第40卷(第12期);第1905-1909页 * |
带夹层不锈钢复合板异步轧制力数学模型研究;宜亚丽等;《钢铁》;20200915;第55卷(第09期);第69-79页 * |
Also Published As
Publication number | Publication date |
---|---|
CN112453071A (en) | 2021-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112453071B (en) | Method for predicting rolling force and thickness of each layer of cold-rolled metal composite plate | |
CN116136892B (en) | Method and system for calculating rolling force of twenty-high rolling mill | |
Fu et al. | Geometry and grain size effects on the fracture behavior of sheet metal in micro-scale plastic deformation | |
JPWO2008029497A1 (en) | Magnesium alloy member and manufacturing method thereof | |
Li et al. | Numerical and experimental investigation on the forming behaviour of stainless/carbon steel bimetal composite | |
CN118023303B (en) | Roll gap setting method, device and equipment in thin strip rolling production process | |
CN105057364B (en) | Magnesium alloy sheet rolling edge crack pre-judgment and control method | |
CN114169152A (en) | Rolling force prediction method for rolling metal composite plate by corrugated roller | |
JP2015027679A (en) | Die for ironing and method of producing molding material | |
CN106777502B (en) | A method for making a three-dimensional principal stress theoretical forming limit diagram for plastic forming of pipes | |
Guo et al. | Flow stress modeling of ultra-thin austenitic stainless steel for proton exchange membrane fuel cell incorporating strain rate, temperature, and grain size | |
CN117772813A (en) | A method and device for predicting the initial thickness of each layer of cold-rolled metal composite panels | |
Rumyantsev et al. | Further developments in simulation of metal forming processes | |
Xin et al. | Theoretical analysis of minimum metal foil thickness achievable by asymmetric rolling with fixed identical roll diameters | |
Taşdemir | Finite element analysis of the springback behavior after V bending process of sheet materials obtained by Differential Speed Rolling (DSR) method | |
CN113533673A (en) | A method for measuring internal stress distribution of metal foil strips based on layer-by-layer thinning | |
Mohanty et al. | Single‐Step Deformation Processing of Ultrathin Lithium Foil and Strip | |
JP4564328B2 (en) | Housing for electronic equipment with excellent productivity and design | |
CN117798187A (en) | Rolled joined body and method for producing same | |
JP2008212980A (en) | Modified cross-section long thin plate coil and molded body using the same | |
Adamovic et al. | Numerical modeling of ironing process | |
CN115017450A (en) | Method for calculating resilience in thick-wall pipe preparation process | |
CN103412968B (en) | A kind of method for building up of the constitutive relation model postponing material of hardening | |
CN114462266A (en) | A method for building a cold extrusion springback prediction model for tantalum alloy hyperboloid components | |
CN116164616B (en) | A method for detecting key product quality index system of mirror-drawn motor housing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |